

LabVIEW® Code Interface
Reference Manual
November 1995 Edition
Part Number 320539C-01
© Copyright 1992, 1995 National Instruments Corporation. All Rights Reserved.

GPIB: gpib.support@natinst.com
DAQ: daq.support@natinst.com
VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
HiQ: hiq.support@natinst.com

E-mail: info@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 1 48 65 15 59

(512) 418-1111 or (800) 329-7177

Tel: (512) 795-8248
Fax: (512) 794-5678 or (800) 328-2203

Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
Italy 02 48301892, Japan 03 5472 2970, Korea 02 596 7456, Mexico 95 800 010 0793,
Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Internet Support

Bulletin Board Support

FaxBack Support

Telephone Support (U.S.)

International Offices

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do
not execute programming instructions if National Instruments receives notice of such defects during the warranty
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS
WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National
Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action
against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided
herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow the
National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or
other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or
in part, without the prior written consent of National Instruments Corporation.

Trademarks
LabVIEW® is a trademark of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the
part of the user or application designer. Any use or application of National Instruments products for or involving
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all
traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent
serious injury or death should always continue to be used when National Instruments products are being used.
National Instruments products are NOT intended to be a substitute for any form of established process, procedure, or
equipment used to monitor or safeguard human health and safety in medical or clinical treatment.

©

 National Instruments Corporation i LabVIEW Code Interface Refe

About
This
Manual
The LabVIEW Code Interface Reference Manual discusses Code
Interface Nodes and external subroutines for users who need to access
code written in conventional programming languages. The manual
includes information about shared external subroutines, libraries of
functions, memory and file manipulation routines, and diagnostic
routines.

Organization of This Manual
This manual is organized as follows:

• Chapter 1, CIN Overview, introduces the LabVIEW Code Interface
Node (CIN), a node that links external code written in a
conventional programming language to LabVIEW.

• Chapter 2, CIN Parameter Passing, describes the data structures
that LabVIEW uses when passing data to a CIN.

• Chapter 3, CIN Advanced Topics, covers several topics that are
needed only in advanced applications, including how to use the
CINInit, CINDispose, CINAbort, CINLoad, CINUnload,
and CINSave routines. The chapter also discusses how global
data works within CIN source code, and how users of Windows
3.1, Windows 95, and Windows NT can call a DLL from a CIN.

• Chapter 4, External Subroutines, describes how to create and call
shared external subroutines from other external code modules.

• Chapter 5, Manager Overview, gives an overview of the function
libraries, called managers, which you can use in external code
modules. These include the memory manager, the file manager,
and the support manager. The chapter also introduces many of the
basic constants, data types, and globals contained in the LabVIEW
libraries.

• Appendix A, CIN Common Questions, answers some of the
questions commonly asked by LabVIEW CIN users.
rence Manual

About This Manual

• Appendix B, Customer Communication, contains forms you can
use to request help from National Instruments or to comment on
our products and manuals.

• The Glossary contains an alphabetical list and description of terms
used in this manual, including acronyms, abbreviations, metric
prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in
this manual, including the page where you can find each one.

Conventions Used in This Manual

The following conventions are used in this manual:

bold Bold text denotes menus, palettes, menu items, or dialog box buttons or
options. In addition, bold text denotes VI input and output parameters.

italic Italic text denotes emphasis, a cross reference, or an introduction to a key
concept.

bold italic Bold italic text denotes a note, caution, or warning.

monospace Monospace font denotes text or characters that you enter using the
keyboard. Sections of code, programming examples, syntax examples,
and messages and responses that the computer automatically prints to
the screen also appear in this font.

italic Italic text in this font denotes that you must supply the appropriate words
monospace or values in the place of these items.

<> Angle brackets enclose the name of a key on the keyboard—for
example, <Shift>.

- A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys—for
example, <Shift-Delete>.

paths Paths in this manual are denoted using backslashes (\) to separate drive
names, directories, and files, as in drivename\dir1name\
dir2name\myfile.

Warning: This icon to the left of bold italicized text denotes a warning, which alerts
you to the possibility of damage to you or your equipment.

Caution: This icon to the left of bold italicized text denotes a caution, which alerts
you to the possibility of data loss or a system crash.
LabVIEW Code Interface Reference Manual ii © National Instruments Corporation

About This Manual
Note: This icon to the left of bold italicized text denotes a note, which alerts you
to important information.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and
terms are listed in the Glossary.

Related Documentation
The following documents contain information that you may find
helpful as you read this manual:

• Your LabVIEW analysis VI reference manual

• LabVIEW Instrument I/O VI Reference Manual

• Your LabVIEW Tutorial

• Your LabVIEW User Manual

Sun users may also find the following document useful:

• SPARCompiler C 3.0 Answer Book CD-ROM, Sun Microsystems,
Inc., U.S.A., 1993

Windows users may also find the following documents useful:

• Microsoft Windows documentation set, Microsoft Corporation,
Redmond, WA, 1992-1995

• Microsoft Windows Programmer’s Reference, Microsoft
Corporation, Redmond, WA, 1992-1995

• Win32 Programmer’s Reference, Microsoft Corporation, Redmond,
WA, 1992-1995

• Watcom C/C++ User’s Guide CD-ROM, Watcom Publications
Limited, Waterloo, Ontario, Canada, 1995; Help file: “The
Watcom C/C++ Compilers”

Customer Communication
National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with
our products, and we want to help if you have problems with them. To
make it easy for you to contact us, this manual contains comment and
configuration forms for you to complete. These forms are in
Appendix B, Customer Communication, at the end of this manual.
© National Instruments Corporation iii LabVIEW Code Interface Reference Manual

About This Manual
LabVIEW Code Interface Reference Manual iv © National Instruments Corporation

© National Instruments Corporation v LabVIEW Code Interface Refer

Table
of
Contents
About This Manual
Organization of This Manual ..i
Conventions Used in This Manual ..ii
Related Documentation ...iii
Customer Communication ..iii

Chapter 1
CIN Overview

Introduction ...1-1
Classes of External Code ..1-2
Supported Languages ..1-3

Macintosh ...1-3
Microsoft Windows 3.1 ..1-4
Microsoft Windows 95 and Windows NT1-4
Solaris ...1-5
HP-UX ..1-5

Steps for Creating a CIN ...1-5
1. Place the CIN on a Block Diagram ...1-6
2. Add Input and Output Terminals to the CIN ..1-6

Input-Output Terminals ..1-7
Output-Only Terminals ..1-8

3. Wire the Inputs and Outputs to the CIN ...1-9
4. Create .c File ...1-9

Special Macintosh Considerations ...1-12
5. Compile the CIN Source Code ...1-14

Macintosh ...1-14
Microsoft Windows 3.x ..1-29
Microsoft Windows 95 and Windows NT1-32
Solaris 1.x ...1-34
Solaris 2.x ...1-34
HP-UX ..1-34
Unbundled Sun ANSI C Compiler and
HP-UX C/ANSI C Compiler ..1-34

6. Load the CIN Object Code ...1-36
LabVIEW Manager Routines ..1-36
ence Manual

Table of Contents
Online Reference .. 1-37
Pointers as Parameters .. 1-37

Debugging External Code .. 1-39
Debugging CINs Under Windows 95 and Windows NT 1-40
Debugging CINs Under Sun or Solaris .. 1-41
Debugging CINs Under HP-UX .. 1-41

Chapter 2
 CIN Parameter Passing

Introduction .. 2-1
CIN .c File .. 2-1
How LabVIEW Passes Fixed Sized Data to CINs ... 2-2

Scalar Numerics ... 2-2
Scalar Booleans .. 2-2
Refnums ... 2-3
Clusters of Scalars .. 2-3

Return Value for CIN Routines .. 2-3
Examples with Scalars .. 2-4

Steps for Creating a CIN That Multiplies Two Numbers 2-4
1. Place the CIN on the Block Diagram .. 2-4
2. Add Two Input and Output Terminals to the CIN 2-4
3. Wire the Inputs and Outputs to the CIN 2-4
4. Create the CIN Source Code .. 2-4
5. Compile the CIN Source Code .. 2-6
6. Load the CIN Object Code .. 2-8

Comparing Two Numbers, Producing a Boolean Scalar 2-9
How LabVIEW Passes Variably Sized Data to CINs .. 2-10

Alignment Considerations .. 2-10
Arrays and Strings .. 2-11
Paths (Path) .. 2-12
Clusters Containing Variably Sized Data .. 2-12

Resizing Arrays and Strings ... 2-12
SetCINArraySize ... 2-13
NumericArrayResize ... 2-14

Examples with Variably Sized Data ... 2-16
Concatenating Two Strings .. 2-16
Computing the Cross Product of Two Two-Dimensional Arrays 2-18
Working with Clusters ... 2-22

Chapter 3
CIN Advanced Topics

CIN Routines .. 3-1
LabVIEW Code Interface Reference Manual vi © National Instruments Corporation

Table of Contents
Data Spaces and Code Resources .. 3-1
CIN Routines: The Basic Case .. 3-3

Loading a VI .. 3-3
Unloading a VI .. 3-4
Loading a New Resource into the CIN .. 3-4
Compiling a VI .. 3-4
Running a VI ... 3-5
Saving a VI .. 3-5
Aborting a VI ... 3-5

Multiple References to the Same CIN ... 3-6
Reentrancy ... 3-7
Code Globals and CIN Data Space Globals .. 3-8

Examples ... 3-9
Calling a Windows 95 or Windows NT Dynamic Link Library 3-13
Calling a Windows 3.1 Dynamic Link Library .. 3-13

Calling a 16-Bit DLL ... 3-14
1. Load the DLL .. 3-14
2. Get the address of the desired function 3-15
3. Describe the function ... 3-15
4. Call the function .. 3-16

Example: A CIN that Displays a Dialog Box .. 3-16
The DLL .. 3-17
The Block Diagram ... 3-19
The CIN Code .. 3-19
Compiling the CIN .. 3-22
Optimization .. 3-23

Chapter 4
 External Subroutines

Introduction .. 4-1
Creating Shared External Subroutines ... 4-2

External Subroutine ... 4-3
Macintosh .. 4-3
Microsoft Windows 3.1, Windows 95, and
Windows NT .. 4-3

Solaris 1.x, Solaris 2.x, and HP-UX .. 4-4
Calling Code ... 4-4

Macintosh .. 4-5
Microsoft Windows 3.1, Windows 95, and Windows NT 4-6
Solaris 1.x, Solaris 2.x, and HP-UX .. 4-6

Simple Example ... 4-7
External Subroutine Example .. 4-7
Compiling the External Subroutine ... 4-8
© National Instruments Corporation vii LabVIEW Code Interface Reference Manual

Table of Contents
Macintosh .. 4-8
Microsoft Windows 3.1 ... 4-9
Microsoft Windows 95 and Windows NT 4-9
Solaris 1.x, Solaris 2.x, and HP-UX .. 4-10

Calling Code ... 4-10
Compiling the Calling Code ... 4-12

Macintosh .. 4-12
Microsoft Windows 3.1 ... 4-13
Microsoft Windows 95 and Windows NT 4-14
Solaris 1.x, Solaris 2.x, and HP-UX .. 4-14

Chapter 5
 Manager Overview

Introduction .. 5-1
Basic Data Types .. 5-2

Scalar Data Types .. 5-2
Booleans .. 5-2
Numerics .. 5-3

char Data Type ... 5-4
Dynamic Data Types .. 5-4

Arrays .. 5-4
Strings .. 5-5
C-Style Strings (CStr) .. 5-5
Pascal-Style Strings (PStr) ... 5-5
LabVIEW Strings (LStr) .. 5-5
Concatenated Pascal String (CPStr) .. 5-6
Paths (Path) .. 5-6

Memory-Related Types .. 5-6
Constants .. 5-6

Memory Manager ... 5-7
Memory Allocation .. 5-7

Static Memory Allocation .. 5-7
Dynamic Memory Allocation: Pointers and Handles 5-8

Memory Zones ... 5-9
Using Pointers and Handles ... 5-9

Simple Example ... 5-10
Reference to the Memory Manager .. 5-12

Memory Manager Data Structures ... 5-12
File Manager ... 5-12

Introduction .. 5-13
Identifying Files and Directories .. 5-13
Path Specifications ... 5-14

Conventional Path Specifications .. 5-14
LabVIEW Code Interface Reference Manual viii © National Instruments Corporation

Table of Contents
Empty Path Specifications ... 5-15
LabVIEW Path Specification .. 5-16

File Descriptors .. 5-16
File Refnums .. 5-17

Support Manager .. 5-17

Chapter 6
 Memory Manager Functions

Allocating and Releasing Handles ... 6-1
AZDisposeHandle
DSDisposeHandle .. 6-1

AZEmptyHandle
DSEmptyHandle .. 6-1

AZGetHandleSize
DSGetHandleSize .. 6-2

AZNewHandle
DSNewHandle ... 6-2

AZNewHClr
DSNewHClr ... 6-2

AZReallocHandle
DSReallocHandle ... 6-3

AZRecoverHandle
DSRecoverHandle ... 6-3

AZSetHandleSize
DSSetHandleSize ... 6-4

AZSetHSzClr
DSSetHSzClr ... 6-5

Allocating and Releasing Pointers ... 6-5
AZDisposePtr
DSDisposePtr ... 6-5

AZNewPClr
DSNewPClr ... 6-6

AZNewPtr
DSNewPtr .. 6-6

Manipulating Properties of Handles .. 6-6
AZHLock ... 6-6
AZHPurge .. 6-7
AZHNoPurge ... 6-7
AZHUnlock ... 6-7

Memory Utilities .. 6-8
AZHandAndHand
DSHandAndHand .. 6-8

AZHandToHand
© National Instruments Corporation ix LabVIEW Code Interface Reference Manual

