LabVIEW® Code Interface
Reference Manual

November 1995 Edition
Part Number 320539C-01

© Copyright 1992, 1995 National Instruments Corporation. All Rights Reserved.

Internet Support

GPIB: gpi b. support @ati nst.com
DAQ: dag. support @ati nst.com

VXI: vxi . support @ati nst.com
LabVIEW: | v. support @at i nst.com
LabWindows: | w. support @ati nst.com
HiQ: hi q. support @ati nst.com

E-mail: i nf o@at i nst.com
FTPSite ftp. nati nst.com
Web Address: http://ww. natinst.com

Bulletin Board Support

BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 148 65 15 59

E FaxBack Support

(512) 418-1111 or (800) 329-7177
Q:

)

322> Telephone Support (U.S.)
Tel: (512) 795-8248
Fax: (512) 794-5678 or (800) 328-2203

DN
International Offices

Australia03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,

Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
Italy 02 48301892, Japan 03 5472 2970, Korea 02 596 7456, Mexico 95 800 010 0793,
Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Important Information

Warranty

Copyright

Trademarks

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defectsin materials and workmanship, for aperiod of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do
not execute programming instructions if National Instruments receives notice of such defects during the warranty
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instrumentswill pay the shipping
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER'’ S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS
WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. Thislimitation of theliability of National
Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action
against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided
herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow the
National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or
other events outside reasonable control.

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or
in part, without the prior written consent of National Instruments Corporation.

LabVIEW® is atrademark of National Instruments Corporation.
Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the
part of the user or application designer. Any use or application of National Instruments products for or involving
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and a
traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent
serious injury or death should always continue to be used when National Instruments products are being used.
National Instruments products are NOT intended to be a substitute for any form of established process, procedure, or
equipment used to monitor or safeguard human health and safety in medical or clinical treatment.

The LabVIEW Code Interface Reference Manual discusses Code
Interface Nodes and external subroutines for users who need to access
code written in conventional programming languages. The manual
includes information about shared external subroutines, libraries of
functions, memory and file manipulation routines, and diagnostic
routines.

Organization of This Manual

This manual is organized as follows:

© National Instruments Corporation

Chapter 1, CIN Overview, introducesthe LabVIEW Code Interface
Node (CIN), a node that links external code writtenin a
conventional programming language to LabVIEW.

Chapter 2, CIN Parameter Passing, describes the data structures
that LabVIEW uses when passing datato a CIN.

Chapter 3, CIN Advanced Topics, covers several topics that are
needed only in advanced applications, including how to use the
CI NI ni t,Cl NDi spose, Cl NAbor t,Cl NLoad, Cl NUnl oad,
and Cl NSav e routines. The chapter also discusses how global
dataworks within CIN source code, and how users of Windows
3.1, Windows 95, and Windows NT can call aDLL from a CIN.

Chapter 4, External Subroutines, describes how to create and call
shared external subroutines from other external code modules.

Chapter 5, Manager Overview, gives an overview of the function
libraries, called managers, which you can use in external code
modules. These include the memory manager, the file manager,
and the support manager. The chapter also introduces many of the
basic constants, datatypes, and globals contained in the LabVIEW
libraries.

Appendix A, CIN Common Questions, answers some of the
guestions commonly asked by LabVIEW CIN users.

i LabVIEW Code Interface Reference Manual

About This Manual

* Appendix B, Customer Communication, contains forms you can
use to request help from National Instruments or to comment on
our products and manuals.

e TheGlossary contains an al phabetical list and description of terms
used in this manual, including acronyms, abbreviations, metric
prefixes, mnemonics, and symbols.

* Thelndex contains an alphabetical list of key terms and topicsin
this manual, including the page where you can find each one.

Conventions Used in This Manual

bold

italic

bold italic
nonospace

italic
nonospace

<>

paths

)

The following conventions are used in this manual:

Bold text denotes menus, pal ettes, menu items, or dialog box buttons or
options. In addition, bold text denotes VI input and output parameters.

Italic text denotes emphasis, a cross reference, or an introduction to a key
concept.

Bold italic text denotes a note, caution, or warning.

Monospace font denotes text or characters that you enter using the
keyboard. Sections of code, programming examples, syntax examples,
and messages and responses that the computer automatically prints to
the screen also appear in this font.

Italic text in this font denotes that you must supply the appropriate words
or valuesin the place of these items.

Angle brackets enclose the name of a key on the keyboard—for
example, <Shi ft >.

A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys—for
example, <Shi ft - Del et e>.

Paths in this manual are denoted using backslashes (\) to separate drive
names, directories, and files, asindr i venane\ di r 1nane\
di r 2nanme\ nyfil e.

Warning: Thisicon to theleft of bold italicized text denotes a warning, which alerts

you to the possibility of damage to you or your equipment.

Caution: Thisicon to the left of bold italicized text denotes a caution, which alerts
y you to the possibility of data loss or a system crash.

LabVIEW Code Interface Reference Manual ii © National Instruments Corporation

About This Manual

Note: Thisicon to the left of bold italicized text denotes a note, which alerts you
to important information.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and
terms are listed in the Glossary.

Related Documentation

The following documents contain information that you may find
helpful asyou read this manual:

e Your LabVIEW analysis VI reference manual
e LabVIEW Instrument I/O VI Reference Manual
e Your LabVIEW Tutorial

e Your LabVIEW User Manual

Sun users may also find the following document useful:

« SPARCompiler C 3.0 Answer Book CD-ROM, Sun Microsystems,
Inc., U.S.A., 1993

Windows users may also find the following documents useful:

¢ Microsoft Windows documentation set, Microsoft Corporation,
Redmond, WA, 1992-1995

¢ Microsoft Windows Programmer’s Reference, Microsoft
Corporation, Redmond, WA, 1992-1995

¢ Win32 Programmer’ s Reference, Microsoft Corporation, Redmond,
WA, 1992-1995

¢ Watcom C/C++ User’'s Guide CD-ROM, Watcom Publications
Limited, Waterloo, Ontario, Canada, 1995; Help file: “The
Watcom C/C++ Compilers”

Customer Communication

National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with
our products, and we want to help if you have problems with them. To
make it easy for you to contact us, this manual contains comment and
configuration forms for you to complete. These forms arein
Appendix B, Customer Communication, at the end of this manual.

© National Instruments Corporation i LabVIEW Code Interface Reference Manual

About This Manual

LabVIEW Code Interface Reference Manual iv © National Instruments Corporation

About This Manual

Organization of ThISManUalcccceeueieieeieeirere et ene s i
Conventions Used in TIS ManUal ..o ii
Related DOCUMENTALIONoevvieiieiriiisiesee et iii
Customer COMIMUNICALIONoiiruirieeirieesieeseeesieesees et sbe e be e ssenessessees iii
Chapter 1
CIN Overview
1100 [0 ('] o H SRR 1-1
Classes of EXternal Codeccocereririrene s e 1-2
SUPPOIEd LANQUAGESeveneeeeeeiieeeieeteeie st sttt e e ae e sre e e 1-3
Y=ol 0 0 o RS RR 1-3
Microsoft WINAOWS 3.1ceoiuiiiiieiiieieree e e 1-4
Microsoft Windows 95 and WindowsS NTccccoorvrinieniniencnennn 1-4
S0 TSRS 1-5
HP-UX oottt snens 1-5
Steps for Creating & CIN ..o e sr e sn s 1-5
1. Place the CIN on aBlock Diagramccccoeeeienerieseseeeeesese e 1-6
2. Add Input and Output Terminalsto the CINccooeviiiiiirireeeee 1-6
INPUE-OULPUL TEMMINEIS ..o s 1-7
Output-Only TErMINEASccoeeiirirerese e s 1-8
3. Wirethe Inputs and Outputs to the CINcccooeriieieieierereeeeeee 1-9
4. Create .C FIl@ .ot s 1-9
Special Macintosh CONSIAErationsccoceoererereeienienienenese e 1-12
5. Compilethe CIN SoUrce Codeccoeririneiinienesee e 1-14
Y=ol 0 0 o TSR 1-14
MiCrosoft WINAOWS 3.Xciuiieerierieieiiee e 1-29
Microsoft Windows 95 and WindowsS NTccccoorininieneniencniennn 1-32
o] = 4 1 5 SRS 1-34
o] = 1S3 ST 1-34
HP-UX oottt snens 1-34
Unbundled Sun ANSI C Compiler and
HP-UX C/ANSI C COMPIIEr ..ocviecieieevee et 1-34
6. Load the CIN OhJECt COUEcoverirerierisierie e 1-36
LabVIEW Manager ROULINESccoieieerieieeeeeierienie st sre s 1-36

© National Instruments Corporation v LabVIEW Code Interface Reference Manual

Table of Contents

ONlNE REFEIENCE ...t e 1-37
POINLErS 8S ParaMELErScouiiuiriri et s 1-37
Debugging EXIErNal COUEcccooiriririiiiere et 1-39
Debugging CINs Under Windows 95 and Windows NTcccccoeviniiinnene 1-40
Debugging CINs Under SUn or SOIarsccooevereiieneeieeenenesesese e 1-41
Debugging CINsUNder HP-UXccoiiiiieeee e 1-41
Chapter 2
CIN Parameter Passing
INEFOTUCTION ...ttt e 2-1
CIN LC IR ettt 2-1
How LabVIEW Passes Fixed Sized Datato CINScccoeciieeneiineinee e 2-2
SCAlAN NUMENICS ..ottt e 2-2
SCAlAr BOOIBANSooveiiiriirreestee e 2-2
REFNUMS ...t 2-3
ClUSIErS Of SCAlAI'Svceeveiireiereee e 2-3
Return Value for CIN ROULINEScoiiiiireieneceseeesece et 2-3
EXamples With SCAlAIScoeeiieeee e 2-4
Steps for Creating a CIN That Multiplies Two Numbers ..., 2-4
1. Placethe CIN onthe Block Diagramccccceeevveeevevceesieninnnnenns 2-4
2. Add Two Input and Output Terminalsto the CINc.cc.ccce..e. 2-4
3. Wirethe Inputs and Outputsto the CINccccocveevininencnienn. 2-4
4. Create the CIN Source Codeoverieerireeenieeneesee s 2-4
5. Compilethe CIN Source Codecccooeerirenenenenenene e 2-6
6. Load the CIN Object COdeccovevveeeeiiciece e 2-8
Comparing Two Numbers, Producing a Boolean Scalarcccceeevevenienne. 2-9
How LabVIEW Passes Variably Sized Datato CINScccoeceveiievece e 2-10
AligNment CONSIAEraLiONSccocueeieeieee et 2-10
F N = T 00 B T o SRS 2-11
Paths (Path)c.ooiiieeirec e 2-12
Clusters Containing Variably Sized Datacccccoveveeveeieseeieceee e 2-12
ReSIZING ArrayS aN0 SEINGSooveeeierirenieetene ettt b e re b e e e 2-12
SELCINAITAYSIZE ..ot 2-13
NUMENCAITAYRESIZE ..ottt ee et ste e ereens 2-14
Examples with Variably Sized Datacccccveiineneienieeseeeeeeeesies e 2-16
Concatenating TWO SEHNGSc.voeeerereririerie s see s 2-16
Computing the Cross Product of Two Two-Dimensional Arrays 2-18
WOorking With CIUSLESoouvieiee e 2-22
Chapter 3
CIN Advanced Topics
CIN ROULINES ...ttt eb et b bbb en e n s 31

LabVIEW Code Interface Reference Manual vi © National Instruments Corporation

Table of Contents

Data Spaces and Code RESOUICEScc.eieierierieiienieeeesere e e 31
CIN Routines: TheBasiC CaSEcceiuereriiieieseeeeesese st 33
LOAAING @V e e 33
UN0aING @V .. 34
Loading aNew Resource into the CIN ..o 34
ComMPIliNG VI ..o s 34
RUNNING BV e s 35
SAVING BV e s 35
ADOIING @V e 35
Multiple Referencesto the Same CIN ... 3-6
REENITANCY ..ottt b e r e e e 3-7
Code Globals and CIN Data Space Globals ... 3-8
EXAMPIES ..o e 39
Calling a Windows 95 or Windows NT Dynamic Link Libraryc.ccccocvvniinnnnn. 313
Calling aWindows 3.1 Dynamic Link Library ... 313
Caling @16-Bit DLLocoiieiiiririeecie et 3-14
1 L0BAtNE DLL .ttt 3-14
2. Get the address of the desired function ... 3-15
3. Describe the fuNCLioN ..o 3-15
4. Call the fUNCLION ...oeoeieeeee e 3-16
Example: A CIN that DisplaysaDialog BOXcccoceveeirierienenenenesese e 3-16
TREDLL ottt 3-17
The BIOCK DIagramcocceeeieeeieeeenese e e 3-19
THE CIN COUE ...ttt 3-19
Compiling the CIN ..o e 3-22
OPLIMIZBLION ...oveitiiiiieieie ettt 323
Chapter 4
External Subroutines
INEFOTUCTION ..ottt r e e r e e r e nnen e e s e 4-1
Creating Shared External SUDIOULINESccccveieciiieeie e 4-2
EXxternal SUDIOULINEcccoviiiiiecicee e 4-3
MACINEOSN ...vieiitieercre et 4-3
Microsoft Windows 3.1, Windows 95, and
WINAOWS NT oo 4-3
Solaris 1.x, Solaris 2.x, and HP-UX ... 4-4
CAlliNG COUE ...ttt bbb et st se e e e e eneas 4-4
MACINEOSN ...vieiitieercre et 4-5
Microsoft Windows 3.1, Windows 95, and Windows NT 4-6
Solaris 1.x, Solaris 2.x, and HP-UX ... 4-6
SIMPIE EXAMPIE ..ottt et e 4-7
External Subrouting EXample ... 4-7
Compiling the External SUDrOULINEccoiiiiiiiiiiree e 4-8

© National Instruments Corporation vii LabVIEW Code Interface Reference Manual

Table of Contents

Y=ol 1 0 g ISP 4-8
Microsoft WINdOWS 3.1cc.oouiiiiiiiiierieeeee e e 4-9
Microsoft Windows 95 and Windows NTccccoorvnininencnenien 4-9
Solaris 1.x, Solaris 2.x, and HP-UX ..., 4-10
CAlliNG COUEeeeeiiee et et e s 4-10
Compiling the Calling COUEccoiriririreree e 4-12
Y=ol 1 0 g ISP 4-12
Microsoft WINAOWS 3.1cc.oouiiiiiiiiie e e 4-13
Microsoft Windows 95 and Windows NTccccoorinininenenenien 4-14
Solaris 1.x, Solaris 2.x, and HP-UX ... 4-14
Chapter 5
Manager Overview
INEFOTUCTION .ttt et ettt b e sae bt see e neas 51
BaSIC DA TYPES ...eeeeueeieeeieiieee ettt sttt sttt ettt et sb e sae bt see e e 5-2
SCAlAr DA TYPES ...oviiereereeieee ettt sttt ettt s sbe s 5-2
BOOIEANS ...t 5-2
NUMBYICS ..ttt ettt s b e bbb e 5-3
(o gT= g DT v B Y/ o= TSSO VRPN 5-4
DYNamiC DA TYPESc.eeeeueriirierieniesie sttt sae s 54
ATTAYS ettt e e sraenre e 54
SEANGS ettt ettt b bbb e e 55
C-Style SINGS (CSAF) e 55
Pascal-Style StNgS (PSEF) .ecveeeeeceeececeeee e 55
LaDVIEW SIHNGS (LSE) oo e 55
Concatenated Pascal String (CPSEN)ceeevveieeececeee e, 56
Paths (Path)coceeriiiieereeree e 5-6
Memory-Related TYPEScociiriiiiire e 5-6
CONSLANES ...t e e se e b e b e r e b e ene e e s 5-6
MEMOIY MBNAGET ...ttt st se e st e e b saee st s e e s b e e nnenreens 5-7
VK= 0] Y AN [o= (o] o IS 57
Static Memory AlIOCELIONcovveevieesecee e 57
Dynamic Memory Allocation: Pointers and Handles 5-8
MEMOIY ZONESeviiiiieieeitee ettt st e et sbe e s be e sbe e ste e sbaeseeenree s 5-9
Using Pointers and Handles ..o 59
SIMPlIE EXAMPIE ..o s 5-10
Reference to the Memory Managerccccveveeeviseese e 5-12
Memory Manager Data SITUCIUFESccceeveeieereere e 5-12
LAY I T= T PSSR 5-12
INEFOTUCTION ...ttt s s 5-13
Identifying Files and DIr€CtOriESccvecueeieeiieceeie e 5-13
Path SPECITICALIONSoeiiririerere e e e 5-14
Conventional Path Specificationscccocrvrinininininne e, 5-14

LabVIEW Code Interface Reference Manual Vil © National Instruments Corporation

Table of Contents

Empty Path SpeCifiCations ..o 5-15
LabVIEW Path Specificationcccoveenvneinnnecceesseee s 5-16
TSN DS o] o) (o] £ OSSR 5-16
FIlE@ REFNUMS ...t e 5-17
SUPPOIT IMBNAGETeiieetieiete ettt ettt st e e b e b e et e s ae et e eaeasbesaeesaeenesneenens 5-17
Chapter 6
Memory Manager Functions
Allocating and Releasing Handles ... 6-1
AZDisposeHandle
DSDisposeHaNIEcoeiiicieieee e 6-1
AZEmptyHandle
DSEMPLYHANAIE ... 6-1
AZGetHandleSize
DSGEtHaANAIESIZE ..o 6-2
AZNewHandle
DSNEWHAENAIE ... e 6-2
AZNewHClr
DSNEWHCIT .ottt 6-2
AZResallocHandle
DSReallocHaNAIEoveiieie e 6-3
AZRecoverHandle
DSRecoverHandle ... 6-3
AZSetHandleSize
DSSetHaNAIESIZEcveeeieicecreeee e 6-4
AZSetHSzClr
DSSEHSZCIT ...vtiieieeeeere et 6-5
Allocating and Releasing POINLENScooveieirirenenres e 6-5
AZDisposePtr
DSDISPOSEPLE ... e 6-5
AZNewPClr
DONEWPCIT .. e e 6-6
AZNewPtr
DSNEWPLE ... e e 6-6
Manipulating Properties of HandIes ... 6-6
AZHLOCK ..ottt 6-6
AZHPUIGE ..ottt nes 6-7
AZHNOPUIGE ..ottt sttt st 6-7
AZHUNIOCK .ttt 6-7
MEMOIY ULHITIES ..ot 6-8
AZHandAndHand
DSHanNdANAHEANA ..o 6-8
AZHandToHand

© National Instruments Corporation ix LabVIEW Code Interface Reference Manual

Table of Contents

DSHaNATOHANGcueiiriricieirerieiceseie e 6-8
AZPtrAndHand
DSPIANAHANGoouiieiiiiiiesiee e 6-9
AZPtrToHand
DSPUTOHEANM ...t 6-10
AZPtrToXHand
DSPUTOXHAN ..ot 6-10
ClEBIMEM ...ttt 6-11
MOVEBIOCK ...t e 6-11
SWAPBIOCK ...t s 6-11
Handle and Pointer VerifiCationc.coiveieneneieneeeereseseeese e 6-12
AZCheckHandle
DSCheCkHaNIEcoeeiiiiiiee e 6-12
AZCheckPtr
DSCHECKPLT ...ttt 6-12
MemOry ZoNE ULIHITIEScccoeeriiiiiie et 6-13
AZHeapCheck
DSHEAPCNECK ..ottt 6-13
AZMaxMem
DSMAXMEIM ...ttt s 6-13
AZMemStats
DSMEMSLALSoceeririeieiririeiee e b e e 6-14
Chapter 7
File Manager Functions
File Manager Data SITUCLUIEScccveiieeieieeie et eee e see e s ae s sae st ae e nesneens 7-1
File/Directory Information RECOIdccooveiiviieiiieere e 7-1
File TYPERECOIT ...ttt e 7-2
Path DAIA TYPE ...eeueeeeeeiieeeeetere ettt s b e s b e 7-3
PEIMISSIONS ...ttt s b e e sen 7-3
On aUNIX computer, the nine bits of permissions correspond exactly to
nine UNIX permission bits governing read, write, and execute 7-3
Volume INformation RECOIocoiiiriiinine e e 7-3
File Manager FUNCLIONSccuiiieiicie ettt st aenreens 7-4
Performing BasiC File Operationscoeverererieneeneeeeeeeesese e 7-4
FCIEALE ... 7-4
FCreat@AIWAYSoceeieeeie ettt re s 7-5
FIMCIOSE ...t b s 7-7
FIMOPDEN ..t 7-7
FIMREAA ...t 7-9
FIMWIEE e e e 7-9
Positioning the Current Position Mark ... 7-10
FIMSEEK ...ttt 7-10

LabVIEW Code Interface Reference Manual X © National Instruments Corporation

Table of Contents

FIMTEI <ot 7-11
Positioning the End-Of-File Mark ... 7-12
FGEIEOF ..ottt 7-12
FSEEOF ... 7-12
Flushing File Datato DiSKcccceoeieirierenene s 7-13
FRIUSN e 7-13
Determining File, Directory, and Volume Informationc.ccocoeevvvnnienne. 7-13
FEXISES ..ottt 7-13
FGELACCESSRIGNES ...t 7-14
FGEINTO oottt 7-14
FGEVOIINTO oottt 7-15
FSEtACCESSRIGNLS ...t e 7-16
FSEUNTO vttt 7-16

Getting Default Access Rights INfOrmationcccceceriniieniene e 7-17
FGEIDEfGIOUPeeeeeeeeieee ettt s 7-17
Creating and Determining the Contents of DIreCtoriesc.ccoovvevenerenene 7-17
FLISIDIT ettt 7-17
FINEWDIT ..ottt 7-18
COPYING FILES ... et e 7-19
FCODY ittt e e e e e ee 7-19

Moving and Deleting Files and DIreCtOriescccoeveeerierienenene e 7-20
FIMOVE ...t s 7-20
FREMOVE ... 7-20

LOCKiNg @FIE RANGEccvoeieiieeee e 7-21
FLOCKOIrUNIOCKRAENGEcoeeuerierieeienieriese e 7-21
Matching Filenames wWith Patterns ... 7-22
FSUFTSPAL ...c.coveeeeereeterieteree e 7-22
Creating Paths ... e 7-22
FAAAPELN ...t 7-22
FAPPENANGIME ...t e 7-23
FAPPPEIN ..ot 7-24
FEMPLYPAEN ... e 7-24
FIMEKEPELN ..ot 7-25
FNOLAPELN ..ot 7-25
FREIPAN ...t 7-26
DISPOSING PELNS ... e 7-27
FDISPOSEPALN ...ttt 7-27
DUplicating PathSc.ooiiiieee e 7-27
FPENCPY ..ottt 7-27
FPathTOPELNccocviieiicice e 7-27
Extracting Information from aPath ... 7-28
FDEDIN .o 7-28
... 7-28

© National Instruments Corporation Xi LabVIEW Code Interface Reference Manual

Table of Contents

FDIPNBIME ..ottt bbb 7-29
FINGIME ..o e 7-29
FINGMEPLE ... 7-30
FVOINGIME ..ot 7-30
Converting Paths to and from Other Representationsccccceeeeeeveneneene. 7-31
FAITTOPELN ... 7-31
FRIGEENPEEN ... 7-32
FPAENTOAIT oottt 7-32
FPatNTOAZSIIING ..ovcviieiirieieesesieiee et 7-33
... 7-33
FPatNTODSSIITNG ...eeiveeierieiiieiesie e e e e 7-34
FSINGTOPELN ... e 7-34
FTEXITOPELN ..ottt 7-35
FUNFIBHENPALcocviiiiiciccceee e 7-35
ComPAaring PathS ..o s 7-36
FISAPALN ..ot 7-36
FISAPathOrNOtAPELNceeeiiiiciceee e 7-36
FISEMPLYPAN ... e 7-37
FPAENCIMP ..o 7-37
Determining aPath TYPEcoviiiiiiiiierese e 7-38
FGEPANTYPE ..ottt 7-38
FISAPENOTTYPE ..ottt 7-38
FSEtPANTYPEecuiieeeieeriririeee sttt 7-39
Manipulating File REFNUMS ..o 7-39
FDISPOSEREINUM ..ottt e 7-39
FISAREINUM ...ttt 7-40
FNEWREFNUM ..o 7-40
FREFNUMTORFD ..ottt 7-41
FREFNUMTOPELHocviiicc e 7-41
Chapter 8
Support Manager Functions
Byte Manipulation OPErationSccoceeerererinene et s sbe e 81
CAACKIS ...t
FIMBEIO* .ot 81
(7= 7 W0 Lo [PPSR
FIMBEIO* .ot 81
HILO ..ot
FIMBEIO* .ot 8-2
[1127 (= TS
FIMBEIO* .ot 8-2
HINIBDIE ...
FIMBEIO* .ot 8-2

LabVIEW Code Interface Reference Manual Xif © National Instruments Corporation

Table of Contents

LOLB.... ettt ettt ettt et ettt e re e e ar e e be e ereenreeeane
Bl \Y/ = (o S PSPPI 8-2
[T1 1] o] o = SO O RO
Bl \Y/ = (o S PSPPI 8-3
LOBYLO ..t e e
Bl \Y/ = (o S PSPPI 8-3
[0 0o [T S PR PSP PTURUPTURUPRRON
Bl \Y/ = (o S PSPPI 8-3
LONIDDBIE. ... et
Bl \Y/ = (o S PSPPI 8-3
(O 1= = RO
Bl \Y/ = (o S PSPPI 8-4
SELALONG. ...ttt se e e b
Bl \Y/ = (o S PSPPI 8-4
LAY o] (o RSOSSN
Bl \Y/ = (o S PSPPI 8-4
MathematiCal OPEraLiONSc.coeeieririre et sb b e se e 8-5
FOr THINK CUSEIS ...ttt ettt ettt st eae e sttt enne b 8-6
ADS oo e 8-6
IVLAX et eeiee st ettt et e ettt et e e e ae e et e e s aaeebeesare e beeeareebeeeareenbeeaane 8-6
YT o SRR 8-6
T o TS USSR OO 8-7
RANAOMGENviiieececceceee ettt et e be e e 8-7
String ManipUIaioNcoeeeieiiniee e e 8-7
BIOCKCIMP .t 8-7
CPSIIBUF.....oeeceieetee ettt ettt e naeesnre e
Bl \Y/ = (o S PSPPI 8-8
CPSITCIMP et e e b e 8-8
CPSEIIINOEX weveeeiee ettt ettt ebe s s beeeaeesareeas 8-8
CPSITINSET .ot 8-9
CPSITLEN ..ttt e
Bl \Y/ = (o S RSO USROS 8-9
CPSITREIMOVE ...ttt et et 8-10
CPSIREPIACE ...ttt 8-10
CPSIISIZE ...ttt ettt e ae et s beeeaeesare e 8-10
CTOPSIT ettt ettt ettt et e srae et et e s beeebe s sbeenneesareeas 8-11
FIIENAMECMIP. ...t s
Bl \Y/ = (o S RSO USROS 8-11
FIlENamMEI NACMP ..o e
Bl \Y/ = (o S RSO USROS 8-11
FIENAMENCIMP.....ceiieieeee e e
Bl \Y/ = (o S PSSRSO PR 8-12
HEXCRAL ...ttt et e 8-12

© National Instruments Corporation Xiii LabVIEW Code Interface Reference Manual

Table of Contents

ISUPPEr .ot

PPStrCaseCmpccocceveeveereniinniens
PPSIrCMp oo
PSUBUF ..o

SPrintf
SPrintfp
PPrintf
PPrintfp
FPrintf

[0S 1 1 S

TOUPPES e

LabVIEW Code Interface Reference Manual Xiv

BinSearchcccoocceviceeee e

© National Instruments Corporation

Table of Contents

TiME FUNCHIONS ...ttt bbb et 8-27
ASCIHTIME et 8-27
(DL = @55 [] o TR OSRRRR 8-27
DEAETOSECSeeeiiieeieiiieerie ettt e e n e s see e e 8-28
MITTISECS ..ot 8-28
SECSTODELEeeieiriieie ettt e e b e 8-29
TIMECSIIING ettt e 8-29
TIMEINSECS ...viii ittt e e 8-30
Appendix A
CIN Common Questions
Appendix B
Customer Communication
Glossary
Figures
Figure3-1. Data Storage Spacesfor One CIN, Smple Casecoeveveencerieeninnens 32
Figure 3-2. Three CINs Referencing the Same Code ReSOUICEccoceveeeerieeerinnne 3-7
Figure 3-3. Three VlIs Referencing a Reentrant VI Containing One CIN 3-8
Tables
Table1-1. Functions with Parameters Needing Pre-allocated Memory 1-38

© National Instruments Corporation XV LabVIEW Code Interface Reference Manual

Table of Contents

LabVIEW Code Interface Reference Manual Xvi © National Instruments Corporation

CIN Overview

This chapter introduces the LabVIEW Code Interface Node (CIN), a
node that links external code written in a conventional programming
language to LabVIEW.

Introduction

A CIN isablock diagram node associated with a section of source code
written in a conventional programming language. Y ou compile the
source code first and link it to form executable code. LabVIEW calls
the executable code when the node executes, passing input data from
the block diagram to the executable code, and returning data from the
executable code to the block diagram.

The LabVIEW compiler can usually generate code that is fast enough
for most of your programming tasks. However, you can use CINs for
tasksthat a conventional language can accomplish more easily, such as
tasksthat are time-critical or require agreat deal of data manipulation.
CINsarealso useful for tasksthat you cannot perform directly from the
diagram, such as calling system routines for which no corresponding
LabVIEW functions exist. CINs can also link existing code to
LabVIEW, athough you may have to modify the code so that it uses
the correct LabVIEW data types.

CINs execute synchronously. This means that while CIN code
executes, no other LabVIEW processes can execute. Normally, when a
VI executes, LabVIEW monitors menus and the keyboard and allows
other applications to execute. LabVIEW also allows more than one VI
to run simultaneously. However, when CIN object code executes, it
takes control of the process, so that LabVIEW ignoreskeyboard events,
menu clicks, and other diagrams. On the Macintosh and under
Windows 3.1, CINs even prevent other applications from executing.
Although you can create Vs that use CINs and behave in a more
asynchronous fashion, be aware of this potential problem if you intend
towritea CIN that will execute along task and you need LabVIEW to
multitask in the interim.

© National Instruments Corporation 1-1 LabVIEW Code Interface Reference Manual

Chapter 1

CIN Overview

A CIN appears on the diagram as an icon with input and output
terminals. Y ou associate this node with a piece of code you want
LabVIEW to call. When it is time for the node to execute, LabVIEW
calls the code associated with the CIN, passing it the specified data.

In some cases, you may want a CIN to perform additional actions at
certain execution times. For instance, you may want to initialize some
datastructures at load time or free private data structures when the user
closes the VI containing the CIN. For these situations, you can write
routines that LabVIEW calls at predefined times or when the node
executes. Specifically, LabVIEW calls certain routines when the V1
containing the CIN isloaded, saved, closed, aborted, or compiled. Y ou
generally use these routines in CINs that perform an on-going action,
such as accumulating results from call to call, so that you can allocate,
initialize, and deallocate resources at the correct time. Most CINs
perform a specific action at run time only.

After you have written your first CIN as described in this manual,
writing new CINsisrelatively easy. The work involved in writing new
CINsis mostly in coding the algorithm, because the interface to
LabVIEW remains the same, no matter what the development system.

Classes of External Code

Note:

LabVIEW supports code resources for CINs and external subroutines.

An external subroutineisasection of codethat you can call from other
external code. If you write multiple CINsthat call the same subroutine,
you may want to make the shared subroutine an external subroutine.
The code for an external subroutine is a separate file; when LabVIEW
loads a section of external code that references an external subroutine,
it also loads the appropriate external subroutineinto memory. Using an
external subroutine makes each section of calling code smaller,
because the external subroutine does not require embedded code.
Further, you need to make changes only once if you want to modify the
subroutine.

LabVIEW doesnot support coderesourcesfor external subroutineson the
Power Macintosh. I f you areworking with a Power Macintosh, you should
use shared librariesinstead of external subroutines. For information on
building shared libraries, consult your development environment
documentation.

LabVIEW Code Interface Reference Manual 1-2 © National Instruments Corporation

Chapter 1 CIN Overview

Although LabVIEW for Solaris2.x and HP-UX support external routines,
it isrecommended that you use UNIX shared libraries instead, because
they are a more standard library format.

Supported Languages

The interface for CINs and external subroutines supports a variety of
compilers, although not all compilers can create code in the correct
executable format.

External code must be compiled as a form of executable that is
appropriate for a specific platform. The code must be relocatable,
because LabVIEW loads external code into the same memory space as
the main application.

Macintosh

LabVIEW for the Macintosh uses external code as a customized code
resource (for 68K) or shared library (for Power Macintosh) that is
prepared for LabVIEW using the separate utilities| vsbuti | . app
for THINK C and Metrowerks CodeWarrior, and | vsbut il .t ool
for the Macintosh Programmer’s Workshop. These utilities are
included with LabVIEW.

The LabVIEW utilities and object files are known to be compatible
with the three magjor C development environments for the Power
Macintosh, which are as follows:

 THINK C, versions 5, 6, and 7, and Symantec C++ version 8 for
Power Macintosh, from Symantec Corporation of Cupertino, CA

* Metrowerks CodeWarrior from Metrowerks Corporation of
Austin, Texas

e Macintosh Programmer’s Workshop (MPW) from Apple
Computer, Inc. of Cupertino, CA

LabVIEW header files are compatible with these three environments.
Header files may need modification for other environments.

CINs compiled for the 68K Macintosh will not be recognized by
LabVIEW for the Power Macintosh, and vice versa.

LabVIEW does not currently work with fat binaries (aformat that
includes multiple executables in onefile, in this case both 68K and
Power Macintosh executables).

© National Instruments Corporation 1-3 LabVIEW Code Interface Reference Manual

Chapter 1

CIN Overview

Note:

Microsoft Windows 3.1

LabVIEW for Windows supports external code compiled asa. REXfile
and prepared for LabVIEW using an application included with
LabVIEW. Thisapplicationrequiresdos4gw. exe, which comeswith
Watcom. LabVIEW isa32-bit, flat memory-model application, so you
must compile external code for a 32-bit memory model when you
install the Watcom C compiler.

Watcom C isthe only LabVIEW-supported compiler that can create
32-bit code of the correct format.

Microsoft Windows 95 and Windows NT

You can use CINsin LabVIEW for Windows 95/NT created with any
of the following compilers.

e TheWin32 Microsoft SDK (Software Developer’s Kit) C/C++
command line compiler for Windows NT.

See the Microsoft Windows 95 and Windows NT subsection of the
Compile the CIN Source Code section of this chapter for
information on how to create a CIN using this compiler.

e TheVisual C++ for Windows NT C compiler.

Use the same instructions as you would for the Microsoft C
command line compiler. Y ou also must add an | DE=VClinetothe
beginning of your. | vmfile. See the Microsoft Windows 95 and
Windows NT subsection of the Compile the CIN Source Code
section of this chapter for information on how to create a CIN
using this compiler.

* The Watcom C/386 compiler for Windows 3.1.

With proper preparation, you can use CINs created using the
Watcom C compiler for Windows 3.1 with LabVIEW for
Windows 95/NT. See the Microsoft Windows 95 and Windows NT
subsection of the Compile the CIN Source Code section of this
chapter for more information on using the Watcom C compiler for
Windows 3.1.

Under Windows 95 and Windows NT, you should not call CINs created
using the Watcom complier that call DLLs and system functions or that
access hardware directly. The technique Watcom uses to call such code
under Windows 3.1 does not work under Windows 95 or Windows NT.

LabVIEW Code Interface Reference Manual 1-4 © National Instruments Corporation

Chapter 1 CIN Overview

Solaris

LabVIEW for the Sun supports external code compiled in a. out
format under Solaris 1.x and a shared library format under Solaris 2.x.
These formats are prepared for LabVIEW using aLabVIEW utility.

The unbundled Sun ANSI C compiler isthe only compiler that has
been tested thoroughly with LabV IEW. The header filesare compatible
with the unbundled Sun ANSI C Compiler and may need modification
for other compilers.

HP-UX
LabVIEW for HP-UX supports external code compiled as a shared
library. Thislibrary is prepared for LabVIEW using a LabVIEW
utility.

The HP-UX C/ANSI C compiler isthe only compiler that has been
tested thoroughly with LabVIEW.

Steps for Creating a CIN

You create aCIN by first describing in LabVIEW the datayou want to
pass to the CIN. Y ou then write the code for the CIN using one of the
supported programming languages. After you compile the code, you
run a utility on the compiled code that putsit into aformat that
LabVIEW can use. You then instruct LabVIEW to load the CIN.

If you execute the VI at this point, and the block diagram needs to
execute the CIN, LabVIEW calls the CIN object code and passes any
datathat iswired to the CIN. If you save the VI after loading the code,
LabVIEW saves the CIN object code along with the VI so that
LabVIEW no longer needs the original code to execute the CIN. You
can update your CIN object code with new versions at any time.

The exanpl es directory containsaci ns directory that includes all
of the examples given in this manual. The names of the directoriesin
theci ns directory correspond to the CIN name given in the examples.

The following steps explain how to create a CIN.

© National Instruments Corporation 1-5 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

1. Place the CIN on a Block Diagram

Select the Code I nterface Node function from the Advanced pal ette of
the Functions palette, as shown in the following illustration.

] Funections

B
-

-
-

o

o

n
==

-2

L% [

v
N
i

=i
. ﬁ::@
iz

)| 4 E

0 Advanced
Code Interface Node

P || 00 100
BB 1aa1n

- = ,
= B

2. Add Input and Output Terminals to the CIN

A CIN has terminals with which you can indicate which data passes to
and fromaCIN. Initially, the CIN has one set of terminals, and you can
pass asingle value to and from the CIN. Y ou add additional terminals
by resizing the node or by selecting Add Parameter from the CIN
terminal pop-up menu. Both methods are shown in the following
illustration.

LabVIEW Code Interface Reference Manual 1-6 © National Instruments Corporation

Chapter 1 CIN Overview

Y ou can resize the node to add parameters,

=

=
—
_—
o—
L-4-4

................

NI
I
Show 4
Description...
Replace b

Add Parameter
Remove Farameter

Output Only
Load Code Resource...
Create .c File...

Each pair of terminals corresponds to a parameter that LabVIEW
passes to the CIN. The two types of terminal pairs are input-output and
output-only.

Input-Output Terminals

By default, aterminal pair isinput-output; the left terminal isthe input
terminal, and the right terminal is the output terminal. As an example,
consider aCIN that hasasingle terminal pair. Assume a 32-bit integer
control iswired to the input terminal, and a 32-bit integer indicator is
wired to the output terminal, as shown in the following illustration.

T [ey

0
Gl | ol |
(152 s 1321

© National Instruments Corporation 1-7 LabVIEW Code Interface Reference Manual

Chapter 1

CIN Overview

When the VI callsthe CIN, the only argument LabVIEW passes to the
CIN object code is a pointer to the value of the 32-bit integer input.
When the CIN completes, LabVIEW then passes the val ue referenced
by the pointer to the 32-bit integer indicator. When you wire controls
and indicators to the input and the output terminals of aterminal pair,
LabVIEW assumesthat the CIN can modify the data passed. If another
node on the block diagram needs the input value, LabVIEW may have
to copy the input data before passing it to the CIN.

Now consider the same CIN, but with no indicator wired to the output
terminal, as shown in the following illustration.

[

alf
LD]
I32)132

If you do not wire an indicator to the output terminal of aterminal pair,
LabVIEW assumes that the CIN will not modify the value you pass to
it. If another node on the block diagram usesthe input data, LabVIEW
does not copy the data. The source code should not modify the value
passed into the input terminal of aterminal pair if you do not wire the
output terminal. If the CIN does modify the input value, nodes
connected to the input terminal wire may receive the modified data.

Output-Only Terminals

If you use aterminal pair only to return avalue, makeit an output-only
terminal pair by selecting Output Only from the terminal pair pop-up
menu. If aterminal pair is output-only, the input terminal is gray, as
shown in the following illustration.

ol 0
" ey [WEFI|

For output-only terminals, LabVIEW creates storage spacefor areturn
value and passes the value by reference to the CIN the same way that
it passes values for input-output terminal pairs. If you do not wire a
control to theleft terminal, LabVIEW determines the type of the output
parameter by checking the type of the indicator wired to the output
terminal. This can be ambiguous if you wire the output to two

LabVIEW Code Interface Reference Manual 1-8 © National Instruments Corporation

Chapter 1 CIN Overview

destinations that have different data types. Y ou can remove this
ambiguity by wiring acontrol to theleft (input) terminal of the terminal
pair as shown in the preceding figure. In this case, output terminal
takes on the same data type as the input terminal. LabVIEW uses the
input type only to determine the data type for the output terminal; the
CIN does not use or affect the data of the input wire.

To remove apair of terminals from a CIN, pop up on the terminal you
want to remove and choose Remove Terminal from the menu.
LabVIEW disconnects wires connected to the deleted terminal pair.
Wires connected to terminal pairs below the deleted pair remain
attached to those terminals and stretch to adjust to the terminals’ new
positions.

3. Wire the Inputs and Outputs to the CIN

4. Create .c File

Connect wires to all the terminal pairs on the CIN to specify the data
that you want to pass to the CIN, and the data that you want to receive
from the CIN. The order of terminal pairs on the CIN corresponds to
the order in which parameters are passed to the code. Notice that you
can use any LabVIEW data types as CIN parameters. Thus, you can
pass arbitrarily complex hierarchical data structures, such as arrays
containing clusters which may in turn contain other arrays or clusters
to a CIN. See Chapter 2, CIN Parameter Passing, for a description of
how LabVIEW passes parameters of specific data typesto CINs.

If you select Create .c File... from the CIN pop-up menu, as shownin
thefollowingillustration, LabVIEW createsa. c fileinthe style of the
C programming language. The . c file describes the routines you must
write and the data types for parameters that pass to the CIN.

© National Instruments Corporation 1-9 LabVIEW Code Interface Reference Manual

Chapter 1

CIN Overview

Show 4
Description...
Replace 4

Add Parameter
Remove Parameter
Output Only

Load Code Resource...

Create .c File...

For example, consider the following call to aCIN, which takes a 32-bit
integer as an input and returns a 32-bit integer as an output.

The following code excerpt istheinitial . ¢ file for this node. It
specifies seven routines (initially empty of any code) that must be
written for the CIN. The UseDef aul t macros are the default for six
of the seven routines, but because the Cl NRun routine is the most
commonly used, it gets an actual function structure into which you can
enter code. The six macros are actually #def i nesin ext code. h,
which expand into empty routines; the Cl NRun routineis provided for
you.

These seven routines are discussed in detail in subsequent chapters.
The. c fileis presented here to give you an idea of what LabVIEW
creates at this stage in building a CIN.

LabVIEW Code Interface Reference Manual 1-10 © National Instruments Corporation

Chapter 1 CIN Overview

/*
* CIN source file
*/

#i ncl ude "extcode. h"
/* stubs for advanced CIN functions */

UseDef aul t CI NI ni t
UseDef aul t Cl NDi spose
UseDef aul t Cl NAbor t
UseDef aul t Cl NLoad
UseDef aul t Cl NUnl oad
UseDef aul t Cl NSave

CIN MgErr CINRun(int32 *num.in, int32 *num.out);
CIN MgErr CINRun(int32 *num.in, int32 *numout) {
/* ENTER YOUR CODE HERE */

return noErr;

}

This. ¢ fileisatemplate in which you must write C code. Notice that
ext code. h isautomatically included; it is afile that defines basic
data types and a number of routines that can be used by CINs and
external subroutines. ext code. h defines some constants and types
whose definitions may conflict with the definitions of system header
files. The LabVIEW ci nt ool s directory also contains afile,

host t ype. h, that resolves these differences. This header file also
includes many of the common header files for a given platform.

You should alwaysuse#i ncl ude "ext code. h" atthebeginning
of your source code. If your code needs to make system calls, you
should also use #i ncl ude "hosttype. h" immediately after

#i ncl ude "ext code. h", and then include your system header
files. Y ou should know that host t ype. h includes only a subset of
the. h filesfor agiven operating system. If the.. h file you need is not
included by host t ype. h, you canincludeitinthe. c filefor your
CIN just after you include host t ype. h.

LabVIEW callsthe Cl NRun routine when it is time for the node to
execute. Cl NRun receives the input and output values as parameters.

© National Instruments Corporation 1-11 LabVIEW Code Interface Reference Manual

Chapter 1

CIN Overview

The other routines (Cl NLoad, Cl NSave, Cl NUnl oad, Cl NAbort ,
CI NI ni t, and Cl NDi spose) are housekeeping routines, called at
specific times to give you the opportunity to take care of specialized
tasks with your CIN. For instance, Cl NLoad iscalled whenaVl is
first loaded. If you need to accomplish some special task when your VI
isfirst loaded, put the code for that task in the Cl NLoad routine. To
do this, first remove the UseDef aul t CI NLoad macro, and then
write your Cl NLoad routine as follows:

CIN MyErr Cl NLoad(RsrcFile reserved) {
Unused (reserved)
/* your code goes here */
return nokErr;

}

In general, you only need to write the Cl NRun routine. The other
routines are mainly supplied for those instances in which you have
special initialization needs, such as when your CIN must maintain
some information across calls, and you want to preallocate or initialize
global state information. The following code shows how to fill out the
Cl NRun routine from the previously shown LabVIEW-generated . ¢
file to multiply a number by two. This code isincluded for illustrative
purposes. Chapter 2, CIN Parameter Passing, discusses in depth how
LabVIEW passes datato a CIN, with several examples.

CIN MgErr CINRun(int32 *num.in, int32 *numout) {
*numout = *numin * 2;
return noErr;

}

Special Macintosh Considerations

If you compile your code for a 68K Macintosh, there are certain
circumstances under which you must use the ENTERLVSB and
LEAVELVSB macros at the entry and exit of some functions. These
macros ensure that the global context register (A5 for MPW builds, A4
for Symantec/THINK and Metrowerks builds) for your CIN is
established during your function, and that the caller'sis saved and
restored. Thisis necessary to enable you to reference global variables,
call external subroutines, and call LabVIEW routines such as those
described in subsequent chapters.

LabVIEW Code Interface Reference Manual 1-12 © National Instruments Corporation

Chapter 1 CIN Overview

Y ou need not use these macros in any of the seven predefined entry
points (Cl NRun, Cl NLoad, CI NUnl oad, Cl NSave, CI Nl ni t ,

ClI NDi spose, Cl NAbor t), because the CIN libraries already
establish and restore the global context before and after calling these
routines. Using them here would be harmless, but unnecessary.

However, if you create any other entry pointsto your CIN, you should
use these macros. Y ou create another entry point to your CIN whenever
you pass the address of one of your functions to some other piece of
code that may call your function later. An example of thiswould bein
the use of the QSor t routine in the LabVIEW support manager
(described in the Online Reference or online manual). Y ou must pass a
comparison routine to QSor t . This routine gets called directly by
QSor t , without going through the CIN library. Therefore it is your
responsibility to set up your global context with ENTERLVSB and
LEAVELVSB.

To use these macros properly, place the ENTERLVSB macro at the
beginning of your function between your local variables and the first
statement of the function. Place the LEAVELVSB macro at the end of
your function just before returning, as in the following example.

CStr gNanmeTabl e[kNNanes] ;

i nt32 MyConparisonProc(int32 *pa, int32 * pb)
{

i nt32 conparisonResul t;
ENTERLVSB

conpari sonResult = StrCnp(gNaneTabl e[*pa],
gNameTabl e[*pb]) ;

LEAVELVSB
return conparisonResult;

}

The function My Conpar i sonPr oc is an example of aroutine that
might be passed to the QSor t routine. Because it explicitly references
aglobal variable (gNameTabl e), it must use the ENTERLVSB and
LEAVELVSB macros. There are other things that can implicitly
reference globals. Depending on the compiler and settings of various
options, literal strings may also be referenced as globals.

© National Instruments Corporation 1-13 LabVIEW Code Interface Reference Manual

Chapter 1

CIN Overview

It is best to always use the ENTERLVSB and L EAVEL VSB macros
whenever you create a new entry point to your CIN.

When you use these macros, be sure that your function does not return
before calling the LEAVELVSB macro. One techniqueisto useagot o
endOf Funct i on statement (where endOf Funct i on isalabel just
before the LEAVELVSB macro at the end of your function) in place of
any return statements that you may place in your function.

5. Compile the CIN Source Code

Note:

Y ou must compile the source code for the CIN in a format that
LabVIEW can use. There are two steps to this process. First you
compile the code using acompiler LabVIEW supports. Then you use a
LabVIEW utility to modify the object code, putting it into aformat that
LabVIEW can use.

Because the compiling process is often complex, LabVIEW includes
utilities that simplify the process. These utilities take a simple
specification for a CIN and create object code you can load into
LabVIEW. These tools vary depending on the platform and compiler
you use. Thefollowing sections summarize the steps for each platform.

Step 5 is different for each platform. Look under the heading for your
platform and compiler in thefollowing sectionsto find theinstructionsfor
your system.

Every source code filefor a CIN should list #i ncl ude "ext code. h"
before any other code. | f your code needsto make system calls, you should
alsouse#i ncl ude "hosttype. h" immediately after #i ncl ude
"extcode. h".

Macintosh

LabVIEW for the Macintosh uses external code as a customized code
resource (on a 68K Macintosh) or as a shared library (on a Power
Macintosh) that is prepared for LabVIEW using the separate utilities
| vsbutil.appfor THINK Corl vshutil .t ool for MPW. Both
these utilities are included with LabVIEW.

Y ou can create CINs on the Macintosh with compilers from any of the
three major C compiler vendors: Symantec’s THINK environment,
Metrowerks' CodeWarrior environment, and Apple’s Macintosh
Programmer’s Workshop (MPW) environment. Always use the latest

LabVIEW Code Interface Reference Manual 1-14 © National Instruments Corporation

Chapter 1 CIN Overview

Universal headers that contain definitions for both 68K and Power
Macintosh compilers.

The LabVIEW utilities for building Power Macintosh CINs are the
same ones that are used for the 68K Macintosh and can be used to build
both versions of a CIN. If you want to place both versions in the same
folder, however, some development conflicts may arise. Because the
naming conventions for object filesand. | sb files are the same, make
sure that one version does not replace the other. These kinds of issues
can be handled in different ways, depending on your development
environment.

Some CIN code that compiles and works on the 68K Macintosh and
calls Macintosh OS or Toolbox functions may require changes to the
source code beforeit will work on the Power Macintosh. Any code that
passes a function pointer to a Mac OS or Toolbox function must be
modified to pass a Routine Descriptor (see Apple's Inside Macintosh
chapter on the Mixed Mode Manager, available in the Macintosh on
RISC SDK from APDA). Also, if you use any 68K assembly language
inyour CIN, it must be ported to either C or Power Macintosh assembly
language.

THINK C for 68K (Versions 5-7)

To create a THINK C CIN project, make a new folder for the project.
Launch THINK C and create anew project in the new folder. The name
of your THINK C project must match your CIN name exactly, and must
not use any of the conventional project suffixes, suchas. 1tor. proj .
If you nameyour CIN t est , your THINK C project must also be
namedt est , so that it produces alink map file named t est . map.
Y ou should keep the new project and the CIN files associated with it
within the same folder.

With THINK C 7, an easy way to set up your CIN project isto make
use of the project stationery intheci nt ool s: Symant ec- THI NK
Fil es: Project Stationery folder. For THINK C7 projectsthe
project stationery isafolder called LabVI EWCI N TC7. It provides a
template for new CINswith aimost all of the settings you need. Seethe
Read MefileinthePr oj ect Stati onery folder for details.

When building aCIN using THINK Cfor 68K, many of the preferences
can be set to whatever you wish. Others, however, must be set to
specific valuesto correctly create a CIN. If for some reason you do not

© National Instruments Corporation 1-15 LabVIEW Code Interface Reference Manual

Chapter 1

CIN Overview

use the CIN project stationery, you will need to ensure that the
following settings in the THINK C Preferences dialog box are made.

To set up your project if you are using THINK C 5, select Options...
from the THINK C Edit menu. Then check the Generatelink map box
under Preferences.

If you are using THINK C 6 or 7, pull down the THINK C Edit menu
and pop up on the Optionsitem; select THINK Project Manager
Under Preferences, check the Generate link map box, and then click
on the OK button. Now go back to the Optionsitem under the Edit
menu and select THINK C....

To complete the project set-up process for THINK C 5, THINK C 6,
and THINK C 7, select the Requir e prototypes button under

L anguage Settings and then check the Check Pointer Types box.
Under Prefix, delete theline#i ncl ude <MacHeader s> ifitis
present. Finally, under Compiler Settings, check the Gener ate 68881
instructions box, the Native floating-point format box, and the
Generate 68020 instructions box. Y ou can use the Copy button at the
top of the dialog box to make these settings the default settings for new
projects, which will make the set-up process for subsequent CINs
simpler.

When you have finished selecting the options in the Edit menu, turn to
the THINK C Project menu; select Set Project Type.... First, set the
type to Code Resour ce. From the new options that appear, set the File
Typeto. t np, the Creator to LVsb, the Name to the name of the CIN
plus the extension . t np, the Type to CUST, the ID to 128, and check
the Custom Header box. If you are creating aCIN called t est , you

LabVIEW Code Interface Reference Manual 1-16 © National Instruments Corporation

Chapter 1 CIN Overview

must name the resourcet est . t np, as shown in the following
illustration.

i Application File Type
{3 Desk Accessory |
1 Device Driver

Creator |LUsh

i Code Resource] Multi-Segment
Name |[STINETIS-tmp |
o

[<] Custom Header Attrs

Cancel

After these parameters are set, add both the LVSBLi b and ClI NLi b
libraries (included with LabVIEW) to the project. Then add your . ¢
files.

Y ou are now ready to build the code resource. Go to the Project menu
and select Build Code Resour ce.... A dialog box will appear, allowing
you to save the code resource. The name of the code resource must be
the same as the name of the CIN plus the extension . t np.

After you build acoderesource and giveita. t np extension, you must
run the application | vsbut i | . app, alsoincluded with LabVIEW, to
prepare external code for use as a CIN or external subroutine. This
utility prompts you to select your . t np file. The utility also uses the
THINK C link map file, which carriesa. map extension and must be
in the folder with your . t np file. The application | vsbuti | . app

© National Instruments Corporation 1-17 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

usesthe. t np and the. map filesto produce a. | sb file that can be
loaded into a V1.

Select code resource [.tmp file):

EXXCT R 5| = horddrive
Desktop

[Setect]

3

[] Add separate resource file wm CIN
[Put directly into U1 1 Subroutine
[J For Power PC

If you are making a CIN, select the CIN option in the dialog box, as
shown in the preceding illustration. If you are making a CIN for the
Power Macintosh, also check the For Power PC box. If you are making
an external subroutine, select the Subroutine option.

Advanced programmers can check the Add separ ate resour ce file box
to add additional resourcesto their CINsor the Put directly into VI box
to put the . | sb codeinto a VI without opening it or launching
LabVIEW. Remember that the VI designated to receivethe. | sb code
must already contain . | sb code with the same hame. Notice that you
cannot put the code directly into alibrary.

If your . t mp code resource file does not show up in the dialog box,
check itsfile type. When building the . t np file, specify the file type
as. t mp, which is under the Set Project Type... menu item of the
Project menuin THINK C. The. | sb filethis application producesis
what the LabVIEW CIN node should load.

LabVIEW Code Interface Reference Manual 1-18 © National Instruments Corporation

Chapter 1 CIN Overview

% Note The THINK C compiler will only find ext code. h if thefile
ext code. h islocated on the THINK C search path. You can place the
ci nt ool s folder in the samefolder asyour THINK C application, or you
can makesuretheline#i ncl ude "ext code. h" isafull pathnameto
ext code. h under THINK C. For example: #i ncl ude
"harddrive: ci ntool s: extcode. h"

If you areusing System 7.0 or later, you can extend the THINK C search path.
Todo so, first create a new folder in the samefolder asyour THINK C project
and nameit Al i ases. Then make an aliasfor theci nt ool s folder, and
drag this aliasinto your newly created Al i ases folder. Thistechnique
enablestheincludelinetoread #i ncl ude "extcode. h"; therefore, itis
not necessary to type the full pathname.

Symantec C++ 8.0 for Power Macintosh

To create CINs using this environment, you will need to install the
Tool Server application from the Symantec C++ 8.0 distribution disks.
ToolServer is an Apple tool that performs the final linking stepsin
creating your CIN. It can befound inthe Appl e Sof t war e: Tool s
folder. Copy the Tool Server 1. 1.1 folder to your hard drive and
place an alias to ToolServer in the (Tool s) folder in your

Symant ec C++ for Power Mac folder.

Y ou need the following files in your project to create a CIN for Power
Macintosh.

e CINLi b. ppc. Thisfileis shipped with LabVIEW and can be
found intheci nt ool s: Power PC Li brari es folder.

e Your source files

© National Instruments Corporation 1-19 LabVIEW Code Interface Reference Manual

Chapter 1

CIN Overview

S v avgrl.N V=——|
Options | avgvl.m W |

g +HName i Code

X avgvl.c & 0 [
& D cinlib ppo]
i D Lab IE% wcoff a
Totals 0

E

=

Y ou may also need the following file:

e LabVI EW xcof f . Thisfileisshipped with LabVIEW and can be
foundintheci nt ool s: Power PC Li brari es folder.Itis
needed if you call any routines within LabVIEW e.g.,

DSSet Handl eSi ze(), or Set Cl NArraySi ze().

An easy way to set up your CIN project isto make use of the CIN
project stationery in the ci nt ool s: Symant ec- THI NK
Files:Project Stationery folder. For Symantec C version 8
projects the project stationery isafolder called LabVI EW CI N
SCBPPC. The folder provides atemplate for new CINs containing
almost all of the files and preference settings you need. See the Read
Me fileinthe Pr oj ect St ati onery folder for details.

When building a CIN using Symantec C++ for PowerMac, many of the
preferences can be set to whatever you wish. Others, however, must be
set to specific values to correctly create a CIN. If for some reason you
do not use the CIN project stationery, you will need to ensure that the
following settings in the Symantec Project Manager Options dialog
box (accessed from the Project menu) are made.

e Project Type—Set the Project Type pop-up menu to Shared
Library. SettheFileTypetextfieldto. t np. Setthe Destination
textfieldto ci nNane. t np, where ci nNane isthe name of your
CIN. Set the Creator to LVsb.

LabVIEW Code Interface Reference Manual 1-20 © National Instruments Corporation

Chapter 1 CIN Overview

e Linker—Set the Linker pop-up menuto PPCLink & MakePEF.
Set the PPCLink settingstext field to - expor t
LVSBSt ar t , LVSBhead. Set the M akePEF settingstext field to
have-1 LabVl EW xcof f. o=LabVI EWin addition to the
factory setting.

e Extensions—Set the File Extension text fieldto . ppc, the
Translator pop-up menu to XCOFF convertor, and press the
Add button.

* PowerPC C—Inthe Compiler Settings sub-page, select the Align
to 2 byte boundary radio button. In the Prefix sub-page, remove
the line that reads #i ncl ude <PPCMacheader s>.

Build the CIN by selecting Build Library from the Build menu. Then
convert the. t mp filewith | vsbuti | . app (with For Power PC
checked).

Metrowerks CodeWarrior for 68K

Y ou need the following files in your project to be able to create a
Metrowerks 68K CIN.

e CustHdr.68k. mner ks (Thisfile must be thefirst filein the
project.)

e CINLi b. 68k. mner ks
e LVSBLi b. 68k. mner ks
e Your sourcefiles

[= ——— avqul mE|
File Code Data 3 #

=~ Segment 1 0 0 « [|4

CUST_Header 68k mwerks a] a] M|
CINLib 68k mwerks 0 0 01}
LYSBLib 6Bk mwerks]] |
avayv].c 0 1] + [¥]

i

4 file(s) 0 0 el |

© National Instruments Corporation 1-21 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

Note: All of your files must be in a single segment. LabVIEW does not support
multi-segment CINs.

An easy way to set up your CIN project is to make use of the CIN
project stationery in the ci nt ool s: Met r ower ks

Fil es: Project Stationery folder. For CodeWarrior 68K
projects the project stationery isafile called LabVl EW CI N MAB8K.
The file provides a template for CINs containing almost all of the
settings you need. Seethe Read Me filein the Pr oj ect

St ati onery folder for details.

When building a CIN using CodeWarrior for 68K, many of the
preferences can be set to whatever you wish. Others, however, must be
set to specific values to correctly create a CIN. If for some reason you
do not use the CIN project stationery, you will need to ensure that the
following settings in the CodeWarrior Preferences dialog box are
made.

» Language—Set the Sour ceM odel pop-up menuto AppleC. Empty
the Prefix File text field.

* Processor—Check the 68881 Codegen and MPW C Calling
Conventions checkboxes. Leave the 4-Byte Ints and 8-Byte
Doubles checkboxes unchecked.

e Linker—Check the Generate Link Map checkbox.

* Project—Set the Project Type pop-up menu to Code Resour ce.
Set the File Nametext field to ci nNane. t np, where ci nNane
isthe name of your CIN. Set the Resour ce Name text field to the
same text asin the File Name text field. Set the Typetext field to
. t mp andthe ResT ypetext field to CUST. Set the Resl D text field
to 128. Set the Header Type pop-up menu to Custom. Set the
Creator to LVsb.

» Access Paths—Add your ci nt ool s folder to the list of access
paths.

Build the CIN by selecting M ake from the CodeWarrior Project menu.

Caution: Thisoperation will destroy the contents of any other file named
W ci nNane. t mp in that folder. This could easily be the case if thisisthe
same folder in which you build a Power Macintosh version of your CIN.
If you are building for both platforms, you should keep separate
directoriesfor each. The convention used by the MPW CI N toolsisto have
two subdirectories named PPCObj and M68Cbj where all
platform-specific files reside.

LabVIEW Code Interface Reference Manual 1-22 © National Instruments Corporation

Chapter 1 CIN Overview

% Note If you have both a ThinkC68K and a MetrowerksC68K map file, Ibsbutil
cannot know in advance which compiler your . t np file camefrom. It will
first look for a ThinkC . map file, then for a Metrowerks . map file. To
avoid any conflict, remove the unnecessary . map file before using
[vsbutil . app.

When you have successfully built the ¢ci nNane. t np file, you must
thenusethel vsbuti | . app applicationto createtheci nNane. | sb
file.

Thel vsbuti | . app application has a checkbox in the file selection
dialog box labelled For Power PC. This checkbox must not be checked
for 68K CINs. Select any other optionsthat you want for your CIN, and
then select your ¢i nNane. t np file. ci nNane. | sb will be created
in the same folder as ci nNane. t np.

Caution: Thisoperation will destroy the contents of any previous file named
& ci nNane. | sb in that folder. This could easily be the case if thisisthe
same folder in which you build a 68K Macintosh version of your CIN.

Metrowerks CodeWarrior for Power Macintosh

Y ou need the following files in your CodeWarrior project to create a
CIN for Power Macintosh.

e CINLi b. ppc. mmer ks. Thisfileis shipped with LabVIEW and
can befound intheci nt ool s: Metrower ks Fil es: 68K
Li brari es folder.

* Your source files

= =————--— aequalb EEI
File Code Data B ¥

~ Libraries o 0 = 4

cinlib_ppc_mwerks a a H[|
Lab¥IEY xcoff 0 0 H
=~ My source files 0 0 « [
aequalb.c]] +« [¥]

i

3 file(s) 0 0 ael|

Y ou may also need the LabVI EW xcof f file. Thisfileis shipped
with LabVIEW and can be found inthe ci nt ool s: Power PC

© National Instruments Corporation 1-23 LabVIEW Code Interface Reference Manual

Chapter 1

CIN Overview

Li braries folder. It isneeded if you call any routines within
LabVIEW e.g., DSSet Handl eSi ze(),or Set Cl NArraySi ze() .

Finally, if you call any routinesfrom a system shared library, you must
add the appropriate shared library interface file to your project's file
list.

An easy way to set up your CIN project is to make use of the CIN
project stationery intheci nt ool s: Met r ower ks

Fil es: Project Stationery folder. For CodeWarrior PowerPC
projects the project stationery isafile called LabVl EW CI N MAPPC,
Thisfile provides atemplate for CINs containing almost all of the
settings you need. Seethe Read M fileinthe Pr oj ect

St ati onery folder for details.

When building a CIN using CodeWarrior for PPC, many of the
preferences can be set to whatever you wish. Others, however, must be
set to specific values to correctly create a CIN. If for some reason you
do not use the CIN project stationery, you will need to ensure that the
following settings in the CodeWarrior Preferences dialog box are
made.

* Language—Set the Sour ceM odel pop-up menuto AppleC. Empty
out the Prefix File text field (using MacHeaders will not work).

e Processor—Set the Struct Alignment pop-up menu to 68K.
* Linker—Empty all of the Entry Point fields.

* PEF—Set the Export Symbols pop-up menu to Use .exp file and
place a copy of thefile pr oj ect Name. exp (foundin your
cintool s: Metrowerks Files: PPC Li braries folder)
in the same folder as your CodeWarrior project. Rename this file
to proj ect Nane. exp, where pr oj ect Nane isthe name of the
project file. CodeWarrior will look in this file to determine what
symbols your CIN exports. LabVIEW needs these to link to your
CIN.

e Project—Set the Project Type pop-up menu to Shared Library.
Set the file name to be ¢/ nNane. t np, where ¢ci nNane isthe
name of your CIN. Set the Typefieldto. t np. Set the Creator to
LVsbh.

» Access Paths—Add your ci nt ool s folder to the list of access
paths.

Build the CIN by selecting M ake from the CodeWarrior Pr oject menu.

LabVIEW Code Interface Reference Manual 1-24 © National Instruments Corporation

Chapter 1 CIN Overview

Caution: This operation will destroy the contents of any other file named
W ci nNane. t mp in that folder. This could easily be the case if thisisthe
same folder in which you build a 68K Macintosh version of your CIN. If
you are building for both platforms, you should keep separate folders for
each. The convention used by the MPW CIN toolsisto have two
subdirectories named PPCObj and M68Cbj where all platform-specific
filesreside.

When you have successfully built the ¢ci nNane. t np file, you must
then usethel vsbuti | . app application to create the
ci nNane. | sb file.

Thel vsbuti | . app application has a checkbox in the file selection
dialog box labelled For Power PC. Check this box, along with any
other options that are necessary for your CIN, and then select your

ci nNane. t np file. ci nName. | sb will be created in the same
folder as ci nNane. t np.

Caution: Thisoperation will destroy the contents of any previous file named
g' ci nNane. | sb in that folder. This could easily be the case if thisisthe
same folder in which you build a 68K Macintosh version of your CIN.

Macintosh Programmer’s Workshop for 68K and Power
Macintosh

M acintosh Programmer’ s Workshop (MPW) can be used to build CINs
for either the Motorola 680x0 (68K) Macintosh or the Power
Macintosh. Several scripts are available for the MPW environment to
help you build CINs. To deal with the problem of building CINs for
two different CPUs, these new scripts are designed to use two
subdirectories in your CIN folder: PPCObj and M68Qbj . The
platform-specific object and CIN files are kept in these subdirectories.
The scripts make use of the first generation PowerPC C compiler from
Apple, PPCC, and the standard 68K C compiler, C. Although newer
compilers (M Cand SC) are in beta test as this publication goes to
press, the scripts have not yet been updated to use them. The scripts
are:

* Cl NMake—A script capable of building both Power Macintosh
and 68K Macintosh CINSs. It uses a simplified form of a makefile
that you provide. It can berun every time you need to rebuild your
CIN.

« LVMakeMake—A scriptthatissimilartothel vinknf (LabVIEW
Make Makefile) script available for building CINs under the

© National Instruments Corporation 1-25 LabVIEW Code Interface Reference Manual

Chapter 1

CIN Overview

Solaris operating system. It builds a skeletal but complete
makefilethat you can then customize and use with the MPW nmake
tool.

Cl NMake can be used for building both Power Macintosh and 68K
Macintosh versions of your CINs. By default, the CI NMake script
builds 68K Macintosh CINs and puts the resulting ¢ci nNane. | sb
into the M68C0bj folder.

Y ou must have one makefile for each CIN. Name the makefile by
appending . | vmto the CIN name. This indicates that thisisa
LabVIEW makefile. The makefile should resemble the following
pseudocode. Be sure that each Di r command ends with the colon
character (:).

nane = nane Name for the code; indicates the base
name for your CIN. The source code
for your CIN should bein nane. c.
The code created by the makefileis
placed in anew file, nane. | sb
(. I sb isamnemonic for LabVIEW
subroutine).

type Type of external code you want to
create. For CINs, you should use atype
of CI N.

type

codeDir = codeDir: Complete pathname to the folder
containing the . ¢ file used for the
CIN.

cinTool sDir = cinTool sDir:
Complete pathname to the LabVIEW
ci nt ool s: MPWfolder, whichis
located in the LabVIEW folder.

LVMvers = 2 Version of Cl NMake script reading
this. | vmfile.
inclDir = -i inclDir: (optiona) Complete or partial

pathname to afolder containing any
additional . h files.

LabVIEW Code Interface Reference Manual 1-26 © National Instruments Corporation

Chapter 1 CIN Overview

ot her MB8Yj Fi | es
(optional) For 68K Macintosh only, list
of additional object files (fileswith a
. 0 extension) that your code needs to
compile. Separate the names of files
with spaces.

ot her M68hj Fi | es

ot her PPCOhj Fi | es ot her PPCbj Fi | es
(optional) For Power Macintosh only,
list of additional object files (fileswith
a. o extension) that your code needsto
compile. Separate the names of files

with spaces.

subr Nanes = subr Nanes (optional) For 68K Macintosh only,
list of external subroutinesthe CIN
calls. You need subr Nanes only if
the CIN calls external subroutines.
Separate the names of subroutineswith
spaces.

ShLi bs = sharedLi brar yNanes
(optional) For Power Macintosh only,
a space-separated list of the link-time
copies of import libraries with which
the CIN must be linked. Each should
be a complete path to the file.

ShLi bMaps = sharedLi bMappi ngs
(optional) For Power Macintosh only,
the command-line arguments to the
Mak e PEF tool that indicate the
mapping between the name of each
link-time import library and the
run-time name of that import library.
These will usually ook something like
the following:
"-1 libA xcoff=libA

-1 1ibB.xcoff=libB"

Notice that only the file names are
needed, not entire paths.

Y ou must adjust the —Bi r names to reflect your own file system
hierarchy.

© National Instruments Corporation 1-27 LabVIEW Code Interface Reference Manual

Chapter 1

CIN Overview

Modify your MPW command search path by appending the
ci nt ool s: MPWfolder to the default search path. This search path is
defined by the MPW Shell variable conmmands.

set conmands "{comrands}", "<pat hnanme to directory of
ci nTool sDi r>"

Go to the MPW Worksheet and enter the following two commands.
First, set your current folder to the CIN folder using the MPW
Di rect ory command:

Directory <pathnane to directory of your C N

Next, run the LabVIEW Cl NMake script:
Cl NVvake <nane of your C N>

If Cl NMake does not find a. | vmfilein the current folder, it will
build afile named ci nNane. | vim and prompt you for necessary
information. Thisfile, ci nName. | vm will bein aformat compatible
with building both Power Macintosh and 68K Macintosh CINsin the
same folder. If CI NVake findsaci nNane. | vmbut it does not have
thelineLVWers = 2,itwill savethe. | vmfilein

ci nNane. | vm ol d and update the ci nNane. | vimfileto be
compatible with the new version of Cl NVake.

Y ou can use LVMakeMake to build an MPW makefile that you can
then customize for your own purposes. Y ou should only have to run
LVMakeMake oncefor agiven CIN. Y ou may then want to modify the
resulting makefile by adding the proper header file dependencies, or by
adding other object files to be linked into your CIN. The format of a
LVMakeMake command follows, with optional parameterslisted in
brackets.

LVivakeMake [- o makeFil e] [- PPC] <nane of your Cl N-. make

-0 makeFi | e specifies the name of the
output makefile. If thisargument is not
specified, LVMakeMake writes to
standard output.

- PPC If this argument is specified, a
makefile suitable for building a Power
Macintosh CIN is created. By default,
a 68K Macintosh makefile is created.

LabVIEW Code Interface Reference Manual 1-28 © National Instruments Corporation

Chapter 1 CIN Overview

For example, to build a Power Macintosh makefile for a CIN named
myCIN, execute the following command:

LvivakeMake -PPC nmyCI N > nyCl N. ppc. make
creates the nmakefile

Y ou can then use the MPW nake tool to build your CIN, as shownin
the following commands.

make -f myCl N. ppc. make> nyCl N. makeout
creates the build commands

nyCl N. makeout

executes the build commands

You should load the . | sb file this application produces into your
LabVIEW CIN node.

Microsoft Windows 3.x

Microsoft Windows 3.x isa 16-bit operating system. Most applications
written for it are 16-bit applications. A 16-bit application faces several
obstacles when working with large amounts of information, such as
manipulating arrays that require more than 64 kilobytes of memory.

LabVIEW is a 32-bit application without most of the inherent
limitations found in 16-bit applications. Because of the way that CINs
are linked to Vs, however, LabVIEW can use only code compiled for
32-bit applications. Thisis because CINs reside in the same memory
space asVIsand work with LabVIEW data. To create CINs, acompiler
must be able to create 32-bit relocatable object code.

The only compiler that currently supports the correct format of
executables is Watcom C. The following section lists the steps for
compiling a CIN with the Watcom compiler.

Watcom C Compiler

With the Watcom C compiler, you create a specification that includes
the name of the file you want to create, relevant directories, and any
external subroutines or object files the CIN needs. (External
subroutines are described in Chapter 4, External Subroutines.) You
then use the wrak e utility included with Watcom to compile the CIN.

© National Instruments Corporation 1-29 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

In addition to compiling the CIN, the makefile directs wrake to put
the CIN in the appropriate form for LabVIEW.

The makefile should look like the following pseudocode. Y ou should
append . | vmto the makefile name to indicate that thisisa LabVIEW

makefile.

name = nane

type = type
codeDir = codeDir
weDi r weDi r
CinTool sDi r

inclDir = jinclDr
objFiles = objFiles
LabVIEW Code Interface Reference Manual 1-30

Name for the code; indicates the base
name for your CIN. The source code
for your CIN should bein nane. c.
The code created by the makefileis
placed in anew file, nane. | sb

(. 1 sb isamnemonic for LabVIEW
subroutine).

Type of external code you want to
create. For CINs, you should use atype
of CI N.

Complete or partial pathname to the
directory containing the . ¢ file used
for the CIN.

Complete or partial pathname to the
directory containing the Watcom
compiler.

CinTool sDi r

Complete or partial pathname to the
LabVIEW ci nt ool s directory,
which islocated in the LabVIEW
directory. This directory contains
header files you can use for creating
CINs, and tools that the wrake utility
uses to create the CIN.

(optional) Complete or partial
pathnameto adirectory containing any
additional . h files.

(optional) List of additional object
files (fileswith an . obj extension)
that your code needs to compile.
Separate the names of files with
spaces.

© National Instruments Corporation

Chapter 1 CIN Overview

subr Nanes = subr Names (optional) List of external subroutines
the CIN calls. You need subr Names
only if the CIN calls external
subroutines. Separate the names of
subroutines with spaces.

l'include $(C nTool sDir)\generic. mak

Execute the wrake command by entering the following in DOS.
whake /f <name of your CIN>.lvm

Note: Thewnmake utility sometimes erroneously stopsa makewith an incorrectly
reported error when it isrun in the DOS shell within Windows. If this
happens, run it in normal DOS.

The wrake utility scans the specified LabVIEW makefile and
remembers the defined values. The last line of the makefile,

i nclude $(Ci nTool sDir)\generi c. nak, instructs wrake
to compile the code resource based on instructionsin the

generi c. mak file, whichisstoredintheci nt ool s directory. The
wirak e utility compilesthe code and then transformsit into aform that
LabVIEW can use. The resulting code is stored in anane. | sb file,
where nane isthe CIN name given in the name line of the makefile.

% Note You cannot link most of the Watcom C libraries to your CIN because
precompiled libraries contain code that cannot be properly resolved by
LabVIEW when it linksa VI to a CIN. If you try to call those functions,
your CIN may crash.

LabVIEW provides functions that correspond to many of the functionsin
these libraries. These functions are described in subsequent chapters of
this manual. If you need to call a function that is not supplied by
LabVIEW, you can access the function from a dynamic link library
(DLL). A CIN can call a DLL using the techniques described in the
Watcom C manuals. ADLL can call any function fromtheClibraries. See
Chapter 3, CIN Advanced Topics, for information on callinga DLL.

© National Instruments Corporation 1-31 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

Microsoft Windows 95 and Windows NT

Y ou can use the Microsoft SDK C/C++ or the Visual C++ compiler to
build CINs for LabVIEW for Windows 95/NT. With proper
preparation, you can also use some CINs created using Watcom C for
Windows 3.1.

Microsoft SDK C/C++ Compiler

The method for building CINs under Windows 95 or Windows NT is
similar to the method for building CINs under Windows 3.1 using the
Watcom C compiler.

1. AddaCl NTOOLSDI R definition to your list of user environment
variables.

Under Windows NT, you can edit thislist with the Syst em
control panel accessory. For example, if you installed LabVIEW
for Windows 95/NT inc: \ | v31nt, the CIN tools directory
should bec: \ I v31nt\ ci nt ool s. Inthisinstance, you would
add the following line to the user environment variables using the
System control panel.

CINTOOLSDIR = c:\lv3lnt\cintools

Under Windows 95, you must modify your AUTOEXEC.BAT, to
set CINTOOLSDIR to the correct value.

2. Builda. | vmfile (LabVIEW Makefile) for your CIN. LabVIEW
for Windows 95/NT requires you to define fewer variables than
LabVIEW for Windows 3.1. Y ou must specify the itemsin the
following list.

« name=nameof CIN or external subroutine (mult, for example)

e type=CIN or LVSB (depending on whether it isa CIN or an
external subroutine)

« linclude $(CI NTOOLSDI R)\ ntlvsb. mak

If your CIN uses extraobject files or external subroutines, you can
specify the obj Fi | es and subr Names options. Y ou do not
need to specify the codeDi r parameter, because the code for the
CIN must be in the same directory as the makefile. Y ou do not
need to specify thewcDi r parameter, because the CIN tools can
determine the compiler’ s location.

Y ou can compile the CIN code using the following command,
where mul t isthe makefile name.

nmake /f mult.lvm

LabVIEW Code Interface Reference Manual 1-32 © National Instruments Corporation

Chapter 1 CIN Overview

If you want to use standard C or Windows 95 or Windows NT
libraries, definethesymbol ci nLi br ari es. For example, touse
standard C functions in the preceding example, you could use the
following . | vmfile.

name = nult

type = CIN

cinLibraries=libc.lib

linclude $(ClI NTOOLSDI R)\ nt | vsh. mak

To include multiple libraries, separate the list of library names
using spaces.

Visual C++ for Windows 95 or Windows NT

To build CINs under Windows NT or Windows 95 using Visual C++,
follow the instructions for the Microsoft SDK C/C++ compiler, listed
in the preceding section. The one difference is that you must add an

| DE = VClineto the beginning of your . | vmfile.

Watcom C Compiler for Windows 3.1 under Windows 95 or
Windows NT

CINsyou have created using the Watcom C compiler for Windows 3.1
should work under Windows 95 or Windows NT. However, if your
CIN makes calls to communicate with hardware drivers, performs
register or memory mapped 1/0, or callsWindows 3.1 functions, it may
not work without modification. Windows 3.1 drivers do not run under
Windows 95 or Windows NT, so you will have to port any drivers that
you may have written for Windows 3.1 to Windows 95 or Windows
NT. Also, CINs cannot manipulate hardware directly. To perform
register or memory-mapped 1/O, you will have to write a Windows 95
or Windows NT driver. If you call Windows 3.1 functions, you should
check to make sure that those functions are still valid under Windows
95 and Windows NT.

To create CINs using Watcom C for Windows 3.1, follow the Watcom
C instructions given in the Watcom C Compiler subsection of the
Compile the CIN Source Code section of this chapter. Y ou must
compile the source code for the CINs under Windows 3.1. Use the
LabVIEW for Windows 3.1 CIN libraries to compile the CINs.

© National Instruments Corporation 1-33 LabVIEW Code Interface Reference Manual

Chapter 1

F

CIN Overview

Note:

Solaris 1.x

LabVIEW for the Sun can use external code compiled in a. out
format and prepared for LabVIEW using a LabVIEW utility. The
unbundled Sun C compiler is the only compiler that has been tested
thoroughly with LabVIEW. Other compilers that can generate codein
a. out format might also work with LabVIEW, but this has not been
verified. The C compiler that comes with the Sun does not use
extended-precision floating-point numbers; code using this numeric
type will not compile. However, the unbundled C compiler does use
them.

Solaris 2.x

The preceding information for Solaris 1.x istrue for Solaris 2.x, with
one exception—LabVIEW 3.1 and higher for Solaris 2.x uses code
compiled in a shared library format, rather than the a. out format
previously specified.

LabVIEW 3.0 for Solaris 2.x supported external code compiled in ELF
format.

Existing Solaris 1.x and Solaris 2.x (for LabVIEW 3.0) CINs will not
operate correctly if they reference functions that are not in the System
V Interface Definition (SVID) for | i bc, i bsys,andl i bnsl .
Recompiling your existing CINsusing the shared library format should
ensure that your CINs function as expected.

HP-UX
As previously stated, the HP-UX C/ANSI C compiler is the only
compiler that has been tested with LabVIEW.

Unbundled Sun ANSI C Compiler and

HP-UX C/ANSI C Compiler

With these compilers, you create a makefile using the shell script

| vimknt (LabVIEW Make Makefile), which creates a makefile for a

given CIN. Y ou then use the standard mak e command to make the CIN
code. In addition to compiling the CIN, the makefile puts the codein a
form that LabVIEW can use.

The format for the | vimknf command follows, with optional
parameters listed in brackets.

Iviknf [-o Makefile] [-t CIN [-ext duefile] LVSBNane

LabVIEW Code Interface Reference Manual 1-34 © National Instruments Corporation

Chapter 1 CIN Overview

LVSBNare, the name of the CIN or external subroutine that you want
to build, isrequired. If LVSBNane isf 00, the compiler assumes the
sourceisf 00. ¢, and the compiler names the output filef 0o. | sb.

- 0 is optional and supplies the name of the makefile that | vnknf
creates. If you do not use this option, the makefile name defaults to
Makefil e.

-t isoptional and indicates the type of external code you want to
create. For CINs, you should use CI N, which is the default.

- ext isneeded only if this external code calls external subroutines.
The argument to this directive is the name of afile that contains the
names of all subroutines that this code calls, with one name per line.
Thefileis not necessary to run the | vimknf script, but it must be
present before you can successfully make the CIN. If you do not
specify a- ext option, | vimknf assumes that the CIN does not
reference any external subroutines.

In Solaris 1.x, the makefile produced assumes that the directories for
thefilesci n. o, ci netc. o, makegl ueBSD. awk, and| vsbuti |
arein certainlocations. If these assumptions are incorrect, you can edit
the makefile to correct the pathnames.

In Solaris 2.x, the makefile produced assumes that the directories for
thefilesci n. o, ci netc. o, makegl ueSVR4. awk, and

| vsbuti | areincertainlocations. If these assumptions are incorrect,
you can edit the makefile to correct the pathnames.

In HP-UX, the makefile produced assumes that the directories for the
filesci n. o,ci net c. o, makegl ueHP. awk, andl vsbuti | arein
certain locations. If these assumptions are incorrect, you can edit the
makefile to correct the pathnames.

If you specify the - ext argument to thel viknt script, the makefile
creates temporary files. For example, if the gluefile nameisbar , the
makefile creates filesbar . s and bar . 0. Neither the CIN nor the
makefile needs these files after the CIN has been created.

If you make external subroutines, you need to create a separate
makefilefor them. Thel vimknf script createsafilecalled Makefi | e
unless you use the - o option. For this reason, you may want to place
the code for each subroutine in separate directories to avoid writing
over one Makef i | e with the other. If you want to place the code in

© National Instruments Corporation 1-35 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

the same directory, you need either to combine the two makefiles
manually, or to create two separate makefiles (using the - o option to
thel viknf script) and use make -f <makefi | e> to create the
CIN or external subroutine.

6. Load the CIN Object Code
L oad the code resource by choosing L oad Code Resour ce from the
CIN pop-up menu. Select the. | sb fileyou created in step 5, Compile
the CIN Source Code.

W.Elé.?ﬁ
I
Show 4
Description...
Replace b

Add Parameter
Remove Parameter
Output Onl

Load Code Hesource....
Create .c File...

This command loads your object code into memory and links the code
to the current front panel/block diagram. After you savethe VI, thefile
containing the object code does not need to be resident on the computer
running LabVIEW for the VI to execute.

If you make modifications to the source code, you can load the new
version of the object code using the L oad Code Resour ce option. The
file containing the object code for the CIN must have an extension of
. I sb.

There is no limit to the number of CINSs per block diagram.

LabVIEW Manager Routines

LabVIEW has a suite of routines that can be called from CINs and
external subroutines. This suite of routines performs user-specified

LabVIEW Code Interface Reference Manual 1-36 © National Instruments Corporation

Online Reference

Chapter 1 CIN Overview

routines using the appropriate instructions for a given platform. These
routines, which manage the functions of a specific operating system,
are grouped into three categories, the memory manager, the file
manager, and the support manager.

External code written using the managers is portable-you can compile
it without modification on any platform that supports LabVIEW. This
portability hastwo advantages. First, the LabVIEW applicationisbuilt
on top of the managers; except for the managers, the source code for
LabVIEW isidentical across platforms. Second, the analysis Vlis are
built mainly from CINs; the source code for these CINs is the same for
all platforms.

For general information about the memory manager, the file manager,
and the support manager, see Chapter 5, Manager Overview.

For desciptions of the functions, or of the file manager data structures,
select Online Reference from LabVIEW' s Help menu. Click on the
topic, Function and VI Reference, and then the rel evant subtopic. Or see
the Code Interface Node Reference online manual.

Pointers as Parameters

Some manager functions have a parameter that is a pointer. These
parameter type descriptionsareidentified by atrailing asterisk (such as
the hp parameter of the AZHand ToHand memory manager function
documented in the Online Reference) or are type defined as such (such
as the name parameter of the FNanePt r function documented in the
Online Reference). In most cases, this means the manager function will
write a value to pre-allocated memory. In some cases, such as

FStr FitsPat h or Get ALong, the function reads a value from the
memory location, so you don't have to pre-allocate memory for a
return value.

© National Instruments Corporation 1-37 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

Table 1-1 lists the functions with parameters that return avalue for
which you must pre-allocate memory.

Table 1-1. Functions with Parameters Needing Pre-allocated Memory

AZHandToHand FCGet I nfo FPat hToDSt ri ng
AZMentt at s FCGet Pat hType FPat hToPat h
AZPt r ToHand FGet Vol I nf o FRef NumrorFD
Dat eToSecs FMOpen FStringToPat h
DSHandToHand FMRead FText ToPat h
DSMentst at s FMrel | FUnfl att enPat h
DSPt r ToHand FMNite Get Al ong
FCreate FNanePt r Nuneri cArrayResi ze
FCr eat eAl ways FNewRef Num Randontzen

FFl att enPat h FPat hToAr r SecsToDat e
FGet AccessRi ghts | FPat hToAZString | Set ALong

FGet ECOF

It isimportant to actually allocate space for this return value. The
following examples illustrate correct and incorrect ways to call one of
these functions from within a generic function f 0o:

Correct example:

foo(Path path) {
Str255 buf; /* allocated buffer of 256 chars */

File fd;

MyErr err;

err = FNanePtr (path, buf);

err = FMpen(& d, path, openReadOnly,
denyWiteOnly);

}

LabVIEW Code Interface Reference Manual 1-38 © National Instruments Corporation

Chapter 1 CIN Overview

Incorrect example:

foo(Path path) {

PStr p; /* an uninitialized pointer */

File *fd; /[* an uninitialized pointer */

MYErr err;

err = FNanePtr(path, p);

err = FMpen(fd, path, openReadOnly,
denyWiteOnly);

}

In the correct example, buf contains space for the maximum-sized
Pascal string (whose address is passed to FNanmePt r), andf d isa
local variable (allocated space) for afile descriptor.

In the incorrect example, p isapointer to a Pascal string, but the
pointer is not initialized to point to any allocated buffer. FNamePt r
expectsits caller to pass a pointer to an allocated space, and writes the
name of thefilereferredto by pat h into that space. Even if the pointer
does not point to avalid place, FNanePt r will writeits results there,
with unpredictable consequences. Similarly, FMOpen will write its
results to the space to which f d points, which is not avalid place
because f d isuninitialized.

Debugging External Code

LabVIEW has adebugging window that you can usewith external code
to display information at execution time. Y ou can open the window,
display arbitrary print statements, and close the window from any CIN
or external subroutine.

Usethe DbgPri nt f function to create this debugging window. The
format for DbgPri nt f issimilar to the format of the SPri nt f
function, which is described in the Online Reference. DbgPr i nt f
takes a variable number of arguments, where the first argumentisaC
format string.

© National Instruments Corporation 1-39 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

DbgPrintf
syntax i nt 32 DbgPrintf(CStr cfmt, ..);

The first time you call DbgPri nt f, LabVIEW opens a window to
display the text you pass the function. Subsequent calls to

DbgPri nt f append new data as new linesin the window (you do not
need to pass in the new line character to the function). If you call
DbgPri nt f with NULL instead of aformat string, LabVIEW closes
the debugging window. Y ou cannot position or change the size of the
window.

The following examples show how to use DbgPri nt f .

DbgPrintf(""); /[* print an enpty line,
openi ng the w ndow i f
necessary */

DbgPrintf("9H', varl); [/* print the contents of an
LSt rHandl e (LabVI EW string),
openi ng the w ndow i f
necessary */

DbgPri nt f (NULL) ; /* cl ose the debuggi ng wi ndow
*/

Debugging CINs Under Windows 95 and Windows NT

The Windows 95 and Windows NT platforms support source level
debugging of CINs. To enable debugging, add the following lineto the
. | vmfile of your CIN:

DEBUG = 1

cinLibraries = Kernel 32.1ib

These lines will add debug information to the CIN. Y ou must also add
the DebugBr eak system call at the point where you want to break
into the CIN code. After adding this information, recompile the CIN
andreload it into LabVIEW. When you run the VI containing the CIN,
adialog box will appear with the following message:

A Breakpoi nt has been reached. Click K to
term nate application. Click CANCEL to debug the
application.

Click CANCEL. Thislaunches the debugger, which attaches to
LabVIEW, searches for the DLLSs, and then asks for the source file of

LabVIEW Code Interface Reference Manual 1-40 © National Instruments Corporation

Chapter 1 CIN Overview

your CIN. Point to your source file and the debugger will load the CIN
source code. You can then proceed to debug your code.

Debugging CINs Under Sun or Solaris

Itisnot currently possibleto use Sun’sdebugger, dbx, to debug CINs.
Thebest youcandoisusestandard Cpri nt f callsortheDbgPri nt f
function mentioned earlier.

Debugging CINs Under HP-UX

Y ou can debug CINs built on the HP-UX platform using xdb, the HP
source level debugger. To do so, compile the CIN with debugging
turned on. Y ou must also enable shared library debugging with the - s
flag and direct xdb to the source files for your CIN. For example, if
your CIN source codeisinthet est s/ first directory, you could
invoke xdb with the following command:

xdb -s -d tests/first |abview

See the xdb manual for more information. Once the CIN is loaded,
break into the debugger and set your breakpoints. Y ou may need to
qualify function names with the name of the shared library. Qualified
names areintheformfuncti on_nane@ i brary_nane. The
name of the shared library will not be what it was when compiled.
Instead, it will be a unique name generated by the C library function
t npnam The name will always begin with the string LV. Use the
debugger command nmto display the memory map of all currently
loaded shared libraries. CIN shared libraries are ordered by load time
on the name space, so CINs loaded later appear in the memory map
before CINsloaded earlier. Asan example, to break at Cl NRun for the
library / usr/ t np/ LVAAAal7732, set the breakpoint as follows:

>b Cl NRun@VAAAa17732
If you reload a CIN that is already loaded, the debugger will not

function properly. If you change a CIN, you must quit and restart the
debugger to enable it to work as desired.

© National Instruments Corporation 1-41 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview

LabVIEW Code Interface Reference Manual 1-42 © National Instruments Corporation

CIN Parameter Passing

This chapter describes the data structures that LabVIEW uses when
passing datato a CIN.

Introduction

LabVIEW passes parametersto the CI NRun routine. These parameters
correspond to each of the wires connected to the CIN. Y ou can pass any
datatypeto aCIN that you can construct in LabVIEW; thereis no limit
to the number of parameters you can pass to and from the CIN.

CIN .c File

When you select the Create .c File... option, LabVIEW createsa. ¢
file in which you can enter your CIN code. The Cl NRun function and
its prototype are given, and its parameters are typed to correspond to
the datatypes being passed to the CIN in the block diagram. If you want
to refer to any of the other six CIN routines (Cl NI ni t , Cl NLoad, and
so forth), see their descriptions in Chapter 1, CIN Overview.

The. c filecreated isastandard Cfile, except that LabVIEW givesthe
data types unambiguous names. C does not define the size of low-level
datatypes—thei nt datatype might correspond to a 16-bit integer for
one compiler and a32-bit integer for another compiler. The. c fileuses
names that are explicit about datatype size, such asi nt 16, i nt 32,
fl oat 32, and so on. LabVIEW comes with a header file,

ext code. h, that contains typedefs associating these LabVIEW data
types with the corresponding data type for the supported compilers of
each platform.

ext code. h defines some constants and types whose definitions may
conflict with the definitions of system header files. The LabVIEW

ci nt ool s directory also containsafile, host t ype. h, that resolves
these differences. This header file also includes many of the common
header files for a given platform.

© National Instruments Corporation 2-1 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

Note: You should always use #i ncl ude "extcode. h" at the beginning of
your source code. If your code needs to include system header files, you
should include " ext code. h" ,"host t ype. h", and then any system
header files, in that order.

If you write a CIN that accepts a single 32-bit signed integer, the . ¢
file indicates that the CI NRun routineis passed ani nt 32 by
reference. ext code. h typedefsani nt 32 to the appropriate data
type for the compiler you use (if it is a supported compiler); therefore,
you can use thei nt 32 datatype in external code that you write.

How LabVIEW Passes Fixed Sized Data to CINs

Scalar Numerics

Scalar Booleans

Asdescribed in the Stepsfor Creating a CIN section of Chapter 1, CIN
Overview, you can designate terminals on the CIN as either input-
output or output-only. Regardless of the designation, LabV IEW passes
data by reference to the CIN. When modifying a parameter value, be
careful to follow the rules described for each kind of terminal in the
Seps for Creating a CIN section of Chapter 1, CIN Overview.
LabVIEW passes parametersto the Cl NRun routinesin the same order
as you wire data to the CIN—the first terminal pair corresponds to the
first parameter, and the last terminal pair corresponds to the last
parameter.

The following section describes how LabVIEW passes fixed sized
parameters to CINs. See the How LabVIEW Passes Variably Sized
Data to CINSs section of this chapter for information on manipulating
variably sized data such as arrays and strings.

LabVIEW passes humeric data types to CINs by passing a pointer to
the data as an argument. In C, this means that LabVIEW passes a
pointer to the numeric data as an argument to the CIN. Arrays of
numerics are described in the subsequent Arrays and Strings section of
this chapter.