Table of Contents
DSHandToHand ... 6-8
AZPtrAndHand
DSPtrAndHand .. 6-9

AZPtrToHand
DSPtrToHand ... 6-10

AZPtrToXHand
DSPtrToXHand .. 6-10

ClearMem .. 6-11
MoveBlock .. 6-11
SwapBlock ... 6-11

Handle and Pointer Verification ... 6-12
AZCheckHandle
DSCheckHandle ... 6-12

AZCheckPtr
DSCheckPtr .. 6-12

Memory Zone Utilities ... 6-13
AZHeapCheck
DSHeapCheck .. 6-13

AZMaxMem
DSMaxMem ... 6-13

AZMemStats
DSMemStats .. 6-14

Chapter 7
 File Manager Functions

File Manager Data Structures ... 7-1
File/Directory Information Record .. 7-1
File Type Record .. 7-2
Path Data Type ... 7-3
Permissions .. 7-3

On a UNIX computer, the nine bits of permissions correspond exactly to
nine UNIX permission bits governing read, write, and execute 7-3

Volume Information Record .. 7-3
File Manager Functions .. 7-4

Performing Basic File Operations .. 7-4
FCreate ... 7-4
FCreateAlways .. 7-5
FMClose .. 7-7
FMOpen ... 7-7
FMRead ... 7-9
FMWrite .. 7-9

Positioning the Current Position Mark ... 7-10
FMSeek .. 7-10
LabVIEW Code Interface Reference Manual x © National Instruments Corporation

Table of Contents
FMTell ... 7-11
Positioning the End-Of-File Mark ... 7-12

FGetEOF .. 7-12
FSetEOF .. 7-12

Flushing File Data to Disk ... 7-13
FFlush .. 7-13

Determining File, Directory, and Volume Information 7-13
FExists ... 7-13
FGetAccessRights ... 7-14
FGetInfo .. 7-14
FGetVolInfo .. 7-15
FSetAccessRights .. 7-16
FSetInfo ... 7-16

Getting Default Access Rights Information ... 7-17
FGetDefGroup ... 7-17

Creating and Determining the Contents of Directories 7-17
FListDir ... 7-17
FNewDir .. 7-18

Copying Files ... 7-19
FCopy .. 7-19

Moving and Deleting Files and Directories ... 7-20
FMove .. 7-20
FRemove .. 7-20

Locking a File Range ... 7-21
FLockOrUnlockRange .. 7-21

Matching Filenames with Patterns ... 7-22
FStrFitsPat ... 7-22

Creating Paths .. 7-22
FAddPath ... 7-22
FAppendName ... 7-23
FAppPath ... 7-24
FEmptyPath ... 7-24
FMakePath ... 7-25
FNotAPath ... 7-25
FRelPath .. 7-26

Disposing Paths .. 7-27
FDisposePath ... 7-27

Duplicating Paths ... 7-27
FPathCpy ... 7-27
FPathToPath .. 7-27

Extracting Information from a Path ... 7-28
FDepth ... 7-28
 ... 7-28
© National Instruments Corporation xi LabVIEW Code Interface Reference Manual

Table of Contents
FDirName .. 7-29
FName .. 7-29
FNamePtr ... 7-30
FVolName .. 7-30

Converting Paths to and from Other Representations 7-31
FArrToPath .. 7-31
FFlattenPath ... 7-32
FPathToArr .. 7-32
FPathToAZString .. 7-33
 ... 7-33
FPathToDSString ... 7-34
FStringToPath .. 7-34
FTextToPath .. 7-35
FUnFlattenPath .. 7-35

Comparing Paths .. 7-36
FIsAPath .. 7-36
FIsAPathOrNotAPath .. 7-36
FIsEmptyPath .. 7-37
FPathCmp .. 7-37

Determining a Path Type ... 7-38
FGetPathType .. 7-38
FIsAPathOfType .. 7-38
FSetPathType ... 7-39

Manipulating File Refnums .. 7-39
FDisposeRefNum .. 7-39
FIsARefNum .. 7-40
FNewRefNum .. 7-40
FRefNumToFD .. 7-41
FRefNumToPath .. 7-41

Chapter 8
 Support Manager Functions

Byte Manipulation Operations ... 8-1
Cat4Chrs ...
Macro ... 8-1

GetALong ...
Macro ... 8-1

Hi16 ..
Macro ... 8-2

HiByte...
Macro ... 8-2

HiNibble ...
Macro ... 8-2
LabVIEW Code Interface Reference Manual xii © National Instruments Corporation

Table of Contents
Lo16..
Macro ... 8-2

HiNibble ...
Macro ... 8-3

LoByte ..
Macro ... 8-3

Long..
Macro ... 8-3

LoNibble...
Macro ... 8-3

Offset ..
Macro ... 8-4

SetALong..
Macro ... 8-4

Word ...
Macro ... 8-4

Mathematical Operations ... 8-5
For THINK C Users ... 8-6

Abs ... 8-6
Max .. 8-6
Min .. 8-6
Pin .. 8-7
RandomGen ... 8-7

String Manipulation ... 8-7
BlockCmp .. 8-7
CPStrBuf...
Macro ... 8-8

CPStrCmp .. 8-8
CPStrIndex .. 8-8
CPStrInsert .. 8-9
CPStrLen ..
Macro ... 8-9

CPStrRemove .. 8-10
CPStrReplace ... 8-10
CPStrSize ... 8-10
CToPStr ... 8-11
FileNameCmp...
Macro ... 8-11

FileNameIndCmp ...
Macro ... 8-11

FileNameNCmp..
Macro ... 8-12

HexChar ... 8-12
© National Instruments Corporation xiii LabVIEW Code Interface Reference Manual

Table of Contents
IsAlpha ... 8-13
IsDigit .. 8-13
IsLower .. 8-13
IsUpper .. 8-13
LStrBuf ...
Macro ... 8-14

LStrCmp .. 8-14
LStrLen ...
Macro ... 8-14

LToPStr .. 8-15
PPStrCaseCmp ... 8-15
PPStrCmp .. 8-15
PStrBuf ...
Macro ... 8-16

PStrCaseCmp ... 8-16
PStrCat ... 8-16
PStrCmp ... 8-17
PStrCpy .. 8-17
PStrLen ...
Macro ... 8-18

PStrNCpy ... 8-18
PToCStr ... 8-18
PToLStr .. 8-19
SPrintf
SPrintfp
PPrintf
PPrintfp
FPrintf
LStrPrintf ... 8-19

StrCat ... 8-22
StrCmp ... 8-22
StrCpy .. 8-22
StrLen .. 8-23
StrNCaseCmp .. 8-23
StrNCmp .. 8-23
StrNCpy ... 8-24
ToLower .. 8-24
ToUpper ... 8-24

Utility Functions ... 8-25
BinSearch ... 8-25
QSort .. 8-26
Unused ..
Macro ... 8-26
LabVIEW Code Interface Reference Manual xiv © National Instruments Corporation

Table of Contents
Time Functions .. 8-27
ASCIITime .. 8-27
DateCString ... 8-27
DateToSecs .. 8-28
MilliSecs .. 8-28
SecsToDate .. 8-29
TimeCString .. 8-29
TimeInSecs .. 8-30

Appendix A
CIN Common Questions

Appendix B
 Customer Communication

 Glossary

Figures
Figure 3-1. Data Storage Spaces for One CIN, Simple Case 3-2
Figure 3-2. Three CINs Referencing the Same Code Resource 3-7
Figure 3-3. Three VIs Referencing a Reentrant VI Containing One CIN 3-8

Tables
Table 1-1. Functions with Parameters Needing Pre-allocated Memory 1-38
© National Instruments Corporation xv LabVIEW Code Interface Reference Manual

Table of Contents
LabVIEW Code Interface Reference Manual xvi © National Instruments Corporation

CIN Overview
© National Instruments Corporation 1-1 LabVIEW Code Interface Refer

Chapter

1

This chapter introduces the LabVIEW Code Interface Node (CIN), a
node that links external code written in a conventional programming
language to LabVIEW.

Introduction
A CIN is a block diagram node associated with a section of source code
written in a conventional programming language. You compile the
source code first and link it to form executable code. LabVIEW calls
the executable code when the node executes, passing input data from
the block diagram to the executable code, and returning data from the
executable code to the block diagram.

The LabVIEW compiler can usually generate code that is fast enough
for most of your programming tasks. However, you can use CINs for
tasks that a conventional language can accomplish more easily, such as
tasks that are time-critical or require a great deal of data manipulation.
CINs are also useful for tasks that you cannot perform directly from the
diagram, such as calling system routines for which no corresponding
LabVIEW functions exist. CINs can also link existing code to
LabVIEW, although you may have to modify the code so that it uses
the correct LabVIEW data types.

CINs execute synchronously. This means that while CIN code
executes, no other LabVIEW processes can execute. Normally, when a
VI executes, LabVIEW monitors menus and the keyboard and allows
other applications to execute. LabVIEW also allows more than one VI
to run simultaneously. However, when CIN object code executes, it
takes control of the process, so that LabVIEW ignores keyboard events,
menu clicks, and other diagrams. On the Macintosh and under
Windows 3.1, CINs even prevent other applications from executing.
Although you can create VIs that use CINs and behave in a more
asynchronous fashion, be aware of this potential problem if you intend
to write a CIN that will execute a long task and you need LabVIEW to
multitask in the interim.
ence Manual

Chapter 1 CIN Overview
A CIN appears on the diagram as an icon with input and output
terminals. You associate this node with a piece of code you want
LabVIEW to call. When it is time for the node to execute, LabVIEW
calls the code associated with the CIN, passing it the specified data.

In some cases, you may want a CIN to perform additional actions at
certain execution times. For instance, you may want to initialize some
data structures at load time or free private data structures when the user
closes the VI containing the CIN. For these situations, you can write
routines that LabVIEW calls at predefined times or when the node
executes. Specifically, LabVIEW calls certain routines when the VI
containing the CIN is loaded, saved, closed, aborted, or compiled. You
generally use these routines in CINs that perform an on-going action,
such as accumulating results from call to call, so that you can allocate,
initialize, and deallocate resources at the correct time. Most CINs
perform a specific action at run time only.

After you have written your first CIN as described in this manual,
writing new CINs is relatively easy. The work involved in writing new
CINs is mostly in coding the algorithm, because the interface to
LabVIEW remains the same, no matter what the development system.

Classes of External Code
LabVIEW supports code resources for CINs and external subroutines.

An external subroutine is a section of code that you can call from other
external code. If you write multiple CINs that call the same subroutine,
you may want to make the shared subroutine an external subroutine.
The code for an external subroutine is a separate file; when LabVIEW
loads a section of external code that references an external subroutine,
it also loads the appropriate external subroutine into memory. Using an
external subroutine makes each section of calling code smaller,
because the external subroutine does not require embedded code.
Further, you need to make changes only once if you want to modify the
subroutine.

Note: LabVIEW does not support code resources for external subroutines on the
Power Macintosh. If you are working with a Power Macintosh, you should
use shared libraries instead of external subroutines. For information on
building shared libraries, consult your development environment
documentation.
LabVIEW Code Interface Reference Manual 1-2 © National Instruments Corporation

Chapter 1 CIN Overview
Although LabVIEW for Solaris 2.x and HP-UX support external routines,
it is recommended that you use UNIX shared libraries instead, because
they are a more standard library format.

Supported Languages
The interface for CINs and external subroutines supports a variety of
compilers, although not all compilers can create code in the correct
executable format.

External code must be compiled as a form of executable that is
appropriate for a specific platform. The code must be relocatable,
because LabVIEW loads external code into the same memory space as
the main application.

Macintosh
LabVIEW for the Macintosh uses external code as a customized code
resource (for 68K) or shared library (for Power Macintosh) that is
prepared for LabVIEW using the separate utilities lvsbutil.app
for THINK C and Metrowerks CodeWarrior, and lvsbutil.tool
for the Macintosh Programmer’s Workshop. These utilities are
included with LabVIEW.

The LabVIEW utilities and object files are known to be compatible
with the three major C development environments for the Power
Macintosh, which are as follows:

• THINK C, versions 5, 6, and 7, and Symantec C++ version 8 for
Power Macintosh, from Symantec Corporation of Cupertino, CA

• Metrowerks CodeWarrior from Metrowerks Corporation of
Austin, Texas

• Macintosh Programmer’s Workshop (MPW) from Apple
Computer, Inc. of Cupertino, CA

LabVIEW header files are compatible with these three environments.
Header files may need modification for other environments.

CINs compiled for the 68K Macintosh will not be recognized by
LabVIEW for the Power Macintosh, and vice versa.

LabVIEW does not currently work with fat binaries (a format that
includes multiple executables in one file, in this case both 68K and
Power Macintosh executables).
© National Instruments Corporation 1-3 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
Microsoft Windows 3.1
LabVIEW for Windows supports external code compiled as a.REX file
and prepared for LabVIEW using an application included with
LabVIEW. This application requires dos4gw.exe, which comes with
Watcom. LabVIEW is a 32-bit, flat memory-model application, so you
must compile external code for a 32-bit memory model when you
install the Watcom C compiler.

Watcom C is the only LabVIEW-supported compiler that can create
32-bit code of the correct format.

Microsoft Windows 95 and Windows NT
You can use CINs in LabVIEW for Windows 95/NT created with any
of the following compilers.

• The Win32 Microsoft SDK (Software Developer’s Kit) C/C++
command line compiler for Windows NT.

See the Microsoft Windows 95 and Windows NT subsection of the
Compile the CIN Source Code section of this chapter for
information on how to create a CIN using this compiler.

• The Visual C++ for Windows NT C compiler.

Use the same instructions as you would for the Microsoft C
command line compiler. You also must add an IDE=VC line to the
beginning of your.lvm file. See the Microsoft Windows 95 and
Windows NT subsection of the Compile the CIN Source Code
section of this chapter for information on how to create a CIN
using this compiler.

• The Watcom C/386 compiler for Windows 3.1.

With proper preparation, you can use CINs created using the
Watcom C compiler for Windows 3.1 with LabVIEW for
Windows 95/NT. See the Microsoft Windows 95 and Windows NT
subsection of the Compile the CIN Source Code section of this
chapter for more information on using the Watcom C compiler for
Windows 3.1.

Note: Under Windows 95 and Windows NT, you should not call CINs created
using the Watcom complier that call DLLs and system functions or that
access hardware directly. The technique Watcom uses to call such code
under Windows 3.1 does not work under Windows 95 or Windows NT.
LabVIEW Code Interface Reference Manual 1-4 © National Instruments Corporation

Chapter 1 CIN Overview
Solaris
LabVIEW for the Sun supports external code compiled in a.out
format under Solaris 1.x and a shared library format under Solaris 2.x.
These formats are prepared for LabVIEW using a LabVIEW utility.