LabVIEW stores Booleansin memory as 16-bit integers. If the high bit
of the integer is 1, the Boolean is TRUE; otherwise the Boolean is
FALSE. Thisisdifferent from the more usual convention for Booleans,
in which the low bit determines whether the Boolean is TRUE or
FALSE. LabVIEW passes Booleans to CINs with the same

LabVIEW Code Interface Reference Manual 2-2 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

conventions as for numerics. LabVIEW stores arrays of Booleans
differently; seethe Arrays and Strings section of this chapter for more
information.

Refnums

LabVIEW treatsarefnum the same way asit treats a scalar number and
passes refnums with the same conventions it uses for numbers.

Clusters of Scalars
For acluster, LabVIEW passes a pointer to a structure containing the
elements of the cluster. LabVIEW stores fixed-size values directly as
components inside of the structure. If a component is another cluster,
LabVIEW stores this cluster value as a component of the main cluster.

Return Value for CIN Routines

The names of the CIN routines are prefaced in the header file with the
words Cl N MyEr r, as shown in the following example.

CIN MgErr CI NRun(...);

The LabVIEW header file ext code. h, defines the word CIN to be
either Pascal or nothing, depending on the platform. Prefacing a
function withtheword Pascal causessome C compilersto use Pascal
calling conventions instead of C calling conventions to generate the
code for the routine. LabVIEW uses Pascal calling conventions on the
Macintosh when calling CIN routines, so the header file declares the
CIN to be equivalent to Pascal on the Macintosh. On the PC and the
Sun, however, LabVIEW uses standard C calling conventions, so the
header file declares the CIN to be equivalent to nothing.

The MyEr r datatypeisalabVIEW datatypethat correspondsto a set
of error codes that the manager routines return. If you call a manager
routine that returns an error, you can either handle the error or return
the error so that LabVIEW can handle it. If you can handle the errors
that occur, return the error code noEr r .

After calling a CIN routine, LabVIEW checks the MpEr r value to
determine whether an error occurred. If an error occurs, LabVIEW
abortsthe VI containing the CIN. If the VI isasubVI, LabVIEW aborts
the VI that contains the subV1. This behavior enables LabVIEW to
handle conditions when a VI runs out of memory. By aborting the

© National Instruments Corporation 2-3 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

running VI, LabVIEW can possibly free enough memory to continue
running correctly.

Examples with Scalars

The following examples show the steps for creating CINs and how to
work with scalar data types. Chapter 5, Manager Overview, contains
more examples.

Steps for Creating a CIN That Multiplies Two Numbers

Consider aCIN that takes two single-precision floating-point numbers
and returns their product.

1. Place the CIN on the Block Diagram
2. Add Two Input and Output Terminals to the CIN

3. Wire the Inputs and Outputs to the CIN

Place two single-precision numeric controls and one single-precision
numeric indicator on afront panel. Wire the node as shown in the
following illustration. Notice that A*B iswired to an output-only
terminal pair.

Y EENT
=olz60 A *E
S

] (]

E

SavetheVlasmul t. vi .

4. Create the CIN Source Code

Select Create .c File... from the CIN node pop-up menu. LabVIEW
prompts you to select aname and astorage location for a. ¢ file. Name
thefilenul t . c. LabVIEW createsa. c file shown in the following
listing.

LabVIEW Code Interface Reference Manual 2-4 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

/*
* CIN source file
*/

#i ncl ude "extcode. h"
/* stubs for advanced CIN functions */

UseDef aul t CI NI ni t
UseDef aul t Cl NDi spose
UseDef aul t Cl NAbor t
UseDef aul t Cl NLoad
UseDef aul t Cl NUnl oad
UseDef aul t Cl NSave

CIN MgErr CINRun (float32 *A, float32 *B,
float32 *A B);

CIN MgErr CINRun (float32 *A, float32 *B,
float32 *A B) {

/* ENTER YOUR CODE HERE */

return noErr;

}

This. c filecontainsaprototype and atemplate for the CIN’sCl NRun
routine. The UseDef aul t. .. macros shown in the preceding
example code take the place of the corresponding CIN routines.
LabVIEW callsthe Cl NRun routine when the CIN executes. In this
example, LabVIEW passes Cl NRun the addresses of the three 32-bit
floating-point numbers. The parameters are listed left to right in the
same order as you wired them (top to bottom) to the CIN. Thus, A, B,
and A B are pointersto A, B, and A*B, respectively.

As described in the CIN .c File section of this chapter, thef | oat 32
datatypeisnot a standard C data type. When LabVIEW createsa. ¢
file, it gives unambiguous names for datatypes. For most C compilers,
thef | oat 32 datatypecorrespondstothef | oat datatype. However,
thismay not betruein all cases, because the C standard does not define
the sizes for the various data types. You can use these LabVIEW data
types in your code because ext code. h associates these data types

© National Instruments Corporation 2-5 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

Note:

Note:

with the corresponding C data type for the compiler you are using. In
addition to defining LabVIEW data types, ext code. h also
prototypes LabVIEW routines that you can access. These data types
and routines are described in Chapter 5, Manager Overview, of this
manual and in the Online Reference.

Theline#i ncl ude "extcode. h" must bea full pathname to
ext code. h under THINK C. For example: #i ncl ude
"har ddri ve: ci nt ool s: ext code. h"

Optionally, System 7.x userscan usethe Al i ases folder techniquedescribed
in the THINK C for 68K subsection of Chapter 1, CIN Overview, to enablethe
includelinetoread #i ncl ude "extcode. h".

For thismultiplication example, simply fill inthe code for the Cl NRun
routine. Y ou do not haveto usethe variable namesthat LabVIEW gives
you in Cl NRun; you can change them to increase the readability of the
code.

CIN MgErr CI NRun (float32 *A, float32 *B,
float32 *A B);

{

*A_B: *A**B;

return noErr;

}

Cl NRun multiplies the values to which A and B refer and stores the
resultsin the location to which A_B refers. It isimportant that CIN
routines return an error code, so that LabVIEW knows if the CIN
encountered any fatal problems and handles the error correctly.

If you return avalue other than noEr r , LabVIEW stops the execution
of the VI.

5. Compile the CIN Source Code

After creating the source code, you need to compile it and convert it
into aform that LabVIEW can use. The following sections summarize
the steps for each of the supported compilers.

Step 5 isdifferent for each platform. Look under the heading for your
platform and compiler in thefollowing sectionsto find theinstructionsfor
your system. For details, refer to the relevant subsection within the
Compile the CIN Source Code section in Chapter 1, CIN Overview.

LabVIEW Code Interface Reference Manual 2-6 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

Macintosh

THINK C for 68K and Symantec C++

Create anew project and placerrul t . ¢ init. Buildmul t . | sb
according to the instructions in the THINK C for 68K or the Symantec
C++ subsection of the Compile the CIN Source Code section of
Chapter 1.

Macintosh Programmer’s Workshop for 68K and Power Macintosh

Createafilenamed nul t . | vm Make sure the name variableis set to
mul t . Buildmul t . | vmaccording to theinstructionsin the Macintosh
Programmer’ s Workshop subsection of the Compile the CIN Source
Code section of Chapter 1.

Metrowerks CodeWarrior for Power Macintosh and 68K

Create anew project and placerul t . ¢ init. Buildmul t . | sb
according to theinstructionsin the Metrowerks CodeWarrior subsection
of the Compile the CIN Source Code section of Chapter 1.

Microsoft Windows 3.x

Watcom C Compiler

Create afilenamed mul t . | vm Make sure the name variableis set to
nmul t . Build mul t . | vmaccording to the instructions in the Watcom
C Compiler subsection of the Compile the CIN Source Code section of

Chapter 1.

Microsoft Windows 95 and Windows NT

Microsoft SDK Compiler

Create afilenamed mul t . | vm Make sure the name variableis set to
mul t . Build mul t . | vmaccording to theinstructions in the Microsoft
DK subsection of the Compile the CIN Source Code section of
Chapter 1.

Microsoft Visual C++ Compiler

Createafilenamed nul t . | vm Make sure the name variableis set to
nul t . Buildmul t . | vmaccording to the according to theinstructions
in the Visual C++ subsection of the Compile the CIN Source Code

section of Chapter 1. Add the following line to the top of the makefile.

© National Instruments Corporation 2-7 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

IDE = VC

Thisline adds special VC++ libraries to the link. All other steps
required to compile the CIN source code using the Visual C++
compiler are exactly the same asthose for the Microsoft SDK compiler.

Solaris 1.x, Solaris 2.x, and HP-UX

Asdescribed in the Stepsfor Creating a CIN section of Chapter 1, CIN
Overview, you can create a makefile using the shell script | virknf .
For this example, you should first enter the following command.

| virknf mul t

This creates afile called Makef i | e. After executing | virknf , you

should enter the standard make command, which uses Makefi | e to
create afilecalled nul t. | sb, which you can load into the CIN in

LabVIEW.

6. Load the CIN Object Code

Now you are ready to load the CIN into LabVIEW and run it. Select
Load Code Resour ce from the CIN pop-up menu and select
nmul t . | sb, the object code file that you created.

Show 4
Description...
Replace b

Add Parameter
Remove Parameter
Output Onl

Load Code Resource....
Create .c File...

If you followed the preceding steps correctly, you should be ableto run
the VI at this point. If you save the VI, the CIN object code is saved
along with the V1.

LabVIEW Code Interface Reference Manual 2-8 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

Comparing Two Numbers, Producing a Boolean Scalar

The following example shows how to create a CIN that compares two
single-precision numbers. If the first number is greater than the second
one, the return value is TRUE; otherwise, the return value is FALSE.
This example gives only the block diagram and the code. Follow the
instructions in the Steps for Creating a CIN section of Chapter 1 to
create the CIN.

The diagram for this CIN is shown in the following illustration. Save
the VIl asaequal b. vi .

diekie
E sldz6l ba=EB7
e

Createa. c filefor the CIN, and nameitaequal b. c. The. c filethat
LabVIEW createsis as follows.

/*
* CIN source file
*/

#i ncl ude "extcode. h"
/* stubs for advanced CIN functions */

UseDef aul t CI NI ni t
UseDef aul t Cl NDi spose
UseDef aul t Cl NAbor t
UseDef aul t Cl NLoad
UseDef aul t Cl NUnl oad
UseDef aul t Cl NSave

CIN MgErr CI NRun(float32 *ap, float32 *bp,
LVBool ean *aequal bp);

© National Instruments Corporation 2-9 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

CIN MgErr CI NRun(fl oat32 *ap, float32 *hp,
LVBool ean *aequal bp) {
if (*ap == *bp)
*aequal bp= LVTRUE;
el se
*aequal bp= LVFALSE;
return noErr;

}

How LabVIEW Passes Variably Sized Data to CINs

LabVIEW allocates memory for arrays and strings dynamically, and
arrays and strings typically can grow quite large. If a string or array
needs more space to hold new data, its current location may not offer
enough contiguous space to hold the resulting string or array. In this
case, LabVIEW may have to move the data to alocation that offers
more space.

To accommodate thisrelocation of memory, LabVIEW useshandlesto
refer to the storage |l ocation of variably sized data. A handleisapointer
to a pointer to the desired data. LabVIEW uses handles instead of
simple pointers because handles allow LabVIEW to move the data
without invalidating references from your code to the data. If
LabVIEW movesthe data, LabVIEW updates the intermediate pointer
to reflect the new location. If you use the handle, references to the data
go through the intermediate pointer, which always reflects the correct
location of the data. Handles are described in detail in Chapter 5,
Manager Overview, and information about specific handle functionsis
in the Online Reference.

Alignment Considerations

When a CIN returns variably sized data, you need to adjust the size of
the handle that references the array. One method of adjusting the
handle size is to use the memory manager routine

DSSet Handl eSi ze or, if the datais stored in the application zone,
the AZSet Handl eSi ze routine, to adjust the size of the return data
handle. Both techniques work, but they are trouble-prone because you
have to calculate the size of the new handle correctly. It is difficult to
calculate the size correctly in a platform-independent manner,
however, because some platforms have special requirements about
how you align and pad memory.

LabVIEW Code Interface Reference Manual 2-10 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

Instead of using XXSet Handl eSi ze, you should use the LabVIEW
routines that take this alignment into account when resizing handles.
You can use the Set Cl NAr r ay Si ze routine to resize a string or an
array of arbitrary datatype. This function is described in the Resizing
Arrays and Strings section of this chapter.

If you are not familiar with alignment differences for various
platforms, the following examples highlight the problem. Keep in mind
that Set Cl NArraySi ze and Nuner i cArr ayResi ze take care of
these issues for you.

Consider the case of a 1D array of double-precision numbers. On the
PC, an array of double-precision floating-point numbersis stored in a
handle, and the first four bytes describe the number of elementsin the
array. These four bytes are followed by the 8-byte elements that make
up the array. On the Sun, double-precision floating-point numbers
must be aligned to 8-byte boundaries—the 4-byte value is followed by
four bytes of padding. This padding ensuresthat the array datafallson
eight-byte boundaries.

Asamore complicated example, consider athree-dimensional array of
clusters, in which each cluster contains a double-precision floating-
point number and a4-byte integer. Asin the previous example, the Sun
stores this array in ahandle. The first 12 bytes contain the number of
pages, rows, and columns in the array. These dimension fields are
followed by four bytes of filler (which ensures that the first double-
precision number is on an 8-byte boundary) and then the data. Each
element contains eight bytes for the double-precision number,
followed by four bytesfor the integer. Each cluster isfollowed by four
bytes of padding, which ensures that the next element is properly
aligned.

Arrays and Strings

LabVIEW passes array by handle, as described in the Alignment
Considerations section of this chapter. For an n-dimensional array, the
handle begins with n 4-byte values that describe the number of values
stored in a given dimension of the array. Thus, for a one-dimensional
array, the first four bytes indicate the number of elementsin the array.
For atwo-dimensional array, thefirst four bytesindicate the number of
rows, and the second four bytesindicate the number of columns. These
dimension fields can be followed by filler and then the actual data.
Each element can also have padding to meet alignment requirements.

© National Instruments Corporation 2-11 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

LabVIEW stores strings in memory as one-dimensional arrays of
unsigned 8-bit integers.

LabVIEW stores Boolean arrays in memory as a series of bits packed
to the nearest 16-bit word. LabVIEW ignores unused bits in the last
word. LabVIEW orders the bits from left to right; that is, the most
significant bit (MSB) isindex 0. As with other arrays, a 4-byte
dimension size precedes Boolean arrays. The dimension size for
Boolean arrays indicates the number of Booleans contained in the
array.

Paths (Path)

The exact structure for Pat h datatypesis subject to change in future
versions of LabVIEW. A Pat h is adynamic data structure that
LabVIEW passes the same way it passes arrays. LabVIEW stores the
datafor Pat hsin an application zone handle. See the Online
Reference, accessed from LabVIEW'’s Help window, or the Code
Interface Node Reference online manual for descriptions of the
functions that manipulate Pat hs.

Clusters Containing Variably Sized Data

For cluster arguments, LabVIEW passes a pointer to a structure
containing the elements of the cluster. LabVIEW stores scalar values
directly as components inside the structure. If a component is another
cluster, LabVIEW stores this cluster value as a component of the main
cluster. If acomponent is an array or string, LabVIEW stores ahandle
to the array or string component in the structure.

Resizing Arrays and Strings

You can use the LabVIEW Set Cl NAr r aySi ze routine to resize
return arrays and strings that you pass to a CIN. Y ou pass the function
the handle that you want to resize, information that describes the data
structure, and the desired size of the array or handle. Thefunction takes
into account any padding and alignment needed for the data structure.
The function does not, however, update the dimension fields in the
array. If you successfully resize the array, you need to update the
dimension fields to correctly reflect the number of elementsin the
array.

Y ou can resize numeric arrays more easily with
Numer i cArrayResi ze. You pass to this function the array you

LabVIEW Code Interface Reference Manual 2-12 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

want to resize, a description of the data structure, and information
about the new size of the array.

When you resize arrays of variably-sized data (for example, arrays of
strings) with the Set Cl NArraySi ze or Nuneri cArr ayResi ze
routines, you should be aware of the following facts. If the new size of
the array is smaller, LabVIEW disposes of the handles used by the
disposed element. Neither function sets the dimension field of the
array. Y ou must do thisin your code after the function call. If the new
sizeislarger, however, LabVIEW does not automatically create the
handles for the new elements. Y ou have to create these handles after
the function returns.

The Set Cl NArraySi ze and Numer i cAr r ayResi ze functions
are described in the following sections

SetCINArraySize

syntax MyEr r Set CI NArraySi ze (UHandl e dataH, int32
paramNum int32 newNuntl nts);

Set Cl NArr aySi ze resizes a data handle based on the data structure of an argument
that you pass to the CIN. It does not set the array dimension field.

Parameter Type Description
dataH UHandl e The handle that you want to resize.
paramNum i nt32 The number for this parameter in the

argument list to the CIN. The leftmost
parameter has a parameter number of O,
and the rightmost has a parameter
number of n-1, where n is the total
number of parameters

newNumEImts i nt 32 The new number of elements to which
the handle should refer. For a one-
dimensional array of five values, you
passavalue of 5 for thisargument. For a
two-dimensional array of two rows by
three columns, you pass a value of 6 for
this argument.

© National Instruments Corporation 2-13 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

returns MyEr r , which can contain the errorsin the following list. MyEr r sare
discussed in Chapter 5, Manager Overview.
Error Description
noErr No error.
nfFul | Err Not enough memory to perform operation
mZonekr r Handle is not in specified zone.

NumericArrayResize
syntax MyEr r

Nurreri cArrayResi ze(int32 typeCode, int32
numDi s, UHandl e *dat aHP, int 32
t ot al NewSi ze) ;

Nurrer i cArr ayResi ze resizes adata handle that refers to a numeric array. This
routine also accounts for alignment issues. It does not set the array dimension field. If
*dataHP is NULL, LabVIEW allocates a new array handle in *dataHP.

Parameter

Type

Description

typeCode

i nt32

Describesthe datatype for the array that

you want to resize. The header file

ext code. h definesthe following

constants for this argument

i B Dataisan array of signed 8-bit
integers.

i W isan array of signed 16-bit integers.

i L Dataisan array of signed 32-bit
integers.

uB Dataisan array of unsigned 8-bit
integers.

uWDatais an array of unsigned 16-hit
integers.

uL Dataisan array of unsigned 32-hit
integers.

f S Dataisan array of single-precision
(32-bit) numbers.

LabVIEW Code Interface Reference Manual

2-14

© National Instruments Corporation

Chapter 2 CIN Parameter Passing

Parameter Type Description

f D Datais an array of double-precision
(64-bit) numbers.

f X Dataisan array of extended-
precision numbers.

¢S Dataisan array of single-precision
complex numbers.

cD Datais an array of double-precision
complex numbers.

cX Dataisan array of extended-
precision complex numbers.

numDims int32 The number of dimensions in the data
structure to which the handle refers.
Thus, if the handle refersto a
two-dimensional array, you pass a
value of 2 for numDims.

*dataHP UHandl e A pointer to the handle that you want to
resize. If thisisapointer to NULL,
LabVIEW dlocates and sizes a new
handle appropriately and returns the
handlein *dataHP.

totalNewSize i nt 32 The new number of elements to which
the handle should refer. For a
unidimensional array of five values,
you passavalue of 5 for thisargument.
For atwo-dimensional array of two
rows by three columns, you pass a
value of 6 for this argument.

returns MyEr r , which can contain the errorsin the following list.
Error Description
noEr r No error.
nFul | Err Not enough memory to perform operation
nzZonekr r Handle is not in specified zone.

© National Instruments Corporation 2-15 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

Examples with Variably Sized Data

The following examples show the steps for creating CINs and how to
work with variably-sized data types.

Concatenating Two Strings

The following example shows how to create a CIN that concatenates
two strings. Thisexample al so shows how to useinput-output terminals
by passing thefirst string as an input-output parameter to the CIN. The
top right terminal of the CIN returns the result of the concatenation.

This example gives only the diagram and the code. Follow the
instructions in Chapter 1, CIN Overview, to create this CIN.

The diagram for this CIN is shown in the following illustration. Save
theVl asl strcat . vi .

Createa. c filefor the CIN, and nameit| st rcat . h. The. c filethat
LabVIEW createsis as follows.

/*
* CIN source file
*/

#i ncl ude "extcode. h"
/* stubs for advanced CI N functions */

UseDefaul t CI NI ni t
UseDef aul t Cl NDi spose
UseDef aul t Cl NAbort
UseDef aul t Cl NLoad
UseDef aul t Cl NUnl oad
UseDef aul t Cl NSave

LabVIEW Code Interface Reference Manual 2-16 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

CI'N MyErr CI NRun(
LSt rHandl e var1,
LSt r Handl e var2);

CI'N MyErr CI NRun(
LSt rHandl e var1,
LSt r Handl e var2) {

/* ENTER YOUR CODE HERE */

return noErr;

}

Now fill in the Cl NRun function as follows:

CIN MgErr Cl NRun(
LSt rHandl e strhil,
LStrHandl e strh2) {
int32 sizel, size2, newsSize;
MyErr err;

sizel = LStrLen(*strhl);
size2 = LStrLen(*strh2);
newsSi ze = sizel + size2;
if(err = NumericArrayResi ze(uB, 1L,
(UHandl e*) &trhl, newSi ze))
goto out;

/* append the data fromthe second string to
first string */
MoveBl ock(LSt rBuf (*strh2),
LSt rBuf (*strhl) +si zel, size2);

/* update the dinmension (length) of the
first string */
LStrLen(*strhl) = newSi ze;
out:
return err;

}

© National Instruments Corporation 2-17 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

In this example, Cl NRun isthe only routine that performs substantial
operations. Cl NRun concatenates the contents of st r h2 to the end of
st r h1, with the resulting string stored in st r h1. Before performing
the concatenation, you need to resize st r h1 with the LabVIEW
routine Nunmer i cArr ayResi ze to hold the additional data.

If Nurrer i cArrayResi ze fails, it returns a non-zero value of type
MyEr r . Inthiscase, Nuner i cArr ayResi ze couldfail if LabVIEW
does not have enough memory to resize the string. Returning the error
code gives LabVIEW achance to handle the error. If Cl NRun reports
an error, LabVIEW aborts the calling VIs. Aborting the VIs may free
up enough memory so that LabVIEW can continue running.

After resizing the string handle, this example copies the second string
to the end of the first string using MoveBl ock. MoveBl ock isa
support manager routine that moves blocks of data. Finally, this
exampl e setsthe size of thefirst string to the length of the concatenated
string.

Computing the Cross Product of Two Two-Dimensional Arrays

The following example shows how to create a CIN that accepts two
two-dimensional arrays and then computes the cross product of the
arrays. The CIN returns the cross product in a third parameter and a
Boolean value as a fourth parameter. This Boolean is TRUE if the
number of columnsin the first matrix is not equal to the number of
rows in the second matrix.

This example shows only the front panel, block diagram, and source

code. Follow theinstructionsin the Stepsfor Creating a CIN section of
Chapter 1, CIN Overview, to create the CIN.

LabVIEW Code Interface Reference Manual 2-18 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

The front panel for this VI is shown in the following illustration. Save
theVI ascr oss. vi .

The block diagram for this VI is shown in the following illustration.

&

[oBL]

E:! YN
[+ AN+

[oBL] 1 T AnE
£33y —— [nB'_]
TFITF |- .:
{ o Error
b

Savethe. c fileforthe CIN ascr oss. c. Followingisthe source code
for cr oss. ¢ with the CI NRun routine added.

/*
* CIN source file
*/

#i ncl ude "extcode. h"
#defi ne ParamNunber 2

/* The return paraneter is paranmeter 2 */
#define NunmDi mensi ons 2

/* 2D Array */

© National Instruments Corporation 2-19 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

/* stubs for advanced CIN functions */

UseDef aul t CI NI ni t
UseDef aul t Cl NDi spose
UseDef aul t Cl NAbor t
UseDef aul t Cl NLoad
UseDef aul t Cl NUnl oad
UseDef aul t Cl NSave

/*

* typedefs
*/

typedef struct {

i nt 32 di nBi zes[2] ;
float64 argil[1];
} TD1;

typedef TD1 **TD1Hdl ;

CIN MgErr ClI NRun(TD1HdlI ah, TD1HdlI bh, TD1HdI
resul th, LVBool ean *errorp);
CIN MgErr ClI NRun(TD1HdlI ah, TD1HdlI bh, TD1HdI
resul th, LVBool ean *errorp) {
int32 i,j, Kk, I;
i nt32 rows, cols;
fl oat 64 *aElmp, *bElnmtp, *resultEl ntp;
MyEr r err=noErr;
i nt32 newNuntl nt s;

LabVIEW Code Interface Reference Manual

if ((k = (*ah)->di nSizes[1])

(*bh) - >di nSi zes[0]) {

*errorp = LVTRUE;
goto out;
}
*errorp = LVFALSE;
rows = (*ah)->di nSi zes[0] ;
/* nunber of
cols = (*bh)->di nSi zes[1] ;

rows in a and result */

/* nunber of cols in b and result */

newNunEl nts = rows * col s;

if (err = SetCl NArraySi ze((UHandl e)resul th,

Par amNunber ,

2-20

newNurel nts))

© National Instruments Corporation

Chapter 2 CIN Parameter Passing

goto out;
(*resul th)->di nSi zes[0] = rows;
(*resul th)->di nSi zes[1] = col s;

aElntp = (*ah)->argl,
bEImtp = (*bh)->argi,;
resultElntp = (*resul th)->argl;

for (i=0; i<rows; i++)
for (j=0; j<cols; j++) {
*resultElmp = O;
for (1=0; I<k; |++)
*resultElntp += aBEl mtp[i*k + 1] *
bEl mtp[l*k + j];
resul t El mt p++;
}
out :
return err;

}

In this example, Cl NRun isthe only routine that performs substantial
operations. Cl NRun cross multiplies the two-dimensional arrays ah
and bh. LabVIEW stores the resulting array inr esul t h. If the
number of columnsin ah is not equal to the number of rowsin bh,
Cl NRun sets*er r or p to LVTRUE to inform the calling diagram of
invalid data.

Set Cl NArr aySi ze, the LabVIEW routine that accounts for
alignment and padding requirements, resizes the array. Notice that the
two-dimensional array data structure is the same as the one-
dimensional array data structure, except that the 2D array has two
dimension fields instead of one. The two dimensions indicate the
number of rows and the number of columnsin the array, respectively.

© National Instruments Corporation 2-21 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

The data is declared as a one-dimensional C-style array. LabVIEW
stores data row by row, as shown in the following illustration.

¢ columns
.0 a1 Q,z-1
1,0 1,1 1,2-1
FEows
1,0 r-1,1 r-1,e-1
in rernory

dimSizes argl
o] 11 [0l 011 ... [e=1]1 [e] [et1]..[r+e-1]

Foco 00 0,4 .. 0g-1 1,0 1,1 ..r-1,e-1

For an array withr rowsand ¢ columns, you can access the element at
row i and columnj asshown in the following code fragment.

value = (*arrayh)->argl[i*c + j];

Working with Clusters

The following example takes an array of clusters and a single cluster
as inputs, and the clusters contain a signed 16-bit integer and a string.
The input for the array of clustersis an input-output terminal. In
addition to the array of clusters, the CIN returnsaBoolean and asigned
32-bit integer. If the cluster value is already present in the array of
clusters, the CIN sets the Boolean to TRUE and returns the position of
the cluster in the array of clusters using the 32-bit integer output. If the
cluster value is not present, the CIN adds it to the array, sets the
Boolean output to FALSE, and returns the new position of the cluster
in the array of clusters.

This example shows only the front panel, block diagram, and source
code. Follow theinstructionsin the Stepsfor Creating a CIN section of
Chapter 1, CIN Overview, to create the CIN.

LabVIEW Code Interface Reference Manual 2-22 © National Instruments Corporation

Chapter 2 CIN Parameter Passing

The front panel for this VI is shown in the following illustration. Save
theVl ast bl srch. vi .

array of clusters

new array of clusters

nurnbet| EU
|str1’ng|| | [ztring] |I|
|str1’ng|| | || = '

The block diagram for this VI is shown in the following illustration:

array of c]uster’5|

new arvay of c]u5ter’5|

mr:::::::::::a

: already present ?|
LO—

osition

Savethe. c filefor the CIN ast bl sr ch. c. Following is the source

codefor t bl srch. ¢ with the Cl NRun routine added:
/*

* CIN source file
*/

#i ncl ude "extcode. h"

#def i ne ParamNurber O
/* The array paraneter is paraneter 0 */

/* stubs for advanced CIN functions */

UseDefaul t CI NI ni t

© National Instruments Corporation 2-23 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

UseDef aul t Cl NDi spose
UseDef aul t Cl NAbor t
UseDef aul t Cl NLoad
UseDef aul t Cl NUnl oad
UseDef aul t Cl NSave

/*
* typedefs
*/

typedef struct {
i nt 16 nunber;
LStrHandl e string;
} TD2;

typedef struct {
int32 dinSize;
TD2 argi[1];
} TD1;

typedef TD1 **TDiHdl ;

CI'N MyErr CI NRun(
TD1HdI
TD2
LVBool ean
int32

CI'N MyErr CI NRun(

cl ust er Tabl eh,
*el enent p,
*presentp,
*posi tionp);

TD1HdI cl ust er Tabl eh,
TD2 *el enent p,
LVBool ean *presentp,
i nt32 *positionp) {
int32 size,i;
MyEr r err=noErr;
TD2 *t npp;
LSt r Handl e newst ri ngh;
TD2 *newkl enent p;
i nt32 newNurEl enent s;
size = (*cl usterTabl eh)->di nSi ze;
tnpp = (*clusterTabl eh)->argil;
© National Instruments Corporation

LabVIEW Code Interface Reference Manual 2-24

Chapter 2 CIN Parameter Passing

*positionp = -1;
*presentp = LVFALSE;

for(i=0; i<size; i++) {
i f (tnmpp->nunber == el ement p- >nunber)
i f(LStrCp(*(tnpp->string),
*(el ementp->string)) == 0)
br eak;
tpp++;
}

if(i<size) {
*positionp = i;
*presentp = LVTRUE;
goto out;
}
newSt ri ngh = el ement p->string;
i f(err = DSHandToHand((UHandl e *)
&newst ri ngh))
goto out;

newNunEl enents = si ze+l;
if(err =
Set Cl NArraySi ze((UHandl e) cl ust er Tabl eh,
Par amNunber ,
newNurnel emrents)) {
DSDi sposeHandl e(newSt ri ngh) ;
goto out;

}

(*cl ust er Tabl eh) - >di n5i ze = si ze+1;

newEl enentp = &((*cl usterTabl eh)
->argl[size]);

newEl enent p- >nunber = el enent p- >nunber ;

newEl enent p- >string = newStringh;

*positionp = size;

out:

© National Instruments Corporation

return err;

}

2-25 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing

In this example, Cl NRun isthe only routine that performs substantial
operations. Cl NRun first searches through the table to see if the
element is present. Cl NRun then compares string components using
the LabVIEW routine LSt r Cnp, which is described in the Online
Reference. If Cl NRun finds the element, the routine returns the
position of the element in the array.

If the routine does not find the element, you have to add anew element
to the array. Use the memory manager routine DSHandToHand to
create a new handle containing the same string as the one in the cluster
element that you passed to the CIN. CI NRun then increases the size of
the array using Set Cl NArr aySi ze and fillsthe last position with a
copy of the element that you passed to the CIN.

If the Set Cl NAr r aySi ze call fails, the CIN returns the error code
returned by the manager. If the CIN is unable to resize the array,
LabVIEW disposes of the duplicate string handle.

LabVIEW Code Interface Reference Manual 2-26 © National Instruments Corporation

CIN Advanced Topics

This chapter covers several topics that are needed only in advanced
applications, including how to usethe Cl NI ni t , Cl NDi spose,

Cl NAbor t, Cl NLoad, Cl NUnl oad, and Cl NSave routines. The
chapter also discusses how global dataworks within CIN source code,
and how users of Windows 3.1, Windows 95, and WindowsNT can call
aDLL fromaCIN.

CIN Routines

A CIN consists of several routines, as described by the . ¢ file that
LabVIEW creates when you select Create .c File... from the CIN pop-
up menu. The previous chapters have discussed only the Cl NRun
routine. The other routines are Cl NLoad, CI NI ni t , Cl NAbor t,

Cl NSave, Cl NDi spose, and Cl NUnl oad.

It isimportant to understand that for most CINs, you need to write only
the Cl NRun routine. The other routines are supplied mainly for the
casesin which you have special initialization needs, such aswhen your
CIN is going to maintain some information across calls, and you want
to preallocate or initialize global state information.

In the case where you want to preall ocate/initialize global state
information, you first need to understand more of how LabVIEW
manages data and CINs.

Data Spaces and Code Resources

When you create a CIN, you compile your source into an object code
file and load the code into the node. At that point, LabVIEW loads a
copy of the code (called a code resource) into memory and attaches it
to the node. When you save the VI, this code resource is saved along
with the VI as an attached component; the original object codefileis
no longer needed.

When LabVIEW loads a VI, it allocates a data space, a block of data
storage memory, for that V1. This data space is used, for instance, to
store the valuesin shift registers. If the VI isreentrant, then LabVIEW

© National Instruments Corporation 3-1 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

allocates a data space for each usage of the V1. See Chapter 26,
Understanding How LabVIEW Executes VIs, in your LabVIEW User
Manual for more information on reentrancy.

Within your CIN code resource, you may have declared global data.
Global dataincludes variablesthat are declared outside of the scope of
all routines, and, for the purposes of this discussion, variables that are
declared as static variables within routines. LabVIEW allocates space
for this global data. Aswith the code itself, there is always only one
instance of these globals in memory. Regardless of how many nodes
reference the code resource and regardless of whether the surrounding
VI isreentrant, thereis only one copy of these globalsin memory, and
their values are consistent.

When you create a CIN node, LabVIEW allocates a CIN data space, a
4-byte storage location in the VI data space(s), strictly for the use of
the CIN node. Each CIN may have one or more CIN data spaces
reserved for the node, depending on how many times the node appears
inaVI or collection of VIs. You can use this CIN data space to store
global data on a per data space basis, as described in the Code Globals
and CIN Data Space Globals section later in this chapter.

\
| My ¥1 Diagram |
| — CIN
ol | O
— g | o
T3]13F global storage
V| data space code resource
for code globals
4-byte CIN (g)
data space
(for data space globals)

Figure 3-1. Data Storage Spaces for One CIN, Simple Case

LabVIEW Code Interface Reference Manual 3-2 © National Instruments Corporation

CIN Routines: The

Chapter 3 CIN Advanced Topics

A CIN node references the code resource by hame, using the name you
specified when you created the code resource. When you load a VI
containing aCIN, LabVIEW looksin memory to seeif acode resource
with the desired nameis already loaded. If so, LabVIEW linksthe CIN
to the code resource for execution purposes.

This linking behaves the same way as links between Vs and subVIs.
When you try to reference asubV |1 and another VI with the same name
already existsin memory, LabVIEW references the one already in
memory instead of the one you selected. In the same way, if you try to
load references to two different code resources that have the same
name, only one code resource is actually loaded into memory, and both
references point to the same code. The differenceisthat LabVIEW can
verify that asubV | call matchesthe subV| connector paneterminal, but
LabVIEW cannot verify that your source code matches the CIN call.

Basic Case

The following discussion describes what happens in the standard case,
in which you have a code resource that is referenced by only one CIN,
and the VI that containsthe CIN isnon-reentrant. The other cases have
slightly more complicated behavior, described in later sections of this
chapter.

Loading a VI

When you first load a VI, LabVIEW calls the CI NLoad routines for
any CINscontainedinthat VI. Thisgivesyou achanceto load any file-
based resources at |oad time, because LabVIEW calls thisroutine only
when the V1 is first loaded (see the Loading a New Resource into the
CIN section that followsfor an exception to thisrule). After LabVIEW
callsthe Cl NLoad routine, it calls Cl NI ni t . Together, these two
routines perform any initialization you need before the VI runs.

LabVIEW calls Cl NLoad once for a given code resource, regardless
of the number of data spaces and the number of references to that code
resource. Thisiswhy you should initialize code globalsin Cl NLoad.

LabVIEW callsCl NI ni t for agiven code resource atotal of onetime
for each CIN data space multiplied by the number of references to the
coderesourcein the VI that corresponds to that data space. If you want
to use CIN data space globals, you should initializethemin Cl NI ni t .
Seethe Code Globalsand CIN Data Space Globals, the Loading a New

© National Instruments Corporation 3-3 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

Resourceinto the CIN, and the Compiling a VI sections of this chapter
for related information.

Unloading a VI

When you close a VI front panel, LabVIEW checks to seeif there are
any referencesto that VI in memory. If so, then the VI code and data
space remain in memory. When all referencestoaVl areremoved from
memory, and its front panel is not open, that VI is unloaded from
memory.

When a V1 is unloaded from memory, LabVIEW calls the

Cl NDi spose routine, giving you achanceto dispose of anything you
allocated earlier. Cl NDi spose iscalled for each Cl NI ni t call. For
instance, if you used XXNewHand! e in your CI NI ni t routine, you
should use XXDi sposeHandl e inyour Cl NDi spose routine.
LabVIEW calls Cl NDi spose for a code resource once for each
individual CIN data space.

As the last reference to the code resource is removed from memory,
LabVIEW callsthe Cl NUnl oad routine for that code resource once,
giving you the chance to dispose of anything that had been allocated in
Cl NLoad. Aswith CI NDi spose/ CI NI ni t,aCl NUnl oad is
called for each CI NLoad. For example, if you loaded some resources
fromafilein Cl NLoad, you can free the memory that those resources
areusing in Cl NUnl oad. After LabVIEW calls Cl NUnl oad, the
code resource itself is unloaded from memory.

Loading a New Resource into the CIN

If you load a new code resource into a CIN, the old code resource is
first given a chance to dispose of anything it needs to dispose. First,
LabVIEW calls Cl NDi spose for each CIN data space and each
reference to the code resource, followed by the Cl NUnl oad for the
old resource. The new code resource is then given a chance to perform
any initialization that it needs to perform: LabVIEW calls the

Cl NLoad for the new code resource, followed by the CI NI ni t
routine, called once for each data space and each reference to the code
resource.

Compiling a VI

When you compile aVI, LabVIEW recreates the VI data space,
resetting all uninitialized shift registers, for instance, to their default
values. In the same way, your CIN is given a chance to dispose or

LabVIEW Code Interface Reference Manual 3-4 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

initialize any storage that it manages. Before disposing of the current
data space, LabVIEW callsthe Cl NDi spose routine for each
reference to the code resource within the VI(s) that are being compiled
to give the code resource a chance to dispose of any old resultsit is
managing. LabVIEW then compiles the VI and creates a new data
spacefor the VI(s) being compiled (multiple data spacesfor any V1 that
isreentrant). The Cl NI ni t routineisthen called for each referenceto
the code resource within the VI(s) that were compiled to give the code
resource a chance to create or initialize any data that it wants to
manage.

Running a Vi

When you press the Run button of a VI, that VI begins to execute.
When LabVIEW encountersacodeinterface node, it callsthe Cl NRun
routine for that node.

Saving a VI

Whenyou saveaVl, LabVIEW callsthe Cl NSave routinefor that V1,
giving you the chance to save any resources (for example, something

you loaded in CI NLoad). Notice that when you savea VI, LabVIEW
creates anew version of thefile, even if you are saving the VI with the
same name. If the saveis successful, LabVIEW deletesthe old file and
renames the new file with the original name. Therefore, anything you
expect to be ableto load in Cl NLoad needsto be saved in Cl NSave.

Aborting a VI

When you abortaVI, LabVIEW callsthe Cl NAbor t routinefor every
reference to a code resource contained in the VI that is being aborted.
TheCl NAbor t routineof all actively running subVIsisalso called. If
aCINisinareentrant VI, itiscalled for each CIN data space as well.
CINsin Vlsthat are not currently executing are not notified by
LabVIEW of the abort event.

CINs are synchronous. When a CIN begins execution, it takes over
control of the program until the CIN completes. LabVIEW is not
notified if the user clicks on the abort button and therefore cannot abort
the CIN. No other LabVIEW tasks can execute while a CIN executes.

© National Instruments Corporation 3-5 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

Multiple References to the Same CIN

If you have loaded the same code resource into multiple CINS, or you
have duplicated a given code interface node, LabVIEW gives each
reference to the code resource a chance to perform initialization or
deallocation. No matter how many references you havein memory to a
given code resource, the LabVIEW calls the Cl NLoad routine only
once when the resource is first loaded into memory (though it is also
called if you load a new version of the resource, as described in the
previous section). When you unload the VI, LabVIEW calls

CI NUnl oad once.

After LabVIEW calls Cl NLoad, it callsCl NI ni t once for each
reference to the CIN, because its CIN data space may need
initialization. Thus, if you have two nodesin the same V1, where both
reference the same code, the LabVIEW calls the Cl NLoad routine
once, and the CI NI ni t twice. If you later load another VI that
references the same code resource, then LabVIEW calls Cl NI ni t
again for the new version. LabVIEW has already called Cl NLoad
once, and does not call it again for this new reference.

LabVIEW Code Interface Reference Manual 3-6 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

global storage

CIN1 CINZ CINZ
T
b

L I IR L
1] |adladig |

=

2132

I32gI32| [I132]137

L]

\ \ (code globals)

VI data space code|resource

4-byte CIN }
Data Space

4-byte CIN
Data Space

4-byte CIN
Data Space

(data space globals)

Figure 3-2. Three CINs Referencing the Same Code Resource

LabVIEW calls Cl NDi spose and Cl NAbort for each individual
CIN dataspace. LabVIEW calls Cl NSave only once, regardless of the
number of references to a given code resource within the VI you are
saving.

Reentrancy
When you makea V| reentrant, LabVIEW creates a separate data space
for each usage of that VI. If you have a CIN data space in areentrant
VI and you call that VI in seven places, LabVIEW allocates memory to
store seven CIN data spaces for that VI, each of which contains a
uniqgue storage location for the CIN data space for that calling instance.

© National Instruments Corporation 3-7 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

Aswith multiple instances of the same node, LabVIEW calls the
CI NI ni t, Cl NDi spose, and Cl NAbor t routines for each
individual CIN data space.

In the case where you have areentrant VI that contains multiple copies

of the same code resource, LabVIEW callsthe CI NI ni t,

Cl NDi spose, and Cl NAbor t routines once for each use of the
reentrant VI, multiplied by the number of references to the code
resource within that VI.

caller 1

caller 2

caller 3

Callari Panall 1

Callar? Panall 1

Callar® Panall 1

Caller1 Diag |

Caller2 Diag |

Caller3 Diag |

/ﬁj

\

|

My VI
data space 1

4-byte CIN
data space

(data space globals)

My VI
data space 2

4-byte CIN
data space

(data space globals)

My VI

My VI
data space 3

Mu Wil Panal

My ¥1 Magram |

4-byte CIN
data space

(data space globals)

code resource

global storage

—>

(code globals)

Figure 3-3. Three VIs Referencing a Reentrant VI Containing One CIN

Code Globals and CIN Data Space Globals

When you declare global or static local data within a CIN code
resource, LabVIEW allocates storage for that data. LabVIEW
maintains your globals across calls to various routines.

When you allocate aglobal in a CIN code resource, LabVIEW creates
storage for only one instance of it, regardless of whether the CIN’s VI
is reentrant or whether you have multiple references to the same code
resource in memory.

LabVIEW Code Interface Reference Manual 3-8 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

In some cases, you may want globals for each reference to the code
resource multiplied by the number of usages of the VI (if the VI is
reentrant). For each instance of one of these globals, LabVIEW
allocates the CIN data space for the use of the code interface node.
Withinthe CI NI ni t , Cl NDi spose, Cl NAbor t, and Cl NRun
routinesyou can call the Get DSSt or age routineto retrievethe value
of the CIN data space for the current instance. Y ou can also call

Set DSSt or age to set the value of the CIN data space for this
instance.

Y ou can use this storage location to store any 4-byte quantity that you
want to have for each instance of one of these globals. If you need more
than four bytes of global data, you can store a handle or pointer to a
structure containing your globals.

The following two lines of code are examples of the exact syntax of
these two routines, defined in ext code. h.

i nt 32 Get DSSt or age(voi d);

This routine returns the value of the 4-byte quantity in the CIN data
space that LabVIEW allocates for each CIN code resource, or for each
use of the surrounding VI (if the VI isreentrant). You should call this
routine only from Cl NI ni t, Cl NDi spose, Cl NAbort, or

Cl NRun.

i nt 32 Set DSSt or age(i nt 32 newval) ;

Thisroutine sets the value of the 4-byte quantity in the CIN data space
that LabVIEW allocates for each CIN use of that code resource, or the
uses of the surrounding VI, (if the VI is reentrant). It returns the old
value of the 4-byte quantity in that CIN dataspace. Y ou should call this
routine only from Cl NI ni t , Cl NDi spose, Cl NAbort, or

Cl NRun.

Examples

The following two examples illustrate the differences between code
globals and CIN data space globals. In both examples, the CIN takes a

© National Instruments Corporation 3-9 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

number and returns the average of that number and the previous
numbers passed to it.

avd

When you design your code, decide whether it is appropriate to use
code globals or data space globals. If you use code globals, calling the
same code resource from multiple nodes or different reentrant VIswill
affect the same set of globals. In the code globals averaging example,
the result will indicate the average of all values passed to the CIN.

If you use CIN data space globals, each CIN that calls the same code
resource and each VI, if the VI is reentrant, can have its own set of
globals. In the CIN data space averaging example, the results would
indicate the average of values passed to a specific node for a specific
data space.

If you have only one CIN referencing the code resource, and the VI that
containsthat CIN isnot reentrant, it does not matter which method you
choose.

Using Code Globals

The following code implements averaging using code globals. Notice
that the variables areinitialized in Cl NLoad. If the variables are
dynamically created (that is, if they are pointers or handles), you can
allocate the memory for the pointer or handlein Cl NLoad, and
deallocate it in Cl NUnl oad. You can do this because Cl NLoad and
Cl NUnl oad are called only once, regardless of the number of
references to the code resources and the number of data spaces. Notice
that the UseDef aul t Cl NLoad macro is hot used, because this. ¢
file hasa Cl NLoad function.

/*
* CIN source file
*/

#i ncl ude "extcode. h"

LabVIEW Code Interface Reference Manual 3-10 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

fl oat 64 gTot al ;
i nt 32 gNunEl enent s;

/* stubs for advanced CIN functions */

UseDef aul t CI NI ni t
UseDef aul t Cl NDi spose
UseDef aul t Cl NAbor t
UseDef aul t Cl NUnl oad
UseDef aul t Cl NSave

CIN MgErr CI NRun(fl oat64 *new_num fl oat64 *avg);

CIN MgErr CI NRun(fl oat64 *new_num fl oat64 *avg)
{

gTotal += *new_num
gNunEl ement s++;

*avg = gTotal / gNunEl enents;

return noErr;

}

CIN MgErr ClI NLoad(RsrcFile rf)
{
gTot al =0;

gNunEl enment s=0;

return noErr;

}

Using CIN Data Space Globals

Thefollowing isan alternativeimplementation of averaging using CIN
data space globals. A handle for the global datais allocated in

CI NI ni t, and stored in the CIN data space storage using

Set DSSt or age. When LabVIEW callsthe ClI NI ni t,

Cl NDi spose, Cl NAbor t, or Cl NRun routines, it ensures that

CGet DSSt or age and Set DSSt or age will return the 4 byte CIN
data space value for that node or CIN data space.

When you want to access that data, use Get DSSt or age to retrieve
the handle and then dereference the appropriate fields (see the code for

© National Instruments Corporation 3-11 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

Cl NRun in the following example). Finally, in your Cl NDi spose
routine you need to dispose of the handle.