The unbundled Sun ANSI C compiler is the only compiler that has
been tested thoroughly with LabVIEW. The header files are compatible
with the unbundled Sun ANSI C Compiler and may need modification
for other compilers.

HP-UX
LabVIEW for HP-UX supports external code compiled as a shared
library. This library is prepared for LabVIEW using a LabVIEW
utility.

The HP-UX C/ANSI C compiler is the only compiler that has been
tested thoroughly with LabVIEW.

Steps for Creating a CIN
You create a CIN by first describing in LabVIEW the data you want to
pass to the CIN. You then write the code for the CIN using one of the
supported programming languages. After you compile the code, you
run a utility on the compiled code that puts it into a format that
LabVIEW can use. You then instruct LabVIEW to load the CIN.

If you execute the VI at this point, and the block diagram needs to
execute the CIN, LabVIEW calls the CIN object code and passes any
data that is wired to the CIN. If you save the VI after loading the code,
LabVIEW saves the CIN object code along with the VI so that
LabVIEW no longer needs the original code to execute the CIN. You
can update your CIN object code with new versions at any time.

The examples directory contains a cins directory that includes all
of the examples given in this manual. The names of the directories in
the cins directory correspond to the CIN name given in the examples.

The following steps explain how to create a CIN.
© National Instruments Corporation 1-5 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
1. Place the CIN on a Block Diagram
Select the Code Interface Node function from the Advanced palette of
the Functions palette, as shown in the following illustration.

2. Add Input and Output Terminals to the CIN
A CIN has terminals with which you can indicate which data passes to
and from a CIN. Initially, the CIN has one set of terminals, and you can
pass a single value to and from the CIN. You add additional terminals
by resizing the node or by selecting Add Parameter from the CIN
terminal pop-up menu. Both methods are shown in the following
illustration.
LabVIEW Code Interface Reference Manual 1-6 © National Instruments Corporation

Chapter 1 CIN Overview
You can resize the node to add parameters,

or use the pop-up menu to add a parameter.

Each pair of terminals corresponds to a parameter that LabVIEW
passes to the CIN. The two types of terminal pairs are input-output and
output-only.

Input-Output Terminals
By default, a terminal pair is input-output; the left terminal is the input
terminal, and the right terminal is the output terminal. As an example,
consider a CIN that has a single terminal pair. Assume a 32-bit integer
control is wired to the input terminal, and a 32-bit integer indicator is
wired to the output terminal, as shown in the following illustration.
© National Instruments Corporation 1-7 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
When the VI calls the CIN, the only argument LabVIEW passes to the
CIN object code is a pointer to the value of the 32-bit integer input.
When the CIN completes, LabVIEW then passes the value referenced
by the pointer to the 32-bit integer indicator. When you wire controls
and indicators to the input and the output terminals of a terminal pair,
LabVIEW assumes that the CIN can modify the data passed. If another
node on the block diagram needs the input value, LabVIEW may have
to copy the input data before passing it to the CIN.

Now consider the same CIN, but with no indicator wired to the output
terminal, as shown in the following illustration.

If you do not wire an indicator to the output terminal of a terminal pair,
LabVIEW assumes that the CIN will not modify the value you pass to
it. If another node on the block diagram uses the input data, LabVIEW
does not copy the data. The source code should not modify the value
passed into the input terminal of a terminal pair if you do not wire the
output terminal. If the CIN does modify the input value, nodes
connected to the input terminal wire may receive the modified data.

Output-Only Terminals
If you use a terminal pair only to return a value, make it an output-only
terminal pair by selecting Output Only from the terminal pair pop-up
menu. If a terminal pair is output-only, the input terminal is gray, as
shown in the following illustration.

For output-only terminals, LabVIEW creates storage space for a return
value and passes the value by reference to the CIN the same way that
it passes values for input-output terminal pairs. If you do not wire a
control to the left terminal, LabVIEW determines the type of the output
parameter by checking the type of the indicator wired to the output
terminal. This can be ambiguous if you wire the output to two
LabVIEW Code Interface Reference Manual 1-8 © National Instruments Corporation

Chapter 1 CIN Overview
destinations that have different data types. You can remove this
ambiguity by wiring a control to the left (input) terminal of the terminal
pair as shown in the preceding figure. In this case, output terminal
takes on the same data type as the input terminal. LabVIEW uses the
input type only to determine the data type for the output terminal; the
CIN does not use or affect the data of the input wire.

To remove a pair of terminals from a CIN, pop up on the terminal you
want to remove and choose Remove Terminal from the menu.
LabVIEW disconnects wires connected to the deleted terminal pair.
Wires connected to terminal pairs below the deleted pair remain
attached to those terminals and stretch to adjust to the terminals’ new
positions.

3. Wire the Inputs and Outputs to the CIN
Connect wires to all the terminal pairs on the CIN to specify the data
that you want to pass to the CIN, and the data that you want to receive
from the CIN. The order of terminal pairs on the CIN corresponds to
the order in which parameters are passed to the code. Notice that you
can use any LabVIEW data types as CIN parameters. Thus, you can
pass arbitrarily complex hierarchical data structures, such as arrays
containing clusters which may in turn contain other arrays or clusters
to a CIN. See Chapter 2, CIN Parameter Passing, for a description of
how LabVIEW passes parameters of specific data types to CINs.

4. Create .c File
If you select Create .c File... from the CIN pop-up menu, as shown in
the following illustration, LabVIEW creates a .c file in the style of the
C programming language. The .c file describes the routines you must
write and the data types for parameters that pass to the CIN.
© National Instruments Corporation 1-9 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
For example, consider the following call to a CIN, which takes a 32-bit
integer as an input and returns a 32-bit integer as an output.

The following code excerpt is the initial .c file for this node. It
specifies seven routines (initially empty of any code) that must be
written for the CIN. The UseDefault macros are the default for six
of the seven routines, but because the CINRun routine is the most
commonly used, it gets an actual function structure into which you can
enter code. The six macros are actually #defines in extcode.h,
which expand into empty routines; the CINRun routine is provided for
you.

These seven routines are discussed in detail in subsequent chapters.
The .c file is presented here to give you an idea of what LabVIEW
creates at this stage in building a CIN.
LabVIEW Code Interface Reference Manual 1-10 © National Instruments Corporation

Chapter 1 CIN Overview
/*

 * CIN source file

 */

#include "extcode.h"

/* stubs for advanced CIN functions */

UseDefaultCINInit

UseDefaultCINDispose

UseDefaultCINAbort

UseDefaultCINLoad

UseDefaultCINUnload

UseDefaultCINSave

CIN MgErr CINRun(int32 *num_in, int32 *num_out);

CIN MgErr CINRun(int32 *num_in, int32 *num_out) {

/* ENTER YOUR CODE HERE */

return noErr;

}

This .c file is a template in which you must write C code. Notice that
extcode.h is automatically included; it is a file that defines basic
data types and a number of routines that can be used by CINs and
external subroutines. extcode.h defines some constants and types
whose definitions may conflict with the definitions of system header
files. The LabVIEW cintools directory also contains a file,
hosttype.h, that resolves these differences. This header file also
includes many of the common header files for a given platform.

You should always use #include "extcode.h" at the beginning
of your source code. If your code needs to make system calls, you
should also use #include "hosttype.h" immediately after
#include "extcode.h", and then include your system header
files. You should know that hosttype.h includes only a subset of
the .h files for a given operating system. If the .h file you need is not
included by hosttype.h, you can include it in the .c file for your
CIN just after you include hosttype.h.

LabVIEW calls the CINRun routine when it is time for the node to
execute. CINRun receives the input and output values as parameters.
© National Instruments Corporation 1-11 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
The other routines (CINLoad, CINSave, CINUnload, CINAbort,
CINInit, and CINDispose) are housekeeping routines, called at
specific times to give you the opportunity to take care of specialized
tasks with your CIN. For instance, CINLoad is called when a VI is
first loaded. If you need to accomplish some special task when your VI
is first loaded, put the code for that task in the CINLoad routine. To
do this, first remove the UseDefaultCINLoad macro, and then
write your CINLoad routine as follows:

CIN MgErr CINLoad(RsrcFile reserved) {

Unused (reserved)

/* your code goes here */
return noErr;

}

In general, you only need to write the CINRun routine. The other
routines are mainly supplied for those instances in which you have
special initialization needs, such as when your CIN must maintain
some information across calls, and you want to preallocate or initialize
global state information. The following code shows how to fill out the
CINRun routine from the previously shown LabVIEW-generated .c
file to multiply a number by two. This code is included for illustrative
purposes. Chapter 2, CIN Parameter Passing, discusses in depth how
LabVIEW passes data to a CIN, with several examples.

CIN MgErr CINRun(int32 *num_in, int32 *num_out) {

*num_out = *num_in * 2;

return noErr;

}

Special Macintosh Considerations
If you compile your code for a 68K Macintosh, there are certain
circumstances under which you must use the ENTERLVSB and
LEAVELVSB macros at the entry and exit of some functions. These
macros ensure that the global context register (A5 for MPW builds, A4
for Symantec/THINK and Metrowerks builds) for your CIN is
established during your function, and that the caller's is saved and
restored. This is necessary to enable you to reference global variables,
call external subroutines, and call LabVIEW routines such as those
described in subsequent chapters.
LabVIEW Code Interface Reference Manual 1-12 © National Instruments Corporation

Chapter 1 CIN Overview
You need not use these macros in any of the seven predefined entry
points (CINRun, CINLoad, CINUnload, CINSave, CINInit,
CINDispose, CINAbort), because the CIN libraries already
establish and restore the global context before and after calling these
routines. Using them here would be harmless, but unnecessary.

However, if you create any other entry points to your CIN, you should
use these macros. You create another entry point to your CIN whenever
you pass the address of one of your functions to some other piece of
code that may call your function later. An example of this would be in
the use of the QSort routine in the LabVIEW support manager
(described in the Online Reference or online manual). You must pass a
comparison routine to QSort. This routine gets called directly by
QSort, without going through the CIN library. Therefore it is your
responsibility to set up your global context with ENTERLVSB and
LEAVELVSB.

To use these macros properly, place the ENTERLVSB macro at the
beginning of your function between your local variables and the first
statement of the function. Place the LEAVELVSB macro at the end of
your function just before returning, as in the following example.

CStr gNameTable[kNNames];

int32 MyComparisonProc(int32 *pa, int32 * pb)

{

int32 comparisonResult;

ENTERLVSB

comparisonResult = StrCmp(gNameTable[*pa],

gNameTable[*pb]);

LEAVELVSB

return comparisonResult;

}

The function MyComparisonProc is an example of a routine that
might be passed to the QSort routine. Because it explicitly references
a global variable (gNameTable), it must use the ENTERLVSB and
LEAVELVSB macros. There are other things that can implicitly
reference globals. Depending on the compiler and settings of various
options, literal strings may also be referenced as globals.
© National Instruments Corporation 1-13 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
It is best to always use the ENTERLVSB and LEAVELVSB macros
whenever you create a new entry point to your CIN.

When you use these macros, be sure that your function does not return
before calling the LEAVELVSB macro. One technique is to use a goto
endOfFunction statement (where endOfFunction is a label just
before the LEAVELVSB macro at the end of your function) in place of
any return statements that you may place in your function.

5. Compile the CIN Source Code
You must compile the source code for the CIN in a format that
LabVIEW can use. There are two steps to this process. First you
compile the code using a compiler LabVIEW supports. Then you use a
LabVIEW utility to modify the object code, putting it into a format that
LabVIEW can use.

Because the compiling process is often complex, LabVIEW includes
utilities that simplify the process. These utilities take a simple
specification for a CIN and create object code you can load into
LabVIEW. These tools vary depending on the platform and compiler
you use. The following sections summarize the steps for each platform.

Note: Step 5 is different for each platform. Look under the heading for your
platform and compiler in the following sections to find the instructions for
your system.

Every source code file for a CIN should list #include "extcode.h"
before any other code. If your code needs to make system calls, you should
also use #include "hosttype.h" immediately after #include
"extcode.h".

Macintosh
LabVIEW for the Macintosh uses external code as a customized code
resource (on a 68K Macintosh) or as a shared library (on a Power
Macintosh) that is prepared for LabVIEW using the separate utilities
lvsbutil.app for THINK C or lvsbutil.tool for MPW. Both
these utilities are included with LabVIEW.

You can create CINs on the Macintosh with compilers from any of the
three major C compiler vendors: Symantec’s THINK environment,
Metrowerks’ CodeWarrior environment, and Apple’s Macintosh
Programmer’s Workshop (MPW) environment. Always use the latest
LabVIEW Code Interface Reference Manual 1-14 © National Instruments Corporation

Chapter 1 CIN Overview
Universal headers that contain definitions for both 68K and Power
Macintosh compilers.

The LabVIEW utilities for building Power Macintosh CINs are the
same ones that are used for the 68K Macintosh and can be used to build
both versions of a CIN. If you want to place both versions in the same
folder, however, some development conflicts may arise. Because the
naming conventions for object files and.lsb files are the same, make
sure that one version does not replace the other. These kinds of issues
can be handled in different ways, depending on your development
environment.

Some CIN code that compiles and works on the 68K Macintosh and
calls Macintosh OS or Toolbox functions may require changes to the
source code before it will work on the Power Macintosh. Any code that
passes a function pointer to a Mac OS or Toolbox function must be
modified to pass a Routine Descriptor (see Apple's Inside Macintosh
chapter on the Mixed Mode Manager, available in the Macintosh on
RISC SDK from APDA). Also, if you use any 68K assembly language
in your CIN, it must be ported to either C or Power Macintosh assembly
language.

THINK C for 68K (Versions 5-7)
To create a THINK C CIN project, make a new folder for the project.
Launch THINK C and create a new project in the new folder. The name
of your THINK C project must match your CIN name exactly, and must
not use any of the conventional project suffixes, such as .π or .proj.
If you name your CIN test, your THINK C project must also be
named test, so that it produces a link map file named test.map.
You should keep the new project and the CIN files associated with it
within the same folder.