/*
* CIN source file
*/

#i ncl ude "extcode. h"
/* stubs for advanced CIN functions */

UseDef aul t Cl NAbor t
UseDef aul t Cl NLoad
UseDef aul t Cl NUnl oad
UseDef aul t Cl NSave

typedef struct {
fl oat 64 total;
i nt32 nunEl enent s;
} dsd obal Struct;

CIN MgErr CNit() {
dsd obal Struct **dsd obal s;
MyErr err = noErr;

if (!(ds@ obals = (dsd obal Struct **)
DSNewHand| e(si zeof (dsd obal Struct))))

{

/* if O, ran out of nmenory */
err = nFul | Err;
goto out;

}

(*dsd obal s) - >nuntl enent s=0;
(*dsd obal s) - >t ot al =0;

Set DSSt or age((i nt 32) dsd obal s);

out:
return noErr;

}

CIN MyErr CI NDi spose()

LabVIEW Code Interface Reference Manual 3-12 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

dsd obal Struct **dsd obal s;
dsd obal s=(dsd obal Struct **) Get DSSt or age();

if (dsd obal s)
DSDi sposeHandl e(dsd obal s) ;

return noErr;

}

CIN MgErr CI NRun(fl oat64 *new_num fl oat64 *avg);

CIN MgErr CI NRun(fl oat64 *new_num fl oat64 *avg)

{
dsd obal Struct **dsd obal s;

dsd obal s=(dsd obal Struct **) Get DSSt or age();

if (dsd obals) {
(*dsd obal s)->total += *new_num
(*dsd obal s) - >nunEl enent s++;
*avg = (*dsd obal s)->total /
(*dsd obal s) - >nuntl enent s;

}

return noErr;

}

Calling a Windows 95 or Windows NT Dynamic Link
Library

No special techniques are necessary to call aWindows 95 or Windows
NT DLL. Call DLLstheway you ordinarily would in aWindows 95 or
Windows NT program.

Calling a Windows 3.1 Dynamic Link Library

Although dynamic link libraries (DLLs) can be called from a CIN, the
method for doing so is somewhat cumbersome. The Call Library
Function is a more convenient way to call aDLL, and the Watcom

© National Instruments Corporation 3-13 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

compiler is not required. For more information on the Call Library
Function, see Chapter 11, Advanced Functions, in the LabVIEW
Function Reference Manual, and Chapter 24, Calling Code from Other
Languages, in your LabVIEW User Manual.

Before attempting to link a dynamic link library with a CIN, you
should first write a C program that calls it. The reasons for doing this
are to ensure that you are calling the DLL properly, and that the DLL
behaves as expected. Y ou can test the C program using the debugging
tools supplied by your compiler.

After you are sure that the DLL works and that you are calling it
correctly, write the 32-bit CIN that LabVIEW can call. The main
purpose of this CIN isto act as a go-between, translating LabVIEW 32-
bit data to 16-bit data. This CIN will take 32-bit pointers from
LabVIEW and then call the DLL with the appropriate arguments.

See the Calling 16-bit DLLs section of Chapter 37, Programming
Overview, in the Windows 32-bit Programming Guide section of the
Watcom C/386 User’s Guide for a detailed discussion of how to call a
16-bit DLL.

No special techniques are necessary to call aWindows 95 or Windows
NT DLL.

Calling a 16-Bit DLL

The following steps are a brief summary of how to call a 16-bit DLL
from a CIN. If you are not familiar with the functions used in this
example, you should refer to Microsoft Windows Programmer’s
Reference or the Watcom C/386 User’s Guide.

1. Load the DLL

Load the DLL by calling the function LoadLi br ary() with the
name of the DLL. For example, the following code returns a handle to
a specified library.

HANDLE hDLL;

hDLL = LoadLibrary("library name");

Thisis a standard Windows function, and is documented in the
Microsoft Windows Programmer’ s Reference.

LabVIEW Code Interface Reference Manual 3-14 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

% Note I f you do not specify a full path, Windows searchesthe Windows directory,
the Windows system directory, the LabVI EW directory, and the directories
listed in the Pat h variable.

2. Get the address of the desired function

Call Get Pr ocAddr ess() with the name of the function that you
want to call. For example, the following code returns the address of a
specified function. This address is a 16-bit pointer, and cannot be
called using standard DLL call methods. Instead you have to use the
Watcom C method, shown as follows.

FARPRCC | pf n;
| pfn = Get ProcAddress(hDLL, "function nanme");

Aswith LoadLi br ary, this function is a standard Windows
function, and is documented in the Microsoft Windows Programmer’s
Reference.

3. Describe the function

Use Get | ndi rect Funct i onHandl e() to describe the function
and the types of each parameter that it accepts. This function uses the
following format.

H NDI R Get | ndi rect Functi onHandl e(FARPROC pr oc
[, long paramltype, | ong parantype,

.,] long term nator);
proc is the address of the function that was returned in step 2.

The paramXtype values should be one of the following five constants
that describe the parameters for the call to the function.

| NDI R_DWORD The parameter will be along word
value (a 32-hit integer).

| NDI R_WORD The parameter will be aword value (a
16-bit integer).

I NDI R_CHAR The parameter will be abyte value (an
8-bit integer).

© National Instruments Corporation 3-15 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

| NDI R_PTR The parameter is a pointer. Watcom
will automatically convert the 32-bit
address to a 16-bit far pointer before
calling the code. Notice that this 16-bit
pointer isgood only for the duration of
the call; after the function returns, the
16-bit referenceto the dataisnolonger
valid.

| NDI R_CDECL Make the call using Microsoft C
calling conventions. This keyword can
be present anywhere in the parameter
list.

For terminator, pass avalue of | NDI R_ENDLI ST, which marks the
end of the parameter list.

CGet I ndi rect Functi onHandl e() returns ahandle that is used
when you want to call the function.

4. Call the function

Usel nvokel ndi rect Functi on() tocall thefunction. Passit the
handle that was returned in step 3, along with the arguments that you
want to pass to the CIN. This function uses the following format.

I ong | nvokel ndi rect Functi on(H NDI R proc

[, paraml, paran?, ...]);

proc is the address of the function returned in step 3. Following that
are the parameters that you want to pass to the DLL.

Example: A CIN that Displays a Dialog Box

Y ou cannot call most Windows functions directly from a CIN. You
can, however, call aDLL, which in turn can call Windows functions.
The following example showshow to call aDLL fromaCIN. TheDLL
calls the Windows MessageBox function, which displays a window
containing a specified message. This function returns after the user
presses a button in the window.

LabVIEW Code Interface Reference Manual 3-16 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

The DLL

Most Windows compilers can create a DLL. Regardless of the
compiler you use to createaDLL, the way you call it from a CIN will
be roughly the same. Because you must have Watcom C/386 to write a
Windows CIN, the following example is for aWatcom DLL. The
process for creating aDLL using the Watcom compiler is described in
Chapter 38, Windows 32-Bit Dynamic Link Libraries, of the Watcom
C/386 User's Guide.

The following code is for a Watcom C/386 32-bit DLL that calls the
MessageBox function. The _16MessageBox function calls the
Windows MessageBox function; the only difference between these
functionsisthat the former takesfar 16-bit pointers, which are the type
of pointers passed to the DLL. In this 32-bit environment,
MessageBox expects near 32-bit pointers.

Passing pointers to 32-bit DLLsisinherently tricky. In this example, a
32-bit near pointer is converted to a 16-bit far pointer and passed to
MessageBox via_16MessageBox. Y ou cannot dereference a 16-bit
pointer directly in this DL—it must first be converted to a 32-bit pointer.
These pointer issues are not related to LabVIEW, but are unique to the
Windows 3.1 environment. It may be helpful to build arudimentary 32-bit
Windows application (in place of LabVIEW) that callsthe DLL to test the
use of pointers.

The DLL function will accept two parameters. Thefirst isthe message
to display in the window. The second is the title to display in the
window. Both parameters are C strings, meaning that they are pointers
to the characters of the string, followed by aterminating null character.
Save the codein afile called MVSGBXDLL. C.

/*
* MSGBXDLL. C
*/
#i ncl ude <w ndows. h>
#i ncl ude <dos. h>
voi d FAR PASCAL Libl(LPSTR nessage,
LPSTR wi nTitl e)
{
_l16MessageBox(NULL,
nessage,
wi nTitle,
MB_OK | MB_TASKMODAL);

© National Instruments Corporation 3-17 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

}
i nt PASCAL W nMai n(HANDLE hl nst ance,
HANDLE x1,
LPSTR | pCndLi ne,
int x2)
{

Defi neDLLEntry(1,
(void *) Lib1,
DLL_PTR,
DLL_PTR,
DLL_ENDLI ST);

return(1);

}

In addition to the C file, you also need to create the following
MSGBXDLL. LNK file.

system wi n386
file msgbxdl |
option map

option stack=12K
opti on maxdat a=8K
opti on mi ndat a=4K

Enter the following commands at the DOS prompt to create the DLL.
C>wec386 nsgbxdl |l /zw

Cw i nk @sgbxdl |
C>wbi nd nmsgbxdl |l -d -n

LabVIEW Code Interface Reference Manual 3-18 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

The Block Diagram

Following isthe LabVIEW block diagram for aVI that callsaCIN that
callsthe previously described DLL. It passestwo LabVIEW stringsto
the CIN, and the CIN returns an error code.

window title

The CIN Code

The following C codeisfor a CIN that callsthe DLL you created
previously. This code assumes that the . h file created by LabVIEW is
named nsgbox. h.

This example does not pass afull pathto LoadLi br ary. Y ou should
move the DLL to the top level of your LabVIEW directory so that it
will be found. See the note in the section 1. Load the DLL, earlier in
this chapter for more information.

/*
* CIN source file
*/

#i ncl ude "extcode. h"
#i ncl ude "hosttype. h"
#i ncl ude <wi ndows. h>

/* stubs for advanced CI N functions */

UseDefaul t CI NI ni t
UseDef aul t Cl NDi spose
UseDef aul t Cl NAbort
UseDef aul t Cl NLoad
UseDef aul t Cl NUnl oad
UseDef aul t Cl NSave

© National Instruments Corporation 3-19 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

LabVIEW Code Interface Reference Manual

CIN MgErr ClI NRun(LStrHandl e nessage,

LStrHandl e winTitl e,

int32 *err)

{

HANDLE hDLL = NULL;

FARPRCC addr = NULL;

HI NDI R hMessageBox;

i nt cb;

char *messageCStr = NULL,
*winTitleCStr = NULL;

MyEr r cinErr = noErr;

*err=0;

hDLL = LoadLi brary("nsgbxdl|.dll");

if (hDLL < HI NSTANCE ERROR) {

err = 1; / LoadLibrary failed */
goto out;
}
addr = Get ProcAddress(hDLL, "W n386Li bEntry");
if (laddr) {
err = 2;/ CetProcAddress failed */
goto out;
}
hMessageBox = Cet| ndirect Functi onHandl e(
addr,
| NDI R_PTR,
| NDI R_PTR,
| NDI R_WORD,

| NDI R_ENDLI ST) ;

if (!hMessageBox) ({

err = 3;/ CGetlndirectFuncti onHandl e
failed */

goto out;

}

if (!(nessageCstr =
DSNewPt r (LSt rLen(*message) +1))) {
/* memerrs are serious-stop execution */
cinErr=nful | Err;
goto out;

3-20 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

}

if (!'(winTitleCStr =
DSNewPt r (LStrLen(*winTitle)+1))) {
/* memerrs are serious-stop execution */
cinErr=nful | Err;
goto out;
}
SPrintf(messageCStr, (CStr) "%, *nessage);
SPrintf(winTitleCStr, (CStr) "%", *winTitle);

cb = (WORD) | nvokel ndi rect Functi on(
hMessageBox,
messageCstr,
winTitleCStr,
0x1);

out:
if (messageCsStr)
DSDi sposePtr (nmessageCStr);
if (WnTitleCStr)
DSDi sposePtr (winTitl eCStr);
i f (hDLL)
FreeLi brary(hDLL);

return cinErr;

}

The CIN first loads the library, and then gets the address of the DLL
entry point. As described in the Watcom C/386 User’s Guide, a
Watcom DLL has only one entry point, W n386Li bEnt ry. Calling
Get ProcAddr ess for aWatcom DLL requests the address of this
entry point. For aDLL created using acompiler other than the Watcom
C compiler, request the address of the function you want to call.

To preparefor the DLL call after getting the address, the example calls
CGet I ndi rect Funct i onHandl e. Use this function to specify the
data types for the parameters that you want to pass. Thelist is
terminated with the | NDI R_ENDLI ST value. Because there is only
one entry point with aWatcom DL L, pass an additional parameter (the
| NDI R_WORD parameter) that is the number of the routine you want
tocal intheDLL. WithaDLL created using another compiler, you do

© National Instruments Corporation 3-21 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

not need to pass a function number, because Get Pr ocAddr ess
returns the address of the desired function.

Thisexampleuses| nvokel ndi rect Funct i on to call the desired
DLL function, passing the number of the routine that the example calls
as the last parameter. With a DLL made by a compiler other than the
Watcom C compiler, you don’t need to pass the function number,
because Get Pr oc Addr ess returns the address of the desired
function.

Noticethat at each stage of calling the DLL, the code checksfor errors
and returns an error code if it fails.

Notice also that LabVIEW strings are different from C strings. C
strings are terminated with a null character. LabVIEW strings are not
null-terminated; instead, they begin with afour byte value that
indicates the length of the string. Because the DLL expects C strings,
this example creates temporary buffers for the C strings using
DSNewpt r , andthen uses SPr i nt f to copy the LabVIEW string into
the temporary buffers. Y ou might consider modifying the DLL to
accept LabVIEW strings instead, because that would require no
temporary copies of the strings.

Compiling the CIN

Following is the LabVIEW makefile for this CIN. It assumes that the
. ¢ fileisnamed nsgbox. ¢, the makefileis named nsgbox. | vm

and the three pathnames for the directivescodeDi r,ci nTool sDi r,
andwcDi r are set correctly.

nanme=nsgbox

type=CI N

codeDir=c:\ 1 abvi ewh exanpl es\ ci ns\ dl |
cinTool sDir=c:\ | abvi ew\ ci nt ool s
weDir=c:\we

l'include $(cinTool sDir)\generic. mak

The following command line prompt compiles the CIN.

c:> wnake /f nsgbox.|vm

LabVIEW Code Interface Reference Manual 3-22 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

Optimization

To optimize the performance of this CIN call LoadLi br ary during
the Cl NLoad routine, and call Fr eeLi br ary during the

Cl NUnl oad routine. This keeps the overhead of loading and
unloading the DLL from affecting your run-time performance. The
following code shows the modifications you need to maketo Cl NRun,
Cl NLoad, and CI NUnl oad to implement this optimization.

HANDLE hDLL = NULL;

CIN MyErr Cl NLoad(RsrcFile rf)
{
hDLL = LoadLi brary("nsgbxdll.dll");
return noErr;

}

CIN MyErr Cl NRun(LStrHandl e nmessage,
LStrHandl e winTitle,
int32 *err)
{
FARPROC addr = NULL;
HI NDI R hMessageBox;

i nt cb;

char *messageCStr = NULL,
*WnTitl eCStr = NULL;

MyEr r cinErr = noErr;

*err=0;

i f (hDLL < HI NSTANCE_ERROR) {
err = 1;/ LoadLibrary failed */
goto out;

}

addr = Get ProcAddr ess(hDLL, "W n386Li bEntry");
if (laddr) {

err = 2;/ GetProcAddress failed */

goto out;

}

hMessageBox = Getl ndirect Functi onHandl e(
addr ,
I NDI R_PTR,
I NDI R_PTR,

© National Instruments Corporation 3-23 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics
I NDI R_WORD,
I NDI R_ENDLI ST) ;

if (!hMessageBox) ({
/* GetlndirectFunctionHandl e failed */

*err = 3;
goto out;
}

if (!(nessageCStr =
DSNewPt r (LSt r Len(*nessage) +1))) {
/* memerrs are serious-stop execution */
ci nErr=nful | Err;
goto out;

}

if (!'(winTitleCStr =
DSNewPt r (LStrLen(*wi nTitle)+1))) {
/* memerrs are serious-stop execution */
ci nErr=nful | Err;
goto out;

}

SPrintf(messageCStr, (CStr) "9%", *nessage);
SPrintf(winTitleCStr, (CStr) "9%", *winTitle);

cb = (WORD) | nvokel ndi rect Functi on(
hMessageBox,
messageCsStr,
winTitleCStr,
0x1);

out:
if (messageCstr)
DSDi sposePtr (nessageCStr);
if (winTitleCStr)
DSDi sposePtr (winTitl eCStr);

return cinErr;

}

CIN MgErr Cl NuUnl oad(voi d)
{

LabVIEW Code Interface Reference Manual 3-24 © National Instruments Corporation

Chapter 3 CIN Advanced Topics

if (hDLL)
FreeLi brary(hDLL);

return noErr;

}

© National Instruments Corporation 3-25 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics

LabVIEW Code Interface Reference Manual 3-26 © National Instruments Corporation

External Subroutines

This chapter describes how to create and call shared external
subroutines from other external code modules.

Introduction

An external subroutine (or shared external subroutine) is afunction
that you can call from multiple external code modules. By placing
common code in an external subroutine, you can avoid duplicating the
code in each external code module. Y ou can also use external
subroutines to store information that must be accessible to multiple
external code modules.

External subroutines are different from CINsin that LabVIEW
diagrams do not call them directly. Instead, an external subroutineisa
function that CINs and other external subroutines call. Y ou store
external subroutinesin separate files, not in Vls.

When you load a V1 that contains a CIN, LabVIEW determines
whether the CIN references external subroutines. If it does, LabVIEW
loads the external subroutines into memory and modifies the calling
code so that it can call the subroutine. LabVIEW modifies any
additional subroutines that reference the same external subroutine to
reference the code already in memory. When you remove the last code
that references the external subroutine from memory (when you close
the VI containing the CIN), LabVIEW also unloads the external
subroutine.

Placing code in external subroutinesis helpful for several reasons.

e A singlesubroutineis easier to maintain, because you need update
only asinglefileto affect all calls on the subroutine.

» A single subroutine can also reduce memory requirements,
because only a singleinstance of the codeisin memory, regardliess
of the number of calls to the subroutine.

* Anexternal subroutine can maintain information used by multiple
external code modules. The first time the external subroutineis

© National Instruments Corporation 4-1 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

called, it can store datain avariable that is global to the external
subroutine. Other external code modules can call the same external
subroutine to retrieve the common data.

Y ou store external subroutines as files, so you have to give each one a
unigue name. When LabVIEW searches for a subroutine file, it loads
thefirst file it finds that has the correct name.

Note: External subroutines are not supported on the Power Macintosh. The
Macintosh OS on the Power Macintosh provides a much cleaner
mechanism for sharing code, namely, shared libraries. If you need to
share code among multiple CINs on the Power Macintosh, consult your
development environment documentation to learn how to build a shared
library.

Although external subroutines are supported on Solaris 2 and HP-UX, it
is suggested that you use shared libraries instead.

Shared library mechanisms compatible with LabVIEW are available on
all platforms. Under Microsoft Windows 3.1, Windows 95, and Windows
NT, they arereferred to as DLLs (dynamic link libraries). Under UNIX
they arereferred to as shared libraries or dynamic libraries.

Creating Shared External Subroutines

Normally, when you use a compiler to create a program, the compiler
includes the code for all subroutinesin asingle file called the
executable. External subroutines differ from standard subroutines in
that you do not compile the code for the external subroutine with the
code for the calling subroutine. Instead, your makefile, and
consequently the code, indicate that the calling code references an
external subroutine. LabVIEW loads external subroutinesbased on this
information and links the calling code in memory, so that the calling
code points correctly to the external subroutine.

Y ou need to compile the calling code, even though its subroutines are
not all present. LabVIEW must be able to determine that your code
calls an external subroutine, find the subroutine, and load it into
memory. When the subroutine is loaded, LabVIEW must be able to
modify the memory image of the calling code so that it correctly
references the memory location of the external code. Finally,
LabVIEW may need to create and initialize memory space that the

LabVIEW Code Interface Reference Manual 4-2 © National Instruments Corporation

Chapter 4 External Subroutines

external subroutine uses for global data. The following sections
describe how to make this work.

External Subroutine

LabVIEW calls CINSs, but only your code calls external subroutines.
Instead of creating seven routines (Cl NRun, Cl NSave, and so on),
you create only one entry point (LVSBMai n) for an external
subroutine. When another external code module calls this external
subroutine, the LVSBMai n subroutine executes.

LVSBMai n issimilar to Cl NRun. You can have an arbitrary number
of parameters, and each parameter can be of arbitrary datatype. Also,
because only your code calls the subroutine, you can declare any return
data type, and you do not need to place the word Cl Nin front of the
function prototype. Y ou will have to ensure that the parameters and
return value are consistent between the calling and called code.

Y ou compile an external subroutine almost the same way you compile
a CIN. Because multiple external code modules can call the same
external subroutine, LabVIEW does not load the code into a specific
V1. Instead, LabVIEW loads the code from the file created by the
makefile when the code is needed.

Macintosh

THINK C Compiler and CodeWarrior 68K Compiler

To make a subroutine using the THINK C Compiler, build the code
resource (the . t np file) as discussed in the Steps for Creating a CIN
section of Chapter 1, CIN Overview, but leave out the CI NLi b library
and select the subroutine option when running | vsbuti | . app.

MPW Compiler

The only difference between the makefiles of subroutines and of CINs
isthat for a subroutine you specify atype of LVSB inyour . | vmfile
instead of Cl N. See the Steps for Creating a CIN section of Chapter 1,
CIN Overview, for a discussion of the makefile contents.

Microsoft Windows 3.1, Windows 95, and
Windows NT

The only difference between the makefiles of subroutines and of CINs
isthat for a subroutine you specify atype of LVSB inyour . | vmfile

© National Instruments Corporation 4-3 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

Calling Code

instead of Cl N. See the Steps for Creating a CIN section of Chapter 1,
CIN Overview, for adiscussion of the makefile contents.

Solaris 1.x, Solaris 2.x, and HP-UX

Unbundled Sun C Compiler and HP-UX C/ANSI C Compiler

Thel vimknf command for a CIN that calls an external subroutineis
the same as described in the Steps for Creating a CIN section of
Chapter 1, CIN Overview, except you use the - t option with the type
LVSB to indicate that you are creating a LabVIEW subroutine instead
of aCIN.

For example, if you want to create an external subroutinecalled f i nd,
you could use the following command:

[vnknf -t LVSB find

This command creates a makefile that you could use to create the
external subroutine.

You call external subroutines the same way that you call standard C
subroutines. LabVIEW modifiesthe code at |oad timeto ensure that the
calling code passes control to the subroutine correctly.

When you call the external subroutine, do not use the function name
LVSBMai n to call the function. Instead, use the name you gave the
external subroutine. If you created an external subroutine called
fact. | sb,whichinturncontained an LVSBMai n() subroutine, for
example, you should call the function as though it were named

fact (). Theargument list and return type should be the same as the
argument and return type for the LVSBMai n() subroutine.

Y ou should also create a prototype for the function. This prototype
should havethe keyword ext er n so that the compiler will compilethe
CIN, even though the subroutine is not present.

When you create the makefile for the CIN, you identify the names of
the external subroutines that the CIN calls. The LabVIEW makefile
embeds information in your code that LabVIEW usesto determine that
your code calls external subroutines. When you load external code that
references external subroutinesinto aVI, LabVIEW searches for the

LabVIEW Code Interface Reference Manual 4-4 © National Instruments Corporation

Chapter 4 External Subroutines

subroutine files. If it finds the subroutines, LabVIEW performs the
appropriate linking. If afileis not found, LabVIEW displays a dialog
box prompting you to find it. If you dismiss the dialog box without
selecting the file, the VI loads into memory with a broken run arrow,
indicating that the VI is not executable.

One way to ensure that LabVIEW can find external subroutinesis to
place them in the directoriesthat you defined in the search path section
of the LabVIEW defaultsfile. Seethe Configuring LabVIEW section of
Chapter 8, Customizing Your LabVIEW Environment, of your
LabVIEW User Manual for more information on setting path
preferences.

Macintosh

THINK C Compiler

The THINK C project must have an extrafile named gl ue. ¢ that
specifies each external subroutine. Each reference to the external
subroutine should have an entry as followsin the gl ue. c file

| ong gLVSB<external subroutine nanme> = 'LVSB';
voi d <external subroutine name>(void);
voi d <external subroutine name>(void) {

asm {
nove. | gLVSB<external subroutine nane> a0
jnp (a0)
}

}

CodeWarrior 68K Compiler

The CodeWarrior project must have an extrafile called glue.c, which
specifies each external subroutine. Each reference to the external
subroutine should have an entry as follows in the glue.c file:

| ong gLVSB<external subroutine nanme> = 'LVSB' ;

voi d <external subroutine name>(void);

asm voi d <external subroutine name>(void) {
move. | gLVSB<external subroutine nanme>, a0
jmp (a0)
}

© National Instruments Corporation 4-5 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

MPW Compiler

The makefilefor acalling CIN isthe same as described in the Steps for
Creating a CIN section of Chapter 1, CIN Overview, except you usethe
optional subr Nanes directivetoidentify the subroutinesthat the CIN
references. Specifically, if your code calls two external subroutines, A
and B, you need to have the following line in the makefile code:

subrNanes = A B

Microsoft Windows 3.1, Windows 95, and Windows
NT

The makefilefor acalling CIN isthe same as described in the Steps for
Creating a CIN section of Chapter 1, CIN Overview, except you usethe
optional subr Nanes directivetoidentify the subroutinesthat the CIN
references. Specifically, if your code calls two external subroutines,
A and B, you need to have thefollowing linein the code makefile, prior
tothe!i ncl ude statement.

subrNanes = A B

Solaris 1.x, Solaris 2.x, and HP-UX

Unbundled Sun C Compiler and HP-UX C/ANSI C Compiler

Thel vimknf command for acalling CIN is the same as described in
the Steps for Creating a CIN section of Chapter 1, CIN Overview,
except you use the optional - ext option with the name of afile that
liststhe names of the subroutines called by the CIN, one name per line.
The makefile that | virknT creates uses this file to append linkage
information to the CIN object file.

For example, if your code calls two external subroutines, A and B, you
create a new text file with the name A on the first line and B on the
second. If thelist of subroutinesisinafilecalledsubr s, and you want
to call the calling CIN lookup, you can use the following command to
create a makefile.

| vimknf -ext subrs | ookup

This command creates a makefile that you can use to create the CIN.

LabVIEW Code Interface Reference Manual 4-6 © National Instruments Corporation

Chapter 4 External Subroutines

Simple Example

The following example illustrates the process of building an external
subroutine that sumsthe elements of an array. Thisexternal subroutine
can be used by a CIN that computes the mean and also by a CIN that
computes the definite integral.

External Subroutine Example

As described in the External Subroutine section of this chapter, you
must writeafunction called LVSBMai n() . Whenyou call the external
subroutine from your CIN or another external subroutine, LabVIEW
passes control to the LVSBMai n() function. When you call the
external subroutine, the argumentsto it and to itsreturn type should be
the same as in the definition of LVSBMai n() .

The following is the C code for this external subroutine. Name it
sum c.

/*
* sumc
*/
#i ncl ude "extcode. h"
fl oat 64 LVSBMai n(float64 *x, int32 n);
fl oat 64 LVSBMai n(fl oat64 *x, int32 n)
{
int32 i;
fl oat 64 sum
sum = 0. 0;
for (i=0; i<n; i++)

sum += *XxX++;

return sum

}

© National Instruments Corporation 4-7 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

Compiling the External Subroutine
Macintosh

THINK C Compiler and CodeWarrior 68K Compiler

To make a subroutine using the THINK C Compiler, create a project
named sumand add sum ¢ and LVSBLi b to the project. Do hot
include the CI NLi b filein your project. Set the optionsin the
Options... and Set Project Typedialog boxes as described in the Steps
for Creating a CIN section of Chapter 1, CIN Overview. After you
createsum t np, runl vsbuti | . app and select the Subroutine
option.

MPW Compiler

As described in the External Subroutine section of this chapter, you
compile an external subroutine the same way you compile a CIN. The
first step isto create a makefile specification. Following are the
contents of the makefile specification for this example. Notice that all
Di r commands must end with acolon (:). Namethefilesum | vm

nane = nane sum
type = type LVSB
codeDir = codeDir: Complete pathname to the folder

containing the .. c file.

cinToolsDir = cinTool sDir:
Complete or partial pathname to the
LabVIEW ci nt ool s folder.

inclDir =inclDir: (optional) Complete or partial
pathname to a folder containing any
additional . h files.

Create the subroutine using the following command.

Directory <full pathname to CIN directory>

ci nmake sum

LabVIEW Code Interface Reference Manual 4-8 © National Instruments Corporation

Chapter 4 External Subroutines

Microsoft Windows 3.1

Watcom C Compiler

As described in the External Subroutine section of this chapter, you
compile an external subroutine the same way you compile a CIN. The
first step isto create a makefile specification. Following are the
contents of the makefile specification for this example. Notice that all
Di r commands must end without a backslash(\). Name the file

sum | vm

name = nane sum

type = type LVSB

codeDir = codeDir Complete pathname to the directory

containing the . ¢ file.

cinTool sDir = cinTool sDi r
Complete or partial pathname to the
LabVIEW ci nt ool s directory.

inclDir =inclDir (optional) Complete or partial
pathnameto adirectory containing any
additional . h files.

weDir = weDir Complete pathname to the directory
containing Watcom.

l'include $(cinTool sDir)\generic. mak

Create the subroutine using the following command.

wrake /f sum|lvm

Microsoft Windows 95 and Windows NT

As described in the External Subroutine section of this chapter, you
compile an external subroutine the same way you compile a CIN. The
first step isto create a makefile specification. Following are the
contents of the makefile specification for this example. Name the file

sum | vm
name = nane sum
type = type LVSB

l'include $(CI NTOOLSDI R)\ nt | vsb. mak

© National Instruments Corporation 4-9 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

Calling Code

Create the subroutine using the following command.

nmake /f sum|vm

Solaris 1.x, Solaris 2.x, and HP-UX

Unbundled Sun C Compiler and HP-UX C/ANSI C Compiler

As described in the External Subroutine section of this chapter, you
compile an external subroutine the same way you compile a CIN. The
first step isto create the makefile for the subroutine using the shell
script | vimknf . Y ou can then use the standard mak e command to make
the subroutine code. For this example, enter the following command.

| vimknf -t LVSB sum

Thiscreates afile called Makef i | e. After executing | viknf , enter
mak e, which uses the makefileto create afilecalled sum | sb. CINs
and other external subroutines can call thissum | sb file.

The following example shows how to call an external subroutine. In
this example, a CIN uses the external subroutine to calculate the mean
of an array.

Thediagram for the V1 is shown in the following illustration. To avoid
confusion, create the calling source code and makefiles in a directory
separate from the external subroutine. Savethe VI ascal crrean. vi .

Al | L Ty]

[I]BI.] -:-:-:-:: -:-Elz-l:- mean
DEL

Savethe. c filefor the CIN ascal cnean. c. Thefollowing isa
listing of cal cnmean. ¢, with its Cl NRun routine filled in and the
prototype for the sumexternal routine added.

/*
* CIN source file

*/

#i ncl ude "extcode. h"

LabVIEW Code Interface Reference Manual 4-10 © National Instruments Corporation

Chapter 4 External Subroutines

/* stubs for advanced CIN functions */

UseDef aul t CI NI ni t
UseDef aul t Cl NDi spose
UseDef aul t Cl NAbor t
UseDef aul t Cl NLoad
UseDef aul t Cl NUnl oad
UseDef aul t Cl NSave

/*
* typedefs
*/

typedef struct {
int32 dinSize;
fl oat64 argl[1];
} TD1;

typedef TD1 **TD1HdI ;

extern float64 sum(float64 *x, int32 n);
CIN MgErr CI NRun(TD1HdI xArray, float64 *nean);

CIN MgErr CI NRun(TD1Hdl xArray, float64 *nean)
{
float64 *x, total;
int32 n;

X = (*xArray)->argl;

n = (*xArray)->di nSi ze;
total = sum(x, n);

*mean = total/(fl oat64)n;
return noErr;

}

Cl NRun calculates the mean using the external subroutine sumto
calculate the sum of the array. The external subroutineis declared with
the keyword ext er n so that the code compiles even though the
subroutine is not present.

© National Instruments Corporation 4-11 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

Compiling the Calling Code

Macintosh

THINK C Compiler

The THINK C project must have an extrafile called gl ue. ¢ which
specifies each external subroutine. The reference to the external
subroutine sumshould have an entry as followsin the gl ue. c file:

| ong gLVSBsum = ' LVSB' ;
voi d sum(voi d);
voi d sum(void) {

asm {
nmove.| gLVSBsum a0
jnp (a0)
}

}

Thisisthe entire text of the gl ue. c file.

CodeWarrior 68K Compiler

The CodeWarrior project must have an extrafile called gl ue. c,
which specifies each external subroutine. Each reference to the
external subroutine sumshould have an entry as follows in the
gl ue. c file:

| ong gLVSBsum = ' LVSB' ;

voi d sum(voi d);

asm voi d sun(void){
move.| gLVSBsum a0
jnp (a0)
}

Thisisthe entire text of the gl ue. c file.

MPW Compiler

As described in the Calling Code section of this chapter, when you
compileaCIN that references an external subroutine, you use the same
makefile as described in the Steps for Creating a CIN section of the
Chapter 1, CIN Overview, with the addition of adirective that identifies
the subroutines that this CIN uses. Following are the contents of the

LabVIEW Code Interface Reference Manual 4-12 © National Instruments Corporation

Chapter 4 External Subroutines

makefile specification for this example. Notice that the Di r command
must end in acolon (:). Name the makefilecal cnean. | vm

name = nane cal cmean
type = type CI N
codeDir = codeDir: Complete pathname to the folder

containing the . c file.

cinTool sDir = cinTool sDir:
Complete or partial pathname to the
LabVIEW ci nt ool s folder.

inclDir =inclDir: (optional) Complete or partial
pathname to a folder containing any
additional . h files.

subr Nanes = subr Nanes sum

Create the CIN using the following command.

Directory <full pathname to CI N directory>
ci nmake sum

Microsoft Windows 3.1

Watcom C Compiler

As described in the Calling Code section of this chapter, when you
compilea CIN that references an external subroutine, you use the same
makefile as described in the Steps for Creating a CIN section of the
Chapter 1, CIN Overview, with the addition of adirective that identifies
the subroutines that this CIN uses. Following are the contents of the
makefile specification for this example. Notice that the Di r command
must end without a backslash (\). Name the makefile

cal cnmean. | vm

name = nane cal cnean
type = type CI'N
codeDir = codeDir Complete pathname to the directory

containing the . ¢ file.

© National Instruments Corporation 4-13 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

cinTool sDir = cinTool sDi r
Complete or partial pathname to the
LabVIEW ci nt ool s directory.

inclDir =inclDir (optional) Complete or partial
pathnameto adirectory containing any
additional . h files.

weDir = wehDir Complete pathname to the directory
containing the Watcom C compiler.

subr Names = subr Nanes sum
linclude $(cinTool sDir)\generic. mak

Create the CIN using the following command.
whake /f cal cnean. | vm

Microsoft Windows 95 and Windows NT

As described in the Calling Code section of this chapter, when you
compilea CIN that references an external subroutine, you use the same
makefile as described in the Steps for Creating a CIN section of the
Chapter 1, CIN Overview, with the addition of adirectivethat identifies
the subroutines that this CIN uses. Following are the contents of the
makefile specification for this example. Name the makefile

cal cmean. | vm

nane = nane cal cnean
type = type CIN

subr Names = subr Nanes sum
l'include $(CI NTOOLSDI R)\ ntlvsb. mak

Create the CIN using the following command.
nmake /f cal cnean.|lvm

Solaris 1.x, Solaris 2.x, and HP-UX
Unbundled Sun C Compiler and HP-UX C/ANSI C Compiler

As described in the Calling Code section of this chapter, when you
compile a CIN that references an external subroutine, you use the

LabVIEW Code Interface Reference Manual 4-14 © National Instruments Corporation

Chapter 4 External Subroutines

I vimkf script with an addition directive that identifies afile with the
names of all subroutines that the CIN calls.

For thisexample, create atext file with thenameneansubs. It should
contain asingle line with the word sum

Y ou then create the makefile for this CIN using the following
command.

| vmknf -ext neansubs cal cnean

Thiscreatesafilecalled Makef i | e. After executing | virknf , enter
mak e, which uses the makefile to create afile called

cal cnean. | sb. You can load the cal cnmean. | sb fileinto the
CIN.

© National Instruments Corporation 4-15 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines

LabVIEW Code Interface Reference Manual 4-16 © National Instruments Corporation

Manager Overview

This chapter gives an overview of the function libraries, called
manager s, which you can use in external code modules. These include
the memory manager, the file manager, and the support manager. The
chapter also introduces many of the basic constants, data types, and
globals contained in the LabVIEW libraries.

Note: For descriptions of specific manager functions, see the Function and VI

Reference topic in LabVIEW's Online Reference, or the Code Interface
Node Reference online manual.

Introduction

External code modules have a large set of functions you can use to
perform simple and complex operations. These functions, organized
into libraries called managers, range from low-level byte manipulation
to routines for sorting data and managing memory. All manager
routines described in this chapter are platform-independent. If you use
these routines, you can create external code modules that will work on
all platforms that LabVIEW supports.

A fundamental component of platform independence are datatypesthat
do not depend on the peculiarities of various compilers. The C
language, for example, does not define the size of an integer. Without
an explicit definition of the size of each data type, it is almost
impossible to create code that works identically across multiple
compilers.

LabVIEW managers use data types that explicitly indicate their size.
For example, if aroutine requires a 4-byte integer as a parameter, you
define the parameter as an i nt 32. The managers define data typesin
terms of the fundamental data types for each compiler. Thus, on one
compiler, the managers might defineani nt 32 asani nt, while on
another compiler, the managers might defineani nt 32 asal ong

i nt . When writing external code modules, use the manager datatypes
instead of the host computer datatypes, because your code will be more
portable and have fewer errors.

© National Instruments Corporation 5-1 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

Most applications need routines for allocating and deallocating
memory on reguest. Y ou can use the memory manager to dynamically
allocate, manipulate, and release memory. The LabVIEW memory
manager supports dynamic allocation of both non-relocatable and
relocatable blocks, using pointers and handles. For more information,
see the Function and VI Reference topic in LabVIEW’s Online
Reference, or the Code Interface Node Reference online manual.

Applications that manipulate files can use the functionsin the file
manager. This set of routines supports basic file operations such as
creating, opening, and closing files, writing data to files, and reading
data from files. In addition, file manager routines allow you to create
directories, determine characteristics of files and directories, and copy
files. File manager routines use a LabVIEW data type for file
pathnames (Pat hs) that provides a platform-independent way of
specifying afile or directory path. Y ou can translate a Pat h to and
from a host platform's conventional format for describing afile
pathname. See the Online Reference for more information.

The support manager contains a collection of generally useful
functions, such as functions for bit or byte manipulation of data, string
manipulation, mathematical operations, sorting, searching, and
determining the current time and date. See the Online Reference for
more information.

Basic Data Types

Scalar Data Types

Note: Thenames of several typesused by the manager routineshave changed for
version 4.0. These changes are strictly textual—that is, the actual types
have not changed. The changesare: bool ean was changed to Bool 32,
Pt r was changed to UPt r , and Handl e was changed to UHandl e.

Booleans

External code modules work with two kinds of Booleans—those that
exist in LabVIEW block diagrams and those that pass to and from
manager routines. The manager routines use a conventional form of
Boolean, where 0 is FALSE and 1 is TRUE. Thisform of Boolean is
called aBool 32, and it is stored as a 32-hit value.

LabVIEW Code Interface Reference Manual 5-2 © National Instruments Corporation

Chapter 5 Manager Overview

LabVIEW block diagrams store Boolean scalars as 16-bit values. The
high-bit is set if the Boolean is TRUE, and clear if the Boolean is
FALSE. Thisform of Boolean is called an LVBool ean.

The two forms of Booleans are summarized in the following table.

Name Description

Bool 32 32-bit integer, 1if TRUE, O if FALSE

LVBool ean | 16-bit integer, high-bit set if TRUE, clear if FALSE

Numerics

The managers support 8-, 16-, and 32-bit signed and unsigned integers.
For floating-point numbers, LabVIEW supports the single (32-hit),
double (64-bit), and extended floating-point (at | east 80-bit) datatypes.
LabVIEW supports complex numbers that contain two floating-point
numbers, with different complex numeric types for each of the
floating-point datatypes. The following lists show the basic LabVIEW
data types for numbers.

* Signed Integers

— int8 8-bit integer
— intl6 16-bit integer
— int32 32-bit integer

* Unsigned Integers
— ulnt8 8-bit unsigned integer
— ulntl6 16-bit unsigned integer
— ulnt32 32-bit unsigned integer

* Floating-Point Numbers
— float32 32-bit floating-point number
- float64 64-bit floating-point number
— fl oat Ext extended-precision floating-point number

In Windows, extended-precision numbers are stored as an 80-bit
structure with two i nt 32 components, mhi and ml o, and ani nt 16
component, e. On the Sun, extended-precision numbers are stored as
128-hit floating-point numbers. On the 68K Macintosh,
extended-precision numbers are stored in the 96-bit MC68881 format.

© National Instruments Corporation 5-3 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

char Data Type

On the Power Macintosh, extended-precision numbers are stored in the
128-bit double-double format.

Complex Numbers

The complex data types are structures with two floating-point
components, r e and i m As with floating-point numbers, complex
numbers can have 32-bit, 64-bit, and extended-precision components.
The following segments of code give the type definitions for each of
these complex data types.

typedef struct {
float32 re, im
} cnpl x64;

typedef struct {
float64 re, im
} cnpl x128;

typedef struct {
floatExt re, im
} cnpl xExt;

The char datatypeis defined by C to be a signed byte value.
LabVIEW definesanunsigned char datatype, with thefollowing type
definition.

typedef ulnt8 uChar;

Dynamic Data Types

LabVIEW defines a number of data types that you must allocate and
deallocate dynamically. Arrays, strings, and paths have data types that
you must allocate using memory manager and file manager routines.

Arrays

LabVIEW supports arrays of any of the basic data types described in
the Scalar Data Types section of this chapter. Y ou can construct more
complicated data types using clusters, which can in turn contain
scalars, arrays, and other clusters.

Thefirst four bytes of a LabVIEW array indicate the number of
elementsin the array. The elements of the array follow the length field.
Chapter 2, CIN Parameter Passing, gives examples of how to
manipulate arrays.

LabVIEW Code Interface Reference Manual 5-4 © National Instruments Corporation

Chapter 5 Manager Overview

Strings

LabVIEW supports C-style strings and Pascal-style strings, a special
string datatype you use for string parametersto external code modules
called LSt r, and lists of strings. The support manager contains
routines for manipulating strings and converting them among the
different types of strings.

C-Style Strings (CStr)

A Cstring (CSt r) isaseries of zero or more unsigned characters,
terminated by a zero. C strings have no effective length limit. Most
manager routines use C strings, unless you specify otherwise. The
following code segment is the type definition for a C-style string.

typedef uChar *CStr;

Pascal-Style Strings (PStr)

A Pascal string (PSt r) isaseries of unsigned characters. The value of
the first character indicates the length of the string. This gives arange
of 0 to 255 characters. The following code segment is the type
definition for a Pascal-style string.

t ypedef uChar Str255[256], Str31[32],
*StringPtr,
** St ri ngHandl e;

t ypedef uChar *PStr;

LabVIEW Strings (LStr)

Thefirst four bytes of aLabVIEW string (LSt r) indicate the length of
the string, and the specified number of characters follow. Thisisthe
string datatype used by LabVIEW block diagrams. Thefollowing code
segment is the type definition for an LSt r string.

typedef struct {
int32 cnt;
/* nunmber of bytes that follow */
uChar str[1];
/* cnt bytes */
} LStr, *LStrPtr, **LStrHandl e;

© National Instruments Corporation 5-5 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

Concatenated Pascal String (CPStr)

Many algorithms require manipulation of lists of strings. Arrays of
strings are usually the most convenient representation for lists. This
representation can place a burden on the memory manager, however,
because of the large number of dynamic objects that must be managed.
To make working with lists more efficient, LabVIEW supports the
concatenated Pascal string (CPSt r) datatype that is alist of
Pascal-style strings concatenated into a single block of memory. You
can use support manager routines to create and manipulate lists using
this data structure.

This datatype is defined as follows.

typedef struct {
int32 cnt;
/* number of pascal strings that follow */
uChar str[1];
/* cnt concatenated pascal strings */
} CPStr, *CPStrPtr, **CPStrHandl e;

Paths (Path)

A path (short for pathname) specifies the location of afile or directory
in acomputer’sfile system. Thereisaseparate LabVIEW datatypefor
a path (represented as Pat h), which the file manager definesin a
platform-independent manner. The actual datatypefor apathisprivate
to the file manager and subject to change. Y ou create and manipul ate
Pat hsusing file manager routines.

Memory-Related Types

Constants

LabVIEW uses pointers and handles to reference dynamically
allocated memory. These data types are described in detail in the
Online Reference and have the following type definitions.

typedef uChar *UPtr;
typedef uChar **UHandl e;

The managers define the following constant for use with external code
modul es.

NULL O(ul nt 32)

LabVIEW Code Interface Reference Manual 5-6 © National Instruments Corporation

Chapter 5 Manager Overview

Thefollowing constants define the possible values of the Bool 32 data
type.

FALSE 0 (int32)
TRUE 1 (int32)

The following constants define the possible values of the LVBool ean
data type.

LVFALSE 0 (ul nt 16)
LVTRUE 0x8000 (ul nt 16)

Memory Manager

This section describes the memory manager, a set of
platform-independent routines for all ocating, manipulating, and
deallocating memory from external code modules.

Read this section if you need to perform dynamic memory allocation
or manipulation from external code modules. If your external code
operates on data types other than scalars, you need to understand how
LabVIEW manages memory and know the utilities that manipulate
data.

Note: For descriptions of specific memory manager functions, see the Function
and VI Referencetopic in LabVIEW's Online Reference, or the Code
Interface Node Reference online manual.

Memory Allocation
Applications use two types of memory allocation: static and dynamic.

Static Memory Allocation

With static allocation, the compiler determines memory requirements
when you create a program. When you launch the program, LabVIEW
creates memory for the known global memory requirements of the
application. This memory remains allocated while the program runs.
Thisform of memory management isvery simpleto work with because
the compiler handles all the details.

Static memory allocation cannot address the memory management
requirements of most real-world applications, however, because you
cannot determine most memory requirements until run-time. Also,

© National Instruments Corporation 5-7 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

statically declared memory may result in larger memory requirements,
because the memory is allocated for the life of the program.

Dynamic Memory Allocation: Pointers and Handles

With dynamic memory allocation, you reserve memory when you need
it, and free memory when you are no longer using it. Dynamic
allocation requires more work on your part than static memory
allocation, because you have to determine memory requirements and
allocate and deallocate memory as necessary.

The LabVIEW memory manager supports two kinds of dynamic
memory allocation. The more conventional method uses pointers to
allocate memory. With pointers, you request a block of memory of a
given size, and the routine returns the address of the block to your CIN.
When you no longer need the block of memory, you call aroutine to
free the block. Y ou can use the block of memory to store data, and you
reference that data using the address that the manager routine returned
when you created the pointer. Y ou can make copies of the pointer and
use them in multiple places in your program to refer to the same data.

Pointersin the LabVIEW memory manager are nonrelocatable, which
means that the manager never moves the memory block to which a
pointer refers while that memory is allocated for a pointer. Thisavoids
problems that occur when you need to change the amount of memory
allocated to a pointer because other references would be out of date. If
you need more memory, there might not be sufficient memory to
expand the pointer's memory space without moving the memory block
to anew location. This would cause problems if an application had
multiple referencesto the pointer, because each pointer refersto theold
memory address of the data. Using invalid pointers can cause severe
problems.

A second form of memory allocation uses handles to address this
problem. As with pointers, when you allocate memory using handles,
you request a block of memory of a given size. The memory manager
allocates the memory and adds the address of the memory block to a
list of master pointers. The memory manager returns a handlethat isa
pointer to the master pointer. If you reallocate ahandle and it movesto
another address, the memory manager updates the master pointer to
refer to the new address. Aslong as you look up the correct address
using the handle, you access the correct data.

LabVIEW Code Interface Reference Manual 5-8 © National Instruments Corporation

Memory Zones

Chapter 5 Manager Overview

Y ou use handles to perform most memory allocation in LabVIEW.
Pointers are available, however, because in some cases they are more
convenient and simpler to use.

LabVIEW's memory manager interface has the ability to distinguish
between two distinct sections, called zones. LabVIEW uses the data
space (DS) zone only to hold VI execution data. LabVIEW uses the
application zone (AZ) to hold all other data. Most memory manager
functions have two corresponding routines, one for each of the two
zones. Routines that operate on the data space zone begin with DS and
routines for the application zone begin with AZ.

Currently, the two zones are actually one zone, but this may changein
future releases of LabVIEW; therefore, a CIN programmer should
write programs as if the two zones actually exist.

External code modules work almost exclusively with data created in
the DS zone, although exceptions exist. In most cases, you use the DS
routines when you need to work with dynamically allocated memory.

All data passed to or from a CIN is allocated in the DS zone except for
Pat hs, which use AZ handles. Y ou should only use file manager
functions (not the AZ memory manager routines) to manipulate

Pat hs. Thus, your CINs should use the DS memory routines when
working with parameters passed from the block diagram. The only
exceptions to this rule are handles created using the Si zeHandl e
function, which allocates handles in the application zone. If you pass
one of these handlesto a CIN, your CIN should use AZ routines to
work with the handle.

Using Pointers and Handles

M ost memory manager functions have a DS routine and an AZ routine.
Inthefollowing discussion, XXFunct i onName referstoafunctionin
ageneral context. In these situations, XX can be either DS or AZ. When
a difference exists between the two zones, the specific function name
isgiven.

Y ou create ahandle using XXNewHand! e, with which you specify the
size of the memory block. Y ou create a pointer using XXNewpt r .
XXNewHand| eCl r and XXNewpPt r Cl r arevariationsthat create the
memory block and set it to all zeros.

© National Instruments Corporation 5-9 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

When you are finished with the handle or pointer, release it using
XXDi sposeHandl e or XXDi sposePtr.

If you need to resize an existing handle, you can use the

XXSet Handl eSi ze routine. XXGet Handl eSi ze determines the
size of an existing handle. Because pointers are not relocatable, you
cannot resize them.

A handle is a pointer to a pointer. In other words, a handle is the
address of an address. The second pointer, or address, is a master
pointer, which means that it is maintained by the memory manager.
Languages that support pointers provide operators for accessing data
by its address. With a handle, you use this operator twice; once to get
to the master pointer, and a second time to get to the actual data. A
simple exampl e of how to work with pointersand handlesin Cisshown
in the following section. Examplesin the Online Reference show more
complex ways to work with handles.

While operating within asingle call of a CIN node, an AZ handle will
not move unless you specifically resize it. In this context there is no
need to lock or unlock handles. If your CIN maintains an AZ handle
across different calls of the same CIN (an asynchronous CIN), the AZ
handle may be relocated between calls. In this case, AZHLock and
AZHUNnl ock may be useful if you do not want the handle to relocate.
A DS handle will never move unless you resize it.

Y ou can explicitly purge a handle using XXEnpt yHandl e. You can
reallocate a purged master pointer using XXReal | ocHandl e. Notice
that XXReal | ocHandl e does not actually recover the datato which
the handle refers; this routine only reallocates a block of memory for

the handle.

Additional routines make it easy to copy and concatenate handles and
pointers to other handles, check the validity of handles and pointers,
and copy or move blocks of memory from one place to another.

Simple Example

The following example code shows how you work with a pointer to an
i nt32.

i nt32 *nyl nt 32P;

nylnt 32P = (int32 *)DSNewPt r (si zeof (i nt32));
*myl nt 32P = 5;

LabVIEW Code Interface Reference Manual 5-10 © National Instruments Corporation

Chapter 5 Manager Overview
X = *nylnt32P + 7;

DSDi sposePtr (nyl nt 32P) ;

The first line declares the variable my| nt 32P as a pointer to, or the
address of, a signed 32-bit integer. This does not actually allocate
memory for thei nt 32; it creates memory for an address and
associates the name my | nt 32P with that address. The P at the end of
the variable name is a convention used in this example to indicate that
the variable is a pointer.

The second line creates a block of memory in the data space large
enough to hold a single signed 32-bit integer and sets my| nt 32P to
refer to this memory block.

The third line places the value 5 in the memory location to which
myl nt 32P refers. The * operator refers to the value in the address
location.

The fourth line sets x equal to the value at address ny | nt 32P plus 7.
Finally, the last line frees the pointer.

The following code is the same example using handles instead of
pointers.

int32 **myl nt 32H;

nyl nt 32H =(i nt 32**) DSNewHand| e(si zeof (i nt 32));
**nyl nt 32H = 5;
X = **nylnt32H + 7,

DSDi sposeHand| e(nyl nt 32H) ;

Thefirst line declares the variable my | nt 32Hasahandleto an a
signed 32-bit integer. Strictly speaking, thisline declaresny| nt 32H
as a pointer to apointer to ani nt 32. Aswith the previous example,
this declaration does not allocate memory for thei nt 32; it creates
memory for an address and associates the name ny | nt 32H with that
address. The H at the end of the variable name is a convention used in
this example to indicate that the variable is a handle.

© National Instruments Corporation 5-11 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

The second line creates a block of memory in the data space that is
large enough to hold asinglei nt 32. DSNewHand! e places the
address of the memory block as an entry in the master pointer list and
returns the address of the master pointer entry. Finally, thisline sets
nyl nt 32Hto refer to the master pointer.

The third line places the value 5 in the memory location to which
myl nt 32Hrefers. Because ny| nt 32His ahandle, you use the *
operator twice to get to the data.

The fourth line sets x equal to the value referenced by ny| nt 32H
plus 7.

Finally, the last line frees the handle.

This example shows only the simplest aspects of how to work with
pointers and handlesin C. Other examples throughout this manual
show different aspects of using pointers and handles. Refer to aC
manual for alist of other operators that you can use with pointers and
amore detailed discussion of how to work with pointers.

Reference to the Memory Manager

File Manager

See the Online Reference for descriptions of the routines used for
managing memory in external code segments of LabVIEW. For every
function, if XXis AZ, the referenced handle, pointer, or block of
memory isin the application zone. If XXis DS, the referenced handle,
pointer, or block of memory isin the data space zone.

Memory Manager Data Structures

The memory manager defines generic handle and pointer datatypes as
follows.

typedef uChar *Ptr;
t ypedef uChar **UHandl e;

This section describes the file manager, a set of platform-independent
routines for creating and manipulating files and directories.

LabVIEW Code Interface Reference Manual 5-12 © National Instruments Corporation

Gy Note:

Introduction

Chapter 5 Manager Overview

For descriptions of specific file manager functions, see the Function and
VI Reference topic in LabVIEW' s Online Reference, or the Code Interface
Node Reference online manual.

The file manager supports routines for opening and creating files,
reading data from and writing data to files, and closing files. In
addition, with these routines you can manipulate the end-of-file mark
of afile and position the current read or write mark to an arbitrary
position in the file. With other file routines you can move, copy, and
rename files, determine and set file characteristics and delete files.

The file manager contains a number of routines for directories. With
these routines you can create and delete directories. Y ou can also
determine and set directory characteristics and obtain alist of a
directory's contents.

LabVIEW supports concurrent access to the samefile, so you can have
afile open for both reading and writing simultaneously. When you
open afile, you can indicate whether you want the file to be read from
and written to concurrently. Y ou can also lock arange of thefile, if you
need to ensure that arange is nonvolatile at a given time.

Finally, the file manager provides many routines for manipulating
paths (short for pathnames) in a platform-independent manner. Thefile
manager supports the creation of path descriptions, which are either
relative to a specific location or absolute (the full path). With file
manager routines you can create and compare paths, determine
characteristics of paths, and convert a path between platform-specific
descriptions and the platform-independent form.

Identifying Files and Directories

When you perform operations on files and directories, you need to
identify the target of the operation. The platforms that LabVIEW
supports use a hierarchical file system, meaning that files are stored in
directories, possibly nested several levels deep. These file systems
support the connection of multiple discrete storage media, called
volumes. For example, DOS-based systems support multiple drives
connected to the system. For most of these file systems, you must
include the volume name to completely specify the location of afile.
On other systems, such as UNIX, you do not specify the volume name

© National Instruments Corporation 5-13 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

because the physical implementation of the file system is hidden from
the user.

How you identify atarget depends upon whether the target is an open
or closed file. If atarget is aclosed file or adirectory, you specify the
target using the target's path. The path describes the volume containing
the target, the directories between the top level and the target, and the
target's name. If the target is an open file, you use a file descriptor to
specify that LabVIEW should perform an operation on the open file.
Thefile descriptor is an identifier that the file manager associates with
the file when you open it. When you close the file, the file manager
dissociates the file descriptor from the file.

Path Specifications

Conventional Path Specifications

All platforms have a method for describing the paths for files and
directories. These path specifications are similar, but they are usually
incompatible from one platform to another. Y ou usually specify apath
as a series of names separated by separator characters. Typically, the
first name is the top level of the hierarchical specification of the path,
and the last name is the file or directory that the path identifies.

There are two types of paths—relative paths and absolute paths. A
relative path describes the location of afile or directory relative to an
arbitrary location in the file system. An absolute path describes the
location of afile or directory starting from the top level of the file
system.

A path does not necessarily go from the top of the hierarchy down to
the target. Y ou can often use a platform-specific tag in place of aname
that indicates that the path should go up alevel from the current
location.

For instance, on a UNIX system, you specify the path of afile or
directory as a series of names separated by the slash (/) character. If
the path is an absolute path, you begin the specification with a slash.
Y ou canindicate that the path should move up alevel using two periods
inarow (..). Thus, thefollowing path specifiesafile READVE relative
to the top level of the file system.

[usr/ hone/ gr egg/ nyapps/ READVE

Two relative paths to the same file are as follows.

LabVIEW Code Interface Reference Manual 5-14 © National Instruments Corporation

Chapter 5 Manager Overview

gr egg/ nyapps/ READVE relativeto/ usr/ home

.. I nyapps/ READVE relative to adirectory
inside of the gr egg directory

OnthePC, you separate namesin apath with abackslash (\) character.
If the path is an absolute path, you begin the specification with adrive
designation, followed by acolon (:), followed by the backslash. You
can indicate that the path should move up alevel using two periodsin
arow (..). Thus, the following path specifies afile READVE relative
to the top level of the file system, on a drive named C.

C: \ HOVE\ GREGG\ MYAPPS\ READVE

Two relative paths to the same file are as follows.
GREGG MYAPPS\ READMVE relative to the HOVE directory

.. \ MYAPPS\ READVMVE relative to adirectory inside of
the GREGG directory

On the Macintosh, you separate names in a path with the colon (:)
character. If the path is an absolute path, you begin the specification
with the name of the volume containing the file. If an absolute path
consists of only one name (it specifies avolume), it must end with a
colon. If the path is arelative path, it begins with a colon. This colon
is optional for arelative path consisting of only one name. Y ou can
indicate that the path should move up alevel using two colonsin arow
(::). Thus, the following path specifies a file READVE relative to the
top level of the file system, on adrive named Hard Dri ve.

Hard Drive: Hone: G egg: MyApps: READMVE

Two relative paths to the same file are as follows.
: G egg: MyApps: READVE relative to the Hone directory

. MyApps: READVE relative to adirectory inside of
the Gr egg directory

Empty Path Specifications

In LabVIEW you can define a path with no names, called an empty
path. An empty path is either absolute or relative. The empty absolute
path is the highest point you can specify in the file hierarchy. The
empty relative path is a path relative to an arbitrary location in the file
system to itself.

© National Instruments Corporation 5-15 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

File Descriptors

OnaUNIX system, aslash (/) represents the empty absolute path. The
slash specifies the root of the file hierarchy. A period (.) represents
the empty relative path.

On the PC, you represent the empty absolute path as an empty string.
It specifiesthe set of all volumeson the system. A period (.) represents
the empty relative path.

On the Macintosh, the empty absolute path is represented as an empty
string. It specifies the set of all volumes on the system. A colon (:)
represents the empty relative path.

LabVIEW Path Specification

In LabVIEW, you specify a path using a special LabVIEW datatype,
represented as Pat h. The exact structure of the Pat h datatypeis
private to the file manager. Y ou create and manipulate the Pat h data
type using file manager routines.

A Pat h isadynamic data structure. Just as you use memory manager
routines to allocate and deallocate handles and pointers, you use file
manager routines to create and deallocate Pat hs. Just aswith handles,
declaring aPat h variable does not actually create aPat h. Beforeyou
can use the Pat h to manipulate afile, you must dynamically allocate
the Pat h using file manager routines. When you are finished using the
Pat h variable, you should release the Pat h using file manager
routines.

In addition to providing routines for the creation and elimination of
Pat hs, the file manager provides routines for comparing Pat hs,
duplicating Pat hs, determining characteristics of Pat hs, and
converting Pat hsto and from other formats, such as the
platform-specific format for the system onwhich LabVIEW isrunning.

When you open afile, LabVIEW returns afile descriptor associated
with thefile. A file descriptor isadatatype LabVIEW usesto identify
open files. All operations performed on an open file use the file
descriptor to identify the file.

A file descriptor isvalid only while the file is open. If you close the
file, the file descriptor is no longer associated with the file. If you
subsequently open the file, the new file descriptor will most likely be
different from the file descriptor LabVIEW used previously.

LabVIEW Code Interface Reference Manual 5-16 © National Instruments Corporation

Chapter 5 Manager Overview

File Refnums

In the file manager, LabVIEW accesses open files using file
descriptors. On the front panel and block diagram, however, LabVIEW
accesses open files through file refnums. A file refnum contains afile
descriptor for use by the file manager, and additional information used
by LabVIEW.

LabVIEW specifies file refnums using the LVRef Numdata type, the
exact structure of which is private to the file manager. If you want to
pass references to open files into or out of a CIN, use the functionsin
the Manipulating File Refnums topic of the Online Reference to
convert file refnums to file descriptors, and to convert file descriptors
to file refnums.

Support Manager

The support manager is a collection of constants, macros, basic data
types, and functions that perform operations on strings and numbers.
The support manager also has functions for determining the current
timein avariety of formats.

Note: This section gives only a brief overview of the support manager. For
descriptions of specific support manager functions, seethe Functionand VI
Reference topic in LabVIEW's Online Reference, or the Code Interface
Node Reference online manual.

The support manager’s string functions contain much of the
functionality of the string libraries supplied with standard C compilers,
such as string concatenation and formatting. Y ou can use variations of
many of these functions with LabVIEW strings (4-byte length field
followed by data, generally stored in a handle), Pascal strings (1-byte
length field followed by data), and C strings (data terminated by anull
character).

With the utility functions you can sort and search on arbitrary data
types, using quicksort and binary search algorithms.

The support manager contains transcendental functions for many
complex and extended floating-point operations.

Certain routines specify time as a data structure with the following
form.

© National Instruments Corporation 5-17 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview

typedef struct {
int32 sec;/* 0:59 */
nt32 mn;/* 0:59 */
nt32 hour;/* 0:23 */
nt 32 nday;/* day of the nonth, 1:31 */
nt32 non;/* nonth of the year, 1:12 */
nt32 year;/* year, 1904:2040 */
nt32 wday;/* day of the week, 1:7 for Sun:Sat */
nt 32 yday;/* day of year (julian date), 1:366 */
nt32 isdst;/* 1 if daylight savings time */
} Dat eRec;

LabVIEW Code Interface Reference Manual 5-18 © National Instruments Corporation

Memory Manager Functions

Allocating and Releasing Handles

AZDisposeHandle
DSDisposeHandle

syntax MEr r AZDi sposeHandl e(h);
MyEr r DSDi sposeHandl e(h) ;

XXDi sposeHandl e releases the memory referenced by the specified handle.

Parameter Type Description

h UHandl e Handle you want to dispose of.
returns MyEr r , which can contain the errorsin the following list.

Error Description

noErr No error.

nmZonekr r Handle or pointer not in specified zone.

AZEmptyHandle

DSEmptyHandle

syntax MEr r AZEnpt yHandl e(h) ;
MyEr r DSEnpt yHandl e(h) ;

XXEnpt yHandl e releases the memory referenced by a handle, and replaces the
handle's master pointer with NULL.

The master pointer is set to NULL, but remains avalid master pointer after thiscall. All
handle-based references to the block of memory point to the NULL handle. If you
reallocate space for the handle using XXReal | ocHandl e, all references to the old
handle will reference the new block of memory.

Parameter Type Description
h UHandl e Handle to empty.

© National Instruments Corporation 6-1 LabVIEW Code Interface Reference Manual

Chapter 6 Memory Manager Functions

returns MyEr r , which can contain the errorsin the following list.
Error Description
nokErr No error.
nzZonekErr Handle or pointer not in specified zone.

AZGetHandleSize
DSGetHandleSize

syntax i nt32 AZGet Handl eSi ze(h);
i nt 32 DSGet Handl eSi ze(h) ;

XXGet Handl eSi ze returns the size of the block of memory referenced by the
specified handle.

Parameter Type Description
h UHandl e Handle whose size you want to determine.

returns Thesizein bytes of the relocatable block referenced by the handle h. If an error
occurs, XXGet Handl eSi ze returns a negative number.

AZNewHandle
DSNewHandle

syntax UHandl e ZNewHand! e(si ze) ;
UHandl e DSNewHand! e(si ze) ;

XXNewHandl e creates a new handle to arelocatable block of memory of the specified
size. The routine aligns all handles and pointersin DS to accommodate the largest
possible data representations for the platform in use.

Parameter Type Description

size i nt32 Size, in bytes, of the handle to create.
returns A handle of the specified size. Returns NULL if the routine fails.
AZNewHClr
DSNewHClIr

LabVIEW Code Interface Reference Manual 6-2 © National Instruments Corporation

Chapter 6 Memory Manager Functions

syntax UHandl e AZNewHCl r (si ze) ;
UHandl e DSNewHC! r (' si ze) ;

XXNewHCl r creates anew handleto arelocatable block of memory of the specified size
and initializes the memory to zero.

Parameter Type Description
size i nt32 Size, in bytes, of the handle to create.
returns A handle of the specified size, where the block of memory is set to all zeros.

Returns NULL if the routine fails.

AZReallocHandle
DSReallocHandle

syntax MyEr r AZReal | ocHandl e(h, size);
MyEr r DSReal | ocHandl e(h, size);

XXReal | ocHandl e creates a new block of memory and sets the specified handle to
reference the block of memory.

If hisnot already an empty handle, the function releases the block of memory referenced
by h before creating the new block. A handle is an empty handle if you called

XXEnpt yHandl e on the handle, or if you marked the handle as purgeable and the
memory manager purged it from memory.

Parameter Type Description

h UHandl e Handle to recover.

size i nt32 New size, in bytes, of the handle.
returns MyEr r , which can contain the errorsin the following list.

Error Description

noErr No error.

ngAr gEr r Invalid argument.

nFul | Err Not enough memory to perform operation.

nzZoneErr Handle or pointer not in specified zone.

AZRecoverHandle
DSRecoverHandle

© National Instruments Corporation 6-3 LabVIEW Code Interface Reference Manual

Chapter 6 Memory Manager Functions

syntax

returns

UHandl e AZRecover Handl e(p);
UHandl e DSRecover Handl e(p) ;

Given a pointer to a block of memory that was originally declared as a handle,
XXRecover Handl e returns a handle to the block of memory.

This function is useful when you have the address of a block of memory that you know
is a handle, and you need to get atrue handle to the block of memory.

Parameter Type Description
p UPt r Pointer to arelocatable block of memory.

A handle to the block of memory to which p refers. Returns NULL if the
routine fails.

AZSetHandleSize
DSSetHandleSize

syntax

returns

MyEr r AZSet Handl eSi ze(h, size);
MyEr r DSSet Handl eSi ze(h, size);

XXSet Handl eSi ze changes the size of the block of memory referenced by the
specified handle.

While LabVIEW arrays are stored in DS handles, you should not use this function to
resize array handles. Many platforms have memory alignment requirements that make it
difficult to determine the correct size for the resulting array. Instead, you should use
either Numeri cArrayResi ze or Set Cl NArr aySi ze, which are described in the
Resizing Arrays and Strings section of Chapter 2, CIN Parameter Passing. Y ou should
not use these functions on alocked handle.

Parameter Type Description
h UHandl e Handle to resize.
size i nt 32 New size, in bytes, of the handle.

MyEr r , which can contain the errorsin the following list.

Error Description

nokErr No error.

nFul | Err Not enough memory to perform operation.
mZonekr r Handle or pointer not in specified zone.

LabVIEW Code Interface Reference Manual 6-4 © National Instruments Corporation

Chapter 6 Memory Manager Functions

AZSetHSzClr
DSSetHSzClr

syntax MyEr r ZSet HSzCl r (h, size);
MyEr r DSSet HSzC r (h, si ze);

XXSet HSzCl r changes the size of the block of memory referenced by the specified
handle and sets any hew memory to zero. Y ou should not use this function on alocked

handle.

Parameter Type Description

h UHandl e Handleto resize.

size i nt32 New size, in bytes, of the handle.
returns MyEr r , which can contain the errorsin the following list.

Error Description

noErr No error.

nFul | Err Not enough memory to perform operation.

nzZonekErr Handle or pointer not in specified zone.

Allocating and Releasing Pointers

AZDisposePtr
DSDisposePtr

syntax MyEr r AZDi sposePtr (p);
MyErr D SDi sposePtr (p);

XXDi sposePt r releases the memory referenced by the specified pointer.

Parameter Type Description
p UPt r Pointer to dispose.
returns MyEr r , which can contain the errorsin the following list.
Error Description
noErr No error.
nzZonekErr Handle or pointer not in specified zone.

© National Instruments Corporation 6-5 LabVIEW Code Interface Reference Manual

Chapter 6 Memory Manager Functions

AZNewPClr
DSNewPClIr

syntax UPt r AZNewPCl r (si ze);
UPt r DSNewPCl r (si ze) ;

XXNewPCl r createsanew pointer to anonrelocatable block of memory of the specified
size and initializes the memory to zero.

Parameter Type Description
size i nt32 Size, in bytes, of the pointer to create.
returns A pointer to ablock of size bytesfilled with zeros. Returns NULL if the allocation

could not be performed.

AZNewPtr
DSNewPtr
syntax UPt r AZNewPt r (si ze) ;
UPt r DSNewPt r (si ze) ;
XXNewpPt r creates a new pointer to a nonrelocatable block of memory of the specified
size.
Parameter Type Description
size i nt 32 Size, in bytes, of the pointer to create.
returns A pointer to ablock of size bytes. Returns NULL if the allocation could not

be performed.

Manipulating Properties of Handles

AZHLock
syntax MyEr r AZHLock(h);

AZHLock locks the memory referenced by the application zone handle h so that the
memory cannot move. This means the memory manager cannot move the block of
memory to which the handle refers.

Do not lock handles more than necessary; it interferes with efficient memory
management. Also, do not enlarge alocked handle.

LabVIEW Code Interface Reference Manual 6-6 © National Instruments Corporation

Chapter 6 Memory Manager Functions

Parameter Type Description

h UHandl e Application zone handle to lock.
returns MyEr r , which can contain the errorsin the following list.

Error Description

nokErr No error.

nZonekErr Handle or pointer not in specified zone.
AZHPurge
syntax voi d AZHPur ge(h) ;

AZHPur ge marks the memory referenced by the application zone handle h as
purgeable. This means that in tight memory conditions the memory manager can

perform an AZEnpt yHandl e on h. Use AZReal | ocHandl e() toreuseahandleif
the manager purges it.

If you mark a handle as purgeable, check the handle before using it to seeif it has
become an empty handle.

Parameter Type Description

h UHandl e Application zone handle to mark as purgeable.
AZHNoPurge
syntax voi d AZHNoPur ge(h) ;

AZHNoPur ge marks the memory referenced by the application zone handle h as

unpurgeable.

Parameter Type Description

h UHandl e Application zone handle to mark as unpurgeable.
AZHUnlock
syntax MyEr r AZHUnl ock(h) ;

© National Instruments Corporation 6-7 LabVIEW Code Interface Reference Manual

Chapter 6 Memory Manager Functions

returns

AZHUnI ock unlocksthe memory referenced by the application zone handle h so that it
can be moved. This means that the memory manager can move the block of memory to
which the handle refers if other memory operations need space.

Parameter Type Description

h UHandl e Application zone handle to unlock.
MyEr r , which can contain the errorsin the following list.

Error Description

noErr No error.

nZonekErr Handle or pointer not in specified zone.

Memory Utilities

AZHandAndHand

DSHandAndHand

syntax MyEr r AZHandAndHand(hl, h2);
MyEr r DSHandAndHand(hl, h2);

XXHandAndHand appends the data referenced by h1l to the end of the memory block
referenced by h2.

Thefunction resizes handle h2 to hold hl and h2 data. If hlisan AZ handle, you should
lock it, because this routine can move memory.

Parameter Type Description

hl UHandl e Source of datato append to h2.

h2 UHandl e Initial handle, to which the data of h1 is appended.
returns MyEr r , which can contain the errors in the following list.

Error Description

nokErr No error.

nFul | Err Not enough memory to perform operation.

nzZonekErr Handle or pointer not in specified zone.
AZHandToHand
DSHandToHand

LabVIEW Code Interface Reference Manual 6-8 © National Instruments Corporation

Chapter 6 Memory Manager Functions

syntax MyEr r AZHandToHand(hp) ;
MyEr r DSHandToHand(hp) ;

XXHandToHand copiesthe datareferenced by the handleto which hp pointsinto anew
handle, and returns a pointer to the new handlein hp.

Y ou can use this routine to copy an existing handle into a new handle. The old handle
remains allocated. This routine writes over the pointer that is passed in, so you should
maintain a copy of the original handle.

Parameter Type Description

hp UHandl e * Pointer to handle to duplicate. A pointer to the
resulting handleis returned in this parameter. See
the Pointers as Parameters section of Chapter 1,
CIN Overview, for more information about using

this parameter.
returns MyEr r , which can contain the errors in the following list.
Error Description
nokErr No error.
nFul | Err Not enough memory to perform operation.
nzZonekErr Handle or pointer not in specified zone.
AZPtrAndHand
DSPtrAndHand
syntax MyEr r AZPt r AndHand(p, h, size);
MyEr r DSPt r AndHand(p, h, size);

XXPt r AndHand appends size bytes from the address referenced by p to the end of the
memory block referenced by h.

Parameter Type Description
p UPt r Source of datato append to h.
h UHandl e Handle to which the data of p is appended.
size i nt32 Number of bytesto copy from p.
returns MyEr r , which can contain the errorsin the following list.
Error Description
noErr No error.

© National Instruments Corporation 6-9 LabVIEW Code Interface Reference Manual

Chapter 6 Memory Manager Functions

nFul | Err Not enough memory to perform operation.
nzZonekErr Handle or pointer not in specified zone.

AZPtrToHand

DSPtrToHand

syntax MyEr r AZPt r ToHand(p, hp, size);
MyEr r D SPt r ToHand(p, hp, size);

XXPt r ToHand creates a new handle of size bytes and copies size bytes from the
address referenced by p to the handle.

Parameter Type Description

p UPtr Source of datato copy to the handle pointed to by
hp.

hp UHandl e * Pointer to new handle. See the Pointers as

Parameters section of Chapter 1, CIN Overview, for
more information about using this parameter.

size i nt 32 Number of bytesto copy from p to the new handle.
returns MyEr r , which can contain the errorsin the following list.

Error Description

noErr No error.

nFul | Err Not enough memory to perform operation.
AZPtrToXHand
DSPtrToXHand
syntax MyEr r AZPt r ToXHand(p, h, size);

MyEr r DSPt r ToXHand(p, h, size);

XXPt r ToXHand copies size bytes from the address referenced by p to the existing
handle h, resizing h, if necessary, to hold the results.

Parameter Type Description

p UPt r Source of datato copy to the handle h.

h UHandl e Destination handle.

size i nt32 Number of bytesto copy from p to the existing
handle.

LabVIEW Code Interface Reference Manual 6-10 © National Instruments Corporation

Chapter 6 Memory Manager Functions

returns MyEr r , which can contain the errorsin the following list.
Error Description
nokErr No error.
nFul | Err Not enough memory to perform operation.
nZonekErr Handle or pointer not in specified zone.
ClearMem
syntax voi d Cl ear Men(p, size);

Cl ear Memsets size bytes starting at the address referenced by p to 0.

Parameter Type Description
p UPt r Pointer to block of memory to clear.
size i nt 32 Number of bytesto clear.
MoveBlock
syntax voi d MoveBl ock(ps, pd, size);

MoveBl ock moves size bytes from one address to another. The source and destination
memory blocks can overlap.

Parameter Type Description
ps UPtr Pointer to source.
pd UPt r Pointer to destination.
size i nt32 Number of bytesto move.
SwapBlock
syntax voi d SwapBl ock(ps, pd, size);

SwapBIl ock swaps size bytes between the section of memory referred to by psand pd.
The source and destination memory blocks should not overlap.

Parameter Type Description
ps UPtr Pointer to source.
pd UPt r Pointer to destination.

© National Instruments Corporation 6-11 LabVIEW Code Interface Reference Manual

Chapter 6 Memory Manager Functions

size i nt32 Number of bytesto move.

Handle and Pointer Verification

AZCheckHandle
DSCheckHandle

syntax MyEr r AZCheckHandl e(h) ;
MyEr r DSCheckHandl e(h);

XXCheckHandl e verifies that the specified handle isreally a handle. If the handleis
not areal handle, this function returns mzZonekrr.

Parameter Type Description
h UHandl e Handle to verify.
returns MyEr r , which can contain the errorsin the following list.
Error Description
nokErr No error.
nzZoneErr Handle or pointer not in specified zone.
AZCheckPtr
DSCheckPtr
syntax MyEr r AZCheckPtr (p);
MyEr r DSCheckPtr (p);

XXCheckPt r verifiesthat the specified pointer is a pointer allocated with XXNewPt r
or XXNewPCl r . If the pointer is not areal pointer, this function returns mZonekrr.

Parameter Type Description
p UPt r Pointer to verify.
returns MyEr r , which can contain the errors in the following list.
Error Description
nokErr No error.
nmZonekErr Handle or pointer not in specified zone.

LabVIEW Code Interface Reference Manual 6-12 © National Instruments Corporation

Chapter 6 Memory Manager Functions

Memory Zone Utilities

AZHeapCheck
DSHeapCheck

syntax i nt 32 AZHeapCheck(Bool 32 d);
i nt 32 DSHeapCheck(Bool 32 d);

XXHeapCheck verifiesthat the specified heap isnot corrupt. Thisfunction returnsazero
for an intact heap and a nonzero value for a corrupt heap.

Parameter Type Description
d Bool 32 Dump extensive heap examination to auxiliary
screen.
returns i nt 32, which can contain the errorsin the following list.
Value Description
noErr The heap isintact.

nCor r upt Err The heap is corrupt.

AZMaxMem
DSMaxMem
syntax i nt 32 AZMaxMen() ;
i nt 32 DSvaxMem() ;
XXMaxMemreturns the size of the largest block of contiguous memory available for
allocation.
returns i nt 32, the size of the largest block of contiguous memory available for

alocation.

© National Instruments Corporation 6-13 LabVIEW Code Interface Reference Manual

Chapter 6 Memory Manager Functions

AZMemStats
DSMemStats

syntax voi d AZMentt at s(Menfst at Rec *mnrsr p) ;
voi d DSMentt at s(Mentst at Rec *nsr p) ;

XXMenft at s returns various statistics about the memory in a zone.

Parameter Type Description

msrp Mentt at Rec* Returns statistics about the zone's free memory ina
Mentt at Rec structure. See the Pointers as
Parameters section of Chapter 1, CIN Overview, for
more information about using this parameter.

A Mentt at Rec structure is defined as follows.

typedef struct {
int32 totFreeSi ze, maxFreeSi ze, nFreeBl ocks;
int32 totAllocSize, maxAllocSize;
i nt 32 nPoi nters, nUnl ockedHdl s, nLockedHdl s;
int32 reserved [4];

}

The free memory in a zone consists of anumber of blocks of contiguous memory. Inthe
Mentt at Rec structure, totFreeSize is the sum of the sizes of these blocks,
maxFreeSize is the largest of these blocks (as returned by XXMaxMem), and
nFreeBlocks is the number of these blocks.

Similarly, the allocated memory in a zone consists of a number of blocks of contiguous
memory. In the Mentt at Rec structure, totAllocSize is the sum of the sizes of these
blocks and maxAllocSize is the largest of these blocks.

Because there are three different varieties of allocated blocks, the numbers of blocks of
each type is returned separately.

nPointers (i nt 32) isthe number of pointers. nUnlockedHdIs (i nt 32) isthe number
of unlocked handles. nL ockedHdlIs (i nt 32)isthe number of locked handles. Add these
three values together to find the total number of allocated blocks.

The four reserved fields are reserved for use by National Instruments.

LabVIEW Code Interface Reference Manual 6-14 © National Instruments Corporation

File Manager Functions

File Manager Data Structures

File/Directory Information Record

Several routines in the file manager work with a data structure that
definesthe attributes of afile or directory. The following list givesthe

file/directory information record.

typedef struct {

int32

int32

int32

int32

int32

ul nt 32

ul nt 32

Bool 32

Bool 32

[J National Instruments Corporation

type;

creator;

per ni ssi ons;

si ze;

rfSize;

cdat e;

ndat e;

f ol der;

i sl nvisible;

7-1

* systemspecific file type-
- 0 for directories */

* systemspecific file
creator-- 0 for folders (on
Mac only)*/

* systemspecific file access
rights */

/* file size in bytes (data
fork on Mac) or entries in
directory*/

/* resource fork size (on Mac
only) */

/* creation date: seconds
since systemreference tine
*/

/* last nodification date:
seconds since systemref tine
*/

/* indicates whether path
refers to a folder */

/* indicates whether fileis
visible in File Dialog (on
Mac only)*/

LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

File Type Record

Poi nt | ocation; /* system specific desktop
geogr aphi cal | ocation (on Mac
only)*/

Str255 owner ; /* owner (in pascal string
form) of file or folder */

Str 255 group; /* group (in pascal string
form of file or folder */

} FIl nf oRec, *FInfoPtr;

Thefile type record is:

typedef struct {

int32 fl ags;
int32 type;
} Fi |l eType;

Only the least significant four bits of f | ags contain useful
information. The remaining bits are reserved for use by LabVIEW.
You can test these four bits using the following four masks:

#define klsFile 0x01

#def i ne kRecogni zedType 0x02
#define klsLink 0x04

#define kFlslnvisible 0x08

Thekl sFi | e hitissetif theitem described by the filetyperecordis
afile; otherwiseitisclear. The kRecogni zedType bit is set if the
item described is afile for which you can determine a 4-character file
type; otherwiseitisclear. Thekl sLi nk bitissetif theitem described
isaUNIX link or Macintosh dias; otherwiseit is clear. The

kFl sl nvi si bl e bitissetif the item described will not appear in a
file dialog; otherwiseit isclear.

Thevalue of t ype isdefined only if the KkRecogni zedType bhitis
setinfl ags. Inthiscase, t ype isthe 4-character file type of thefile
described by thefile type record. This 4-character filetypeisprovided
by the file system on the Macintosh and is computed by examining the
file name extension on other systems.

LabVIEW Code Interface Reference Manual 7-2 [J National Instruments Corporation

Path Data Type

Permissions

Chapter 7 File Manager Functions

The file manager defines the Pat h datatype for use in describing
pathsto files and directories. The data structure for the Pat h datatype
is private. You use file manager routines to create and manipulate
Pat hs.

Thefile manager usesthei nt 32 datatypeto describe permissionsfor
files and directories. The manager uses only the least significant nine
bits of thei nt 32.

On aUNIX computer, the nine bits of permissions correspond exactly
to nine UNIX permission bits governing read, write, and execute
permissions for user, group, and others. Permission bits on a UNIX
system are represented in the following illustration.

user group others

permission rwxrwXxrwX

bit 31 876543210

r - read permission
w - write permission
X - execute permission

Onthe PC, permissions are ignored for directories. For files, only bit 7
(the UNIX user write permission bit) isused. If thisbit isclear, thefile
is read-only. Otherwise, you can write to the file.

On the Macintosh, all nine bits are used for directories (folders). The
bits which control read, write, and execute permissions, respectively,
on a UNIX system are used to control See Files, Make Changes, and
See Folders access rights, respectively, on the Macintosh. For files,
only bit 7 (the UNIX user write permission bit) is used. If thisbit is
clear, thefileislocked. Otherwise, the file is not locked.

Volume Information Record

The volume information record is:

[J National Instruments Corporation 7-3 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

typedef struct {

i nt32 si ze; /* size in bytes of a kuhvkj hgvku
vol ume */

i nt32 used; /* nunber of bytes used on vol une
>/

i nt32 free; /* nunber of bytes avail able for

use on volunme */
} VI nf oRec

File Manager Functions

Performing Basic File Operations

FCreate

syntax MyEr r FCreat e(fdp, path, perm ssions, openhbde,
denyMode, group);

FCr eat e creates afile with the name and location specified by path and with the
specified per missions, and opensit for writing and reading, as specified by openM ode.
If the file already exists, an error is returned.

Y ou can use denyM ode to control concurrent access to the file from within LabVIEW.
The group parameter allows you to assign the file to a UNIX group; under Windows or
Macintosh, group isignored.

If the function creates the file, the resulting file descriptor is stored in the address
referred to by fdp. If an error occurs, the function stores 0 in the address referred to by
fdp and returns an error.

Note: Before attempting to call this function, make sure that you understand
&y pung y!
how to use the fdp parameter. See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information about this parameter.

Parameter Type Description

fdp File * Address at which FCr eat e storesthefile
descriptor for the new file. If FCr eat e fails, it
stores 0 in the address fdp.
See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

path Pat h Path of the file that you want to create.

LabVIEW Code Interface Reference Manual 7-4 [J National Instruments Corporation

Chapter 7 File Manager Functions

permissions i nt 32 Permissions to assign to the new file. Seethe File
Manager Data Structures section for a description
of permissions.

openMode i nt32 Accessmodeto usein opening thefile. Can havethe
following values, which are defined in the file
ext code. h.

« openReadOnl y: Open for reading.
e openWiteOnly: Open for writing
e openReadW i t e: Open for both reading
and writing
denyMode i nt32 Mode that determines what level of concurrent

accessto thefileisallowed. Can havethefollowing
values, which are defined in the file ext code. h.

e denyReadW i t e: Prevents others from
reading from and writing to the filewhileitis
open.

e denyWiteOnly: Prevents others from
writing to the file only while it is open

e denyNei t her: allows othersto read from
and write to the file while it is open.

group PSt r UNIX group you want to assign to the new file.
returns MyEr r , which can contain the errorsin the following list.

Error Description

ngAr gEr r A bad argument was passed to the function. Verify path.

f1sOpen Fileis aready open for writing. This error is returned only on the

Macintosh and the Sun. The PC returnsf | OEr r when thefileis
aready open for writing.

f NoPer m Access denied (something is locked/protected).
f DupPat h A file of that name already exists.
f TMFOpen Too many files open.
flOErr Unspecified I/O error occurred.
FCreateAlways
syntax MyEr r FCr eat eAl ways(fdp, path, perm ssions,

openhbde, denyMbde, group);

[J National Instruments Corporation 7-5 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

returns

FCr eat eAl ways creates afile with the name and location specified by path and with
the specified per missions, and opens the file for writing and reading, as specified by
openMode. If the file already exists, this function opens and truncates the file.

Y ou can use denyM ode to control concurrent access to the file from within LabVIEW.
The group parameter allows you to assign the file to a UNIX group; under Windows or
Macintosh, group isignored.

If the function creates the file, the resulting file descriptor is stored in the address
referred to by fdp. If an error occurs, the function stores 0 in the address referred to by
fdp and returns an error.

Note: Before attempting to call this function, make sure that you understand
how to use the fdp parameter. See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information about this parameter.

Parameter Type Description

fdp File * Addressat which FCr eat eAl ways storesthefile
descriptor for the new file. If FCr eat eAl ways
fails, it stores 0 in the address fdp.
See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

path Pat h Path of the file that you want to create.

permissions i nt32 Permissionsto assign to the new file. Seethe File
Manager Data Structures section of this chapter for
adescription of permissions.

openMode i nt 32 See FM Open for a description of openM ode.
denyMode i nt 32 See FM Open for a description of denyM ode.
group PSt r UNIX group you want to assign to the new file.

MyEr r , which can contain the errors in the following list.

Error Description

ngAr gEr r A bad argument was passed to the function. Verify path.

flsOpen Fileis already open for writing. This error is returned only on the
Macintosh and the Sun. The PC returnsf | OEr r when thefileis
aready open for writing.

f NoPer m Access denied (something is locked/protected).

f DupPat h A file of that name exists.

f TMFOpen Too many files open.

fl1CErr Unspecified 1/0 error occurred.

LabVIEW Code Interface Reference Manual 7-6 [J National Instruments Corporation

Chapter 7 File Manager Functions

FMClose
syntax MyEr r FMCl ose(fd);

FMCI ose closes the file associated with the file descriptor fd.

Parameter Type Description
fd File File descriptor associated with the file you want to
close.
returns MyEr r , which can contain the errors in the following list.
Error Description
ngAr gEr r Not avalid file descriptor.
flOErr Unspecified I/O error occurred.
FMOpen
syntax MyEr r FMpen(fdp, path, openMdde, denyMode);
Note: Before attempting to call this function, make sure that you understand

how to use the fdp parameter. See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information about this parameter.

FMOpen opens afile with the name and location specified by path for writing and
reading, as specified by openM ode.

With the denyM ode parameter, you control concurrent access to the file from within
LabVIEW.

If thisfunction opensthefile, theresulting file descriptor isstored in the addressreferred
to by fdp. If an error occurs, 0 is stored in the address referred to by fdp and the error

is returned.
Parameter Type Description
fdp File * Address at which FMOpen storesthe file descriptor

for the opened file. If the function fails, FMOpen
stores 0 in the address fdp.

[J National Instruments Corporation 7-7 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

path Pat h Path of the file that you want to open.

openMode i nt32 Accessmodeto usein opening thefile. Can havethe
following values, which are defined in the file
ext code. h.

« openReadOnl y: Open for reading.

e openWiteOnly: Openforwriting; fileis
not truncated (data is not removed). On the
Macintosh, this mode provides true write-
only accessto files. On a PC or a UNIX
system, LabVIEW I/O functions are built in
the C standard 1/O library, with which you
havewrite-only accessto afileonly if you are
truncating the file or making the access
append-only. Therefore, this mode actually
allows both read and write access to files on
a PC or UNIX system.

« openReadW i t e: Open for both reading
and writing.

e openWiteOnlyTruncat e: Open for
writing; truncates the file.

denyMode i nt32 Mode that determines what level of concurrent
accessto thefileisallowed. Can havethefollowing
values, which are defined in the file ext code. h.

e denyReadW i t e: Prevents others from
reading from and writing to thefilewhileitis
open.

e denyWiteOnly: Prevents others from
writing to the file only while it is open

e denyNei t her: alows othersto read from
and write to the file while it is open.

returns MyEr r , which can contain the errorsin the following list.
Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.

LabVIEW Code Interface Reference Manual 7-8 [J National Instruments Corporation

f1sOpen

f Not Found
f TMFOpen
flOErr

Chapter 7 File Manager Functions

Fileis aready open for writing. This error is returned only on the
Macintosh and the Sun. The PC returnsf | OEr r when thefileis
aready open for writing.

File not found.

Too many files open.
Unspecified 1/0 error occurred.

FMRead
syntax MyEr r

FMRead(fd, inCount, outCountp, buffer);

FMRead reads inCount bytes from the file specified by the file descriptor fd. The
function starts from the current position mark (see the FSeek and FTel | functions),
and reads the data into memory, starting at the address specified by buffer.

Thefunction storesthe actual number of bytesread in* outCountp. The number of bytes
can belessthan inCount if the function encounters end-of-file before reading inCount
bytes. The number of bytes will be zero if any other error occurs.

Parameter Type Description
fd File File descriptor associated with the file from which
you want to read.
inCount i nt32 Number of bytes you want to read.
outCountp int32 * Address at which FIMRead stores the number of
bytes read. FMRead will not store any value if
NULL is passed.
See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.
buffer UPt r Address where FMRead will store the data.
returns MYEr r , which can contain the errors in the following list.
Error Description
ngAr gEr r Not avalid file descriptor or inCount < 0.
f EOF EOF encountered.
flCErr Unspecified 1/0 error occurred.
FMWrite

[J National Instruments Corporation

7-9 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

syntax MyEr r FMWite(fd, inCount, outCountp, buffer);

FMW i t e writesinCount bytes from memory, starting at the address specified by
buffer, to the file specified by the file descriptor fd, starting from the current position
mark (see the FSeek and FTel | functions).

The function stores the actual number of bytes written in * outCountp. The number of
bytesstored can belessthaninCount if anf Di skFul | error occursbeforethe function
writesinCount bytes. The number of bytes stored will be zero if any other error occurs.

Parameter Type Description

fd File File descriptor associated with the fileto which you
want to write.

inCount i nt32 Number of bytes you want to write.

outCountp int32 * Address at which FMW i t e stores the number of

bytes actualy written. FMW i t e will not store any
valueif NULL is passed.

See the Pointers as Parameters section of

Chapter 1, CIN Overview, for more information
about using this parameter.

buffer UPt r Address of the data you want to write.
returns MyEr r, which can contain the errorsin the following list.

Error Description

ngAr gEr r Not avalid file descriptor or inCount < 0.

fDi skFul | Out of space.

f NoPer m Access denied.

fl1CErr Unspecified write error occurred.

Positioning the Current Position Mark

FMSeek
syntax MyEr r FMBeek(fd, ofst, node);

FMSeek sets the current position mark for a file to the specified point, relative to the
beginning of the file, the current position in the file, or the end of the file. If an error
occurs, the current position mark does not move.

Parameter Type Description

LabVIEW Code Interface Reference Manual 7-10 [J National Instruments Corporation

fd File
ofst int32

mode int32

Chapter 7 File Manager Functions

File descriptor associated with the file.

New position of the current position mark. The
position is the number of bytes from the beginning
of thefile, the current position mark, or the end of
thefile, as determined by mode.

Position in thefile relative to which FMSeek sets
the current position mark for afile.

If modeisf St ar t , the current position mark
moves to ofst bytesrelative to the start of the file
(ofst must be greater than or equal to 0).

If modeisf Cur r ent , the current position mark
moves ofst bytes from the current position mark
(ofst can be positive, 0, or negative).

If modeisf End, the current position mark moves
to of st bytes from the end of the file (ofst must be
less than or equal to 0).

returns MyEr r , which can contain the errorsin the following list.

Error Description

ngAr gEr r Not avalid file descriptor.
f EOF Attempt to seek before the start or after the end of thefile.
fl1CErr Unspecified 1/0 error occurred.

FMTell

syntax MyEr r FMrel | (fd, ofstp);

FMTel | returns the position of the current position mark in the file.

Parameter Type
fd File
ofstp int32 *

Description

File descriptor associated with thefile.

Addressat which FMTel | storesthe position of the
current position mark, in terms of bytesrelative to
the beginning of thefile. If an error occurs, the
contents of ofstp is undefined.

See the Pointers as Parameters section of

Chapter 1, CIN Overview, for more information
about using this parameter.

returns MyEr r , which can contain the errorsin the following list.

[J National Instruments Corporation

7-11 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

Error Description
ngAr gEr r Not avalid file descriptor.
fl1CErr Unspecified 1/0 error occurred.