With THINK C 7, an easy way to set up your CIN project is to make
use of the project stationery in the cintools:Symantec-THINK
Files:Project Stationery folder. For THINK C 7 projects the
project stationery is a folder called LabVIEW CIN TC7. It provides a
template for new CINs with almost all of the settings you need. See the
Read Me file in the Project Stationery folder for details.

When building a CIN using THINK C for 68K, many of the preferences
can be set to whatever you wish. Others, however, must be set to
specific values to correctly create a CIN. If for some reason you do not
© National Instruments Corporation 1-15 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
use the CIN project stationery, you will need to ensure that the
following settings in the THINK C Preferences dialog box are made.

To set up your project if you are using THINK C 5, select Options...
from the THINK C Edit menu. Then check the Generate link map box
under Preferences.

If you are using THINK C 6 or 7, pull down the THINK C Edit menu
and pop up on the Options item; select THINK Project Manager....
Under Preferences, check the Generate link map box, and then click
on the OK button. Now go back to the Options item under the Edit
menu and select THINK C....

To complete the project set-up process for THINK C 5, THINK C 6,
and THINK C 7, select the Require prototypes button under
Language Settings and then check the Check Pointer Types box.
Under Prefix, delete the line #include <MacHeaders> if it is
present. Finally, under Compiler Settings, check the Generate 68881
instructions box, the Native floating-point format box, and the
Generate 68020 instructions box. You can use the Copy button at the
top of the dialog box to make these settings the default settings for new
projects, which will make the set-up process for subsequent CINs
simpler.

When you have finished selecting the options in the Edit menu, turn to
the THINK C Project menu; select Set Project Type.... First, set the
type to Code Resource. From the new options that appear, set the File
Type to.tmp, the Creator to LVsb, the Name to the name of the CIN
plus the extension .tmp, the Type to CUST, the ID to 128, and check
the Custom Header box. If you are creating a CIN called test, you
LabVIEW Code Interface Reference Manual 1-16 © National Instruments Corporation

Chapter 1 CIN Overview
must name the resource test.tmp, as shown in the following
illustration.

After these parameters are set, add both the LVSBLib and CINLib
libraries (included with LabVIEW) to the project. Then add your .c
files.

You are now ready to build the code resource. Go to the Project menu
and select Build Code Resource.... A dialog box will appear, allowing
you to save the code resource. The name of the code resource must be
the same as the name of the CIN plus the extension .tmp.

After you build a code resource and give it a .tmp extension, you must
run the application lvsbutil.app, also included with LabVIEW, to
prepare external code for use as a CIN or external subroutine. This
utility prompts you to select your .tmp file. The utility also uses the
THINK C link map file, which carries a .map extension and must be
in the folder with your .tmp file. The application lvsbutil.app
© National Instruments Corporation 1-17 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
uses the .tmp and the .map files to produce a .lsb file that can be
loaded into a VI.

If you are making a CIN, select the CIN option in the dialog box, as
shown in the preceding illustration. If you are making a CIN for the
Power Macintosh, also check the For Power PC box. If you are making
an external subroutine, select the Subroutine option.

Advanced programmers can check the Add separate resource file box
to add additional resources to their CINs or the Put directly into VI box
to put the .lsb code into a VI without opening it or launching
LabVIEW. Remember that the VI designated to receive the .lsb code
must already contain .lsb code with the same name. Notice that you
cannot put the code directly into a library.

If your .tmp code resource file does not show up in the dialog box,
check its file type. When building the .tmp file, specify the file type
as .tmp, which is under the Set Project Type... menu item of the
Project menu in THINK C. The .lsb file this application produces is
what the LabVIEW CIN node should load.
LabVIEW Code Interface Reference Manual 1-18 © National Instruments Corporation

Chapter 1 CIN Overview
Note: The THINK C compiler will only find extcode.h if the file
extcode.h is located on the THINK C search path. You can place the
cintools folder in the same folder as your THINK C application, or you
can make sure the line #include "extcode.h" is a full pathname to
extcode.h under THINK C. For example: #include
"harddrive:cintools:extcode.h"

If you are using System 7.0 or later, you can extend the THINK C search path.
To do so, first create a new folder in the same folder as your THINK C project
and name it Aliases. Then make an alias for the cintools folder, and
drag this alias into your newly created Aliases folder. This technique
enables the include line to read #include "extcode.h"; therefore, it is
not necessary to type the full pathname.

Symantec C++ 8.0 for Power Macintosh
To create CINs using this environment, you will need to install the
ToolServer application from the Symantec C++ 8.0 distribution disks.
ToolServer is an Apple tool that performs the final linking steps in
creating your CIN. It can be found in the Apple Software:Tools
folder. Copy the ToolServer 1.1.1 folder to your hard drive and
place an alias to ToolServer in the (Tools) folder in your
Symantec C++ for PowerMac folder.

You need the following files in your project to create a CIN for Power
Macintosh.

• CINLib.ppc. This file is shipped with LabVIEW and can be
found in the cintools:PowerPC Libraries folder.

• Your source files
© National Instruments Corporation 1-19 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
You may also need the following file:

• LabVIEW.xcoff. This file is shipped with LabVIEW and can be
found in the cintools:PowerPC Libraries folder. It is
needed if you call any routines within LabVIEW e.g.,
DSSetHandleSize(), or SetCINArraySize().

An easy way to set up your CIN project is to make use of the CIN
project stationery in the cintools:Symantec-THINK
Files:Project Stationery folder. For Symantec C version 8
projects the project stationery is a folder called LabVIEW CIN
SC8PPC. The folder provides a template for new CINs containing
almost all of the files and preference settings you need. See the Read
Me file in the Project Stationery folder for details.

When building a CIN using Symantec C++ for PowerMac, many of the
preferences can be set to whatever you wish. Others, however, must be
set to specific values to correctly create a CIN. If for some reason you
do not use the CIN project stationery, you will need to ensure that the
following settings in the Symantec Project Manager Options dialog
box (accessed from the Project menu) are made.

• Project Type—Set the Project Type pop-up menu to Shared
Library. Set the File Type text field to .tmp. Set the Destination
text field to cinName.tmp, where cinName is the name of your
CIN. Set the Creator to LVsb.
LabVIEW Code Interface Reference Manual 1-20 © National Instruments Corporation

Chapter 1 CIN Overview
• Linker—Set the Linker pop-up menu to PPCLink & MakePEF.
Set the PPCLink settings text field to -export
LVSBStart,LVSBhead. Set the MakePEF settings text field to
have -l LabVIEW.xcoff.o=LabVIEW in addition to the
factory setting.

• Extensions—Set the File Extension text field to .ppc, the
Translator pop-up menu to XCOFF convertor, and press the
Add button.

• PowerPC C—In the Compiler Settings sub-page, select the Align
to 2 byte boundary radio button. In the Prefix sub-page, remove
the line that reads #include <PPCMacheaders>.

Build the CIN by selecting Build Library from the Build menu. Then
convert the .tmp file with lvsbutil.app (with For PowerPC
checked).

Metrowerks CodeWarrior for 68K
You need the following files in your project to be able to create a
Metrowerks 68K CIN.

• CustHdr.68k.mwerks (This file must be the first file in the
project.)

• CINLib.68k.mwerks

• LVSBLib.68k.mwerks

• Your source files
© National Instruments Corporation 1-21 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
Note: All of your files must be in a single segment. LabVIEW does not support
multi-segment CINs.

An easy way to set up your CIN project is to make use of the CIN
project stationery in the cintools:Metrowerks
Files:Project Stationery folder. For CodeWarrior 68K
projects the project stationery is a file called LabVIEW CIN MW68K.
The file provides a template for CINs containing almost all of the
settings you need. See the Read Me file in the Project
Stationery folder for details.

When building a CIN using CodeWarrior for 68K, many of the
preferences can be set to whatever you wish. Others, however, must be
set to specific values to correctly create a CIN. If for some reason you
do not use the CIN project stationery, you will need to ensure that the
following settings in the CodeWarrior Preferences dialog box are
made.

• Language—Set the Source Model pop-up menu to Apple C. Empty
the Prefix File text field.

• Processor—Check the 68881 Codegen and MPW C Calling
Conventions checkboxes. Leave the 4-Byte Ints and 8-Byte
Doubles checkboxes unchecked.

• Linker—Check the Generate Link Map checkbox.

• Project—Set the Project Type pop-up menu to Code Resource.
Set the File Name text field to cinName.tmp, where cinName
is the name of your CIN. Set the Resource Name text field to the
same text as in the File Name text field. Set the Type text field to
.tmp and the ResType text field to CUST. Set the ResID text field
to 128. Set the Header Type pop-up menu to Custom. Set the
Creator to LVsb.

• Access Paths—Add your cintools folder to the list of access
paths.

Build the CIN by selecting Make from the CodeWarrior Project menu.

Caution: This operation will destroy the contents of any other file named
cinName.tmp in that folder. This could easily be the case if this is the
same folder in which you build a Power Macintosh version of your CIN.
If you are building for both platforms, you should keep separate
directories for each. The convention used by the MPW CIN tools is to have
two subdirectories named PPCObj and M68Obj where all
platform-specific files reside.
LabVIEW Code Interface Reference Manual 1-22 © National Instruments Corporation

Chapter 1 CIN Overview
Note: If you have both a ThinkC68K and a MetrowerksC68K map file, lbsbutil
cannot know in advance which compiler your .tmp file came from. It will
first look for a ThinkC .map file, then for a Metrowerks .map file. To
avoid any conflict, remove the unnecessary .map file before using
lvsbutil.app.

When you have successfully built the cinName.tmp file, you must
then use the lvsbutil.app application to create the cinName.lsb
file.

The lvsbutil.app application has a checkbox in the file selection
dialog box labelled For Power PC. This checkbox must not be checked
for 68K CINs. Select any other options that you want for your CIN, and
then select your cinName.tmp file. cinName.lsb will be created
in the same folder as cinName.tmp.

Caution: This operation will destroy the contents of any previous file named
cinName.lsb in that folder. This could easily be the case if this is the
same folder in which you build a 68K Macintosh version of your CIN.

Metrowerks CodeWarrior for Power Macintosh
You need the following files in your CodeWarrior project to create a
CIN for Power Macintosh.

• CINLib.ppc.mwerks. This file is shipped with LabVIEW and
can be found in the cintools:Metrowerks Files:68K
Libraries folder.

• Your source files

You may also need the LabVIEW.xcoff file. This file is shipped
with LabVIEW and can be found in the cintools:PowerPC
© National Instruments Corporation 1-23 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
Libraries folder. It is needed if you call any routines within
LabVIEW e.g., DSSetHandleSize(), or SetCINArraySize().

Finally, if you call any routines from a system shared library, you must
add the appropriate shared library interface file to your project's file
list.

An easy way to set up your CIN project is to make use of the CIN
project stationery in the cintools:Metrowerks
Files:Project Stationery folder. For CodeWarrior PowerPC
projects the project stationery is a file called LabVIEW CIN MWPPC.
This file provides a template for CINs containing almost all of the
settings you need. See the Read Me file in the Project
Stationery folder for details.

When building a CIN using CodeWarrior for PPC, many of the
preferences can be set to whatever you wish. Others, however, must be
set to specific values to correctly create a CIN. If for some reason you
do not use the CIN project stationery, you will need to ensure that the
following settings in the CodeWarrior Preferences dialog box are
made.

• Language—Set the Source Model pop-up menu to Apple C. Empty
out the Prefix File text field (using MacHeaders will not work).

• Processor—Set the Struct Alignment pop-up menu to 68K.

• Linker—Empty all of the Entry Point fields.

• PEF—Set the Export Symbols pop-up menu to Use .exp file and
place a copy of the file projectName.exp (found in your
cintools:Metrowerks Files:PPC Libraries folder)
in the same folder as your CodeWarrior project. Rename this file
to projectName.exp, where projectName is the name of the
project file. CodeWarrior will look in this file to determine what
symbols your CIN exports. LabVIEW needs these to link to your
CIN.

• Project—Set the Project Type pop-up menu to Shared Library.
Set the file name to be cinName.tmp, where cinName is the
name of your CIN. Set the Type field to .tmp. Set the Creator to
LVsb.

• Access Paths—Add your cintools folder to the list of access
paths.

Build the CIN by selecting Make from the CodeWarrior Project menu.
LabVIEW Code Interface Reference Manual 1-24 © National Instruments Corporation

Chapter 1 CIN Overview
Caution: This operation will destroy the contents of any other file named
cinName.tmp in that folder. This could easily be the case if this is the
same folder in which you build a 68K Macintosh version of your CIN. If
you are building for both platforms, you should keep separate folders for
each. The convention used by the MPW CIN tools is to have two
subdirectories named PPCObj and M68Obj where all platform-specific
files reside.

When you have successfully built the cinName.tmp file, you must
then use the lvsbutil.app application to create the
cinName.lsb file.

The lvsbutil.app application has a checkbox in the file selection
dialog box labelled For Power PC. Check this box, along with any
other options that are necessary for your CIN, and then select your
cinName.tmp file. cinName.lsb will be created in the same
folder as cinName.tmp.

Caution: This operation will destroy the contents of any previous file named
cinName.lsb in that folder. This could easily be the case if this is the
same folder in which you build a 68K Macintosh version of your CIN.

Macintosh Programmer’s Workshop for 68K and Power
Macintosh
Macintosh Programmer’s Workshop (MPW) can be used to build CINs
for either the Motorola 680x0 (68K) Macintosh or the Power
Macintosh. Several scripts are available for the MPW environment to
help you build CINs. To deal with the problem of building CINs for
two different CPUs, these new scripts are designed to use two
subdirectories in your CIN folder: PPCObj and M68Obj. The
platform-specific object and CIN files are kept in these subdirectories.
The scripts make use of the first generation PowerPC C compiler from
Apple, PPCC, and the standard 68K C compiler, C. Although newer
compilers (MrC and SC) are in beta test as this publication goes to
press, the scripts have not yet been updated to use them. The scripts
are:

• CINMake—A script capable of building both Power Macintosh
and 68K Macintosh CINs. It uses a simplified form of a makefile
that you provide. It can be run every time you need to rebuild your
CIN.