Positioning the End-Of-File Mark

FGetEOF
syntax MyEr r FGet EOF(fd, sizep);

FGet EOF returns the size of the specified file.

Parameter Type Description
fd File File descriptor associated with the file.
sizep int32 * Address at which FGet EOF storesthe size of the

filein bytes. If an error occurs, the contents of
*sizep is undefined.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MyEr r , which can contain the errorsin the following list.
Error Description
ngAr gEr r Not avalid file descriptor.
fl1CErr Unspecified 1/0 error occurred.
FSetEOF
syntax MyEr r FSet EOF(fd, size);
FSet EOF sets the size of the specified file. If an error occurs, the file size does not
change.
Parameter Type Description
fd File File descriptor associated with thefile.
size i nt32 New file sizein bytes.
returns MyEr r , which can contain the errorsin the following list.

LabVIEW Code Interface Reference Manual 7-12 [J National Instruments Corporation

Chapter 7 File Manager Functions

Error Description

ngAr gEr r Not avalid file descriptor or size< 0.

f Di skFul | Diskisfull.

f NoPer m Access denied (file exists or something is locked/protected).
flOErr Unspecified I/O error occurred.

Flushing File Data to Disk

FFlush
syntax MyEr r FFl ush(fd);

FFl ush writes any buffered data for the specified file out to the disk.

Parameter Type Description

fd File File descriptor associated with thefile.
returns MyEr r , which can contain the errors in the following list.

Error Description

ngAr gEr r Not avalid file descriptor.

flOErr Unspecified I/O error occurred.

Determining File, Directory, and Volume Information

FEXists
syntax i nt32 FExi st s(pat h);

FExi st s returns information about the specified file or directory. It returns less
information than FGetInfo, but it is much quicker on many platforms.

Parameter Type Description
path Pat h Path of thefile or directory about which you want
information.
returns i nt 32, which is one of the following values.
Error Description
kFI sFile Specified itemisafile.

[J National Instruments Corporation 7-13 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

kFl sFol der Specified item isadirectory or folder.
KFNotEXist Specified item does not exist.

FGetAccessRights

syntax MyEr r FGet AccessRi ght s(path, owner, group,
pernPtr);
FGet AccessRi ght s returns access rights information about the specified file or
directory.
Parameter Type Description
path Pat h Path of thefile or directory about which you want
access rights information.
owner PSt r Addressat whichFGet AccessRi ght s storesthe
owner of thefile or directory.
group PSt r Addressat whichFGet AccessRi ght s storesthe
group of the file or directory.
permPtr int32 * Addressat which FGet AccessRi ght s storesthe
permissions of thefile or directory. See the File
Manager Data Structures section of this chapter for
a description of permissions.
See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.
returns MyEr r , which can contain the errors in the following list.
Error Description
nmgAr gEr r A bad argument was passed to the function. Verify path.
f Not Found File not found.
flCerr Unspecified 1/0 error occurred.
FGetinfo
syntax MyEr r FGet | nf o(pat h, infop);

FGet | nf o returns information about the specified file or directory.

Parameter Type Description

LabVIEW Code Interface Reference Manual 7-14 [J National Instruments Corporation

Chapter 7 File Manager Functions

path Pat h Path of thefile or directory about which you want
information.
infop Fl nf oPtr Address where FCet | nf o storesinformation

about the file or directory. If an error occurs, the
information is undefined. See the File Manager
Data Structures section of this chapter for a
description of the FI nf oPt r datatype.

See also the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MyEr r , which can contain the errorsin the following list.
Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.
f Not Found File not found.
fl1CErr Unspecified 1/0 error occurred.
FGetVolinfo
syntax MyEr r FGet Vol | nfo(path, vinfo);

FCGet Vol | nf o getsa path specification and information for the volume containing the
specified file or directory.

Parameter Type Description

path Pat h Path of afile or directory contained on the volume
from which you want to get information. This path
is overwritten with a path specifying the volume
containing the specified file or directory. If an error
occurs, this path is undefined.

vinfo VI nfoRec * Addressat which FGet Vol | nf o storesthe
information about the volume. If an error occurs, the
information is undefined. See the File Manager
Data Structures section of this chapter for a
description of the VI nf oRec datatype.
See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MyEr r , which can contain the errorsin the following list.

[J National Instruments Corporation 7-15 LabVIEW Code Interface Reference Manual

Chapter 7

File Manager Functions

Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.
fl1CErr Unspecified 1/0 error occurred.

FSetAccessRights

syntax MyEr r FSet AccessRi ght s(path, owner, group,
pernPtr);
FSet AccessRi ght s setsaccess rightsinformation for the specified file or directory.
If an error occurs, no information changes.
Parameter Type Description
path Pat h Path of thefileor directory for which you want to set
access rights information.
owner PSt r New owner that FSet AccessRi ght s setsfor the
file or directory if owner isnot NULL.
group PStr New group that FSet AccessRi ght s setsfor the
file or directory if group isnot NULL.
permPtr int32 * Address of new permissions that
FSet AccessRi ght s setsfor thefileor directory
if permPtr isnot NULL.
returns MyEr r , which can contain the errors in the following list.
Error Description
nmgAr gEr r A bad argument was passed to the function. Verify path.
f Not Found File not found.
flCerr Unspecified 1/0 error occurred.
FSetinfo
syntax MyEr r FSet | nf o(pat h, infop);

FSet | nf o setsinformation for the specified file or directory. If an error occurs, no
information changes.

Parameter Type Description
path Pat h Path of thefileor directory for which you want to set
information.

LabVIEW Code Interface Reference Manual 7-16 [J National Instruments Corporation

Chapter 7 File Manager Functions

infop FI nf oPt r Address of information FSet | nf o setsfor thefile
or directory. See the File Manager Data Structures
section of this chapter for a description of the
FI nf oPt r datatype.

returns MyEr r , which can contain the errorsin the following list.
Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.
f Not Found File not found.
flOErr Unspecified I/O error occurred.

Getting Default Access Rights Information

FGetDefGroup
syntax LSt r Handl e FGet Def Gr oup(gr oupHandl e) ;

FGet Def Gr oup gets the LabVIEW default group for afile or directory.

Parameter Type Description

groupHandle LSt r Handl e Handlethat represents the LabVIEW default group
for afile or directory.
If groupHandleisNULL, FGet Def G- oup
alocates anew handle and returnsthe default group
init. If groupHandleisahandle, FGet Def Gr oup
returnsit, and groupHandle resizes to hold the
default group.

returns Theresulting LSt r Handl e; if groupHandle was not NULL, then the return
valueisthe same LSt r Handl e asgroupHandle. If an error occurs, NULL is
returned.

Creating and Determining the Contents of Directories

FListDir
syntax MyEr r FListDir(path, list, typeH);

FLi st Di r determines the contents of adirectory.

[J National Instruments Corporation 7-17 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

The function fills the (AZ) handle passed in list with a CPSt r , where the cnt field
specifies the number of concatenated Pascal stringsthat follow inthestr[] field. See
the Dynamic Data Types section of Chapter 5, Manager Overview, for a description of
the CPSt r datatype. If typeH is not NULL, the function fills the AZ handle passed in
typeH with the file type information for each file name or directory name stored in list.

Parameter Type Description

path Pat h Path of the directory whose contents you want to
determine.

list CPSt r Handl e Application zone handleinwhich FLi st Di r

stores a series of concatenated Pascal strings,
preceded with a 4-byte integer field, cnt, that
indicates the number of itemsin the buffer.

typeH Fil eType Application zone handle in which FLi st Di r
storesaseriesof Fi | eType records. If typeH is
not NULL, then FLi st Di r storesoneFi | eType
record in typeH for each Pascal string in list. The
nthFi | eType intypeH denotesthefiletype
information about thefile or directory named in the
nth string in list. See the File Manager Data
Sructures section of thischapter for adescription of
theFi | eType datatype.

returns MyEr r, which can contain the errorsin the following list.
Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.
f Not Found Directory not found.
f NoPer m Access denied (file/directory/disk is locked/protected).
nFul | Err Insufficient memory.
f1CErr Unspecified 1/0 error occurred.

FNewDir

syntax MyEr r FNewDi r (pat h, permi ssions);

FNewDi r createsanew directory with the specified per missions. If an error occurs, the
function does not create the directory.

Parameter Type Description
path Pat h Path of the directory you want to create.

LabVIEW Code Interface Reference Manual 7-18 [J National Instruments Corporation

Chapter 7 File Manager Functions

permissions i nt 32 Permissions for the new directory. Seethe File
Manager Data Structures section of this chapter for
adescription of permissions.
returns MyEr r , which can contain the errorsin the following list.
Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.
f NoPer m Access denied (file/directory/disk is locked /protected).
f DupPat h Directory aready exists.
fl1CErr Unspecified 1/0 error occurred.
Copying Files
FCopy
syntax MyEr r FCopy(ol dPat h, newPat h) ;

FCopy copiesafile, preserving thetype, creator, and accessrights. Thefileto be copied
must not be open. If an error occurs, the new file is not created.

Parameter Type Description
oldPath Pat h Path of the file you want to copy.
newPath Pat h Path, including filename, where you want the new
file to be stored.
returns MyEr r , which can contain the errors in the following list.
Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.
f Not Found The origina file could not be found.
f NoPer m Access denied (file/directory/disk is locked/protected).
f Di skFul | Disk isfull.
f DupPat h The new file already exists.
f1sOpen The origina fileis open for writing.
f TMFOpen Too many files open.
nFul | Err Insufficient memory.
fl1CErr Read, write, or unspecified |/O error occurred

[J National Instruments Corporation

7-19 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

Moving and Deleting Files and Directories

FMove
syntax MyEr r FMove(ol dPat h, newPat h) ;

FMove moves afile or renamesit if the new path indicates the file is to remain in the
same directory.

Parameter Type Description
oldPath Pat h Path of thefile or directory you want to move.
newPath Pat h Path, including the name of thefile or directory,

where you want the file or directory to be moved.

returns MyEr r , which can contain the errorsin the following list.
Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.
f Not Found The original file could not be found.
f NoPer m Access denied (file/directory/disk is locked/protected).
f Di skFul | Disk isfull.
f DupPat h The new file aready exists.
f1sOpen The original fileis open for writing.
f TMFOpen Too many files open.
nFul | Err Insufficient memory.
f1CErr Read, write, or unspecified 1/O error occurred.
FRemove
syntax MyEr r FRenove(pat h) ;

FRenmove deletesafile or adirectory. If an error occurs, this function does not remove
the file or directory.

Parameter Type Description

path Pat h Path of the file or directory you want to delete.
returns MyEr r , which can contain the errorsin the following list.

Error Description

nmgAr gErr A bad argument was passed to the function. Verify path.

LabVIEW Code Interface Reference Manual 7-20 [J National Instruments Corporation

Chapter 7 File Manager Functions

f Not Found Thefile could not be found.

f NoPer m Access denied (file/directory/disk is locked/protected).
f1sOpen Fileis open or directory is not empty.

fl1CErr Unspecified 1/0 error occurred.

Locking a File Range

FLockOrUnlockRange
syntax MyEr r

FLockOr Unl ockRange(fd, node, offset,

| ock);

FLockOr Unl ockRange locks or unlocks a section of afile.

Parameter Type
fd File
mode int32
offset i nt32
count i nt32
lock Bool 32

[J National Instruments Corporation

Description

File descriptor associated with the file.

Position in the file relative to which

FLockOr Unl ockRange determinesthefirst byte
to lock or unlock.

If modeisf St art , thefirst byteto lock or unlock
islocated offset bytes from the start of the file
(offset must be greater than or equal to 0).

If modeisf Current, thefirst byteto lock or
unlock islocated offset bytes from the current
position mark (offset can be positive, O, or
negative).

If modeisf End, thefirst byteto lock or unlock is
located offset bytes from the end of the file (offset
must be less that or equal to 0).

The position of the first byteto lock or unlock. The
position is the number of bytes from the beginning
of thefile, the current position mark, or the end of
thefile, as determined by mode.

Number of bytesto lock or unlock starting at the
location specified by mode and offset.

A boolean that specifies whether

FLockOr Unl ockRange locksor unlocksarange
of bytes. If lock is TRUE this functions locks a
range; if FALSE the function unlocks arange.

7-21 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

returns MyEr r , which can contain the errorsin the following list.
Error Description
flOErr Unspecified I/O error occurred.

Matching Filenames with Patterns

FStrFitsPat
syntax Bool 32 FStrFitsPat (pat, str, plLen, slLen);

FStr Fi t sPat determines whether afilename, str, matches a pattern, pat.

Parameter Type Description

pat uChar * Pattern (string) to which filenameisto be compared.
The following characters have special meaningsin
the pattern.

e« \ : Thefollowing character is literal, not
treated as having a special meaning. A single
backslash at the end of pat isthe same astwo
backslashes.

e ? :Match any one character.

e * : Match zero or more characters.

str uChar * Filename (string) to compare to pattern.
pLen i nt 32 Number of charactersin pat.
sLen i nt 32 Number of charactersin str.
returns FSt rFi t sPat returns TRUE if the filename fits the pattern; FALSE if
otherwise.

Creating Paths
FAddPath

syntax MyEr r FAddPat h(basePat h, rel Path, newPath);
FAddPat h creates an absolute path by appending arelative path to an absolute path

LabVIEW Code Interface Reference Manual 7-22 [J National Instruments Corporation

Chapter 7 File Manager Functions

% Note You can pass in the same path variable for the new path that you use for
thebasePat h or r el Pat h. Thus, the following three variations for
calling this function work.

FAddPat h(basePat h, rel Path, newPath);

/* the new path is returned in a third path variable */
FAddPat h(pat h, rel Path, path);

/* the new path wites over the old base path */
FAddPat h(basepath, path, path);

/* the new path wites over the old relative path */

Parameter Type Description

basePath Pat h Absolute path to which you want to append a
relative path.

relPath Pat h Relative path you want to append to the existing
base path.

newPath Pat h Path returned by FAddPat h.

returns MyEr r , which can contain the errorsin the following list.

Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.
nFul | Err Insufficient memory.

FAppendName

syntax MyEr r FAppendNane(pat h, nane);

FAppendName appends afile or directory name to an existing path.

Parameter Type Description

path Pat h Base path to which you want to append anew file or
directory name. FAppendNarne returnsthe
resulting path in this parameter.

name PSt r Fileor directory namethat you want to append to the
existing path.

[J National Instruments Corporation 7-23 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

returns MyEr r , which can contain the errorsin the following list.

Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.
nFul | Err Insufficient memory.

FAppPath
syntax MyErr FAppPat h(p);

FAppPat h determines the path to the currently executing LabVIEW application.

Parameter Type Description

p Pat h Path in which FAppPat h stores the path to the
currently executing LabVIEW application. p must
aready be an alocated path.

returns MyEr r , which can contain the errorsin the following list.
Error Description
ngAr gErr A bad argument was passed to the function. Verify path.
nFul | Err Insufficient memory.
f Not Found File not found.
f1COErr Unspecified 1/0 error occurred.
FEmptyPath
syntax Pat h FEnpt yPat h(p) ;

FEnpt yPat h makes an empty absolute path. Making a path an empty absolute path is
not the same as disposing the path.

Parameter Type Description

p Pat h Path alocated by FEnpt yPat h. If pisNULL,
FEnpt yPat h alocates anew path and returnsthe
value. If p isapath, the existing path is set to be an
empty path, and the new p is returned.

returns The resulting path; if p was not NULL, the return value is the same empty
absolute path as p. If an error occurs, NULL is returned.

LabVIEW Code Interface Reference Manual 7-24 [J National Instruments Corporation

FMakePath
syntax Pat h

Chapter 7 File Manager Functions

FMakePat h(pat h, type, [vol unme, directory,
directory, ..., nane,] NULL);

The brackets indicate that the volume, directory, and name parameters are optional.

FMakePat h creates a new path. If path isNULL, the function allocates and returns a
new path. Otherwise, path is set to the new path, and path isreturned. If an error occurs,
or the path is not specified correctly, NULL is returned.

When you are finished using a path, you should dispose of it using FDi sposePat h.

Parameter Type
path Pat h

type i nt 32

vol PStr

directory PSt r

name PStr

NULL PSt r

Description
Parameter in which FMakePat h returnsthe newly
created path if path isnot NULL.

Type of path to create. If typeisf AbsPat h, the
new pathwill beabsolute. If typeisf Rel Pat h,the
new path will be relative.

Pascal string containing alegal volume name. An
empty string means go up alevel in the path
hierarchy. This parameter is optional, and is only
used for absolute paths on Macintosh or Windows
platforms.

Pascal string containing alegal directory name. An
empty string means go up alevel in the path
hierarchy. Parameter is optional.

Fileor directory name. An empty string meansgo up
alevel in the path hierarchy. Parameter is optional.
Marker indicating the end of the path.

returns Theresulting path; if you specified path, the return value is the same path as
path. If an error occurs, NULL is returned.

FNotAPath
syntax Pat h

FNot APat h(p) ;

FNot APat h creates a path that is the canonical invalid path.

Parameter Type
p Pat h

[J National Instruments Corporation

Description
Path allocated by FNot APat h. If p is NULL,
FNot APat h allocatesanew canonical invalid path

7-25 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

and returnsthevalue. If p isapath, the existing path
is set to the canonical invalid path, and thenew p is
returned.

returns The resulting path. If p was not NULL, the return value is the same canonical
invalid path as p. If an error occurs, NULL is returned.

FRelPath
syntax MyEr r FRel Pat h(start Path, endPath, rel Path);

FRel Pat h computes arelative path between two absolute paths.

Note: You can pass in the same path variable for the new path that you use for
thest art Pat h or r el Pat h. Thus, the following three variations for
calling this function work.

FRel Pat h(startPath, endPath, rel Path);

/* the relative path is returned in a third path variable */
FRel Pat h(startPath, endPath, startPath);

/* the new path wites over the old startPath */

FRel Pat h(startPat h, endPath, endPath);

/* the new path wites over the old endPath */

Parameter Type Description

startPath Pat h Absolute path from which you want the rel ative path
to be computed.

endPath Pat h Absolute path to which you want the rel ative path to
be computed.

relPath Pat h Path returned by f AddPat h.

returns MyEr r , which can contain the errorsin the following list.

Error Description

ngAr gEr r A bad argument was passed to the function. Verify path.

nFul | Err Insufficient memory.

LabVIEW Code Interface Reference Manual 7-26 [J National Instruments Corporation

Chapter 7 File Manager Functions

Disposing Paths

FDisposePath
syntax

MEr r FDi sposePat h(p);

FDi sposePat h disposes of the specified path.

Parameter Type Description
p Pat h Path you want to dispose of.
returns MyEr r , which can contain the errorsin the following list.
Error Description
nzZonekErr Invalid path.
Duplicating Paths
FPathCpy
syntax MyEr r FPat hCpy(dst, src);

FPat hCpy duplicates the path specified by src, and stores the resulting path in the
existing path, dst.

Parameter Type Description
dst Pat h Path where FPat hCpy places the resulting
duplicate path. This path must already have been
created.
src Pat h Path that you want to duplicate.
returns MyEr r , which can contain the errors in the following list.
Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.
FPathToPath
syntax MyEr r FPat hToPat h(p) ;

[J National Instruments Corporation 7-27 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

FPat hToPat h duplicates the specified path and returns the new path in the same

variable.

Parameter Type Description

p Path * Address of path to duplicate. Variable to which
FPat hToPat h returns the resulting path.
See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MyEr r , which can contain the errorsin the following list.
Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.

Extracting Information from a Path

FDepth
syntax i nt 32 FDept h(pat h) ;

FDept h computes the depth (number of component names) of a specified path.

Parameter Type Description
path Pat h Path whose depth you want to determine.
returns i nt 32 indicating the depth of the specified path, which can have thefollowing
values for this function.
Value Description
-1 Badly formed path.
0 Path is the root directory.
1 Path isin the root directory.
2 Path isin a subdirectory of the root directory, one level from the root
directory.
n-1 Path is n-2 levels from the root directory.

Path is n-1 levels from the root directory.

LabVIEW Code Interface Reference Manual 7-28 [J National Instruments Corporation

Chapter 7 File Manager Functions

FDirName

syntax

MyEr r FDi r Name(path, dir);

FDi r Nare creates a path for the parent directory of a specified path.

% Note You can passin the same path variable for the parent path that you usefor
pat h. Thus, the following variations for calling this function work.
err = FDi rName(path, dir);
/* the parent path is returned in a second path variable */
err = FDi r Name(path, path);
/* the parent path wites over the existing path */
Parameter Type Description
path Pat h Path whose parent path you want to determine.
dir Pat h Parameter in which FDi r Nane stores the parent
path.
returns MyEr r , which can contain the errorsin the following list.
Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.
FName
syntax MyEr r FName(pat h, nane);
FName copies the last component name of a specified path into a string handle and
resizes the handle as necessary.
Parameter Type Description
path Pat h Path whose last component name you want to
determine.
name Stri ngHandl e
Handle in which FNane returnsthe last component
name as a Pascal string.
returns MyEr r , which can contain the errorsin the following list.

Error Description

[J National Instruments Corporation 7-29 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

ngAr gEr r Badly formed path or path isroot directory.
nFul | Err Insufficient memory.

FNamePtr

syntax MyEr r FNamePt r (pat h, name);

returns

FNanePt r copiesthe last component name of a specified path to the address specified
by name. This routine does not allocate space for the returned data, so name must
specify allocated memory of sufficient size to hold the component name.

Parameter Type Description

path Pat h Path whose last component name you want to
determine.

name PSt r Address at which FNarnePt r stores the last

component name as a Pascal string. This address
must specify allocated memory of sufficient sizeto
hold the name.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

MyEr r , which can contain the errors in the following list.

Error Description
ngAr gEr r Badly formed path or path isroot directory.
nFul | Err Insufficient memory.

FVolName

syntax

MyEr r FVol Name(pat h, vol);

FVol Nane creates a path for the volume of a specified absolute path by removing all
but the first component name from path.

Note: You can passin the same path variable for the volume path that you use
for pat h. Thus, the following variations for calling this function work.

err = FVol Name(path, vol);

/* the parent path is returned in a second path variable */

LabVIEW Code Interface Reference Manual 7-30 [J National Instruments Corporation

returns

Chapter 7 File Manager Functions

err = FVol Name(path, path);

/* the parent path writes over the existing path */

Parameter Type Description
path Pat h Path whose volume path you want to determine.
vol Pat h Parameter in which FVol Nare stores the volume
path.
MEr r , which can contain the errorsin the following list.
Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.

Converting Paths to and from Other Representations

FArrToPath

syntax

returns

MyEr r FArr ToPat h(arr, relative, path);

FAr r ToPat h convertsaspecified one-dimensional LabVIEW array of stringsto apath
of the type specified by relative. Each string in the specified array is converted in order
into a component name of the resulting path.

If no error occurs, path is set to a path whose component names are the stringsin arr. If
an error occurs, path is set to the canonical invalid path.

Parameter Type Description

arr UHandl e The (DS) handle containing the array of strings
which you wish to convert to a path.

relative Bool 32 If relative is TRUE, then the resulting path is
relative; otherwise, the resulting path is absolute.

path Pat h Path where FArrToPath stores the resulting path.

This path must already have been allocated.

MyEr r , which can contain the errorsin the following list.
Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.
mFul | Err Insufficient memory.

[J National Instruments Corporation 7-31 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

FFlattenPath
syntax int32 FFlattenPath(p, fp);

FFI at t enPat h converts a path into aflat form that you can use to write the path as
information to afile. The function stores the resulting flat path in a pre-allocated buffer
and returns the number of bytes.

Y ou can determine the size needed for the flattened path by passing NULL for fp, in
which case the function returns the necessary size without writing anything into the
location pointed to by fp.

Parameter Type Description
p Pat h Path you want to flatten.
fp UPt r Addressin which FFl at t enPat h storesthe

resulting flattened path. If thisvalueis NULL,
FFl at t enPat h does not write anything to this
address, but does return the size that the flattened
path would require.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns i nt 32, indicating the number of bytes required to store the flattened path.
FPathToArr
syntax MyEr r FPat hToArr (path, relativePtr, arr);

FPat hToAr r convertsaspecified path to aone-dimensional LabVIEW array of strings
and determines whether the specified path is relative. Each component name of the
specified path is converted in order into astring in the resulting array.

If no error occurs, arr is set to an array of strings containing the component names of
path. If an error occurs, arr is set to an empty array.

Parameter Type Description

path Pat h The path which you wish to convert to an array of
strings.

relativePtr Bool 32 * Address at which to store a boolean value telling

whether the specified path isrelative.

LabVIEW Code Interface Reference Manual 7-32 [J National Instruments Corporation

Chapter 7 File Manager Functions

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

arr UHandl e (DS) Handle where FPat hToAr r storesthe
resulting array of strings. This handle must already
have been allocated.
returns MyEr r , which can contain the errors in the following list.
Error Description
ngAr gEr r Badly formed path or unallocated array.
nFul | Err Insufficient memory.
FPathToAZString
syntax MyErr FPat hToAZString(p, txt);

FPat hToAZSt ri ng converts a specified path to an LSt r and stores the string as an
application zone handle. The LSt r contains the platform-specific syntax for the path.

Parameter Type Description

p Pat h Path that you want to convert to a string.

txt LSt r Handl e * Address at which FPat hToAZSt ri ng storesthe
resulting string. If the value at txt is nonzero, the
function assumesthat it isavalid handle, resizesthe
handle, fillsinitsvalue, and stores the handle at the
address referred to by txt.
See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MyEr r , which can contain the errors in the following list.

Error Description

ngAr gEr r A bad argument was passed to the function. Verify path.

nul | Err Insufficient memory.

flCerr Unspecified 1/0 error occurred.

[J National Instruments Corporation

7-33 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

FPathToDSString

syntax MyErr FPat hToDSString(p, txt);

FPat hToDSSt r i ng converts a specified path to an LSt r and stores the string as a
data space zone handle. The LSt r contains the platform-specific syntax for the path.

Parameter Type Description

p Pat h Path that you want to convert to a string.

txt LSt r Handl e * Address at which FPat hToDSSt r i ng storesthe
resulting string. If the value at txt is nonzero, the
function assumesthat it isavalid handle, resizesthe
handle, fillsin itsvalue, and stores the handle at the
address referred to by txt.
See the Pointers as Parameter s section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MyEr r , which can contain the errors in the following list.

Error Description

ngAr gEr r A bad argument was passed to the function. Verify path.

nFul | Err Insufficient memory.

fl1Cerr Unspecified 1/0 error occurred.

FStringToPath

syntax MyErr FStringToPat h(text, p);

FStri ngToPat h creates apath froman LSt r. The LSt r contains the platform-

specific syntax for a path.

Parameter Type
text LSt r Handl e
p Path *

LabVIEW Code Interface Reference Manual

Description

String that contains the path in platform-specific
syntax.

Address at which FSt ri ngToPat h storesthe
resulting path. If the value at p is non-zero, the
function assumesthat it isavalid path, resizes the
path, and fillsin itsvalue. If thevalue at p is zero
(NULL), the function creates a new path, fillsinits
value, and stores the path at the address referred to
by p.

7-34 [J National Instruments Corporation

Chapter 7 File Manager Functions

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MyEr r , which can contain the errorsin the following list.
Error Description
nFul | Err Insufficient memory.

FTextToPath

syntax MyEr r

FText ToPat h(text, tlen, *p);

FText ToPat h creates a path from a string (at the address text) that represents a path
in the platform-specific syntax for a path.

Parameter
text

tlen
p

Type
UPt r

int32
Path *

Description

String that contains the path in platform-specific
syntax.

Number of charactersin text.

Address at which FText ToPat h storesthe
resulting path. If the value at p is non-zero, the
function assumesthat it isavalid path, resizes the
path, and fillsinitsvalue. If thevalue at p is zero
(NULL), the function creates anew path, fillsinits
value, and stores the path at the address referred to
by p.

See the Pointers as Parameters section of

Chapter 1, CIN Overview, for more information
about using this parameter.

returns MyEr r , which can contain the errorsin the following list.

Error
nFul | Err

Description

Insufficient memory.

FUnFlattenPath

syntax i nt32 FUnFl attenPat h(fp, pPtr);

[J National Instruments Corporation

7-35 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

returns

FUNnFI at t enPat h converts aflattened path (created using FFI at t enPat h) into a
path.

Parameter Type Description

fp UPt r Pointer to the flattened path you want to convert to
apath.

pPtr Path * Address at which FUnFl at t enPat h storesthe
resulting path.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

The number of bytes the function interpreted as a path.

Comparing Paths

FIsAPath

syntax

Bool 32 Fl sAPat h(pat h);

FI sAPat h determines whether path isavalid path.

Parameter Type Description
path Pat h Path whose validity you want to determine.
returns A boolean, which can have the following values for this function.
Value Description
TRUE Path iswell formed and typeis absolute or relative.
FALSE Otherwise.
FIsAPathOrNotAPath

syntax

Bool 32 FI sAPat hOr Not APat h(pat h) ;

FI sAPat hOr Not APat h determines whether path is avalid path or the canonical
invalid path.

Parameter Type Description
path Pat h Path whose validity you want to determine.

LabVIEW Code Interface Reference Manual 7-36 [J National Instruments Corporation

Chapter 7 File Manager Functions

returns A boolean, which can have the following values for this function.
Value Description
TRUE Path iswell formed, and type is absolute, relative, or not a path.
FALSE Otherwise.

FIsEmptyPath

syntax Bool 32 FI sEnpt yPat h(pat h) ;

FI sEnpt yPat h determines whether path is avalid empty path.

Parameter Type Description
path Pat h Path whose validity and emptiness you want to
determine.
returns A boolean, which can have the following values for this function.
Value Description
TRUE Path iswell formed and empty, and type is absolute or relative.
FALSE Otherwise.
FPathCmp
syntax i nt 32 FPat hCnp(Il spl, 1sp2);

FPat hCnp compares the two specified paths.

Parameter Type Description
Ispl Pat h First path to compare.
Isp2 Pat h Second path to compare.
returns i nt 32, which can have the following values for this function.
Value Description
-1 Paths are of different types (for example, oneis absolute and the other
isrelative).
0 Paths are identical.
n+1 Paths have the same first n components, but are not identical.

[J National Instruments Corporation 7-37 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

Determining a Path Type

FGetPathType

syntax MyErr FGet Pat hType(path, typePtr)

FCGet Pat hType returnsthetype (relative, absolute, or not a path) of the specified path.

Parameter Type
path Pat h
typePtr int32 *

Description

Path whose type you want to determine.

Address at which FGet Pat hType storesthetype.

*typePtr can have the following values:

« f AbsPat h: The path is an absolute path.

« fRel Pat h: The path is arelative path.

e f Not APat h: The path is the canonical
invalid path or an error occurred.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MyEr r , which can contain the errorsin the following list.

Error Description

ngAr gEr r A bad argument was passed to the function. Verify path.

FIsAPathOfType

syntax Bool 32 Fl sAPat hOFf Type(pat h, of Type);

FI sAPat hOf Ty pe determines whether the specified path is avalid path of the

specified type (relative or absolute).

Parameter Type
path Pat h
of Type i nt32

LabVIEW Code Interface Reference Manual

Description

Path that you want to compare to the specified type.
Type that you want to compare to the path's type.
type can have the following values:

¢ f AbsPat h: Compare the path's type to
absolute.

« f Rel Pat h: Compare the path's type to
relative.

7-38 [J National Instruments Corporation

Chapter 7 File Manager Functions

returns A boolean, which can have the following values for this function.
Values Description
TRUE Path iswell formed and typeisidentical to of Type.
FALSE Otherwise.

FSetPathType

syntax MyEr r FSet Pat hType(path, type);

FSet Pat hType changesthe type of the specified path (which must be avalid path) to
the specified type (relative or absolute).

Parameter Type Description
path Pat h Path whose type you want to change.
type i nt32 New type that you want the path to have. type can

have the following values:
« f AbsPat h: The path is an absolute path.
* f Rel Pat h: The path is arelative path.

returns MyEr r , which can contain the errors in the following list.
Error Description
ngAr gEr r Badly formed path or invalid type.

Manipulating File Refnums

FDisposeRefNum
syntax MyEr r FDi sposeRef Nun{ref Num ;

FDi sposeRef Numdisposes of the specified file refnum.

Parameter Type Description

refNum LVRef Num File refnum of which you want to dispose.
returns MyEr r , which can contain the errorsin the following list.

Error Description

ngAr gErr Invalid file refnum.

[J National Instruments Corporation 7-39 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

FIsARefNum
syntax Bool 32 Fl sARef Num(r ef Nunj ;

FI s ARef Numdetermines whether refNum is avalid file refnum.

Parameter Type Description

refNum LVRef Num File refnum whose validity you want to determine.
returns A boolean, which can have the following values for this function.

Value Description

TRUE File refnum has been created and not yet disposed.

FALSE Otherwise.
FNewRefNum
syntax MyEr r FNewRef Num(pat h, fd, refNunPtr);

FNewRef Numcreates a new file refnum for an open file with the name and location
specified by path and the file descriptor fd.

If the file refnum is created, the resulting file refnum is stored in the address referred to
by refNumPtr. If an error occurs, NULL is stored in the address referred to by
refNumPtr and the error is returned.

Parameter Type Description

path Pat h The path of the open file for which you wish to
create afile refnum.

fd File The file descriptor of the open file for which you
wish to create afile refnum.

refNumpPtr LVRef Num* Addressat which FNewRef Numstoresthe new file
refnum.

See the Pointers as Parameter s section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MyEr r , which can contain the errors in the following list.
Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.
mFul | Err Insufficient memory.

LabVIEW Code Interface Reference Manual 7-40 [J National Instruments Corporation

Chapter 7 File Manager Functions

FRefNumToFD
syntax MyEr r FRef NumlroFD(r ef Num fdp);

FRef NumToFD gets the file descriptor associated with the specified file refnum.

If no error occurs, the resulting file descriptor is stored in the address referred to by fdp.
If an error occurs, NULL is stored in the address referred to by fdp and the error is

returned.
Parameter Type Description
refNum LVRef Num Thefilerefnum whose associated fil e descriptor you
wish to get.
fdp File * Address at which FRef NumTroFD stores the file
descriptor associated with the specified file refnum.
See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.
returns MyEr r , which can contain the errorsin the following list.
Error Description
ngAr gEr r Invalid file refnum.
FRefNumToPath
syntax MyEr r FRef NumrlroPat h(ref Num pat h);

FRef NumToPat h getsthe path associated with the specified file refnum, and storesthe
resulting path in the existing path, path.

If no error occurs, path is set to the path associated with the specified file refnum. If an
error occurs, path is set to the canonical invalid path.

Parameter Type Description
refNum LVRef Num The file refnum whose associated path you wish to
get.
path Pat h Path where FRef NuniToPat h stores the path
associated with the specified file refnum. This path
must already have been created.
returns MyEr r , which can contain the errorsin the following list.

[J National Instruments Corporation 7-41 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions

Error Description
ngAr gEr r A bad argument was passed to the function. Verify path.
nFul | Err Insufficient memory.

LabVIEW Code Interface Reference Manual 7-42 [J National Instruments Corporation

Support Manager Functions

Byte Manipulation Operations

Cat4Chrs *Macro*
syntax i nt 32 Cat4Chrs(a, b, c,d);

Cat 4Chr s constructsani nt 32 fromfour ul nt 8s, withthefirst parameter asthe high
byte and the last parameter as the low byte.

Parameter Type Description
a ulnt8 High order byte of the high word of the resulting
i nt 32.
b ulnt8 Low order byte of the high word of the resulting
i nt 32.
c ulnt8 High order byte of the low word of the resulting
i nt 32.
d ulnt8 Low order byte of the low word of the resulting
i nt 32.
returns Theresulting i nt 32.
GetALong *Macro*
syntax i nt 32 Get ALong(p);

Get ALong retrievesan i nt 32 from avoi d pointer. On the SPARCstation, this
function can retrieve ani nt 32 at any address, even if thei nt 32 is not long word

aligned.

Parameter Type Description

p voi d * Address from which you wish toread ani nt 32.
returns i nt 32 stored at the specified address.

© National Instruments Corporation 8-1 LabVIEW Code Interface Reference Manual

Chapter 8 ~ Support Manager Functions

Hil6 *Macro*
syntax intl1l6 H 16(x);
Hi 16 returnsthe high order i nt 16 of ani nt 32.
Parameter Type Description
X i nt32 i nt 32 of which you want to determine the high
i nt 16.
HiByte *Macro*
syntax int8 Hi Byt e(x);
Hi Byt e returns the high order i nt 8 of ani nt 16.
Parameter Type Description
X intl6 i nt 16 of which you want to determine the high
i nt 8.
HiNibble *Macro*
syntax ulnt8 Hi Ni bbl e(x);
Hi Ni bbl e returns the value stored in the high four bits of an ul nt 8.
Parameter Type Description
X ulnt8 ul nt 8 whose high four bits you want to extract.
Lol6 *Macro*
syntax intl1l6 Lol6(x);
Lo16 returnsthelow order i nt 16 of ani nt 32.
Parameter Type Description
X i nt32 i nt 32 of which you want to determine the low
i nt16.

LabVIEW Code Interface Reference Manual 8-2 © National Instruments Corporation

Chapter 8 Support Manager Functions

HiNibble *Macro*
syntax ulnt8 Hi Ni bbl e(x);

Hi Ni bbl e returns the value stored in the high four bits of an ul nt 8.

Parameter Type Description

X ulnt8 ul nt 8 whose high four bits you want to extract.
LoByte *Macro*
syntax int8 LoByt e(x);

LoByt e returnsthe low order i nt 8 of ani nt 16.

Parameter Type Description
X intl6 i nt 16 of which you want to determine the low
i nt8.
Long *Macro*
syntax i nt 32 Long(hi, 10);

Long createsani nt 32 fromtwoi nt 16s.

Parameter Type Description

hi intl1l6 Highi nt 16 for theresulting i nt 32.

lo intl1l6 Low i nt 16 for the resulting i nt 32.
returns Theresultingi nt 32.
LoNibble *Macro*
syntax ulnt8 LoN bbl e(x);

LoNi bbl e returns the value stored in the low four bits of an ul nt 8.

Parameter Type Description
X ulnt8 ul nt 8 whose low four bits you want to extract.

© National Instruments Corporation 8-3 LabVIEW Code Interface Reference Manual

Chapter 8 ~ Support Manager Functions

Offset *Macro*
syntax intl1l6 O fset(type, field);

O f set returns the offset of the specified field within the structure called type.

Parameter Type Description

type - Structure that contains field.

field - Field whose offset you want to determine.
returns Anoffsetasani nt 16.
SetALong *Macro*
syntax voi d Set ALong(p, X) ;

Set ALong storesani nt 32 at the address specified by avoi d pointer. On the
SPARCstation, thisfunction can retrieveani nt 32 at any address, even if itisnot long

word aligned.
Parameter Type Description
p voi d * Address at which you want to storeani nt 32.
See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.
X i nt 32 Vauethat you want to store at the specified address.
Word *Macro*
syntax intl1l6 Word(hi, 10);

Wor d createsani nt 16 fromtwo i nt 8s.

Parameter Type Description

hi int8 Highi nt 8 for theresultingi nt 16.

lo int8 Low i nt 8 for theresultingi nt 16.
returns Theresultingi nt 16.

LabVIEW Code Interface Reference Manual 8-4 © National Instruments Corporation

Chapter 8 Support Manager Functions

Mathematical Operations

In addition to the mathematical operations documented in this section, LabVIEW
supports anumber of other mathematical functions. These functions areimplemented as
defined in The C Programming Language by Brian W. Kernighan and Dennis M.
Ritchie. Table 8.1 lists the prototypes for these functions.

Table 8-1. Mathematical Functions Supported by LabVIEW

doubl e at an(doubl e);

doubl e cos(doubl e);

doubl e exp(doubl e);
doubl e fabs(doubl e);
doubl e | og(doubl e);

doubl e sin(doubl e);

doubl e sqrt(double);

doubl e tan(doubl e);

doubl e acos(doubl e);

doubl e asi n(doubl e);
doubl e atan2(doubl e, double);
doubl e ceil (doubl e);

doubl e cosh(doubl e);

doubl e fl oor (double);
doubl e fnod(doubl e, double);
doubl e frexp(double, int *);

doubl e | dexp(double, int);
doubl e | 0g10(doubl e);

doubl e nodf (doubl e, double *);
doubl e pow(doubl e, double);
doubl e sinh(doubl e);

doubl e tanh(doubl e);

© National Instruments Corporation 8-5 LabVIEW Code Interface Reference Manual

Chapter 8 ~ Support Manager Functions

For THINK C Users

Abs
syntax

Max
syntax

Min
syntax

Tolink the math functionswhen using THINK C, you need to add additional filesto your
project. You can link amodified version of an ANSI library provided by THINK C. The
ANSI library must be modified to reference its globals from A4 instead of A5; this
processis explained in the THINK C documentation in the section concerning building
code resources (the section has different names in the various THINK C versions).

To make such alibrary, make acopy of the ANSI - A4 project (shipped with THINK C),
and nameit ANSI - A4 copy (or any unique name). Add themat h. c file (shipped with
THINK C)to ANSI - A4 copy, andthen select Build Library... under the Project menu.
Nameyour new library mat hl i b (or any unique name). Adding mat hl i b toyour CIN
project makes it possible for your math functionsto link.

i nt 32 Abs(n);

Abs returnsthe absolute value of n, unlessn is-2"31, in which case the function returns
the number unmodified.

Parameter Type Description
n i nt 32 i nt 32 whose absolute value you want to find.
int32 Max(n, m ;

Max returns the maximum of the two specified i nt 32s.

Parameter Type Description
n,m i nt32 i nt 32swhose maximum value you want to
determine.
int32 Mn(n,m;

M n returns the minimum of the two specified i nt 32s.

Parameter Type Description

LabVIEW Code Interface Reference Manual 8-6 © National Instruments Corporation

Chapter 8 Support Manager Functions

n,m i nt32 i nt 32swhose minimum value you want to
determine.
Pin
syntax i nt 32 Pin(i, I ow high);
Pi n returnsi coerced to fall within the range from low to high inclusive.
Parameter Type Description
i i nt32 Vaue you want to coerce to the specified range.
n i nt32 Low value of the range to which you want to coerce
i
m i nt32 High value of the range to which you want to coerce
i
returns i coerced to the specified range.
RandomGen
syntax voi d Randontzen(xp) ;

Randonten generates arandom number between 0 and 1 and stores it at xp.

Parameter Type Description

Xp float64* L ocation to store the resulting double-precision
floating-point random number.
See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

String Manipulation

BlockCmp
syntax i nt32 Bl ockCmp(pl, p2, nunBytes);

Bl ock Cnp compares two blocks of memory to determine whether oneis less than, the
same as, or greater than the other.

© National Instruments Corporation 8-7 LabVIEW Code Interface Reference Manual

Chapter 8 ~ Support Manager Functions

Parameter Type Description

pl UPt r Pointer to a block of memory.

p2 UPt r Pointer to a block of memory.

numBytes i nt32 Number of bytesto compare.
returns A negative number, zero, or apositive number if sl islessthan, the same as, or

greater than s2.

CPStrBuf *Macro*
syntax uChar *CPSt r Buf (sp) ;

CPSt r Buf returnsthe address of the first string in a concatenated list of Pascal strings
(that is, the address of sp- >st r).

Parameter Type Description

sp CPStrPtr Pointer to a concatenated list of Pascal strings.
returns The address of thefirst string of the concatenated list of Pascal strings.
CPStrCmp
syntax i nt32 CPStr Cp(slp, s2p);

CPSt r Cnp lexically compares two concatenated lists of Pascal strings to determine
whether oneis less than, the same as, or greater than the other. This comparison is case
sensitive, and the function compares the lists as if they were one string.

Parameter Type Description

slp CPStrPtr Pointer to a concatenated list of Pascal strings.

s2p CPStrPtr Pointer to a concatenated list of Pascal strings.
returns <0, 0, or >0 if sl islessthan, the same as, or greater than 2. Returns <0 if s1

isaninitial substring of s2.

CPStrindex
syntax PSt r CPStr I ndex(slh, index);

LabVIEW Code Interface Reference Manual 8-8 © National Instruments Corporation

Chapter 8 Support Manager Functions

CPSt r | ndex returns apointer to the Pascal string denoted by index in alist of strings.
If index is greater than or equal to the number of stringsin the list, the function returns
the pointer to the last string.

Parameter Type Description
slh CPSt r Handl e Handle to a concatenated list of Pascal strings.
index i nt32 Number of the string that you want, with 0 asthe
first string.
returns A pointer to the specified Pascal string.

CPStrinsert
syntax MyEr r CPStrinsert(slh, s2, index);

CPStr I nsert insertsanew Pascal string before the index numbered Pascal string in
aconcatenated list of Pascal strings. If index is greater than or equal to the number of
strings in the list, the function places the new string at the end of the list.

CPStr I nsert resizesthelist to make room for the new string.

Parameter Type Description

slh CPSt r Handl e Handle to a concatenated list of Pascal strings.

2 PSt r Pointer to a Pascal string.

index int32 Position that you want the new Pascal string to have

inthelist of Pascal strings, with 0 asthefirst string.

returns nul | Err if thereis not enough memory. ReturnsnoEr r otherwise.
CPStrLen *Macro*
syntax i nt 32 CPStrLen(sp);

CPSt r Len returns the number of Pascal stringsin a concatenated list of Pascal strings
(thatis, sp- >cnt). Usethe CPSt r Si ze function to get the total number of characters

in the list.

Parameter Type Description

P CPStrPtr Pointer to a concatenated list of Pascal strings.
returns The number of strings in the concatenated list of Pascal strings.

© National Instruments Corporation 8-9 LabVIEW Code Interface Reference Manual

Chapter 8 ~ Support Manager Functions

CPStrRemove
syntax voi d CPSt r Renove(slh, index);

CPSt r Renmove removes a Pascal string from alist of Pascal strings. If index is greater
than or equal to the number of stringsin the list, the function removes the last string.
CPSt r Renmove resizes the list after removing the string.

Parameter Type Description
slh CPSt r Handl e Handle to a concatenated list of Pascal strings.
index int32 Number of the string that you want to remove, with

0 asthefirst string.

CPStrReplace
syntax MyEr r CPSt r Repl ace(slh, s2, index);

CPSt r Repl ace replaces a Pascal string in a concatenated list of Pascal stringswith a
new Pascal string.

Parameter Type Description

slh CPSt r Handl e Handle to a concatenated list of Pascal strings.

2 PSt r Pointer to a Pascal string.

index i nt32 Number of the string that you want to replace, with

0 asthefirst string.

returns nul | Err if thereis not enough memory. Returns noEr r otherwise.
CPStrSize
syntax i nt 32 CPStr Si ze(sp) ;

CPSt r Si ze returns the number of charactersin a concatenated list of Pascal strings.
Usethe CPSt r Len function to get the number of Pascal stringsin the concatenated list.

Parameter Type Description
P CPStrPtr Pointer to a concatenated list of Pascal strings.
returns The number of charactersin the concatenated list of Pascal strings.

LabVIEW Code Interface Reference Manual 8-10 © National Instruments Corporation

Chapter 8 Support Manager Functions

CToPStr
syntax i nt 32 CToPStr(cstr, pstr);

CToPSt r convertsaC string to aPascal string. Thisfunction works even if the pointers
cstr and pstr refer to the same memory location. If the length of cstr is greater than 255
characters, the function converts only thefirst 255 characters. The function assumesthat
pstr islarge enough to contain cstr.

Parameter Type Description

cstr Cstr Pointer to a C string.

pstr PSt r Pointer to a Pascal string.
returns The length of the string, truncated to a maximum of 255 characters.
FileNameCmp *Macro*
syntax i nt 32 Fi | eNameCnp(sl, s2);

Fi | eNameCnp lexically compares two file names, to determine whether one is less
than, the same as, or greater than the other. This comparison uses the same case
sensitivity asthefile system (that is, case insensitive for the Macintosh and the PC, case
sensitive for the Sun SPARCstation).