• LVMakeMake—A script that is similar to the lvmkmf (LabVIEW
Make Makefile) script available for building CINs under the
© National Instruments Corporation 1-25 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
Solaris operating system. It builds a skeletal but complete
makefile that you can then customize and use with the MPW make
tool.

CINMake can be used for building both Power Macintosh and 68K
Macintosh versions of your CINs. By default, the CINMake script
builds 68K Macintosh CINs and puts the resulting cinName.lsb
into the M68Obj folder.

You must have one makefile for each CIN. Name the makefile by
appending .lvm to the CIN name. This indicates that this is a
LabVIEW makefile. The makefile should resemble the following
pseudocode. Be sure that each Dir command ends with the colon
character (:).

name = name Name for the code; indicates the base
name for your CIN. The source code
for your CIN should be in name.c.
The code created by the makefile is
placed in a new file, name.lsb
(.lsb is a mnemonic for LabVIEW
subroutine).

type = type Type of external code you want to
create. For CINs, you should use a type
of CIN.

codeDir = codeDir: Complete pathname to the folder
containing the .c file used for the
CIN.

cinToolsDir = cinToolsDir:
Complete pathname to the LabVIEW
cintools:MPW folder, which is
located in the LabVIEW folder.

LVMVers = 2 Version of CINMake script reading
this .lvm file.

inclDir = -i inclDir: (optional) Complete or partial
pathname to a folder containing any
additional .h files.
LabVIEW Code Interface Reference Manual 1-26 © National Instruments Corporation

Chapter 1 CIN Overview
otherM68ObjFiles = otherM68ObjFiles
(optional) For 68K Macintosh only, list
of additional object files (files with a
.o extension) that your code needs to
compile. Separate the names of files
with spaces.

otherPPCObjFiles = otherPPCObjFiles
(optional) For Power Macintosh only,
list of additional object files (files with
a .o extension) that your code needs to
compile. Separate the names of files
with spaces.

subrNames = subrNames (optional) For 68K Macintosh only,
list of external subroutines the CIN
calls. You need subrNames only if
the CIN calls external subroutines.
Separate the names of subroutines with
spaces.

ShLibs = sharedLibraryNames
(optional) For Power Macintosh only,
a space-separated list of the link-time
copies of import libraries with which
the CIN must be linked. Each should
be a complete path to the file.

ShLibMaps = sharedLibMappings
(optional) For Power Macintosh only,
the command-line arguments to the
MakePEF tool that indicate the
mapping between the name of each
link-time import library and the
run-time name of that import library.
These will usually look something like
the following:
"-l libA.xcoff=libA

-l libB.xcoff=libB"
Notice that only the file names are
needed, not entire paths.

You must adjust the —Dir names to reflect your own file system
hierarchy.
© National Instruments Corporation 1-27 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
Modify your MPW command search path by appending the
cintools:MPW folder to the default search path. This search path is
defined by the MPW Shell variable commands.

set commands "{commands}","<pathname to directory of
cinToolsDir>"

Go to the MPW Worksheet and enter the following two commands.
First, set your current folder to the CIN folder using the MPW
Directory command:

Directory <pathname to directory of your CIN>

Next, run the LabVIEW CINMake script:

CINMake <name of your CIN>

If CINMake does not find a .lvm file in the current folder, it will
build a file named cinName.lvm, and prompt you for necessary
information. This file, cinName.lvm, will be in a format compatible
with building both Power Macintosh and 68K Macintosh CINs in the
same folder. If CINMake finds a cinName.lvm but it does not have
the line LVMVers = 2, it will save the .lvm file in
cinName.lvm.old and update the cinName.lvm file to be
compatible with the new version of CINMake.

You can use LVMakeMake to build an MPW makefile that you can
then customize for your own purposes. You should only have to run
LVMakeMake once for a given CIN. You may then want to modify the
resulting makefile by adding the proper header file dependencies, or by
adding other object files to be linked into your CIN. The format of a
LVMakeMake command follows, with optional parameters listed in
brackets.

LVMakeMake [-o makeFile] [-PPC] <name of your CIN>.make

-o makeFile specifies the name of the
output makefile. If this argument is not
specified, LVMakeMake writes to
standard output.

-PPC If this argument is specified, a
makefile suitable for building a Power
Macintosh CIN is created. By default,
a 68K Macintosh makefile is created.
LabVIEW Code Interface Reference Manual 1-28 © National Instruments Corporation

Chapter 1 CIN Overview
For example, to build a Power Macintosh makefile for a CIN named
myCIN, execute the following command:

LVMakeMake -PPC myCIN > myCIN.ppc.make

creates the makefile

You can then use the MPW make tool to build your CIN, as shown in
the following commands.

make -f myCIN.ppc.make> myCIN.makeout

creates the build commands

myCIN.makeout

executes the build commands

You should load the .lsb file this application produces into your
LabVIEW CIN node.

Microsoft Windows 3.x
Microsoft Windows 3.x is a 16-bit operating system. Most applications
written for it are 16-bit applications. A 16-bit application faces several
obstacles when working with large amounts of information, such as
manipulating arrays that require more than 64 kilobytes of memory.

LabVIEW is a 32-bit application without most of the inherent
limitations found in 16-bit applications. Because of the way that CINs
are linked to VIs, however, LabVIEW can use only code compiled for
32-bit applications. This is because CINs reside in the same memory
space as VIs and work with LabVIEW data. To create CINs, a compiler
must be able to create 32-bit relocatable object code.

The only compiler that currently supports the correct format of
executables is Watcom C. The following section lists the steps for
compiling a CIN with the Watcom compiler.

Watcom C Compiler
With the Watcom C compiler, you create a specification that includes
the name of the file you want to create, relevant directories, and any
external subroutines or object files the CIN needs. (External
subroutines are described in Chapter 4, External Subroutines.) You
then use the wmake utility included with Watcom to compile the CIN.
© National Instruments Corporation 1-29 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
In addition to compiling the CIN, the makefile directs wmake to put
the CIN in the appropriate form for LabVIEW.

The makefile should look like the following pseudocode. You should
append .lvm to the makefile name to indicate that this is a LabVIEW
makefile.

name = name Name for the code; indicates the base
name for your CIN. The source code
for your CIN should be in name.c.
The code created by the makefile is
placed in a new file, name.lsb
(.lsb is a mnemonic for LabVIEW
subroutine).

type = type Type of external code you want to
create. For CINs, you should use a type
of CIN.

codeDir = codeDir Complete or partial pathname to the
directory containing the .c file used
for the CIN.

wcDir = wcDir Complete or partial pathname to the
directory containing the Watcom
compiler.

CinToolsDir = CinToolsDir
Complete or partial pathname to the
LabVIEW cintools directory,
which is located in the LabVIEW
directory. This directory contains
header files you can use for creating
CINs, and tools that the wmake utility
uses to create the CIN.

inclDir = inclDir (optional) Complete or partial
pathname to a directory containing any
additional .h files.

objFiles = objFiles (optional) List of additional object
files (files with an .obj extension)
that your code needs to compile.
Separate the names of files with
spaces.
LabVIEW Code Interface Reference Manual 1-30 © National Instruments Corporation

Chapter 1 CIN Overview
subrNames = subrNames (optional) List of external subroutines
the CIN calls. You need subrNames
only if the CIN calls external
subroutines. Separate the names of
subroutines with spaces.

!include $(CinToolsDir)\generic.mak

Execute the wmake command by entering the following in DOS.

wmake /f <name of your CIN>.lvm

Note: The wmake utility sometimes erroneously stops a make with an incorrectly
reported error when it is run in the DOS shell within Windows. If this
happens, run it in normal DOS.

The wmake utility scans the specified LabVIEW makefile and
remembers the defined values. The last line of the makefile,
!include $(CinToolsDir)\generic.mak, instructs wmake
to compile the code resource based on instructions in the
generic.mak file, which is stored in the cintools directory. The
wmake utility compiles the code and then transforms it into a form that
LabVIEW can use. The resulting code is stored in a name.lsb file,
where name is the CIN name given in the name line of the makefile.

Note: You cannot link most of the Watcom C libraries to your CIN because
precompiled libraries contain code that cannot be properly resolved by
LabVIEW when it links a VI to a CIN. If you try to call those functions,
your CIN may crash.

LabVIEW provides functions that correspond to many of the functions in
these libraries. These functions are described in subsequent chapters of
this manual. If you need to call a function that is not supplied by
LabVIEW, you can access the function from a dynamic link library
(DLL). A CIN can call a DLL using the techniques described in the
Watcom C manuals. A DLL can call any function from the C libraries. See
Chapter 3, CIN Advanced Topics, for information on calling a DLL.
© National Instruments Corporation 1-31 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
Microsoft Windows 95 and Windows NT
You can use the Microsoft SDK C/C++ or the Visual C++ compiler to
build CINs for LabVIEW for Windows 95/NT. With proper
preparation, you can also use some CINs created using Watcom C for
Windows 3.1.

Microsoft SDK C/C++ Compiler
The method for building CINs under Windows 95 or Windows NT is
similar to the method for building CINs under Windows 3.1 using the
Watcom C compiler.

1. Add a CINTOOLSDIR definition to your list of user environment
variables.

Under Windows NT, you can edit this list with the System
control panel accessory. For example, if you installed LabVIEW
for Windows 95/NT in c:\lv31nt, the CIN tools directory
should be c:\lv31nt\cintools. In this instance, you would
add the following line to the user environment variables using the
System control panel.

CINTOOLSDIR = c:\lv31nt\cintools

Under Windows 95, you must modify your AUTOEXEC.BAT, to
set CINTOOLSDIR to the correct value.

2. Build a .lvm file (LabVIEW Makefile) for your CIN. LabVIEW
for Windows 95/NT requires you to define fewer variables than
LabVIEW for Windows 3.1. You must specify the items in the
following list.

• name = name of CIN or external subroutine (mult, for example)

• type = CIN or LVSB (depending on whether it is a CIN or an
external subroutine)

• !include $(CINTOOLSDIR)\ntlvsb.mak

If your CIN uses extra object files or external subroutines, you can
specify the objFiles and subrNames options. You do not
need to specify the codeDir parameter, because the code for the
CIN must be in the same directory as the makefile. You do not
need to specify the wcDir parameter, because the CIN tools can
determine the compiler’s location.

You can compile the CIN code using the following command,
where mult is the makefile name.

nmake /f mult.lvm
LabVIEW Code Interface Reference Manual 1-32 © National Instruments Corporation

Chapter 1 CIN Overview
If you want to use standard C or Windows 95 or Windows NT
libraries, define the symbol cinLibraries. For example, to use
standard C functions in the preceding example, you could use the
following .lvm file.

name = mult

type = CIN

cinLibraries=libc.lib

!include $(CINTOOLSDIR)\ntlvsb.mak

To include multiple libraries, separate the list of library names
using spaces.

Visual C++ for Windows 95 or Windows NT
To build CINs under Windows NT or Windows 95 using Visual C++,
follow the instructions for the Microsoft SDK C/C++ compiler, listed
in the preceding section. The one difference is that you must add an
IDE = VC line to the beginning of your .lvm file.

Watcom C Compiler for Windows 3.1 under Windows 95 or
Windows NT
CINs you have created using the Watcom C compiler for Windows 3.1
should work under Windows 95 or Windows NT. However, if your
CIN makes calls to communicate with hardware drivers, performs
register or memory mapped I/O, or calls Windows 3.1 functions, it may
not work without modification. Windows 3.1 drivers do not run under
Windows 95 or Windows NT, so you will have to port any drivers that
you may have written for Windows 3.1 to Windows 95 or Windows
NT. Also, CINs cannot manipulate hardware directly. To perform
register or memory-mapped I/O, you will have to write a Windows 95
or Windows NT driver. If you call Windows 3.1 functions, you should
check to make sure that those functions are still valid under Windows
95 and Windows NT.

To create CINs using Watcom C for Windows 3.1, follow the Watcom
C instructions given in the Watcom C Compiler subsection of the
Compile the CIN Source Code section of this chapter. You must
compile the source code for the CINs under Windows 3.1. Use the
LabVIEW for Windows 3.1 CIN libraries to compile the CINs.
© National Instruments Corporation 1-33 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
Solaris 1.x
LabVIEW for the Sun can use external code compiled in a.out
format and prepared for LabVIEW using a LabVIEW utility. The
unbundled Sun C compiler is the only compiler that has been tested
thoroughly with LabVIEW. Other compilers that can generate code in
a.out format might also work with LabVIEW, but this has not been
verified. The C compiler that comes with the Sun does not use
extended-precision floating-point numbers; code using this numeric
type will not compile. However, the unbundled C compiler does use
them.

Solaris 2.x
The preceding information for Solaris 1.x is true for Solaris 2.x, with
one exception—LabVIEW 3.1 and higher for Solaris 2.x uses code
compiled in a shared library format, rather than the a.out format
previously specified.

Note: LabVIEW 3.0 for Solaris 2.x supported external code compiled in ELF
format.

Existing Solaris 1.x and Solaris 2.x (for LabVIEW 3.0) CINs will not
operate correctly if they reference functions that are not in the System
V Interface Definition (SVID) for libc, libsys, and libnsl.
Recompiling your existing CINs using the shared library format should
ensure that your CINs function as expected.

HP-UX
As previously stated, the HP-UX C/ANSI C compiler is the only
compiler that has been tested with LabVIEW.

Unbundled Sun ANSI C Compiler and
HP-UX C/ANSI C Compiler
With these compilers, you create a makefile using the shell script
lvmkmf (LabVIEW Make Makefile), which creates a makefile for a
given CIN. You then use the standard make command to make the CIN
code. In addition to compiling the CIN, the makefile puts the code in a
form that LabVIEW can use.

The format for the lvmkmf command follows, with optional
parameters listed in brackets.

lvmkmf [-o Makefile] [-t CIN] [-ext Gluefile] LVSBName
LabVIEW Code Interface Reference Manual 1-34 © National Instruments Corporation

Chapter 1 CIN Overview
LVSBName, the name of the CIN or external subroutine that you want
to build, is required. If LVSBName is foo, the compiler assumes the
source is foo.c, and the compiler names the output file foo.lsb.

-o is optional and supplies the name of the makefile that lvmkmf
creates. If you do not use this option, the makefile name defaults to
Makefile.

-t is optional and indicates the type of external code you want to
create. For CINs, you should use CIN, which is the default.

-ext is needed only if this external code calls external subroutines.
The argument to this directive is the name of a file that contains the
names of all subroutines that this code calls, with one name per line.
The file is not necessary to run the lvmkmf script, but it must be
present before you can successfully make the CIN. If you do not
specify a -ext option, lvmkmf assumes that the CIN does not
reference any external subroutines.

In Solaris 1.x, the makefile produced assumes that the directories for
the files cin.o, cinetc.o, makeglueBSD.awk, and lvsbutil
are in certain locations. If these assumptions are incorrect, you can edit
the makefile to correct the pathnames.

In Solaris 2.x, the makefile produced assumes that the directories for
the files cin.o, cinetc.o, makeglueSVR4.awk, and
lvsbutil are in certain locations. If these assumptions are incorrect,
you can edit the makefile to correct the pathnames.

In HP-UX, the makefile produced assumes that the directories for the
files cin.o, cinetc.o, makeglueHP.awk, and lvsbutil are in
certain locations. If these assumptions are incorrect, you can edit the
makefile to correct the pathnames.

If you specify the -ext argument to the lvmkmf script, the makefile
creates temporary files. For example, if the gluefile name is bar, the
makefile creates files bar.s and bar.o. Neither the CIN nor the
makefile needs these files after the CIN has been created.

If you make external subroutines, you need to create a separate
makefile for them. The lvmkmf script creates a file called Makefile
unless you use the -o option. For this reason, you may want to place
the code for each subroutine in separate directories to avoid writing
over one Makefile with the other. If you want to place the code in
© National Instruments Corporation 1-35 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
the same directory, you need either to combine the two makefiles
manually, or to create two separate makefiles (using the -o option to
the lvmkmf script) and use make -f <makefile> to create the
CIN or external subroutine.

6. Load the CIN Object Code
Load the code resource by choosing Load Code Resource from the
CIN pop-up menu. Select the .lsb file you created in step 5, Compile
the CIN Source Code.

This command loads your object code into memory and links the code
to the current front panel/block diagram. After you save the VI, the file
containing the object code does not need to be resident on the computer
running LabVIEW for the VI to execute.

If you make modifications to the source code, you can load the new
version of the object code using the Load Code Resource option. The
file containing the object code for the CIN must have an extension of
.lsb.

There is no limit to the number of CINs per block diagram.

LabVIEW Manager Routines
LabVIEW has a suite of routines that can be called from CINs and
external subroutines. This suite of routines performs user-specified
LabVIEW Code Interface Reference Manual 1-36 © National Instruments Corporation

Chapter 1 CIN Overview
routines using the appropriate instructions for a given platform. These
routines, which manage the functions of a specific operating system,
are grouped into three categories, the memory manager, the file
manager, and the support manager.

External code written using the managers is portable–you can compile
it without modification on any platform that supports LabVIEW. This
portability has two advantages. First, the LabVIEW application is built
on top of the managers; except for the managers, the source code for
LabVIEW is identical across platforms. Second, the analysis VIs are
built mainly from CINs; the source code for these CINs is the same for
all platforms.

For general information about the memory manager, the file manager,
and the support manager, see Chapter 5, Manager Overview.

Online Reference
For desciptions of the functions, or of the file manager data structures,
select Online Reference from LabVIEW’s Help menu. Click on the
topic, Function and VI Reference, and then the relevant subtopic. Or see
the Code Interface Node Reference online manual.

Pointers as Parameters
Some manager functions have a parameter that is a pointer. These
parameter type descriptions are identified by a trailing asterisk (such as
the hp parameter of the AZHandToHand memory manager function
documented in the Online Reference) or are type defined as such (such
as the name parameter of the FNamePtr function documented in the
Online Reference). In most cases, this means the manager function will
write a value to pre-allocated memory. In some cases, such as
FStrFitsPath or GetALong, the function reads a value from the
memory location, so you don’t have to pre-allocate memory for a
return value.
© National Instruments Corporation 1-37 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
Table 1-1 lists the functions with parameters that return a value for
which you must pre-allocate memory.

It is important to actually allocate space for this return value. The
following examples illustrate correct and incorrect ways to call one of
these functions from within a generic function foo:

Correct example:

foo(Path path) {

Str255 buf; /* allocated buffer of 256 chars */

File fd;

MgErr err;

err = FNamePtr(path, buf);

err = FMOpen(&fd, path, openReadOnly,

denyWriteOnly);

}

Table 1-1. Functions with Parameters Needing Pre-allocated Memory

AZHandToHand FGetInfo FPathToDString

AZMemStats FGetPathType FPathToPath

AZPtrToHand FGetVolInfo FRefNumToFD

DateToSecs FMOpen FStringToPath

DSHandToHand FMRead FTextToPath

DSMemStats FMTell FUnflattenPath

DSPtrToHand FMWrite GetAlong

FCreate FNamePtr NumericArrayResize

FCreateAlways FNewRefNum RandomGen

FFlattenPath FPathToArr SecsToDate

FGetAccessRights FPathToAZString SetALong

FGetEOF
LabVIEW Code Interface Reference Manual 1-38 © National Instruments Corporation

Chapter 1 CIN Overview
Incorrect example:

foo(Path path) {

PStr p; /* an uninitialized pointer */

File *fd; /* an uninitialized pointer */

MgErr err;

err = FNamePtr(path, p);

err = FMOpen(fd, path, openReadOnly,

denyWriteOnly);

}

In the correct example, buf contains space for the maximum-sized
Pascal string (whose address is passed to FNamePtr), and fd is a
local variable (allocated space) for a file descriptor.

In the incorrect example, p is a pointer to a Pascal string, but the
pointer is not initialized to point to any allocated buffer. FNamePtr
expects its caller to pass a pointer to an allocated space, and writes the
name of the file referred to by path into that space. Even if the pointer
does not point to a valid place, FNamePtr will write its results there,
with unpredictable consequences. Similarly, FMOpen will write its
results to the space to which fd points, which is not a valid place
because fd is uninitialized.

Debugging External Code
LabVIEW has a debugging window that you can use with external code
to display information at execution time. You can open the window,
display arbitrary print statements, and close the window from any CIN
or external subroutine.

Use the DbgPrintf function to create this debugging window. The
format for DbgPrintf is similar to the format of the SPrintf
function, which is described in the Online Reference. DbgPrintf
takes a variable number of arguments, where the first argument is a C
format string.
© National Instruments Corporation 1-39 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
DbgPrintf
syntax int32 DbgPrintf(CStr cfmt, ..);

The first time you call DbgPrintf, LabVIEW opens a window to
display the text you pass the function. Subsequent calls to
DbgPrintf append new data as new lines in the window (you do not
need to pass in the new line character to the function). If you call
DbgPrintf with NULL instead of a format string, LabVIEW closes
the debugging window. You cannot position or change the size of the
window.

The following examples show how to use DbgPrintf.

DbgPrintf(""); /* print an empty line,
opening the window if
necessary */

DbgPrintf("%H", var1); /* print the contents of an
LStrHandle (LabVIEW string),
opening the window if
necessary */

DbgPrintf(NULL); /* close the debugging window
*/

Debugging CINs Under Windows 95 and Windows NT
The Windows 95 and Windows NT platforms support source level
debugging of CINs. To enable debugging, add the following line to the
.lvm file of your CIN:

DEBUG = 1

cinLibraries = Kernel32.lib

These lines will add debug information to the CIN. You must also add
the DebugBreak system call at the point where you want to break
into the CIN code. After adding this information, recompile the CIN
and reload it into LabVIEW. When you run the VI containing the CIN,
a dialog box will appear with the following message:

A Breakpoint has been reached. Click OK to
terminate application. Click CANCEL to debug the
application.

Click CANCEL. This launches the debugger, which attaches to
LabVIEW, searches for the DLLs, and then asks for the source file of
LabVIEW Code Interface Reference Manual 1-40 © National Instruments Corporation

Chapter 1 CIN Overview
your CIN. Point to your source file and the debugger will load the CIN
source code. You can then proceed to debug your code.

Debugging CINs Under Sun or Solaris
It is not currently possible to use Sun’s debugger, dbx, to debug CINs.
The best you can do is use standard C printf calls or the DbgPrintf
function mentioned earlier.

Debugging CINs Under HP-UX
You can debug CINs built on the HP-UX platform using xdb, the HP
source level debugger. To do so, compile the CIN with debugging
turned on. You must also enable shared library debugging with the -s
flag and direct xdb to the source files for your CIN. For example, if
your CIN source code is in the tests/first directory, you could
invoke xdb with the following command:

xdb -s -d tests/first labview

See the xdb manual for more information. Once the CIN is loaded,
break into the debugger and set your breakpoints. You may need to
qualify function names with the name of the shared library. Qualified
names are in the form function_name@library_name. The
name of the shared library will not be what it was when compiled.
Instead, it will be a unique name generated by the C library function
tmpnam. The name will always begin with the string LV. Use the
debugger command mm to display the memory map of all currently
loaded shared libraries. CIN shared libraries are ordered by load time
on the name space, so CINs loaded later appear in the memory map
before CINs loaded earlier. As an example, to break at CINRun for the
library /usr/tmp/LVAAAa17732, set the breakpoint as follows:

>b CINRun@LVAAAa17732

If you reload a CIN that is already loaded, the debugger will not
function properly. If you change a CIN, you must quit and restart the
debugger to enable it to work as desired.
© National Instruments Corporation 1-41 LabVIEW Code Interface Reference Manual

Chapter 1 CIN Overview
LabVIEW Code Interface Reference Manual 1-42 © National Instruments Corporation

CIN Parameter Passing
© National Instruments Corporation 2-1 LabVIEW Code Interface Refer

Chapter

2

This chapter describes the data structures that LabVIEW uses when
passing data to a CIN.

Introduction
LabVIEW passes parameters to the CINRun routine. These parameters
correspond to each of the wires connected to the CIN. You can pass any
data type to a CIN that you can construct in LabVIEW; there is no limit
to the number of parameters you can pass to and from the CIN.

CIN .c File
When you select the Create .c File... option, LabVIEW creates a .c
file in which you can enter your CIN code. The CINRun function and
its prototype are given, and its parameters are typed to correspond to
the data types being passed to the CIN in the block diagram. If you want
to refer to any of the other six CIN routines (CINInit, CINLoad, and
so forth), see their descriptions in Chapter 1, CIN Overview.

The .c file created is a standard C file, except that LabVIEW gives the
data types unambiguous names. C does not define the size of low-level
data types—the int data type might correspond to a 16-bit integer for
one compiler and a 32-bit integer for another compiler. The .c file uses
names that are explicit about data type size, such as int16, int32,
float32, and so on. LabVIEW comes with a header file,
extcode.h, that contains typedefs associating these LabVIEW data
types with the corresponding data type for the supported compilers of
each platform.

extcode.h defines some constants and types whose definitions may
conflict with the definitions of system header files. The LabVIEW
cintools directory also contains a file, hosttype.h, that resolves
these differences. This header file also includes many of the common
header files for a given platform.
ence Manual

Chapter 2 CIN Parameter Passing
Note: You should always use #include "extcode.h" at the beginning of
your source code. If your code needs to include system header files, you
should include "extcode.h" , "hosttype.h", and then any system
header files, in that order.

If you write a CIN that accepts a single 32-bit signed integer, the .c
file indicates that the CINRun routine is passed an int32 by
reference. extcode.h typedefs an int32 to the appropriate data
type for the compiler you use (if it is a supported compiler); therefore,
you can use the int32 data type in external code that you write.

How LabVIEW Passes Fixed Sized Data to CINs
As described in the Steps for Creating a CIN section of Chapter 1, CIN
Overview, you can designate terminals on the CIN as either input-
output or output-only. Regardless of the designation, LabVIEW passes
data by reference to the CIN. When modifying a parameter value, be
careful to follow the rules described for each kind of terminal in the
Steps for Creating a CIN section of Chapter 1, CIN Overview.
LabVIEW passes parameters to the CINRun routines in the same order
as you wire data to the CIN—the first terminal pair corresponds to the
first parameter, and the last terminal pair corresponds to the last
parameter.

The following section describes how LabVIEW passes fixed sized
parameters to CINs. See the How LabVIEW Passes Variably Sized
Data to CINs section of this chapter for information on manipulating
variably sized data such as arrays and strings.

Scalar Numerics
LabVIEW passes numeric data types to CINs by passing a pointer to
the data as an argument. In C, this means that LabVIEW passes a
pointer to the numeric data as an argument to the CIN. Arrays of
numerics are described in the subsequent Arrays and Strings section of
this chapter.

Scalar Booleans
LabVIEW stores Booleans in memory as 16-bit integers. If the high bit
of the integer is 1, the Boolean is TRUE; otherwise the Boolean is
FALSE. This is different from the more usual convention for Booleans,
in which the low bit determines whether the Boolean is TRUE or
FALSE. LabVIEW passes Booleans to CINs with the same
LabVIEW Code Interface Reference Manual 2-2 © National Instruments Corporation

Chapter 2 CIN Parameter Passing
conventions as for numerics. LabVIEW stores arrays of Booleans
differently; see the Arrays and Strings section of this chapter for more
information.

Refnums
LabVIEW treats a refnum the same way as it treats a scalar number and
passes refnums with the same conventions it uses for numbers.

Clusters of Scalars
For a cluster, LabVIEW passes a pointer to a structure containing the
elements of the cluster. LabVIEW stores fixed-size values directly as
components inside of the structure. If a component is another cluster,
LabVIEW stores this cluster value as a component of the main cluster.

Return Value for CIN Routines
The names of the CIN routines are prefaced in the header file with the
words CIN MgErr, as shown in the following example.