Parameter Type Description
sl PSt r Pointer to a Pascal string.
s2 PSt r Pointer to a Pascal string.
returns <0, 0, or >0 if sl islessthan, the same as, or greater than 2. Returns <0 if sl

isaninitial substring of s2.

FileNamelndCmp *Macro*
syntax i nt 32 Fi | eNamel ndCp(slp, s2p);

Fi | eNanmel ndCnp isthe same as Fi | eNanmeCnp, except you pass the function
handles to the string data instead of pointers. You can use Fi | eNamel ndCnp to
compare two file names and lexically determine whether one is less than, the same as,
or greater than the other. This comparison uses the same case sensitivity asthefile

© National Instruments Corporation 8-11 LabVIEW Code Interface Reference Manual

Chapter 8 ~ Support Manager Functions

system (that is, case insensitive for the Macintosh and the PC, and case sensitive for the
Sun SPARCstation).

Parameter Type Description
slp PStr * Pointer to a Pascal string.
s2p PStr * Pointer to a Pascal string.
returns <0, 0, or >0 if sl islessthan, the same as, or greater than 2. Returns <0 if sl

isaninitial substring of s2.

FileNameNCmp *Macro*
syntax i nt 32 Fi | eNameNCp(sl, s2, n);

Fi | eNameNCnp lexically compares two file names to determine whether one is less
than, the same as, or greater than the other, limiting the comparison to n characters. This
comparison uses the same case sensitivity asthefile system (that is, case insensitive for
the Macintosh and the PC, case sensitive for the Sun SPARCstation).

Parameter Type Description

sl CStr Pointer to a C string.

s2 CStr Pointer to a C string.

n ul nt 32 Maximum number of charactersto compare.
returns <0, 0, or >0 if slislessthan, the same as, or greater than s2. Returns <0 if sl

isan initial substring of s2.

HexChar
syntax i nt 32 HexChar (n) ;

HexChar returnsthe ASCII character in hex that represents the specified value n
(0O<=n<=15).

Parameter Type Description
n i nt32 Decimal value between 0 and 15.

returns The corresponding ASCII hex character. If n isout of range, the ASCII
character corresponding to n modulo 16 is returned.

LabVIEW Code Interface Reference Manual 8-12 © National Instruments Corporation

Chapter 8 Support Manager Functions

IsAlpha
syntax Bool 32 I sAl pha(c);

| sAl pha returns TRUE if the character c is alowercase or uppercase letter (that is, in
the set ato z or A to Z). On the SPARCstation, this function also returns TRUE for
international characters (3, & A, and so on).

Parameter Type Description

c char Character that you want to analyze.
returns TRUE if the character is an alphabetic character, and FAL SE otherwise.
IsDigit
syntax Bool 32 IsDigit(c);

| sDi gi t returns TRUE if the character c is between 0 and 9.

Parameter Type Description

c char Character that you want to analyze.
returns TRUE if the character is a numerical digit, and FALSE otherwise.
IsLower
syntax Bool 32 I sLower (c);

| sLower returns TRUE if the character c isalowercase letter (that is, in the set ato z).
On the SPARCstation, this function also returns TRUE for lowercase international
characters (6, 6, and so on).

Parameter Type Description

c char Character that you want to analyze.
returns TRUE if the character is alowercase letter, and FALSE otherwise.
IsUpper
syntax Bool 32 I sUpper(c);

© National Instruments Corporation 8-13 LabVIEW Code Interface Reference Manual

Chapter 8 ~ Support Manager Functions

| sUpper returns TRUE if the character c is between an uppercase letter (that is, in the
set A to Z). On the SPA Rpstaiion, this function also returns TRUE for uppercase
international characters (O, A, and so on).

Parameter Type Description

c char Character that you want to analyze.
returns TRUE if the character is an uppercase letter, and FALSE otherwise.
LStrBuf *Macro*
syntax uChar *LStrBuf(s);

LSt r Buf returns the address of the string data of along Pascal string (that is, the
address of s- >str).

Parameter Type Description

S LStrPtr Pointer to along Pascal string.
returns The address of the string data of the long Pascal string.
LStrCmp
syntax LStrPtr LStrCmp(l 1p, |2p);

LSt r Cnp lexically compares two long Pascal strings to determine whether oneisless
than, the same as, or greater than the other. This comparison is case sensitive.

Parameter Type Description
1p LStrPtr Pointer to along Pascal string.
12p LStrPtr Pointer to along Pascal string.
returns <0, 0, or >0 if slislessthan, the same as, or greater than s2. Returns <0 if s1

isaninitia substring of s2.

LStrLen *Macro*
syntax i nt 32 LStrLen(s);

LSt r Len returns the length of along Pascal string (that is, s- >cnt).

LabVIEW Code Interface Reference Manual 8-14 © National Instruments Corporation

Chapter 8 Support Manager Functions

Parameter Type Description

S LStrPtr Pointer to along Pascal string.
returns The number of charactersin the long Pascal string.
LToPStr
syntax i nt 32 LToPStr(Istrp, pstr);

LToPSt r converts along Pascal string to a Pascal string. If the long Pascal string is
more than 255 characters, the function converts only the first 255 characters. This
function works even if the pointersIstrp and pstr refer to the same memory location.
The function assumes that pstr is large enough to contain Istrp.

Parameter Type Description

Istrp LStrPtr Pointer to along Pascal string.

pstr PSt r Pointer to a Pascal string.
returns The length of the string, truncated to a maximum of 255 characters.
PPStrCaseCmp
syntax i nt 32 PPSt r CaseCnp(slp, s2p);

PPSt r CaseCnp isthe same as PSt r CaseCnp, except you pass the function handles
to the string data instead of pointers. Y ou can use PPSt r CaseCnp to compare two
Pascal strings lexically and determine whether one is less than, the same as, or greater
than the other. This comparison ignores differencesin case.

Parameter Type Description
slp PStr * Pointer to a Pascal string.
s2p PStr * Pointer to a Pascal string.
returns <0, 0, or >0 if sl islessthan, the same as, or greater than 2. Returns <0 if sl

isaninitial substring of s2.

PPStrCmp
syntax int32 PPSt r Cp(slp, s2p);

© National Instruments Corporation 8-15 LabVIEW Code Interface Reference Manual

Chapter 8 ~ Support Manager Functions

PPSt r Cnp isthe same as PSt r Cnp, except you pass the function handles to the string
datainstead of pointers. Y ou can use PPSt r Cnp to compare two Pascal stringslexically
and determine whether one is less than, the same as, or greater than the other. This
comparison is case sensitive.

Parameter Type Description
slp PStr * Pointer to a Pascal string.
s2p PStr * Pointer to a Pascal string.
returns <0, 0, or >0 if sl islessthan, the same as, or greater than 2. Returns <0 if sl

isaninitial substring of s2.

PStrBuf *Macro*
syntax uChar *PSt r Buf (s);

PSt r Buf returns the address of the string data of a Pascal string (that is, the address
following the length byte).

Parameter Type Description

s PSt r Pointer to a Pascal string.
PStrCaseCmp
syntax i nt 32 PStr CaseCmp(sl, s2);

PSt r CaseCnp lexically compares two Pascal strings to determine whether oneisless
than, the same as, or greater than the other. This comparison ignores differencesin case.

Parameter Type Description
sl PSt r Pointer to a Pascal string.
2 PSt r Pointer to a Pascal string.
returns <0, 0, or >0 if sl islessthan, the same as, or greater than s2. Returns <0 if sl

isaninitia substring of s2.

PStrCat
syntax int32

LabVIEW Code Interface Reference Manual 8-16 © National Instruments Corporation

Chapter 8 Support Manager Functions

PStrCat (sl1l, s2);

PSt r Cat concatenates a Pascal string, s2, to the end of another Pascal string, s1, and
places the result in s1. This function assumes that sl is large enough to contain the
resulting string. If the resulting string is larger than 255 characters, then PSt r Cat
limits the resulting string to 255 characters.

Parameter Type Description
sl PSt r Pointer to a Pascal string.
2 PSt r Pointer to a Pascal string.
returns The length of the resulting string.
PStrCmp
syntax i nt32 PStrCmp(sl, s2);

PSt r Cnp lexically compares two Pascal strings to determine whether one is less than,
the same as, or greater than the other. This comparison is case sensitive.

Parameter Type Description
sl PSt r Pointer to a Pascal string.
2 PSt r Pointer to a Pascal string.
returns <0, 0, or >0 if slislessthan, the same as, or greater than s2. Returns <0 if s1

isaninitial substring of s2.

PStrCpy
syntax PStr PStr Cpy(dst, src);

PSt r Cpy copies the Pascal string src to the Pascal string dst. This function assumes
that the destination string is large enough to contain the source string.

Parameter Type Description

dst PSt r Pointer to a Pascal string.

src PSt r Pointer to a Pascal string.
returns A copy of the destination Pascal string pointer.

© National Instruments Corporation 8-17 LabVIEW Code Interface Reference Manual

Chapter 8 ~ Support Manager Functions

PStrLen *Macro*

syntax

ulnt8 PStrLen(s);

PSt r Len returns the length of a Pascal string (that is, the value at the first byte at the
specified address).

Parameter Type Description

s PSt r Pointer to a Pascal string.
PStrNCpy
syntax PSt r PSt r NCpy(dst, src, n);

returns

PSt r NCpy copies the Pascal string src to the Pascal string dst. If the source string is
greater than n, the function copies only n bytes. This function assumes that the
destination string is large enough to contain the source string.

Parameter Type Description
dst PStr Pointer to a Pascal string.
src PSt r Pointer to a Pascal string.
n i nt32 Maximum number of bytes to copy including the
length byte.
A copy of the destination Pascal string pointer.

PToCStr

syntax

returns

i nt 32 PToCStr (pstr, cstr);

PToCSt r convertsaPascal string to aC string. Thisfunction works even if the pointers
pstr and cstr refer to the same memory location. Thisfunction assumesthat cstr islarge
enough to contain pstr.

Parameter Type Description

pstr PSt r Pointer to a Pascal string.

cstr CStr Pointer to a C string.
The length of the string.

LabVIEW Code Interface Reference Manual 8-18 © National Instruments Corporation

Chapter 8 Support Manager Functions

PToLStr
syntax i nt 32 PToLStr (pstr, Istrp);
PToLSt r converts a Pascal string to along Pascal string. This function works even if

the pointers pstr and Istrp refer to the same memory location. The function assumes that
Istrp islarge enough to contain pstr.

Parameter Type Description
pstr PSt r Pointer to a Pascal string.
Istrp LStrPtr Pointer to along Pascal string.
returns The length of the string.
SPrintf
SPrintfp
PPrintf
PPrintfp
FPrintf
LStrPrintf
syntax i nt 32 SPrintf(CStr destCsSt, CStr cfmt, ...);
i nt 32 SPrintfp(CStr destCSt, PStr pfnt, ...);
i nt 32 PPrintf(PStr destPSt, CStr cfnt, ...);
i nt 32 PPrintfp(PStr destPSt, PStr pfnt, ...);
i nt 32 FPrintf(File destFile, CStr cfm, ...);
MyEr r LStrPrintf(LStrHandl e destLsh, CStr cfnt,
)

All these functions format datainto an ASCI| format to a specified destination. A format
string describes the desired conversions. These functions take a variable number of
arguments, and each argument follows the format string paired with a conversion
specification embedded in the format string. The second parameter, cfmt or pfmt, must
be cast appropriately to either type CStr or PStr .

SPrintf printsto aC string, just like the C library functionspri ntf.spri ntf
returns the actual character count and appends a null byte to the end of the destination
C string.

SPrint f pisthesameasSPri nt f, except the format string is a Pascal string instead

of aC string. Aswith SPri nt f, SPri nt f p appends a null byte to the end of the
destination C string.

© National Instruments Corporation 8-19 LabVIEW Code Interface Reference Manual

Chapter 8 ~ Support Manager Functions

If youpassNULL for destCStr, SPri nt f and SPri nt f p do not write datato memory,
and they return the number of characters required to contain the resulting data (not
including the terminating null character).

PPrint f printsto aPascal string with a maximum of 255 characters. PPri nt f sets
the length byte of the Pascal string to reflect the size of the resulting string. PPr i nt f
does not append a null byte to the end of the string.

PPrint f pisthesameasPPri nt f, except the format string is a Pascal string instead
of aC string. Aswith PPr i nt f , PPri nt f p setsthe length byte of the Pascal string to
reflect the size of the resulting string.

FPri ntf printsto afile specified by the refnum in fd. FPri nt f does not embed a
length count or aterminating null character in the data written to the file.

LStrPrintf printstoalLabVIEW string specified by dest Lsh. Because the
LabVIEW string is a handle that may be resized, LSt r Pri nt f can return memory
errors just as DSSet Handl eSi ze does.

These functions accept the following standard formats and special characters.
» Specia characters that can be embedded in strings:

— \'b backspace

— \f formfeed

— \'n newline(insertsthe system-dependent end-of-line char(s); for example,
CR on Macintosh, NL on UNIX, CRNL on DOS)

— \r carriagereturn
— \'s space
- \t tab
— 9% % percentage character (to print %9
* Format arguments:
% -] [field size] [.precision] [argunent size] [conversion]
— [-] Leftjustifieswhat is printed; if not specified, the datais right-
justified.
— [field size] Specifiesthe minimum width of thefieldto printinto. If
not specified, this defaultsto 0. If thereisless than the specified number of

characters in the data to print, the function pads with spaces on the left if
you specified - ; otherwise the function pads on the right.

— [.precision] Setstheprecision for floating-point numbers (that is, the
number of characters after the decimal place). For strings, this specifies the
maximum number of characters to print.

LabVIEW Code Interface Reference Manual 8-20 © National Instruments Corporation

Chapter 8 Support Manager Functions

— [argunent size] Specifiesthe datasizefor an argument. It applies
only to the d, o, u, and x conversion specifiers. By default, the conversion
for one of the specifiersisfrom aword (16-bit integer). The flag | causes
this conversion to convert the data so that the function assumes the datais a
long integer value.

— [conversion] b binary

¢ print a character (%2c, %4c print on int16, int32 as a
2,4 char constant)

d decimal

e exponential

f fixed point format

H string handle (L StrHandle)

o octal

p Pascal string

P long Pascal string (L StrPtr)

g print apoint (passed by value) as %d,%d representing
horizontal, vertical coordinates

Qprint apoint (passed by value) as hv(%d,%d)
representing horizontal, vertical coordinates

r print arectangle (passed by reference) as
%d,%d,%d,%d representing top,left, bottom, right
coordinates

R print arectangle (passed by reference) as
tlbr(%d,%d,%d,%d) representing top,left, bottom,
right coordinates

s string

u unsigned decimal
X hex

z Path

Any of the numeric conversion characters (x, 0, d, u, b, e, f) can be preceded by {cc}
to indicate that the number is passed by reference. cc canbei B,i W ... , c X depending
on the corresponding numeric type. If cc is an asterisk (*) the numeric type (i B
through cX) isani nt 16 in the argument list.

© National Instruments Corporation 8-21 LabVIEW Code Interface Reference Manual

Chapter 8 ~ Support Manager Functions

StrCat
syntax i nt 32 StrCat(sl, s2);

St r Cat concatenates a C string, s2, to the end of another C string, si, placing the result
in s1. This function assumes that sl is large enough to contain the resulting string.

Parameter Type Description
sl CStr Pointer to a C string.
2 CStr Pointer to a C string.
returns The length of the resulting string.
StrCmp
syntax i nt32 StrCmp(sl, s2);

St r Cnp lexically compares two strings to determine whether one isless than, the same
as, or greater than the other.

Parameter Type Description
sl CStr Pointer to a C string.
2 Cstr Pointer to a C string.
returns <0, 0, or >0 if slislessthan, the same as, or greater than s2. Returns <0 if sl

isaninitial substring of s2.

StrCpy
syntax CsStr StrCpy(dst, src);

St r Cpy copiesthe C string src to the C string dst. This function assumes that the
destination string is large enough to contain the source string.

Parameter Type Description

dst CStr Pointer to a C string.

sc Cstr Pointer to a C string.
returns A copy of the destination C string pointer.

LabVIEW Code Interface Reference Manual 8-22 © National Instruments Corporation

Chapter 8 Support Manager Functions

StrLen
syntax i nt 32 StrLen(s);
St r Len returns the length of a C string.
Parameter Type Description
S Cstr Pointer to a C string.
returns The number of charactersin the C string, not including the NULL terminating
character.
StrNCaseCmp
syntax i nt 32 StrNCaseCnmp(sl, s2, n);

St r NCaseCnp lexically compares two strings to determine whether one is less than,
the same as, or greater than the other, limiting the comparison to n characters.
St r NCaseCnp ignores differences in case in performing the comparison.

Parameter Type Description

sl Cstr Pointer to a C string.

s2 CStr Pointer to a C string.

n ul nt 32 Maximum number of characters to compare.
returns <0, 0, or >0 if sl islessthan, the same as, or greater than 2. Returns <0 if sl

isaninitia substring of s2.

StrNCmp
syntax int32 StrNCp(sl, s2, n);

St r NCnp lexically compares two strings to determine whether one is less than, the
same as, or greater than the other, limiting the comparison to n characters.

Parameter Type Description

sl CStr Pointer to a C string.

2 CStr Pointer to a C string.

n ul nt 32 Maximum number of charactersto compare.
returns <0, 0, or >0 if sl islessthan, the same as, or greater than 2. Returns <0 if sl

isaninitia substring of s2.

© National Instruments Corporation 8-23 LabVIEW Code Interface Reference Manual

Chapter 8 ~ Support Manager Functions

StrNCpy
syntax Cstr StrNCpy(dst, src, n);

St r NCpy copies the C string src to the C string dst. If the source string is less than n
characters, the function pads the destination with null characters. If the source string is
greater than n, then only n characters are copied. This function assumes that the
destination string is large enough to contain the source string.

Parameter Type Description

dst CStr Pointer to a C string.

src CStr Pointer to a C string.

n i nt32 Maximum number of characters to copy.
returns A copy of the destination C string pointer.
ToLower
syntax uChar ToLower (c);

ToLower returns the lowercase value of c if ¢ is an uppercase al phabetic character.
Otherwise, it returns c unmodified. On the SPARCstation, this function also works for
international characters (A -> &, and so on).

Parameter Type Description

c uChar Character that you want to analyze.
returns The lowercase value of c.
ToUpper
syntax uChar ToUpper (c);

ToUpper returns the uppercase value of c if ¢ is alowercase alphabetic character.
Otherwise, it returns ¢ unmodified. On the SPARCstation, this function also works for
international characters (a-> A, and so on).

Parameter Type Description
c uChar Character that you want to analyze.

LabVIEW Code Interface Reference Manual 8-24 © National Instruments Corporation

Chapter 8 Support Manager Functions

returns The uppercase value of ¢

Utility Functions

BinSearch

syntax i nt 32 Bi nSearch(arrayp, n, elntSize, key,
comnpar eProcP) ;

Bi nSear ch searches an array of an arbitrary data type using the binary search
algorithm. In addition to passing the array that you want to search to this routine, you
al so pass a comparison procedure that this sort routine then uses to compare elementsin
the array.

The comparison routine should return a number less than zero if aislessthan b, zero if
aisequal to b, and a number greater than zero if ais greater than b.

Y ou should declare the comparison routine to have the following parameters and return
type.

int32 compareProcP(UPtr a, UPtr b);

Parameter Type Description

arrayp UPtr Pointer to an array of data.

n i nt 32 Number of elementsin the array that you want to
search.

emtSize i nt 32 Size in bytes of an array element.

key UPtr Pointer to the data that you want to search for.

compar ePr ocP procPktr Comparison routine that you want Bi nSear ch to

use in comparing array elements. Bi nSear ch
passes this routine the addresses of two elements
that it needs to compare.

returns The position in the array where the dataisfound (with O being the first element
of the array), if itisfound. If the datais not found, BinSearch returns- i - 1,
wherei isthe position where x should be placed.

© National Instruments Corporation 8-25 LabVIEW Code Interface Reference Manual

Chapter 8 ~ Support Manager Functions

QSort
syntax voi d Sort (arrayp, n, el ntSi ze,
compar eProcP());
QSor t sortsanarray of an arbitrary datatype using the QuickSort algorithm. In addition
to passing the array that you want to sort to this routine, you also pass a comparison
procedure that this sort routine then uses to compare elements in the array.
The comparison routine should return a number less than zero if aislessthan b, zero if
aisequal to b, and a number greater than zero if ais greater than b.
Y ou should declare the comparison routine to have the foll owing parameters and return
type.
int32 compareProcP(UPtr a, UPtr b);
Parameter Type Description
arrayp UPt r Pointer to an array of data.
n i nt 32 Number of elementsin the array that you want to
sort.
elmtSize i nt32 Sizein bytes of an array element.
compareProcP procPtr Comparison routine that you want QSor t to useto
compare array elements. QSor t passesthisroutine
the addresses of two elements that it needs to
compare.
Unused *Macro*
syntax voi d Unused(x)

Unused indicates that a function parameter or local variable is not used by that
function. Thisis useful for suppressing compiler warnings for many compilers. Notice
that no semicolon is used with this macro.

Parameter Type Description
X - Unused parameter or local variable.

LabVIEW Code Interface Reference Manual 8-26 © National Instruments Corporation

Chapter 8 Support Manager Functions

Time Functions

ASCIITime

syntax

returns

CStr ASCI | Ti me(secs);

ASCI | Ti me returns a pointer to a string representing the date and time of day
corresponding to t seconds after January 1, 1904, 12:00 AM, GMT. This function uses
the same date format as that returned by the Dat eCSt r i ng function using a mode of
2. Thedateisfollowed by a space, and thetime isin the same format as that returned by
the Ti meCSt r i ng function using a mode of 0. As an example, this function might
return Tuesday, Dec 22, 1992 5:30. On the SPARCstation, this function accounts for
international conventions for representing dates.

Parameter Type Description
secs ul nt 32 Seconds since the January 1, 1904, 12:00 AM,
GMT.

The date and time as a C string.

DateCString

syntax

Cstr Dat eCStri ng(secs, fnt);
Note: Thisfunction was formerly called Dat eSt ri ng.

Dat eCSt r i ng returns a pointer to a string representing the date corresponding to t
seconds after January 1, 1904, 12:00 AM, GMT. On the SPARCstation, this function
accounts for international conventions for representing dates.

Parameter Type Description
secs ul nt 32 Seconds since January 1, 1904, 12:00 AM, GMT.
fmt int32 Code describing the format for the returned string.

This parameter determines the format of the
returned date string and can have the following
values.

Fmt Meaning

0 Return the date in short date format, mnv
dd/yy, where mmis a number between 1
and 12 representing the current month, dd
is the current day of the month (1 through

© National Instruments Corporation 8-27 LabVIEW Code Interface Reference Manual

Chapter 8 ~ Support Manager Functions

31), and yy is the last two digits of the
corresponding year. An exampleis 12/31/
92.

Return the date in long date format,
dayName, MonthName, DayOfMonth,
LongYear. An example is Thursday,
December 31, 1992.

Return the date in abbreviated date format,
AbbrevDayName, AbbrevMonthName,
DayOfMonth, LongYear. An exampleis
Thu, Dec 31, 1992.

returns The date as a C string.
DateToSecs
syntax ul nt 32 Dat eToSecs(dat eRecor dP) ;

Dat eToSecs converts from atime described using the Dat eRec data structure to the
number of seconds since January 1, 1904, 12:00 AM, GMT.

Parameter Type
dateRecordP Dat eRec *

Description

Pointer to a Dat eRec structure. Dat eToSecs
stores the converted date in the fields of the date
structure referred to by dateRecor dP. This data
structure is described in the Introduction section of
this chapter.

See the Pointers as Parameters section of

Chapter 1, CIN Overview, for more information
about using this parameter.

returns The corresponding number of seconds since January 1, 1904, 12:00 AM, GMT.

MilliSecs
syntax ul nt 32

MIIiSecs();

returns The time since an undefined system time in milliseconds. The actual
resolution of thistimer is system dependent.

LabVIEW Code Interface Reference Manual

© National Instruments Corporation

Chapter 8 Support Manager Functions

SecsToDate

syntax

voi d SecsToDat e(secs, dat eRecordP);

SecsToDat e convertsthe seconds since January 1, 1904, 12:00 AM, GMT into adata
structure containing numerical information about the date, including the year (1904
through 2040), the month (1 through 12), the day asit corresponds to the current year (1
through 366), month (1 through 31), and week (1 through 31), hour (0 through 23), the
hour (0 through 23), minute (0 through 59), and second (0 through 59) of that day, and
avalue indicating whether the time specified uses daylight savings time.

Parameter Type Description
secs ul nt 32 Seconds since January 1, 1904, 12:00 AM, GMT.
dateRecordP Dat eRec * Pointer to a Dat eRec structure. SecsToDat e

stores the converted date in the fields of the date
structure referred to by dateRecor dP. This data
structure is described in the Introduction section of
this chapter.

See the Pointers as Parameters section of

Chapter 1, CIN Overview, for more information
about using this parameter.

TimeCString
syntax CStr Ti reCstring(secs, fnt);
Note: Thisfunction was formerly called Ti meSt ri ng.

Ti meCSt r i ng returns a pointer to a string representing the time of day corresponding
tot seconds after January 1, 1904, 12:00 AM, GMT. On the SPARCstation, thisfunction
accounts for international conventions for representing dates.

Parameter Type Description
secs ul nt 32 Seconds since January 1, 1904, 12:00 AM, GMT.
fmt i nt32 Code describing the format for the returned string.

The parameter fmt determines the format of the
returned time string and can have the following
values.

Fmt Meaning

© National Instruments Corporation 8-29 LabVIEW Code Interface Reference Manual

Chapter 8 ~ Support Manager Functions

0 Return the time in the format hh:mm. The
first value, hh, represents the hour (0
through 23, with 0 as midnight), and the
second value, mm, represents the minute (0
through 59).

1 Return the time in the format hh:mm:ss.
Thefirst value, hh, represents the hour, the
second value, mm, represents the minute (0
through 59), and the third value, ss,
represents the second (0 through 59).

returns Thetime asaC string.

TimelnSecs

syntax ul nt 32 Ti mel nSecs() ;

returns The current date and time in seconds relative to January 1, 1904, 12:00 AM,

Greenwich mean time (GMT).

LabVIEW Code Interface Reference Manual 8-30 © National Instruments Corporation

CIN Common Questions

This appendix answers some of the questions commonly asked by
LabVIEW CIN users.

What compilers can be used to write CINs for LabVIEW?

Microsoft Windows 3.1, Windows 95, and Windows NT

Y ou can use the Watcom C/386 compiler, version 9.0 or later, to write
CINsfor LabVIEW for Windows 3.1. Other compilers for Windows
3.1 (including the Microsoft C compiler) do not generate the proper
codefor LabVIEW to operate as a 32-bit application. For acompiler to
work with LabVIEW, it must generate afilein the. REX format (a
32-bit Phar Lap relocatable executable).

LabVIEW for Windows 95/NT supports additional compilers,
including Microsoft C/C++ and Visual C++ for NT.

Macintosh

Y ou can use the following compilersto compile your CIN source code:
THINK C, version 5-7, for 68K (from Symantec Corporation of
Cupertino, CA); Symantec C++, version 8, for PowerPC (from
Symantec Corporation of Cupertino, CA); Metrowerks CodeWarrior
for 68K (from Metrowerks Corporation of Austin, TX); Metrowerks
CodeWarrior for Power Macintosh (from Metrowerks Corporation of
Austin, TX); Macintosh Programmer’s Workshop (MPW) for 68K and
PowerPC (from Apple Computer, Inc. of Cupertino, CA).

Sun

Y ou can use the Sun ANSI-compatible compiler and thegcc compiler.
The only officially supported compiler isthe ANSI C compiler, also
known as the unbundled C compiler or SPARCompiler C, which can
be purchased from Sun. On Solaris 1.x machines, this compiler is
commonly referred to asacc (ANSI C compiler); on Solaris 2.x
machines, the compileriscalled cc. The Gnu C compiler (gcc)isalso
ANSI-compatible and can be used to create CINs for LabVIEW for
Sun. The only known limitation of the gcc compiler isthat, under

© National Instruments Corporation A-1 LabVIEW Code Interface Reference Manual

Appendix A CIN Common Questions

Solaris 1.x, it does not support extended-precision floating point
numbers. Source code for the gcc compiler is available for both
Solaris 1.x and 2.x through anonymous ftp to prep. ai . m t . edu.

SPARCstations with Solaris 1.x come with the bundled C compiler
(cc) that is not ANSI-compliant. Because the cc compiler requires
substantial modification to the header files included with LabVIEW,
National Instruments does not recommend using this compiler for CIN
development.

Please note that LabVIEW for Solaris 1.x does not accept object files
created with the - g debugging flag turned on during compilation.

My VI, which contains a CIN, crashes LabVIEW or gives a
memory.c error.

In almost all cases this indicates an error in the C code of the CIN.
Make sure that the CIN code properly allocates or deall ocates memory
as necessary. See the section entitled How LabVIEW Passes Variably
Sized Data to CINs in Chapter 2, CIN Parameter Passing, of this
manual for further details and examples.

How do | debug my CIN?

Y ou have several debugging options, depending upon the platform you
use. The following list gives descriptions of some of the available
methods.

* UsetheDbgPri nt f function, which creates a debugging
window. Although the position and size of the window cannot be
controlled, information can be posted to the window as the CIN
code executes. Notice that the window does not contain a
scrollbar. DbgPri nt f isdescribed in the section entitled
Debugging External Code in Chapter 1, CIN Overview, of this
manual .

e |If you are using aMacintosh and have Macsbug, you can use the
Debugger and DebugSt r statements to set breakpointsin the
code.

» |If you suspect that your CIN is corrupting memory, use
DSHeapCheck(FALSE) to test for integrity. Observe the heap
integrity when you enter and again when you exit the CIN code to
determine if your code is corrupting the heap.

* Usethe File Manager functions to write your debugging
information out to afile. If you are observing this file while the

LabVIEW Code Interface Reference Manual A-2 © National Instruments Corporation

Appendix A CIN Common Questions

CIN isrunning, do not forget to flush the file before the
information physically getsto the disk.

e |fthe VI containing the CIN executes without crashing, but you do
not have an external window and decide not to use DbgPri nt f,
then a) determine what information is pertinent to your problem,
and b) return the information from one of the parameters of the
CIN to the block diagram of the VI.

Is there any sort of scanf function in the LabVIEW manager
routines?

No. National Instrumentsisinvestigating thisfunctionality for afuture
version of LabVIEW. CINswith LabVIEW for Sun can call the
standard scanf and related functions.

| can't seem to link to any of the globals mentioned in the
LabVIEW Code Interface Reference Manual.

Examples of these globalsinclude: deci mal Pt, Cr gRt nChar,
LnFeedChar, EOLChar, TabChar, EnptyStr Char,
SInfinity, SNeglnfinity, Dinfinity,

DNegl nfinity, EMaxW EMaxL, Elnfinity,

ENegl nfinity, DPi, DHalfPi, DThreeHal vesPi,
DTwoPi , DRad2Deg, DTwo, DNan, EPi, EHal fPi,
ETwoPi , EE, El n10, ElI n2, El 0ogl0e, ELog2e, EHal f,
EOne, ETwo, ETen, EZero, EReci pPi, EReci pE,

EPI anck, EEl entChg, ESpeedlLt, EGravity, EAvgdro,
ERydbrg, EM rGas, ELnOFPi, ELogOf E, ELNCOF Two, and
ENan.

Although mentioned in the documentation, these globals are not
exported for usein CINs. To get these valuesinto your CIN code, pass
them in as parameters to the CIN.

Can LabVIEW be used to call a DLL in Windows?

Yes. Thenew Call Library Function callsaDLL function directly. The
function is located in the Advanced palette of the Functions palette.
Refer to Chapter 11 of the LabVIEW Function Reference Manual for
more details on this new feature.

© National Instruments Corporation A-3 LabVIEW Code Interface Reference Manual

Appendix A CIN Common Questions

| get an error linking to a function when | build my CIN using
the Windows platform.

TheWatcom linker usually does not allow you to link with the Watcom
library function modul es when making a stand-alone module. If it does
allow you to link, the code should work properly. Unfortunately, there

is no clearly defined way to determine which functions will link and
which will not; it istrial and error.

If this error occurs, the only way to work through the problem is to
write aDLL that calls the library functions.

Why do | get garbage back from math functions such as
atan2, pow, ceil, floor, Idexp, frexp, modf, and fmod when
using MPW C?

Include " Mat h. h" at thetop of your . ¢ file.

Why can’t | link to the math functions (sin, cos, and so on)
when using THINK C?

Find the mat h. c and er r or . ¢ functions that came with THINK C
and include them in the project. Be sureto also include” Mat h. h" in

the . ¢ file. Then enable the 68881 options under THINK C
preferences.

LabVIEW Code Interface Reference Manual A4 © National Instruments Corporation

Customer Communication

For your convenience, this appendix contains formsto help you gather the information necessary
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form
and the configuration form, if your manual contains one, about your system configuration to
answer your questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to
quickly provide the information you need. Our electronic services include a bulletin board
service, an FTP site, a FaxBack system, and e-mail support. If you have a hardware or software
problem, first try the electronic support systems. If the information available on these systems
does not answer your gquestions, we offer fax and telephone support through our technical support
centers, which are staffed by applications engineers.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded
instructions on how to use the bulletin board and FTP services and for BBS automated
information, call (512) 795-6990. Y ou can access these services at:

United States: (512) 794-5422 or (800) 327-3077
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 14865 1559
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support

To accessour FTP site, log on to our Internet host, f t p. nat i nst . com as anonymous and use
your Internet address, suchasj oesni t h@nywher e. com asyour password. The support files
and documents are located in the / support directories.

© National Instruments Corporation B-1 LabVIEW Code Interface Reference Manual

FaxBack Support

FaxBack is a 24-hour information retrieval system containing alibrary of documents on awide
range of technical information. You can access FaxBack from a touch-tone telephone at the

following numbers:

(512) 418-1111 or (800) 329-7177

E-Mail Support (currently U.S. only)

Y ou can submit technical support questions to the appropriate applications engineering team
through e-mail at the Internet addresses listed below. Remember to include your name, address,
and phone number so we can contact you with solutions and suggestions.

GPIB: gpi b. support @ati nst.com
DAQ: dag. support @ati nst.com
VXI: vxi.support @atinst.com

LabWindows: | w. support @ati nst.com

Telephone and Fax Support

National Instruments has branch offices all over the world. Use the list below to find the
technical support number for your country. If thereisno National Instruments office in your
country, contact the source from which you purchased your software to obtain support.

Australia
Austria
Belgium
Canada (Ontario)
Canada (Quebec)
Denmark
Finland
France
Germany
Hong Kong
Italy

Japan
Korea
Mexico
Netherlands
Norway
Singapore
Spain
Sweden
Switzerland
Taiwan
U.K.

D
Telephone

03 9 879 9422
0662 45 79 90 0
02 757 00 20
519 622 9310
514 694 8521
4576 26 00
90 527 2321
148142424
089 741 31 30
2645 3186

02 48301892
035472 2970
02 596 7456
95 800 010 0793
0348 433466
3284 8400
2265886

91 640 0085
08 73049 70
056 200 51 51
02 377 1200
01635 523545

LabVIEW: | v. support @atinst.com
HiQ: hi g. support @ati nst.com
VISA: visa. support @atinst.com

Fax

0398799179
0662 45 79 90 19
02 757 0311
519 622 9311
514 694 4399
45767111
90 502 2930
148142414
089 714 60 35
2686 8505

02 48301915
035472 2977
02 596 7455
5520 3282
0348 430673
32 84 86 00
2265887

91 640 0533
08 7304370
056 200 51 55
02 737 4644
01635 523154

Technical Support Form

Photocopy thisform and update it each time you make changesto your software or hardware, and
use the completed copy of this form as areference for your current configuration. Completing
this form accurately before contacting National Instruments for technical support helps our
applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name

Company

Address

Fax () Phone ()

Computer brand Model Processor
Operating system (include version number)

Clockspeed ~~ MHz RAM __ MB Display adapter
Mouse _yes _ no Other adaptersinstalled

Hard disk capacity ~ MB Brand

Instruments used

National Instruments hardware product model Revision

Configuration

National Instruments software product Version
Configuration

The problemiis:

List any error messages:

The following steps reproduce the problem:

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our
products. Thisinformation helps us provide quality products to meet your needs.

Title: LabVIEW® Code Interface Reference Manual
Edition Date: November 1995
Part Number: 320539C-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errorsin the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone()

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678

Austin, TX 78730-5039

Prefix Meaning Value

m- milli- 103
H- micro- 106
n- nano- 10°

Numbers

1D One-dimensional.

2D Two-dimensional.

A

active window

ADC

ANSI
application zone
array

array shell

© National Instruments Corporation

Window that is currently set to accept user input. Usually the
front window. The title bar of an active window is highlighted.
Y ou make awindow active by clicking on it, or be selecting it
from the Windows menu.

Analog-to-digital converter. An electronic device, often an
integrated circuit, that converts an analog voltage to a digital
number.

American National Standards Institute.

See AZ.

Ordered, indexed set of data elements of the same type.

Front panel object that houses an array. It consists of an index

display, a dataobject window, and an optional |abel. It can accept
various data types.

G-i LabVIEW Code Interface Reference Manual

Glossary

artificial data dependency

asynchronous execution

auto-indexing

autoscaling

AZ (application zone)

B

block diagram

Bool_ear_1 controls
and indicators

breakpoint

broken VI

Bundle node

Condition in a dataflow programming language in which the
arrival of data rather than its value triggers execution of a node.
See also data dependency.

Mode in which multiple processes share processor time, one
executing while the others, for example, wait for interrupts, as
while performing device 1/0 or waiting for a clock tick.

Capability of loop structures to disassemble and assemble arrays
at their borders. As an array enters aloop with auto-indexing
enabled, the loop automatically disassemblesit with scalars
extracted from one dimensional arrays, one dimensional arrays
extracted from two dimensional arrays, and so on. Loops
assemble data into arrays as they exit the loop according to the
reverse of the same procedure.

Ability of scalesto adjust to the range of plotted values. On graph
scales, this feature determines maximum and minimum scale
values, as well.

Memory allocation section that holds all datain aVI except
execution data.

Pictorial description or representation of a program or algorithm.
In LabVIEW, the block diagram, which consists of executable
icons called nodes and wires that carry data between the nodes, is
the source code for the virtual instrument. The block diagram
resides in the block diagram of the VI.

Front panel objects used to manipulate and display or input and
output Boolean (True or False) data. Several styles are available,
such as switches, buttons and LEDs.

Mode that halts execution when asubV1 iscalled. You set a
breakpoint by clicking on the toolbar and then on a node.

V| that cannot be compiled or run; signified by arun button with
a broken arrow.

Function that creates clusters from various types of elements.

LabVIEW Code Interface Reference Manual G-ii © National Instruments Corporation

C

C string (CStr)

case

Case Structure

cast

chart
CIN
CIN source code

Cloning

cluster

cluster shell

Code Interface Node
code resource
coercion

coercion dot

Color tool

© National Instruments Corporation

Glossary

A series of zero or more unsigned characters, terminated by a
zero, used in the C programming language.

One subdiagram of a Case Structure.

Conditional branching control structure, which executes one and
only one of its subdiagrams based on itsinput. It is the
combination of the IF THEN EL SE and CASE statementsin
control flow languages.

To change the type descriptor of a data element without altering
the memory image of the data.

See scope chart, strip chart, and sweep chart.
See Code Interface Node.
Original, uncompiled text code. See object code.

To make a copy of acontrol or some other LabVIEW object by
<Key>-clicking on it and dragging the copy to its new location.
In Windows, click on the object with the |eft mouse button while
holding down the <Ct r | > key and drag the copy to its new
location. On the Macintosh, <opt i on>-click on the object and
drag the copy to its new location. On the Sun, click the left mouse
button while holding down the <met a> key, and drag the copy
to its new location, or click on the object with the middle mouse
button and drag the copy.

A set of ordered, unindexed data elements of any data type
including numeric, Boolean, string, array, or cluster. The
elements must be all controls or all indicators.

Front panel object that contains the elements of a cluster.

Special block diagram node through which you can link
conventional, text-based codeto a VI.

Resource that contains executable machine code. You link code
resources to LabVIEW through a CIN.

The automatic conversion LabVIEW performs to change the
numeric representation of a data element.

Glyph on a node or terminal indicating that the numeric
representation of the data element changes at that point.

Tool you use to color objects and backgrounds.

G-iii LabVIEW Code Interface Reference Manual

Glossary

compile

concatenated Pascal string
(CPstr)
connector

connector pane

constant

control

control flow

Controls palette
conversion
CPStr

current VI

custom PICT controls
and indicators

D

data acquisition

data dependency

data flow

LabVIEW Code Interface Reference Manual G-iv

Process that converts high-level code to machine-executable
code. LabVIEW automatically compiles Vs before they run for
the first time after creation or alteration.

A list of Pascal-type strings concatenated into a single block of
memory.

Part of the VI or function node that contains its input and output
terminals, through which data passes to and from the node.

Region in the upper right corner of afront panel window that
displays the VI's connector. It underlies the Icon pane.

See universal and user-defined constants.

Front panel object for entering datato a V1 interactively or to a
subVI programmatically.

Programming system in which the sequential order of
instructions determines execution order. Most conventional text-
based programming languages, such as C, Pascal, and BASIC, are
control flow languages.

Menu of controls and indicators.
Changing the type of a data element.
See concatenated Pascal string

VI whose front panel, block diagram, or Icon Editor isthe active
window.

Controls and indicators whose parts can be replaced by graphics
you supply.

Process of acquiring data, typically from A/D or digital input
plug-in boards.

Condition in a dataflow programming language in which a node
cannot execute until it receives data from another node. See also
artificial data dependency.

Programming system consisting of executable nodes in which
nodes execute only when they have received all required input
data and produce output automatically when they have executed.
LabVIEW is adataflow system.

© National Instruments Corporation

datalogging

data space zone

data type descriptor

dB

Description box
diagram window
dimension

DS (data space) zone
DUT

E

empty array

EOF

executable

execution highlighting

external routine

F

flattened data

For Loop

© National Instruments Corporation

Glossary

Generally, to acquire data and simultaneously store it in a disk
file. LabVIEW file 1/O functions can also log data.

See DS zone.

Code that identifies data types, used in data storage and
representation.

Decibels.

Online documentation for a LabVIEW object.

VI window that contains the VI's block diagram code.
Size and structure attribute of an array.

Memory allocation section that holds VI execution data.

Device under test.

Array that has zero elements, but has a defined data type. For
example, an array that has a numeric control in its data display
window but has no defined values for any element is an empty
numeric array.

End-of-file. Character offset of the end of file relative to the
beginning of the file (that is, the EOF is the size of thefile).

A stand-alone piece of code that will run, or execute.

Feature that animates V| execution to illustrate the data flow in
the VI.

See shared external routine.

Data of any type that has been converted to a string, usually for
writing it to afile.

Iterative loop structure that executes its subdiagram a set number

of times. Equivalent to conventional code: For i =0 to n-1,
do ...

G-v LabVIEW Code Interface Reference Manual

Glossary

Formula Node

frame

free label

front panel

function

G

G
global variable

GMT
GPIB

graph control and indicator

H

handle

Help window

hierarchical menu

LabVIEW Code Interface Reference Manual G-vi

Node that executes formulas that you enter as text. Especially
useful for lengthy formulas that would be cumbersometo buildin
block diagram form.

Subdiagram of a Sequence Structure.

Label on the front panel or block diagram that does not belong to
any other object.

The interactive user interface of aVI. Modeled from the front
panel of physical instruments, it is composed of switches, slides,
meters, graphs, charts, gauges, LEDs, and other controls and
indicators.

Built-in execution element, comparable to an operator, function,
or statement in a conventional language.

LabVIEW graphical programming language.

Non-reentrant subV I with local memory that uses an uninitialized
shift register to store data from one execution to the next. The
memory of copies of these subVIsis shared and thus can be used
to pass global data between them.

Greenwich Mean Time.

General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE

Standard 488.1-1987 and ANSI/IEEE Standard 488.2-1987.
Hewlett-Packard, the inventor of the bus, calls it the HP-IB.

Front panel object that displays datain a Cartesian plane.

Pointer to a pointer to a block of memory; handles reference
arrays and strings. An array of stringsis a handle to a block of
memory containing handles to strings.

Special window that displays the names and locations of the
terminals for afunction or subV |, the description of controls and
indicators, the values of universal constants, and descriptionsand
data types of control attributes.

Menu that contains submenus or palettes.

© National Instruments Corporation

housing

Hz

icon
Icon Editor

icon pane

|EEE
indicator

Inf

inplace

instrument driver

1/0

L

label

Labeling tool
LabVIEW
LabVIEW string (L Str)

legend

M

matrix

MB

© National Instruments Corporation

Glossary

Nonmoving part of front panel controls and indicators that
contains sliders and scales.

Hertz. Cycles per second.

Graphical representation of a node on a block diagram.
Interface similar to that of a paint program for creating V1 icons.

Region in the upper right-hand corner of the front panel and block
diagram windows that displays the VI icon.

Institute of Electrical and Electronic Engineers.
Front panel object that displays output.

Digital display value for afloating point representation of
infinity.

Characteristic of an operation whose input and output data can
use the same memory space.

VI that controls a programmable instrument.

Input/output.

Text object used to name or describe other objects or regions on
the front panel or block diagram.

Tool used to create labels and enter text into text windows.
Laboratory Virtual Instrument Engineering Workbench.
The string data type used by LabVIEW block diagrams.

Object owned by achart or graph that display the names and plot
styles of plots on that chart or graph.

Two-dimensional array.

Megabytes of memory.

G-vii LabVIEW Code Interface Reference Manual

Glossary

mechanical-action controls

and indicators
meta-click

MPW
MSB

N

NaN

nodes
nondisplayable
indicators

numeric controls
and indicators

o)

object
object code

Operating tool

P

palette

panel window

LabVIEW Code Interface Reference Manual G-Vviii

Front panel objects that |ook and operate like familiar
mechanical or electro-mechanical devices. Examplesinclude
toggle switches, slides, meters, knobs, and LEDs

On the Sun, to click the mouse button while pressing the<met a>
key.

Macintosh Programmer’s Workshop.

Most significant bit.

Digital display value for a floating-point representation of not-a-
number, typically the result of an undefined operation, such as

log(-1).

Execution elements of a block diagram consisting of functions,
structures, and subVIs.

ASCII characters that cannot be displayed, such as ESC, NUL,
SOH, indicators and so on.

Front panel objects used to manipulate and display or input and
output numeric data.

Generic term for any item on the front panel or block diagram,
including controls, nodes, wires, and imported pictures.

Compiled version of source code. Object code is not stand-alone
because you must load it into LabVIEW to run it.

Tool used to enter data into controls as well as operate them.
Resembles a pointing finger.

Menu that displays a palette of pictures that represent possible
options.

VI window that containsthe front panel, the toolbar, and theicon/
connector pane.

© National Instruments Corporation

Pascal string (PStr)

plot

pointer

polymorphism

pop up

pop-up menus

portable
Positioning tool

private data structures

pull-down menus

R

RAM

reentrant execution

reference
relocatable

representation

ring control

© National Instruments Corporation

Glossary

A series of unsigned characters, with the value of the first
character indicating the length of the string. Used in the Pascal
programming language.

A graphical representation of an array of data shown either on a
graph or chart.

Variable that contains an address. Commonly this address refers
to adynamically-allocated block of memory.

Ability of anode to automatically adjust to data of different
representation, type, or structure.

To call up aspecial menu by clicking on an object with the right
mouse button (Windows, Sun and HP-UX) or holding down the
<conmmand> key while clicking (Macintosh).

Menus accessed by popping up on an object. Menu options
pertain to that object specifically.

Able to compile on any platform that supports LabVIEW.
Tool used to move and resize objects.

Datastructureswhose exact format isnot described and isusually
subject to change.

Menus accessed from a menu bar. Menu options are usually
general in nature.

Random Access Memory.

Mode in which callsto multiple instances of asubV| can execute
in parallel with distinct and separate data storage.