CIN MgErr CINRun(...);

The LabVIEW header file extcode.h, defines the word CIN to be
either Pascal or nothing, depending on the platform. Prefacing a
function with the word Pascal causes some C compilers to use Pascal
calling conventions instead of C calling conventions to generate the
code for the routine. LabVIEW uses Pascal calling conventions on the
Macintosh when calling CIN routines, so the header file declares the
CIN to be equivalent to Pascal on the Macintosh. On the PC and the
Sun, however, LabVIEW uses standard C calling conventions, so the
header file declares the CIN to be equivalent to nothing.

The MgErr data type is a LabVIEW data type that corresponds to a set
of error codes that the manager routines return. If you call a manager
routine that returns an error, you can either handle the error or return
the error so that LabVIEW can handle it. If you can handle the errors
that occur, return the error code noErr.

After calling a CIN routine, LabVIEW checks the MgErr value to
determine whether an error occurred. If an error occurs, LabVIEW
aborts the VI containing the CIN. If the VI is a subVI, LabVIEW aborts
the VI that contains the subVI. This behavior enables LabVIEW to
handle conditions when a VI runs out of memory. By aborting the
© National Instruments Corporation 2-3 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing
running VI, LabVIEW can possibly free enough memory to continue
running correctly.

Examples with Scalars
The following examples show the steps for creating CINs and how to
work with scalar data types. Chapter 5, Manager Overview, contains
more examples.

Steps for Creating a CIN That Multiplies Two Numbers
Consider a CIN that takes two single-precision floating-point numbers
and returns their product.

1. Place the CIN on the Block Diagram

2. Add Two Input and Output Terminals to the CIN

3. Wire the Inputs and Outputs to the CIN
Place two single-precision numeric controls and one single-precision
numeric indicator on a front panel. Wire the node as shown in the
following illustration. Notice that A*B is wired to an output-only
terminal pair.

Save the VI as mult.vi.

4. Create the CIN Source Code
Select Create .c File... from the CIN node pop-up menu. LabVIEW
prompts you to select a name and a storage location for a .c file. Name
the file mult.c. LabVIEW creates a .c file shown in the following
listing.
LabVIEW Code Interface Reference Manual 2-4 © National Instruments Corporation

Chapter 2 CIN Parameter Passing
/*

* CIN source file

*/

#include "extcode.h"

/* stubs for advanced CIN functions */

UseDefaultCINInit

UseDefaultCINDispose

UseDefaultCINAbort

UseDefaultCINLoad

UseDefaultCINUnload

UseDefaultCINSave

CIN MgErr CINRun (float32 *A, float32 *B,

float32 *A_B);

CIN MgErr CINRun (float32 *A, float32 *B,

float32 *A_B) {

/* ENTER YOUR CODE HERE */

return noErr;

}

This .c file contains a prototype and a template for the CIN’s CINRun
routine. The UseDefault... macros shown in the preceding
example code take the place of the corresponding CIN routines.
LabVIEW calls the CINRun routine when the CIN executes. In this
example, LabVIEW passes CINRun the addresses of the three 32-bit
floating-point numbers. The parameters are listed left to right in the
same order as you wired them (top to bottom) to the CIN. Thus, A, B,
and A_B are pointers to A, B, and A*B, respectively.

As described in the CIN .c File section of this chapter, the float32
data type is not a standard C data type. When LabVIEW creates a .c
file, it gives unambiguous names for data types. For most C compilers,
the float32 data type corresponds to the float data type. However,
this may not be true in all cases, because the C standard does not define
the sizes for the various data types. You can use these LabVIEW data
types in your code because extcode.h associates these data types
© National Instruments Corporation 2-5 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing
with the corresponding C data type for the compiler you are using. In
addition to defining LabVIEW data types, extcode.h also
prototypes LabVIEW routines that you can access. These data types
and routines are described in Chapter 5, Manager Overview, of this
manual and in the Online Reference.

Note: The line #include "extcode.h" must be a full pathname to
extcode.h under THINK C. For example: #include
"harddrive:cintools:extcode.h"

Optionally, System 7.x users can use the Aliases folder technique described
in the THINK C for 68K subsection of Chapter 1, CIN Overview, to enable the
include line to read #include "extcode.h".

For this multiplication example, simply fill in the code for the CINRun
routine. You do not have to use the variable names that LabVIEW gives
you in CINRun; you can change them to increase the readability of the
code.

CIN MgErr CINRun (float32 *A, float32 *B,

float32 *A_B);

{

*A_B = *A**B;

return noErr;

}

CINRun multiplies the values to which A and B refer and stores the
results in the location to which A_B refers. It is important that CIN
routines return an error code, so that LabVIEW knows if the CIN
encountered any fatal problems and handles the error correctly.

If you return a value other than noErr, LabVIEW stops the execution
of the VI.

5. Compile the CIN Source Code
After creating the source code, you need to compile it and convert it
into a form that LabVIEW can use. The following sections summarize
the steps for each of the supported compilers.

Note: Step 5 is different for each platform. Look under the heading for your
platform and compiler in the following sections to find the instructions for
your system. For details, refer to the relevant subsection within the
Compile the CIN Source Code section in Chapter 1, CIN Overview.
LabVIEW Code Interface Reference Manual 2-6 © National Instruments Corporation

Chapter 2 CIN Parameter Passing
Macintosh

THINK C for 68K and Symantec C++
Create a new project and place mult.c in it. Build mult.lsb
according to the instructions in the THINK C for 68K or the Symantec
C++ subsection of the Compile the CIN Source Code section of
Chapter 1.

Macintosh Programmer’s Workshop for 68K and Power Macintosh
Create a file named mult.lvm. Make sure the name variable is set to
mult. Build mult.lvm according to the instructions in the Macintosh
Programmer’s Workshop subsection of the Compile the CIN Source
Code section of Chapter 1.

Metrowerks CodeWarrior for Power Macintosh and 68K
Create a new project and place mult.c in it. Build mult.lsb
according to the instructions in the Metrowerks CodeWarrior subsection
of the Compile the CIN Source Code section of Chapter 1.

Microsoft Windows 3.x

Watcom C Compiler
Create a file named mult.lvm. Make sure the name variable is set to
mult. Build mult.lvm according to the instructions in the Watcom
C Compiler subsection of the Compile the CIN Source Code section of
Chapter 1.

Microsoft Windows 95 and Windows NT

Microsoft SDK Compiler
Create a file named mult.lvm. Make sure the name variable is set to
mult. Build mult.lvm according to the instructions in the Microsoft
SDK subsection of the Compile the CIN Source Code section of
Chapter 1.

Microsoft Visual C++ Compiler
Create a file named mult.lvm. Make sure the name variable is set to
mult. Build mult.lvm according to the according to the instructions
in the Visual C++ subsection of the Compile the CIN Source Code
section of Chapter 1. Add the following line to the top of the makefile.
© National Instruments Corporation 2-7 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing
IDE = VC

This line adds special VC++ libraries to the link. All other steps
required to compile the CIN source code using the Visual C++
compiler are exactly the same as those for the Microsoft SDK compiler.

Solaris 1.x, Solaris 2.x, and HP-UX
As described in the Steps for Creating a CIN section of Chapter 1, CIN
Overview, you can create a makefile using the shell script lvmkmf.
For this example, you should first enter the following command.

lvmkmf mult

This creates a file called Makefile. After executing lvmkmf, you
should enter the standard make command, which uses Makefile to
create a file called mult.lsb, which you can load into the CIN in
LabVIEW.

6. Load the CIN Object Code
Now you are ready to load the CIN into LabVIEW and run it. Select
Load Code Resource from the CIN pop-up menu and select
mult.lsb, the object code file that you created.

If you followed the preceding steps correctly, you should be able to run
the VI at this point. If you save the VI, the CIN object code is saved
along with the VI.
LabVIEW Code Interface Reference Manual 2-8 © National Instruments Corporation

Chapter 2 CIN Parameter Passing
Comparing Two Numbers, Producing a Boolean Scalar
The following example shows how to create a CIN that compares two
single-precision numbers. If the first number is greater than the second
one, the return value is TRUE; otherwise, the return value is FALSE.
This example gives only the block diagram and the code. Follow the
instructions in the Steps for Creating a CIN section of Chapter 1 to
create the CIN.

The diagram for this CIN is shown in the following illustration. Save
the VI as aequalb.vi.

Create a .c file for the CIN, and name it aequalb.c. The .c file that
LabVIEW creates is as follows.

/*

 * CIN source file

 */

#include "extcode.h"

/* stubs for advanced CIN functions */

UseDefaultCINInit

UseDefaultCINDispose

UseDefaultCINAbort

UseDefaultCINLoad

UseDefaultCINUnload

UseDefaultCINSave

CIN MgErr CINRun(float32 *ap, float32 *bp,

LVBoolean *aequalbp);
© National Instruments Corporation 2-9 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing
CIN MgErr CINRun(float32 *ap, float32 *bp,

LVBoolean *aequalbp) {

if (*ap == *bp)

*aequalbp= LVTRUE;

else

*aequalbp= LVFALSE;

return noErr;

}

How LabVIEW Passes Variably Sized Data to CINs
LabVIEW allocates memory for arrays and strings dynamically, and
arrays and strings typically can grow quite large. If a string or array
needs more space to hold new data, its current location may not offer
enough contiguous space to hold the resulting string or array. In this
case, LabVIEW may have to move the data to a location that offers
more space.

To accommodate this relocation of memory, LabVIEW uses handles to
refer to the storage location of variably sized data. A handle is a pointer
to a pointer to the desired data. LabVIEW uses handles instead of
simple pointers because handles allow LabVIEW to move the data
without invalidating references from your code to the data. If
LabVIEW moves the data, LabVIEW updates the intermediate pointer
to reflect the new location. If you use the handle, references to the data
go through the intermediate pointer, which always reflects the correct
location of the data. Handles are described in detail in Chapter 5,
Manager Overview, and information about specific handle functions is
in the Online Reference.

Alignment Considerations
When a CIN returns variably sized data, you need to adjust the size of
the handle that references the array. One method of adjusting the
handle size is to use the memory manager routine
DSSetHandleSize or, if the data is stored in the application zone,
the AZSetHandleSize routine, to adjust the size of the return data
handle. Both techniques work, but they are trouble-prone because you
have to calculate the size of the new handle correctly. It is difficult to
calculate the size correctly in a platform-independent manner,
however, because some platforms have special requirements about
how you align and pad memory.
LabVIEW Code Interface Reference Manual 2-10 © National Instruments Corporation

Chapter 2 CIN Parameter Passing
Instead of using XXSetHandleSize, you should use the LabVIEW
routines that take this alignment into account when resizing handles.
You can use the SetCINArraySize routine to resize a string or an
array of arbitrary data type. This function is described in the Resizing
Arrays and Strings section of this chapter.

If you are not familiar with alignment differences for various
platforms, the following examples highlight the problem. Keep in mind
that SetCINArraySize and NumericArrayResize take care of
these issues for you.

Consider the case of a 1D array of double-precision numbers. On the
PC, an array of double-precision floating-point numbers is stored in a
handle, and the first four bytes describe the number of elements in the
array. These four bytes are followed by the 8-byte elements that make
up the array. On the Sun, double-precision floating-point numbers
must be aligned to 8-byte boundaries–the 4-byte value is followed by
four bytes of padding. This padding ensures that the array data falls on
eight-byte boundaries.

As a more complicated example, consider a three-dimensional array of
clusters, in which each cluster contains a double-precision floating-
point number and a 4-byte integer. As in the previous example, the Sun
stores this array in a handle. The first 12 bytes contain the number of
pages, rows, and columns in the array. These dimension fields are
followed by four bytes of filler (which ensures that the first double-
precision number is on an 8-byte boundary) and then the data. Each
element contains eight bytes for the double-precision number,
followed by four bytes for the integer. Each cluster is followed by four
bytes of padding, which ensures that the next element is properly
aligned.

Arrays and Strings
LabVIEW passes array by handle, as described in the Alignment
Considerations section of this chapter. For an n-dimensional array, the
handle begins with n 4-byte values that describe the number of values
stored in a given dimension of the array. Thus, for a one-dimensional
array, the first four bytes indicate the number of elements in the array.
For a two-dimensional array, the first four bytes indicate the number of
rows, and the second four bytes indicate the number of columns. These
dimension fields can be followed by filler and then the actual data.
Each element can also have padding to meet alignment requirements.
© National Instruments Corporation 2-11 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing
LabVIEW stores strings in memory as one-dimensional arrays of
unsigned 8-bit integers.

LabVIEW stores Boolean arrays in memory as a series of bits packed
to the nearest 16-bit word. LabVIEW ignores unused bits in the last
word. LabVIEW orders the bits from left to right; that is, the most
significant bit (MSB) is index 0. As with other arrays, a 4-byte
dimension size precedes Boolean arrays. The dimension size for
Boolean arrays indicates the number of Booleans contained in the
array.

Paths (Path)
The exact structure for Path data types is subject to change in future
versions of LabVIEW. A Path is a dynamic data structure that
LabVIEW passes the same way it passes arrays. LabVIEW stores the
data for Paths in an application zone handle. See the Online
Reference, accessed from LabVIEW’s Help window, or the Code
Interface Node Reference online manual for descriptions of the
functions that manipulate Paths.

Clusters Containing Variably Sized Data
For cluster arguments, LabVIEW passes a pointer to a structure
containing the elements of the cluster. LabVIEW stores scalar values
directly as components inside the structure. If a component is another
cluster, LabVIEW stores this cluster value as a component of the main
cluster. If a component is an array or string, LabVIEW stores a handle
to the array or string component in the structure.

Resizing Arrays and Strings
You can use the LabVIEW SetCINArraySize routine to resize
return arrays and strings that you pass to a CIN. You pass the function
the handle that you want to resize, information that describes the data
structure, and the desired size of the array or handle. The function takes
into account any padding and alignment needed for the data structure.
The function does not, however, update the dimension fields in the
array. If you successfully resize the array, you need to update the
dimension fields to correctly reflect the number of elements in the
array.

You can resize numeric arrays more easily with
NumericArrayResize. You pass to this function the array you
LabVIEW Code Interface Reference Manual 2-12 © National Instruments Corporation

Chapter 2 CIN Parameter Passing
want to resize, a description of the data structure, and information
about the new size of the array.