See pointer.

Able to be moved by the memory manager to a new memory
location.

Subtype of the numeric data type, of which there are signed and
unsigned byte, word, and long integers, as well as single-,
double-, and extended-precision floating-point numbers both real
and complex.

Special numeric control that associates 32-bit integers, starting at
0 and increasing sequentially, with a series of text labels or

graphics.

G-ix LabVIEW Code Interface Reference Manual

Glossary

scalar

scale

scope chart

sequence local

Sequence Structure

shared external routine

shift register

sink terminal
slider
source code

source terminal

string controls and indicators

Number capable of being represented by a point on ascale. A
single value as opposed to an array. Scalar Booleans, strings and
clusters are explicitly singular instances of their respective data
types.

Part of mechanical-action, chart, and graph controls and
indicators that contains a series of marks or points at known
intervals to denote units of measure.

Numeric indicator modeled on the operation of an oscill oscope.

Terminal used to pass data between the frames of a Sequence
Structure.

Program control structure that executes its subdiagramsin
numeric order. Commonly used to force nodes that are not data
dependent to execute in adesired order.

Subroutine that can be shared by several CIN code resources.

Optional mechanism in loop structures used to pass a variable's
value from one iteration of aloop to a subsequent iteration.

Terminal that absorbs data. Also called a destination terminal.
Moveable part of slide controls and indicators.

Original, uncompiled text code.

Terminal that emits data.

Front panel objects used to manipulate and display or input and
output text.

strip chart A numeric plotting indicator modeled after a paper strip chart
recorder, which scrolls as it plots data.

structure Program control element, such as a Sequence, Case, For Loop, or
While Loop.

subdiagram Block diagram within the border of a structure.

subVI VI used in the block diagram of another VI; comparable to a
subroutine.

sweep chart Similar to a scope chart except aline sweeps across the screen to
separate old data from new data.

LabVIEW Code Interface Reference Manual G-x © National Instruments Corporation

T

terminal

tool

top-level VI

tunnel

type descriptor

U

universal constant

user-defined constant

uuT

\Y

\
vector

virtual instrument (V1)

W

While Loop

wire

Wiring tool

© National Instruments Corporation

Glossary

Object or region on a node through which data passes.

Special LabVIEW cursors with which you can perform specific
operations.

VI at thetop of the VI hierarchy. Thisterm is used to distinguish
the VI from its subVls.

Data entry or exit terminal on a structure.

See data type descriptor.

Uneditable block diagram object that emits a particular ASCI|
character or standard numeric constant, for example, pi.

Block diagram object that emits a value you set.

Unit under test.

Volts.
One-dimensional array.

LabVIEW program; so called because it models the appearance
of a physical instrument.

Post-iterative-test loop structure that repeats a section of code
until a condition is met. Comparable to a Do loop or a Repeat-
Until loop in conventional programming languages.

Data path between nodes.

Tool used to define data paths between source and sink terminals.

G-xi LabVIEW Code Interface Reference Manual

Glossary

LabVIEW Code Interface Reference Manual G-xii © National Instruments Corporation

Numerics
680x0 (68K) Macintosh support, 1-3

A

absolute paths
conventional path specifications, 5-14
to 5-15
definition, 5-14
empty path specifications, 5-15 to 5-16
access rights functions
FGetAccessRights, 1-38
Add parameter options, CIN terminal pop-up
menu, 1-6, 1-7
Advanced palette, 1-6
alignment considerations for arrays and
strings, 2-10 to 2-12
ANSI C compiler. See unbundled Sun ANSI C
compiler.
arrays and strings. See also
NumericArrayResize function;
SetCINArraySizefunction; string datatypes;
string manipulation functions.
alignment considerations, 2-10 to 2-12
array datatype, 5-4
clusters containing variably sized
data, 2-12
examples
computing cross product of two
two-dimensiona arrays, 2-19
to 2-22
concatenating two strings, 2-16
to 2-19
working with clusters, 2-23 to 2-26
parameter passing, 2-11
paths, 2-12

© National Instruments Corporation

resizing, 2-12 to 2-13
AZHandToHand function, 1-37
AZMemStats function, 1-38
AZPtrToHand function, 1-38
AZSetHandleSize function, 2-10

B

block diagram
placing CIN on block diagram, 1-6
unlimited number of CINs per block
diagram, 1-36
Booleans
comparing two numbers and producing
Boolean scalar (example), 2-9 to 2-10
description, 5-2t0 5-3
forms of (table), 5-3
parameter passing, 2-2 to 2-3
byte manipulation functions
GetALong, 1-37
SetALong, 1-38

C

.cfiles. Seealso CIN sourcecode, compiling;
CIN source code, creating; header files.
CIN routine prototypes (example), 2-5
to 2-6
creating, 2-4 to 2-5
explicit datatype sizes, 2-1
for parameter passing, 2-1
calling code
calling externa subroutines (example),
4-10t0 4-11
compiling, 4-12 to 4-15
HP-UX C/ANSI C compiler, 4-14

LabVIEW Code Interface Reference Manual

Index

MPW compiler, 4-12

not compiled with external
subroutines, 4-2

THINK C compiler, 4-12

unbundled Sun ANSI C

data storage space for one CIN
(illustration), 3-2

definition, 3-2

reentrancy, 3-7 to 3-8

retrieving value with CIN routines, 3-9

compiler, 4-14 storing global data, 3-2
Watcom C compiler, 4-13 to 4-14 CIN MgErr datatype, 2-3
creating CIN object code, loading, 1-36, 2-8

HP-UX C/ANSI C compiler, 4-6 CIN parameter passing. See parameter
Microsoft Windows 3.x, Windows passing, CIN.
95, and Windows NT, 4-6 CIN pop-up menu

MPW compiler, 4-6 Create .c File, 1-9to0 1-10, 2-1, 2-5
requirements, 4-4 to 4-6 Load Code Resource, 1-36, 2-8
THINK C compiler, 4-5 CIN routines, 3-1 to 3-13. See also specific
unbundled Sun ANSI C compiler, 4-6 CIN routines.

calling conventions aborting Vls, 3-5

C, 23 code globals and data space globals, 3-8
Pascal, 2-3 to 3-13
calling Dynamic Link Libraries (DLLSs), 3-13 CIN data space globals example,
to 3-25 3-8t03-9

caling 16-bit DLL, 3-14 to 3-16
calling the function, 3-16
describing the function, 3-15 to 3-16
getting address of desired
function, 3-15
loadingthe DLL, 3-14
CIN displaying dialog box (example),
1-4,3-16t0 3-25
block diagram, 3-19
CIN code, 3-19 to 3-22
compiling the CIN, 3-22
DLL code, 3-17 to 3-18
optimization, 3-23to 3-25
using instead of Watcom C precompiled
libraries (note), 1-4
Windows NT, 3-13
char datatype, 5-4
CIN data space globals. See also code globals.
compared with code globals, 3-8
examples, 3-9to 3-10
initializing in CINInit routine, 3-3
storage location, 3-9
CIN data space. See also data space.

LabVIEW Code Interface Reference Manual

code global example, 3-10to 3-11
differences between, 3-9
storage alocation, 3-9
code resources, 3-1to 3-3
compiling VIs, 3-4to 3-5
data spaces, 3-1to 3-3
loading new resourcesinto CINs, 3-4
loading Vs, 3-3
multiple references to same CIN, 3-6
to 3-7
prototyped in header file, 1-11 to
1-12,2-5
examples, 1-11to 1-14, 2-5
returning error codes, 2-6
reentrancy, 3-7 to 3-8
required in source code, 1-12
running VIs, 3-5
sample header files, 1-10 to 1-12
saving VIs, 3-5
unloading Vs, 3-4

CIN source code, compiling, 1-14 to 1-36

HP-UX C/ANSI C compiler, 1-34, 2-8
Macintosh considerations, 1-12 to 1-14

© National Instruments Corporation

Macintosh Programmer’s Workshop
(MPW), 1-14 to 1-23, 2-7
Metrowerks CodeWarrior, 2-7
Microsoft SDK compiler, 2-7
Microsoft Visual C++ compiler, 2-7
to 2-8
Microsoft Windows considerations, 1-29
Solaris 1.x and 2.x considerations, 1-34
THINK C compiler, 1-15to 1-19, 2-7
unbundled Sun ANSI C compiler, 1-34
to 1-36
utilities for simplifying, 1-14
Watcom C compiler, 1-33, 2-7, 3-21
CIN source code, creating, 1-9to 1-14
CIN routines prototyped in header file,
1-11to 1-12
CINAbort routine, 1-12
CINDispose routine, 1-11
CINInit routine, 1-12
CINLoad routine, 1-12
CINRun routine, 1-12
CINUnload routine, 1-13
examples, 1-10to 1-12, 2-4t0 2-5
procedure for creating, 1-9 to 1-12
CIN terminal pop-up menu
Add parameter option, 1-6
Output Only option, 1-8
Remove Terminal option, 1-9
CINAbort routine
aborting Vls, 3-5
multiple references to same CIN, 3-7
reentrancy, 3-7 to 3-8
retrieving CIN data space value, 3-9
using CIN data space globals (example),
3-12t0 3-13
when to use, 1-12
CINDispose routine
compiling VIs, 3-4to 3-5
loading new resourcesinto CINs, 3-4
multiple references to same CIN, 3-7
reentrancy, 3-7 to 3-8
retrieving CIN data space value, 3-9
unloading Vs, 3-4

© National Instruments Corporation

Index

using CIN data space globals (example),
3-12t03-13
when to use, 1-12
CINInit routine
compiling VIs, 3-4to 3-5
loading new resourcesinto CINs, 3-4
loading Vs, 3-3
multiple references to same CIN, 3-6
reentrancy, 3-7 to 3-8
retrieving CIN data space value, 3-9
using CIN data space globals (example),
3-12t0 3-13
when to use, 1-12
CINLoad routine
loading Vs, 3-3
multiple references to same CIN, 3-6
using code globals (example), 3-10
when to use, 1-12
CINMake utility, 1-26
CINRun routine
compared with LVSBMain routine, 4-3
examples, 1-12, 2-6
parameter passing, 2-2, 2-5
retrieving CIN data space value, 3-9
running VIs, 3-5
useof ENTERLVSB and LEAVELVSB
macros, 1-13
using CIN data space globals (example),
3-12t0 3-13
writing for source code, 1-12
CINs
compiling source code
HP-UX C/ANSI C compiler, 2-8
debugging, 1-39 to 1-41
definition, 1-1
purpose and use, 1-1to 1-2
synchronous execution and effect on
CPU, 1-1, 35
CINs, creating, 1-5t0 1-36
.cfiles, 1-9to 1-12
adding input and output terminals, 1-7 to
1-9, 2-2
input-output terminals, 1-7 to 1-9

Index-15 LabVIEW Code Interface Reference Manual

Index

output-only terminals, 1-8 to 1-9
compiling source code
HP-UX C/ANSI C compiler, 1-34 to
1-36, 2-8
Macintosh considerations, 1-12
to 1-14
Macintosh Programmer’s Workshop
(MPW) compiler, 1-14 to 1-23
Metrowerks CodeWarrior, 2-7
Microsoft SDK compiler, 2-7
Microsoft Visual C++ compiler, 2-7
to 2-8
Microsoft Windows
considerations, 1-29
Solaris 1.x and Solaris 2.x
considerations, 1-34
THINK C compiler, 1-15t0 1-19, 2-7
unbundled Sun ANSI C compiler,
1-34t01-36
Watcom C compiler, 1-29 to
1-31, 2-7
examples
CIN that multiples two numbers, 2-4
to 2-8
comparing two numbers and
producing Boolean scalar, 2-9
to 2-10
computing cross product of two
two-dimensional arrays, 2-19
to 2-22
concatenating two strings, 2-16
to 2-19
working with clusters, 2-23 to 2-26
loading object code, 1-36, 2-8
overview, 1-5
placing CIN on block diagram, 1-6
source code, creating, 1-9to 1-12, 2-4
to 2-6
unlimited number of CINs per block
diagram, 1-36
wiring inputs and outputs, 1-9, 2-4
CINSave routine
multiple references to same CIN, 3-7

LabVIEW Code Interface Reference Manual

Index-16

saving VIs, 3-5
when to use, 1-11
CINUnload routine
loading new resourcesinto CINs, 3-4
multiple references to same CIN, 3-6
using code globals (example), 3-10
when to use, 1-12
clusters containing variably-sized data, 2-12
example, 2-23to0 2-26
clusters of scalars, 2-3
code globals, 3-8 to 3-13
compared with CIN data space
globals, 3-10
example, 3-10to 3-11
storage alocation, 3-9
Code Interface Nodes (CINS). See CINs.
Code Interface Nodes function
(illustration), 1-6
code resource
definition, 3-1
loading new resourceinto CINSs, 3-4
referencing by CIN node, 3-2 to 3-3
CodeWarrior devel opment environment. See
Metrowerks CodeWarrior.
comparing two numbers and producing
Boolean scalar (example), 2-9 to 2-10
compiling CIN source code. See CIN source
code, compiling.
compiling shared external subroutines. See
shared external subroutines.
complex numbers, 5-4
concatenated Pascal strings (CPStr), 5-6. See
also Pascal-style strings (PStr).
constants
boolean data type values, 5-7
conflictsin extcode.h file, 1-11
defined for use with external code
modules, 5-6
LVBoolean data type values, 5-7
NULL O, 5-6
CPStr. See concatenated Pascal strings
(CPstr).
Create .c File, CIN pop-up menu, 1-9to 1-10

© National Instruments Corporation

creating CIN source code. See CIN source
code, creating.

creating CINs. See CINS, creating.

creating files. See FCreate function;
FCreateAlways function.

CStr. See C-style strings (CStr).

C-Style strings (CStr), 5-5

customer communication, Xi

D

data space (DS) zone, 5-9
data space globals. See CIN data space
globals.
data space, 3-1 to 3-2. See also CIN data
space.
data structures. See also parameter passing,
CIN.
memory manager data structures, 5-12
time specified as data structures, 5-17
data types
char, 5-4
conflictsin extcode.h file, 1-11
constants, 1-11, 5-6 to 5-7
dynamic datatypes, 5-4 t0 5-6
arrays, 5-4
concatenated Pascal strings
(CPstr), 5-6
C-style strings (CStr), 5-5
LabVIEW strings (L Str), 5-5
Pascal-style stings (PStr), 5-5
paths, 5-6
strings, 5-5
explicit datatype sizesin header file, 2-1
memory-related types, 5-6
passing to CIN, 2-1
platform independence, 5-1
scalar datatypes
Boolean, 5-2 to 5-3
numerics, 5-3to 5-4
complex numbers, 5-4
specified in .cfile, 2-1
DateToSecs function, 1-38
DbgPrintf function, 1-39. See also SPrintf

© National Instruments Corporation

Index

function.
debugging externa code, 1-39 to 1-41
DbgPrintf function, 1-39
HP-UX, 1-41
Solaris, 1-41
Windows 95/NT, 1-40
debugging window, creating, 1-40
default access rights. See accessrights
functions.
directories
identifying, 5-13
directory functions. See also path
management functions.
FGetAccessRights, 1-38
FGetlnfo, 1-38
FGetVolinfo, 1-38
DLLs. Seecalling Dynamic Link Libraries
(DLLSs).
documentation
conventions, X to Xi
organization of manual, ix to X
related documents, Xi
DSDisposePtr function
examples, 5-11
DSHandToHand function, 1-38
DSMemStats function, 1-38
DSPtrToHand function, 1-38
DSSetHandleSize function, 2-10
dynamic datatypes, 5-4 to 5-6
arrays, 5-4
concatenated Pascal strings (CPStr), 5-6
C-Style strings (CStr), 5-5
LabVIEW string (LStr), 5-5
Pascal-style string (PStr), 5-5
paths, 5-6, 5-16
strings, 5-5
Dynamic Link Libraries(DLLS), calling. See
calling Dynamic Link Libraries (DLLS).
dynamic memory allocation, 5-8

E

empty path specifications, 5-15 to 5-16
ENTERLVSB macro

LabVIEW Code Interface Reference Manual

Index

example, 1-13
including in CIN source code, 1-14
purpose and use, 1-14
error codes. See also specific functions.
MgErr datatype, 2-3
nokrr, 2-3
returned by CIN routines, 2-6
executable, 4-2
extcode.h file
CIN defined as Pascal or nothing, 2-3
constant and data type conflicts, 1-11, 2-1
included with LabVIEW, 2-1
purpose and use, 1-11
required before any other code
(note), 1-14
specifying full path for THINK C
compiler, 1-18
specifying full path for THINK C
compiler (note), 2-6
external code
classes, 1-2
debugging, 1-39to 1-41
languages supported, 1-3to 1-5. See also
specific compilers.
external subroutines. See shared externa
subroutines.

F

FCreate function, 1-38
FCreateAlways function, 1-38
FFlattenPath function, 1-38
FGetAccessRights function, 1-38
FGetEOF function, 1-38
FGetInfo function, 1-38
FGetPathType function, 1-38
FGetVollnfo function, 1-38
file descriptors, 5-13, 5-16
file manager

definition, 5-13

purpose, 5-2
file manager functions

basic file operations

FCreate, 1-38

LabVIEW Code Interface Reference Manual

FCreateAlways, 1-38
FMOpen, 1-38
FMRead, 1-38
FMWrite, 1-38
converting paths
FFlattenPath, 1-38
FPathToArr, 1-38
FPathToAZString, 1-38
FPathToDString, 1-38
FTextToPath, 1-38
FUnFlattenPath, 1-38
determining path type
FGetPathType, 1-38
duplicating paths
FPathToPath, 1-38
extracting information from paths
FNamePtr, 1-38
file, directory, and volume information
FGetAccessRights, 1-38
FGetlnfo, 1-38
FGetVollnfo, 1-38
positioning current position mark
FMTell, 1-38
positioning end-of-file mark
FGetEOF, 1-38
refnum manipulation
FNewRefNum, 1-38
FRefNumToFD, 1-38
files
identifying, 5-13
fixed sized parameters, passing, 2-2 to 2-3
float datatype, 2-5
float32 data type, 2-5, 5-3
float64 data type, 5-3
floatExt datatype, 5-3
floating-point numbers, 5-3
FMOpen function, 1-38
FMRead function, 1-38
FMTell function, 1-38
FMWrite function, 1-38
FNamePtr function, 1-38
FNewRefNum function, 1-38
FPathToArr function, 1-38

© National Instruments Corporation

FPathToAZString function, 1-38
FPathToDString function, 1-38
FRefNumToFD function, 1-38
FStringToPath function, 1-38
FTextToPath function, 1-38

function calls, LabVIEW, 1-14
Functions palette, Advanced palette, 1-6
FUnFlattenPath function, 1-38

G

generic.mak file, 1-31
GetALong function, 1-38
GetDSStorage function, 3-9
GetIndirectFunctionHandl&() function, 3-16,
3-20, 3-21, 3-24
GetProcAddress() function, 3-15, 3-20,
3-21,3-22
global data. See also CIN data space globals;
code globals.
definition, 3-2
storing in CIN data space, 3-2
global variables
referenced by quoted strings, 1-12
referencing with ENTERLV SB and
LEAVELVSB macros, 1-12
used by all LabVIEW function
cals, 1-12
globals. See also CIN dataspace globals; code
globals.

H

handle, 2-11
handles. See al so memory manager functions;
pointers.
definition, 2-10, 5-9
example code, 5-10 to 5-12
memory allocation, 5-8
memory relocation for arrays and strings,
2-10to 2-11
using AZ and DS routine, 5-9
header files. See also .c files.
CIN routine prototypes (example), 1-12

© National Instruments Corporation

Index

examples, 1-11, 1-11 to 1-12
extcode.h, 1-10, 1-11, 1-14, 1-19, 2-1,
2-3,2-5

hosttype.h, 1-11

include in source code, 1-11
Help

online manual, 1-37

Online Reference, 1-37
hosttype.h file, 1-11, 1-14
HP-UX

compiling CINs, 1-34

debugging CINs, 1-41

LabVIEW support, 1-5

parameter passing, 2-8
HP-UX C/ANSI C compiler, 4-14

building CINs, 1-34 to 1-36

calling code

compiling, 4-14
creating, 4-6
external subroutines, compiling, 4-10
parameter passing, 2-8

input and output terminals, adding
input-output terminals, 1-7 to 1-8
output-only terminals, 1-8 to 1-9
removing terminals, 1-9

int16 datatype, 5-3

int32 datatype, 2-13, 5-3

int8 data type, 5-3

Invokel ndirectFunction() function, 3-16,

3-21,3-22

L

LabVIEW manager functions. See manager
functions.
LabVIEW path specifications, 5-16
LabVIEW strings (L Str), 5-5
languages supported, by platform. See also
specific compilers.
680x0 (68K) Macintosh, 1-3
HP-UX, 1-5

LabVIEW Code Interface Reference Manual

Index

Microsoft Windows 3.1, 1-4
Microsoft Windows 95/NT, 1-4
Power Macintosh, 1-3
Solaris, 1-5
LEAVELVSB macro
example, 1-13
including in CIN source code, 1-13
purpose and use, 1-12
libraries. See calling Dynamic Link Libraries
(DLLS); managers.
Load Code Resource, CIN pop-up menu,
1-36, 2-8
LoadLibrary() function, 3-14
LStr. See LabVIEW strings (L Str).
LVBoolean, 5-3
LVMakeMake utility
examplefile, 1-29
purpose, 1-25
syntax, 1-28
[vmkmf command, 1-34 to 1-35
LVSBMain routine, 4-3
LVSBName, 1-34
Ivsbutil.app utility, 1-3, 1-14, 1-17, 1-21
Ivsbutil .tool utility, 1-3, 1-14

M

Macintosh computers, compiler support for,
1-14t0 1-15
Macintosh Programmer’s Workshop (MPW)
compiler, 1-14 to 1-19
compiling calling code, 4-12
creating calling codes, 4-6
external subroutines
building, 4-3
compiling, 4-8
LabVIEW, 1-3
parameter passing, 2-7
placing utilitiesin correct folders, 1-15
pseudocode for makefile, 1-26 to 1-28
manager functions
help, 1-37
manager functions. See also file manager
functions; memory manager functions;

LabVIEW Code Interface Reference Manual

support manager functions.
allocate space for return values
(example), 1-38
functions requiring pre-allocated
memory (table), 1-38
pointer as parameters, 1-37 to 1-38
portability, 1-37
purpose and use, 1-36
platform independence, 5-1
managers. See also datatypes.
definition, 5-1
file manager, 5-2, 5-13
memory manager, 5-2, 5-7, 5-12
overview, 5-1t0 5-2
support manager, 5-2
manipulating properties of handles. See
memory manager functions.
manual. See documentation.
marks, positioning. See position mark
functions.
master pointers, 5-8, 5-10
matching filenames with patterns. See
FStrFitsPat function.
mathematical functions
RandomGen, 1-38
memory allocation. See also handles;
pointers.
alignment considerations for arrays and
strings, 2-10 to 2-11.
allocating space for return value
(example), 1-38
dynamic, 5-8 to 5-9
functions requiring pre-allocating
memory (table), 1-38
padding, 2-11
recovering after errors, 2-3to 2-4
static, 5-7
memory manager
data structures, 5-12
definition, 5-7
purpose, 5-1
memory manager functions
allocating and releasing handles

© National Instruments Corporation

AZSetHandleSize, 2-10
DSSetHandleSize, 2-10
memory utilities
AZHandToHand, 1-38
AZPtrToHand, 1-38
DSHandToHand, 1-38
DSPtrToHand, 1-38
memory zone utilities
AZMem$Stats, 1-38
DSMemStats, 1-38
using AZ and DS routines with pointers
and handles, 5-9 to 5-10
memory utilities. See memory manager
functions.
memory zone utilities. See memory manager
functions.
memory zones
application space (AZ) zone, 5-9
data space (DS) zone, 5-9
memory-related types. See handles; pointers.
MessageBox function, 3-16
Metrowerks CodeWarrior, 1-21 to 1-25
building CINs, 1-24
LabVIEW support for, 1-3
parameter passing, 2-7
required project preferences, 1-21
to 1-25
MgErr datatype, 2-3
Microsoft SDK C/C++ Compiler
building CINs, 1-32 to 1-33
LabVIEW support for, 1-4
parameter passing, 2-7
Microsoft Visual C++ for Windows 95/NT
building CINs, 1-32 to 1-33
Microsoft Visual C++ for Windows NT
LabVIEW support for, 1-4
parameter passing, 2-7 to 2-8
Microsoft Windows 3.X. See also calling
Dynamic Link Libraries (DLLSs); Watcom C
compiler.
32-bit code required for LabVIEW, 1-29
external code support for CINs, 1-4
Microsoft Windows 95/NT

© National Instruments Corporation

Index

calling code, creating, 4-6
compiling CINs
Microsoft SDK C/C++ Compiler,
1-32t0 1-33
Visual C++ for Windows 95/NT,
1-32t0 1-33
Watcom C Compiler for Windows
3.1,1-33
debugging CINs, 1-40
external subroutine, building, 4-3to 4-4
external subroutine, compiling, 4-9
LabVIEW support, 1-4
Microsoft Windows. See also calling
Dynamic Link Libraries (DLLS); Watcom
C compiler.
calling code, creating, 4-6
external subroutines, building, 4-3 to 4-4
Motorola 680x0 (68K) Macintosh support,
1-25t01-29
Motorola 680x0 (68k) Macintosh
support, 1-3
MPW compiler. See Macintosh
Programmer’ s Workshop (MPW) compiler.
multiple references to same CIN, 3-6to 3-7

N

NumericArrayResize function
concatenating two strings (example),
2-17t02-18
description, 2-15
resizing arrays and strings, 2-12
to 2-13
resizing handles, 2-10
pre-allocated memory required, 1-37
numerics
complex numbers, 5-4
description, 5-3t0 5-4
parameters passing, 2-2

0

object code, CIN. See CIN object code,
loading.

LabVIEW Code Interface Reference Manual

Index

Online Reference, 1-37

opening files. See FM Open function.

optimizing DLL performance, 3-23to 3-25

.out format (Solaris), 1-5, 1-34

Output Only option, CIN terminal pop-up
menu, 1-8

output-only terminals, adding, 1-8 to 1-9

P

padding, defined, 2-11
parameter passing, CIN
.cfile, 2-1t0 2-3
examples with scalar, 2-4 to 2-10
comparing two numbers, producing
Boolean scalar, 2-9 to 2-10
creating CIN that multiples two
numbers, 2-4 to 2-8
examples with variably-sized data
computing cross product of two
two-dimensiona arrays, 2-19
to 2-22
concatenating two strings, 2-16
to 2-19
working with clusters, 2-23 to 2-26
fixed-size data
cluster of scaars, 2-3
refnums, 2-3
scalars Booleans, 2-2 to 2-3
scalars numerics, 2-2
overview, 2-1
resizing arrays and strings, 2-12 to 2-16
return values for CIN routine, 2-3 to 2-4
terminal considerations, 2-2
unlimited parameter passing, 2-1
variably-sized data, 2-12
alignment considerations, 2-10
to2-11
arrays and strings, 2-11to 2-12
cluster containing variably-sized
data, 2-12
paths, 2-12
parameters
correspondence with wires connected to

LabVIEW Code Interface Reference Manual

CINs, 2-1
pointer as parameters, 1-37 to 1-38
Pascal calling conventions, 2-3
Pascal -style string (PStr), 5-5. See also
concatenated Pascal strings (CPStr).
path data type, 5-6, 5-16
path management functions
converting paths
FFlattenPath, 1-38
FPathToArr, 1-38
FPathToAZString, 1-38
FPathToDString, 1-38
FStringToPath, 1-38
FTextToPath, 1-38
FUnFlattenPath, 1-38
determining path type
FGetPathType, 1-38
duplicating paths
FPathToPath, 1-38
extracting information from paths
FNamePtr, 1-38
path specifications
absolute paths, 5-14 to 5-15
conventional specifications, 5-14 to 5-15
empty path specifications, 5-15 to 5-16
LabVIEW path specifications, 5-16
Macintosh systems, 5-15 to 5-16
PC systems, 5-15 to 5-16
relative paths, 5-14 to 5-15
UNIX systems, 5-14 to 5-16
paths, and parameter passing, 2-12
pointers. See al so handles; memory manager
functions.
definition, 1-37
dynamic memory allocation, 5-8
example codes, 5-10 to 5-12
master pointers, 5-8 to 5-10
non-relocatable, 5-8
used as parameters, 1-37 to 1-38
using AZ and DS routines, 5-9 to 5-10
position mark functions
FGetEOF, 1-38
Power Macintosh support, 1-3, 1-25 to 1-29

© National Instruments Corporation

PStr. See Pascal-style strings (PStr).

Q

guoted strings referencing global variables,
1-12,1-13

R

RandomGen function, 1-38
reading files. See FMRead function.
reentrancy, 3-7 to 3-8
refnum management functions
FNewRefNum, 1-38
FRefNumToFD, 1-38
refnums
file refnums, 5-17
parameter passing, 2-3
relative paths
conventional specifications, 5-14 to 5-15
definition, 5-14
empty path specifications, 5-15 to 5-16
UNIX systems, 5-14 to 5-16
releasing handles and pointers. See memory
manager functions.
Removal Terminal option, CIN terminal
pop-up menu, 1-9
return values
allocating space for return values
(example), 1-38
CIN MgErr, 2-3
.REX files, 1-4

S

scaar datatypes, 5-2to 5-4
Booleans
comparing two numbers and
producing Boolean scalar, 2-9
to 2-10
description, 5-3
forms of (table), 5-3
parameter passing, 2-2 to 2-3
numerics, 2-2, 5-3to 5-4

© National Instruments Corporation

Index

complex numbers, 5-4
description, 5-3t0 5-4
parameter passing, 2-2
parameter passing
cluster of scalars, 2-3
comparing two numbers, producing
Boolean, 2-9to 2-10
creating CIN that multiples two
numbers (example), 2-4 to 2-10
SecsToDate function, 1-38
SetALong function, 1-38
SetCINArraySize function
description function, 2-13
examples
clusters containing variably-sized
data, 2-26
computing cross product to
two-dimensiona arrays, 2-19
to 2-22
resizing arrays and strings, 2-12 to 2-13
resizing handles, 2-10
SetDSStorage function, 3-9
shared external subroutines, 4-1 to 4-15
advantages, 4-1to 4-2
calling code, compiling, 4-12 to 4-15
example, 4-12 to 4-15
HP-UX C/ANSI C compiler, 4-14
Microsoft Windows NT and
Windows 95, 4-14
MPW compiler, 4-6, 4-12
requirements, 4-4 to 4-6
THINK C compiler, 4-12
unbundled Sun ANS| C
compiler, 4-14
Watcom C compiler, 4-13to 4-14
calling code, creating, 4-4 to 4-6
example, 4-10to 4-11
HP-UX C/ANSI C compiler, 4-6
Microsoft Windows 3.1, Windows
NT, and Windows 95, 4-6
THINK C compiler, 4-5
unbundled Sun ANS| C
compiler, 4-6

LabVIEW Code Interface Reference Manual

Index

calling external subroutine (example),
4-10to0 4-11
compared with CINs, 4-1
compiling
example, 4-8to 4-10
HP-UX C/ANSI C compiler, 4-10
Microsoft Windows NT and
Windows 95, 4-9
MPW compiler, 4-8
THINK C compiler, 4-8
unbundled Sun ANSI C
compiler, 4-10
Watcom C compiler, 4-9
creating
example, 4-7
HP-UX C/ANSI C compiler,
4-4, 4-6
Microsoft Windows 3.1, Windows
NT, and Windows 95, 4-3to 4-4
MPW compiler, 4-3
not compiled with calling code, 4-2
requirements, 4-2 to 4-4
THINK C compiler, 1-15 to
1-17,4-3
unbundled Sun ANSI C compiler,
1-34, 4-4, 4-6
definition, 1-2, 4-1
purpose and use, 1-2, 4-1 to 4-2
supported languages, 1-3to 1-5
signed integers, 5-3
680x0 (68K) Macintosh support, 1-3
Solaris 1.x and 2.x. See also unbundled Sun
ANSI C compiler.
compiling CINs, 1-34
debugging CINs, 1-41
LabVIEW support, 1-5
parameter passing, 2-8
source code, CIN. See CIN source code,
compiling; CIN source code, creating.
SPARCstation. See Solaris 1.x and 2.x.
statistics on memory. See AZMemStats
function; DSMemStats function.
string data types

LabVIEW Code Interface Reference Manual

Index-24

concatenated Pascal string (CPStr), 5-6
C-style strings (Cstr), 5-5
LabVIEW strings (LStr), 5-5
overview, 5-5
Pascal -style strings (PStr), 5-5
strings. See arrays and strings.
Sun workstations. See Solaris 1.x and 2.x;
unbundled Sun ANSI C compiler.
support manager
definition, 5-17
purpose, 5-2
support manager functions. See also
manager functions.
byte manipulation operations
GetALong, 1-37
SetALong, 1-38
mathematical operations
RandomGen, 1-38
overview, 5-18
time functions
DateToSecs, 1-38
SecsToDate, 1-38
time specified as data structure, 5-17
Symantec C++
creating CINs, 1-3, 1-19t0 1-21

T

terminal pop-up menu. See CIN terminal
pop-up menu.
terminals
adding input and output terminals, 1-7
to 1-9
input-output terminals, 1-7 to 1-9
output-only terminals, 1-7 to 1-9
removing terminals, 1-7 to 1-9
parameter passing, 2-2
wiring inputs and outputsto CIN, 1-7
to 1-9
THINK C compiler, 1-3, 1-15to 1-19
calling code
compiling, 4-12
creating, 4-5
creating CIN project from scratch, 1-15

© National Instruments Corporation

to 1-19
external subroutines
building, 4-3
compiling, 4-8
path for extcode.h file, 1-19
path for extcode.h file (note), 2-6
LabVIEW support for, 1-3
parameter passing, 2-7
setting up the project, 1-15to 1-17
time functions
DateToSecs, 1-38
SecsToDate, 1-38

U

ulnt16 data type, 5-3
ulnt32 data type, 5-3
ulnt8 data type, 5-3
unbundled Sun ANSI C compiler
caling code, 4-14
compiling, 4-15
creating, 4-6
compatibility with LabVIEW, 1-5, 1-34
creating makefile, 1-34 to 1-35
external subroutines
building, 4-4
compiling, 4-10
Ivmkmf command syntax, 1-34
parameter passing, 2-8
unsigned integers, 5-3

v

Vs, managing with CIN routines
aborting, 3-5
compiling, 3-4to 3-5
loading, 3-3
running, 3-5
saving, 3-5
unloading, 3-4
Visual C++ for Windows. See Microsoft
Visual C++ for Windows 95/NT.
volume
definition, 5-13

© National Instruments Corporation

Index

W

Watcom C compiler. See also calling
Dynamic Link Libraries (DLLS).
accessing functions from DLLs
(note), 1-31
caling code, 4-13to 4-14
compatibility with LabVIEW, 1-4
executing wmake utility, 1-26
external subroutines, compiling, 4-9
inability to link precompiled librariesto
CIN (note), 1-31
pseudocode for makefile, 1-30
Windows 95/NT
building CINs, 1-33
LabVIEW support for, 1-4
wmake utility, 1-26
Win32 Microsoft SDK. See Microsoft SDK
C/C++ Compiler.
Windows 3.x. See Microsoft Windows 3.x.
Windows 95. See Microsoft Windows
95/NT.
Windows NT. See Microsoft Windows
95/NT.
wiring inputs and outputsto CIN, 1-9
wmake command, 1-26
wmake utility, 1-26
writing files. See FMWrite functions.

VA

zones. See memory zones.

LabVIEW Code Interface Reference Manual

	LabVIEW ® Code Interface Reference Manual
	Important Information
	Warranty
	Copyright
	Trademarks
	MEDICAL WARNING

	About this Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Table of Contents
	Ch. 1 CIN Overview
	Introduction
	Classes of External Code
	Supported Languages
	Macintosh
	Microsoft Windows 3.1
	Microsoft Windows 95 and Windows NT
	Solaris
	HP-UX

	Steps for Creating a CIN
	1. Place the CIN on a Block Diagram
	2. Add Input and Output Terminals to the CIN
	Input-Output Terminals
	Output-Only Terminals

	3. Wire the Inputs and Outputs to the CIN
	4. Create .c File
	Special Macintosh Considerations

	5. Compile the CIN Source Code
	Macintosh
	THINK C for 68K (Versions 5-7)
	Symantec C++ 8.0 for Power Macintosh
	Metrowerks CodeWarrior for 68K
	Metrowerks CodeWarrior for Power Macintosh
	Macintosh Programmer’s Workshop for 68K and Power ...

	Microsoft Windows 3.x
	Watcom C Compiler

	Microsoft Windows 95 and Windows NT
	Microsoft SDK C/C++ Compiler
	Visual C++ for Windows 95 or Windows NT
	Watcom C Compiler for Windows 3.1 under Windows 95...

	Solaris 1.x
	Solaris 2.x
	HP-UX
	Unbundled Sun ANSI C Compiler and HP-UX C/ANSI C C...

	6. Load the CIN Object Code

	LabVIEW Manager Routines
	Online Reference
	Pointers as Parameters

	Debugging External Code
	DbgPrintf
	Debugging CINs Under Windows 95 and Windows NT
	Debugging CINs Under Sun or Solaris
	Debugging CINs Under HP-UX

	Ch. 2 CIN Parameter Passing
	Introduction
	CIN .c File
	How LabVIEW Passes Fixed Sized Data to CINs
	Scalar Numerics
	Scalar Booleans
	Refnums
	Clusters of Scalars

	Return Value for CIN Routines
	Examples with Scalars
	Steps for Creating a CIN That Multiplies Two Numbe...
	1. Place the CIN on the Block Diagram
	2. Add Two Input and Output Terminals to the CIN
	3. Wire the Inputs and Outputs to the CIN
	4. Create the CIN Source Code
	5. Compile the CIN Source Code
	Macintosh
	THINK C for 68K and Symantec C++
	Macintosh Programmer’s Workshop for 68K and Power ...
	Metrowerks CodeWarrior for Power Macintosh and 68K...

	Microsoft Windows 3.x
	Watcom C Compiler

	Microsoft Windows 95 and Windows NT
	Microsoft SDK Compiler
	Microsoft Visual C++ Compiler

	Solaris 1.x, Solaris 2.x, and HP-UX

	6. Load the CIN Object Code

	Comparing Two Numbers, Producing a Boolean Scalar

	How LabVIEW Passes Variably Sized Data to CINs
	Alignment Considerations
	Arrays and Strings
	Paths (Path)
	Clusters Containing Variably Sized Data

	Resizing Arrays and Strings
	SetCINArraySize
	NumericArrayResize
	Examples with Variably Sized Data
	Concatenating Two Strings
	Computing the Cross Product of Two Two�Dimensional...
	Working with Clusters

	Ch. 3 CIN Advanced Topics
	CIN Routines
	Data Spaces and Code Resources

	Figure 3-1. Data Storage Spaces for One CIN, Simpl...
	CIN Routines: The Basic Case
	Loading a VI
	Unloading a VI
	Loading a New Resource into the CIN
	Compiling a VI
	Running a VI
	Saving a VI
	Aborting a VI

	Multiple References to the Same CIN

	Figure 3-2. Three CINs Referencing the Same Code R...
	Reentrancy

	Figure 3-3. Three VIs Referencing a Reentrant VI C...
	Code Globals and CIN Data Space Globals
	Examples
	Using Code Globals
	Using CIN Data Space Globals

	Calling a Windows 95 or Windows NT Dynamic Link Li...
	Calling a Windows 3.1 Dynamic Link Library
	Calling a 16-Bit DLL
	1. Load the DLL
	2. Get the address of the desired function
	3. Describe the function
	4. Call the function

	Example: A CIN that Displays a Dialog Box
	The DLL
	The Block Diagram
	The CIN Code
	Compiling the CIN
	Optimization

	Ch. 4 External Subroutines
	Introduction
	Creating Shared External Subroutines
	External Subroutine
	Macintosh
	THINK C Compiler and CodeWarrior 68K Compiler
	MPW Compiler

	Microsoft Windows 3.1, Windows 95, and Windows NT
	Solaris 1.x, Solaris 2.x, and HP-UX
	Unbundled Sun C Compiler and HP-UX C/ANSI C Compil...

	Calling Code
	Macintosh
	THINK C Compiler
	CodeWarrior 68K Compiler
	MPW Compiler

	Microsoft Windows 3.1, Windows 95, and Windows NT
	Solaris 1.x, Solaris 2.x, and HP-UX
	Unbundled Sun C Compiler and HP-UX C/ANSI C Compil...

	Simple Example
	External Subroutine Example
	Compiling the External Subroutine
	Macintosh
	THINK C Compiler and CodeWarrior 68K Compiler
	MPW Compiler

	Microsoft Windows 3.1
	Watcom C Compiler

	Microsoft Windows 95 and Windows NT
	Solaris 1.x, Solaris 2.x, and HP-UX
	Unbundled Sun C Compiler and HP-UX C/ANSI C Compil...

	Calling Code
	Compiling the Calling Code
	Macintosh
	THINK C Compiler
	CodeWarrior 68K Compiler
	MPW Compiler

	Microsoft Windows 3.1
	Watcom C Compiler

	Microsoft Windows 95 and Windows NT
	Solaris 1.x, Solaris 2.x, and HP-UX
	Unbundled Sun C Compiler and HP-UX C/ANSI C Compil...

	Ch. 5 Manager Overview
	Introduction
	Basic Data Types
	Scalar Data Types
	Booleans
	Numerics
	Complex Numbers

	char Data Type
	Dynamic Data Types
	Arrays
	Strings
	C-Style Strings (CStr)
	Pascal-Style Strings (PStr)
	LabVIEW Strings (LStr)
	Concatenated Pascal String (CPStr)
	Paths (Path)

	Memory-Related Types
	Constants

	Memory Manager
	Memory Allocation
	Static Memory Allocation
	Dynamic Memory Allocation: Pointers and Handles

	Memory Zones
	Using Pointers and Handles
	Simple Example

	Reference to the Memory Manager
	Memory Manager Data Structures

	File Manager
	Introduction
	Identifying Files and Directories
	Path Specifications
	Conventional Path Specifications
	Empty Path Specifications
	LabVIEW Path Specification

	File Descriptors
	File Refnums

	Support Manager

	Ch. 6 Memory Manager Functions
	Allocating and Releasing Handles
	AZDisposeHandle DSDisposeHandle
	AZEmptyHandle DSEmptyHandle
	AZGetHandleSize DSGetHandleSize
	AZNewHandle DSNewHandle
	AZNewHClr DSNewHClr
	AZReallocHandle DSReallocHandle
	AZRecoverHandle DSRecoverHandle
	AZSetHandleSize DSSetHandleSize
	AZSetHSzClr DSSetHSzClr
	Allocating and Releasing Pointers

	AZDisposePtr DSDisposePtr
	AZNewPClr DSNewPClr
	AZNewPtr DSNewPtr
	Manipulating Properties of Handles

	AZHLock
	AZHPurge
	AZHNoPurge
	AZHUnlock
	Memory Utilities

	AZHandAndHand DSHandAndHand
	AZHandToHand DSHandToHand
	AZPtrAndHand DSPtrAndHand
	AZPtrToHand DSPtrToHand
	AZPtrToXHand DSPtrToXHand
	ClearMem
	MoveBlock
	SwapBlock
	Handle and Pointer Verification

	AZCheckHandle DSCheckHandle
	AZCheckPtr DSCheckPtr
	Memory Zone Utilities

	AZHeapCheck DSHeapCheck
	AZMaxMem DSMaxMem
	AZMemStats DSMemStats

	Ch. 7 File Manager Functions
	File Manager Data Structures
	File/Directory Information Record
	File Type Record
	Path Data Type
	Permissions
	On a UNIX computer, the nine bits of permissions c...

	Volume Information Record

	File Manager Functions
	Performing Basic File Operations

	FCreate
	FCreateAlways
	FMClose
	FMOpen
	FMRead
	FMWrite
	Positioning the Current Position Mark

	FMSeek
	FMTell
	Positioning the End-Of-File Mark

	FGetEOF
	FSetEOF
	Flushing File Data to Disk

	FFlush
	Determining File, Directory, and Volume Informatio...

	FExists
	FGetAccessRights
	FGetInfo
	FGetVolInfo
	FSetAccessRights
	FSetInfo
	Getting Default Access Rights Information

	FGetDefGroup
	Creating and Determining the Contents of Directori...

	FListDir
	FNewDir
	Copying Files

	FCopy
	Moving and Deleting Files and Directories

	FMove
	FRemove
	Locking a File Range

	FLockOrUnlockRange
	Matching Filenames with Patterns

	FStrFitsPat
	Creating Paths

	FAddPath
	FAppendName
	FAppPath
	FEmptyPath
	FMakePath
	FNotAPath
	FRelPath
	Disposing Paths

	FDisposePath
	Duplicating Paths

	FPathCpy
	FPathToPath
	Extracting Information from a Path

	FDepth
	FDirName
	FName
	FNamePtr
	FVolName
	Converting Paths to and from Other Representations...

	FArrToPath
	FFlattenPath
	FPathToArr
	FPathToAZString
	FPathToDSString
	FStringToPath
	FTextToPath
	FUnFlattenPath
	Comparing Paths

	FIsAPath
	FIsAPathOrNotAPath
	FIsEmptyPath
	FPathCmp
	Determining a Path Type

	FGetPathType
	FIsAPathOfType
	FSetPathType
	Manipulating File Refnums

	FDisposeRefNum
	FIsARefNum
	FNewRefNum
	FRefNumToFD
	FRefNumToPath

	Ch. 8 Support Manager Functions
	Byte Manipulation Operations
	Cat4Chrs *Macro*
	GetALong *Macro*
	Hi16 *Macro*
	HiByte *Macro*
	HiNibble *Macro*
	Lo16 *Macro*
	HiNibble *Macro*
	LoByte *Macro*
	Long *Macro*
	LoNibble *Macro*
	Offset *Macro*
	SetALong *Macro*
	Word *Macro*
	Mathematical Operations
	For THINK C Users

	Abs
	Max
	Min
	Pin
	RandomGen
	String Manipulation

	BlockCmp
	CPStrBuf *Macro*
	CPStrCmp
	CPStrIndex
	CPStrInsert
	CPStrLen *Macro*
	CPStrRemove
	CPStrReplace
	CPStrSize
	CToPStr
	FileNameCmp *Macro*
	FileNameIndCmp *Macro*
	FileNameNCmp *Macro*
	HexChar
	IsAlpha
	IsDigit
	IsLower
	IsUpper
	LStrBuf *Macro*
	LStrCmp
	LStrLen *Macro*
	LToPStr
	PPStrCaseCmp
	PPStrCmp
	PStrBuf *Macro*
	PStrCaseCmp
	PStrCat
	PStrCmp
	PStrCpy
	PStrLen *Macro*
	PStrNCpy
	PToCStr
	PToLStr
	SPrintf SPrintfp PPrintf PPrintfp FPrintf LStrPrin...
	StrCat
	StrCmp
	StrCpy
	StrLen
	StrNCaseCmp
	StrNCmp
	StrNCpy
	ToLower
	ToUpper
	Utility Functions

	BinSearch
	QSort
	Unused *Macro*
	Time Functions

	ASCIITime
	DateCString
	DateToSecs
	MilliSecs
	SecsToDate
	TimeCString
	TimeInSecs

	App. A CIN Common Questions
	What compilers can be used to write CINs for LabVI...
	Microsoft Windows 3.1, Windows 95, and Windows NT
	Macintosh
	Sun

	My VI, which contains a CIN, crashes LabVIEW or gi...
	How do I debug my CIN?
	Is there any sort of scanf function in the LabVIEW...
	I can't seem to link to any of the globals mention...
	Can LabVIEW be used to call a DLL in Windows?
	I get an error linking to a function when I build ...
	Why do I get garbage back from math functions such...
	Why can't I link to the math functions (sin, cos, ...

	App. B Customer Communication
	Glossary
	Index