When you resize arrays of variably-sized data (for example, arrays of
strings) with the SetCINArraySize or NumericArrayResize
routines, you should be aware of the following facts. If the new size of
the array is smaller, LabVIEW disposes of the handles used by the
disposed element. Neither function sets the dimension field of the
array. You must do this in your code after the function call. If the new
size is larger, however, LabVIEW does not automatically create the
handles for the new elements. You have to create these handles after
the function returns.

The SetCINArraySize and NumericArrayResize functions
are described in the following sections

SetCINArraySize
syntax MgErr SetCINArraySize (UHandle dataH, int32

paramNum, int32 newNumElmts);

SetCINArraySize resizes a data handle based on the data structure of an argument
that you pass to the CIN. It does not set the array dimension field.

Parameter Type Description

dataH UHandle The handle that you want to resize.

paramNum int32 The number for this parameter in the
argument list to the CIN. The leftmost
parameter has a parameter number of 0,
and the rightmost has a parameter
number of n-1, where n is the total
number of parameters

newNumElmts int32 The new number of elements to which
the handle should refer. For a one-
dimensional array of five values, you
pass a value of 5 for this argument. For a
two-dimensional array of two rows by
three columns, you pass a value of 6 for
this argument.
© National Instruments Corporation 2-13 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing
returns MgErr, which can contain the errors in the following list. MgErrs are
discussed in Chapter 5, Manager Overview.

NumericArrayResize
syntax MgErr NumericArrayResize(int32 typeCode, int32

numDims, UHandle *dataHP, int32
totalNewSize);

NumericArrayResize resizes a data handle that refers to a numeric array. This
routine also accounts for alignment issues. It does not set the array dimension field. If
*dataHP is NULL, LabVIEW allocates a new array handle in *dataHP.

Error Description

noErr
mFullErr
mZoneErr

No error.
Not enough memory to perform operation
Handle is not in specified zone.

Parameter Type Description

typeCode int32 Describes the data type for the array that
you want to resize. The header file
extcode.h defines the following
constants for this argument
iB Data is an array of signed 8-bit

integers.
iW is an array of signed 16-bit integers.
iL Data is an array of signed 32-bit

integers.
uB Data is an array of unsigned 8-bit

integers.
uW Data is an array of unsigned 16-bit

integers.
uL Data is an array of unsigned 32-bit

integers.
fS Data is an array of single-precision

(32-bit) numbers.
LabVIEW Code Interface Reference Manual 2-14 © National Instruments Corporation

Chapter 2 CIN Parameter Passing
returns MgErr, which can contain the errors in the following list.

Parameter Type Description

fD Data is an array of double-precision
(64-bit) numbers.

fX Data is an array of extended-
precision numbers.

cS Data is an array of single-precision
complex numbers.

cD Data is an array of double-precision
complex numbers.

cX Data is an array of extended-
precision complex numbers.

numDims int32 The number of dimensions in the data
structure to which the handle refers.
Thus, if the handle refers to a
two-dimensional array, you pass a
value of 2 for numDims.

*dataHP UHandle A pointer to the handle that you want to
resize. If this is a pointer to NULL,
LabVIEW allocates and sizes a new
handle appropriately and returns the
handle in *dataHP.

totalNewSize int32 The new number of elements to which
the handle should refer. For a
unidimensional array of five values,
you pass a value of 5 for this argument.
For a two-dimensional array of two
rows by three columns, you pass a
value of 6 for this argument.

Error Description

noErr
mFullErr
mZoneErr

No error.
Not enough memory to perform operation
Handle is not in specified zone.
© National Instruments Corporation 2-15 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing
Examples with Variably Sized Data
The following examples show the steps for creating CINs and how to
work with variably-sized data types.

Concatenating Two Strings
The following example shows how to create a CIN that concatenates
two strings. This example also shows how to use input-output terminals
by passing the first string as an input-output parameter to the CIN. The
top right terminal of the CIN returns the result of the concatenation.

This example gives only the diagram and the code. Follow the
instructions in Chapter 1, CIN Overview, to create this CIN.

The diagram for this CIN is shown in the following illustration. Save
the VI as lstrcat.vi.

Create a .c file for the CIN, and name it lstrcat.h. The .c file that
LabVIEW creates is as follows.

/*

 * CIN source file

 */

#include "extcode.h"

/* stubs for advanced CIN functions */

UseDefaultCINInit

UseDefaultCINDispose

UseDefaultCINAbort

UseDefaultCINLoad

UseDefaultCINUnload

UseDefaultCINSave
LabVIEW Code Interface Reference Manual 2-16 © National Instruments Corporation

Chapter 2 CIN Parameter Passing
CIN MgErr CINRun(

LStrHandle var1,

LStrHandle var2);

CIN MgErr CINRun(

LStrHandle var1,

LStrHandle var2) {

/* ENTER YOUR CODE HERE */

return noErr;

}

Now fill in the CINRun function as follows:

CIN MgErr CINRun(

LStrHandle strh1,

LStrHandle strh2) {

int32 size1, size2, newSize;

MgErr err;

size1 = LStrLen(*strh1);

size2 = LStrLen(*strh2);

newSize = size1 + size2;

if(err = NumericArrayResize(uB, 1L,

(UHandle*)&strh1, newSize))

goto out;

/* append the data from the second string to

first string */

MoveBlock(LStrBuf(*strh2),

 LStrBuf(*strh1)+size1, size2);

 /* update the dimension (length) of the

first string */

LStrLen(*strh1) = newSize;

out:

return err;

}

© National Instruments Corporation 2-17 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing
In this example, CINRun is the only routine that performs substantial
operations. CINRun concatenates the contents of strh2 to the end of
strh1, with the resulting string stored in strh1. Before performing
the concatenation, you need to resize strh1 with the LabVIEW
routine NumericArrayResize to hold the additional data.

If NumericArrayResize fails, it returns a non-zero value of type
MgErr. In this case, NumericArrayResize could fail if LabVIEW
does not have enough memory to resize the string. Returning the error
code gives LabVIEW a chance to handle the error. If CINRun reports
an error, LabVIEW aborts the calling VIs. Aborting the VIs may free
up enough memory so that LabVIEW can continue running.

After resizing the string handle, this example copies the second string
to the end of the first string using MoveBlock. MoveBlock is a
support manager routine that moves blocks of data. Finally, this
example sets the size of the first string to the length of the concatenated
string.

Computing the Cross Product of Two Two-Dimensional Arrays
The following example shows how to create a CIN that accepts two
two-dimensional arrays and then computes the cross product of the
arrays. The CIN returns the cross product in a third parameter and a
Boolean value as a fourth parameter. This Boolean is TRUE if the
number of columns in the first matrix is not equal to the number of
rows in the second matrix.

This example shows only the front panel, block diagram, and source
code. Follow the instructions in the Steps for Creating a CIN section of
Chapter 1, CIN Overview, to create the CIN.
LabVIEW Code Interface Reference Manual 2-18 © National Instruments Corporation

Chapter 2 CIN Parameter Passing
The front panel for this VI is shown in the following illustration. Save
the VI as cross.vi.

The block diagram for this VI is shown in the following illustration.

Save the .c file for the CIN as cross.c. Following is the source code
for cross.c with the CINRun routine added.

/*

 * CIN source file

 */

#include "extcode.h"

#define ParamNumber 2

/* The return parameter is parameter 2 */

#define NumDimensions 2

/* 2D Array */
© National Instruments Corporation 2-19 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing
/* stubs for advanced CIN functions */

UseDefaultCINInit

UseDefaultCINDispose

UseDefaultCINAbort

UseDefaultCINLoad

UseDefaultCINUnload

UseDefaultCINSave

/*

 * typedefs

 */

typedef struct {

int32 dimSizes[2];

float64 arg1[1];

} TD1;

typedef TD1 **TD1Hdl;

CIN MgErr CINRun(TD1Hdl ah, TD1Hdl bh, TD1Hdl

resulth, LVBoolean *errorp);

CIN MgErr CINRun(TD1Hdl ah, TD1Hdl bh, TD1Hdl

resulth, LVBoolean *errorp) {

int32 i,j,k,l;

int32 rows, cols;

float64 *aElmtp, *bElmtp, *resultElmtp;

MgErr err=noErr;

int32 newNumElmts;

if ((k = (*ah)->dimSizes[1]) !=

(*bh)->dimSizes[0]) {

*errorp = LVTRUE;

goto out;

}

*errorp = LVFALSE;

rows = (*ah)->dimSizes[0];

/* number of rows in a and result */

cols = (*bh)->dimSizes[1];

/* number of cols in b and result */

newNumElmts = rows * cols;

if (err = SetCINArraySize((UHandle)resulth,

ParamNumber, newNumElmts))
LabVIEW Code Interface Reference Manual 2-20 © National Instruments Corporation

Chapter 2 CIN Parameter Passing
goto out;

(*resulth)->dimSizes[0] = rows;

(*resulth)->dimSizes[1] = cols;

aElmtp = (*ah)->arg1;

bElmtp = (*bh)->arg1;

resultElmtp = (*resulth)->arg1;

for (i=0; i<rows; i++)

for (j=0; j<cols; j++) {

*resultElmtp = 0;

for (l=0; l<k; l++)

*resultElmtp += aElmtp[i*k + l] *

bElmtp[l*k + j];

resultElmtp++;

}

out:

return err;

}

In this example, CINRun is the only routine that performs substantial
operations. CINRun cross multiplies the two-dimensional arrays ah
and bh. LabVIEW stores the resulting array in resulth. If the
number of columns in ah is not equal to the number of rows in bh,
CINRun sets *errorp to LVTRUE to inform the calling diagram of
invalid data.

SetCINArraySize, the LabVIEW routine that accounts for
alignment and padding requirements, resizes the array. Notice that the
two-dimensional array data structure is the same as the one-
dimensional array data structure, except that the 2D array has two
dimension fields instead of one. The two dimensions indicate the
number of rows and the number of columns in the array, respectively.
© National Instruments Corporation 2-21 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing
The data is declared as a one-dimensional C-style array. LabVIEW
stores data row by row, as shown in the following illustration.

For an array with r rows and c columns, you can access the element at
row i and column j as shown in the following code fragment.

value = (*arrayh)->arg1[i*c + j];

Working with Clusters
The following example takes an array of clusters and a single cluster
as inputs, and the clusters contain a signed 16-bit integer and a string.
The input for the array of clusters is an input-output terminal. In
addition to the array of clusters, the CIN returns a Boolean and a signed
32-bit integer. If the cluster value is already present in the array of
clusters, the CIN sets the Boolean to TRUE and returns the position of
the cluster in the array of clusters using the 32-bit integer output. If the
cluster value is not present, the CIN adds it to the array, sets the
Boolean output to FALSE, and returns the new position of the cluster
in the array of clusters.

This example shows only the front panel, block diagram, and source
code. Follow the instructions in the Steps for Creating a CIN section of
Chapter 1, CIN Overview, to create the CIN.
LabVIEW Code Interface Reference Manual 2-22 © National Instruments Corporation

Chapter 2 CIN Parameter Passing
The front panel for this VI is shown in the following illustration. Save
the VI as tblsrch.vi.

The block diagram for this VI is shown in the following illustration:

Save the .c file for the CIN as tblsrch.c. Following is the source
code for tblsrch.c with the CINRun routine added:
/*

 * CIN source file

 */

#include "extcode.h"

#define ParamNumber 0

/* The array parameter is parameter 0 */

/* stubs for advanced CIN functions */

UseDefaultCINInit
© National Instruments Corporation 2-23 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing
UseDefaultCINDispose

UseDefaultCINAbort

UseDefaultCINLoad

UseDefaultCINUnload

UseDefaultCINSave

/*

 * typedefs

 */

typedef struct {

int16 number;

LStrHandle string;

} TD2;

typedef struct {

int32 dimSize;

TD2 arg1[1];

} TD1;

typedef TD1 **TD1Hdl;

CIN MgErr CINRun(

TD1Hdl clusterTableh,

TD2 *elementp,

LVBoolean *presentp,

int32 *positionp);

CIN MgErr CINRun(

TD1Hdl clusterTableh,

TD2 *elementp,

LVBoolean *presentp,

int32 *positionp) {

int32 size,i;

MgErr err=noErr;

TD2 *tmpp;

LStrHandle newStringh;

TD2 *newElementp;

int32 newNumElements;

size = (*clusterTableh)->dimSize;

tmpp = (*clusterTableh)->arg1;
LabVIEW Code Interface Reference Manual 2-24 © National Instruments Corporation

Chapter 2 CIN Parameter Passing
*positionp = -1;

*presentp = LVFALSE;

for(i=0; i<size; i++) {

if(tmpp->number == elementp->number)

if(LStrCmp(*(tmpp->string),

*(elementp->string)) == 0)

break;

tmpp++;

}

if(i<size) {

*positionp = i;

*presentp = LVTRUE;

goto out;

}

newStringh = elementp->string;

if(err = DSHandToHand((UHandle *)

&newStringh))

goto out;

newNumElements = size+1;

if(err =

SetCINArraySize((UHandle)clusterTableh,

ParamNumber,

newNumElements)) {

DSDisposeHandle(newStringh);

goto out;

}

(*clusterTableh)->dimSize = size+1;

newElementp = &((*clusterTableh)

->arg1[size]);

newElementp->number = elementp->number;

newElementp->string = newStringh;

*positionp = size;

out:

return err;

}

© National Instruments Corporation 2-25 LabVIEW Code Interface Reference Manual

Chapter 2 CIN Parameter Passing
In this example, CINRun is the only routine that performs substantial
operations. CINRun first searches through the table to see if the
element is present. CINRun then compares string components using
the LabVIEW routine LStrCmp, which is described in the Online
Reference. If CINRun finds the element, the routine returns the
position of the element in the array.

If the routine does not find the element, you have to add a new element
to the array. Use the memory manager routine DSHandToHand to
create a new handle containing the same string as the one in the cluster
element that you passed to the CIN. CINRun then increases the size of
the array using SetCINArraySize and fills the last position with a
copy of the element that you passed to the CIN.

If the SetCINArraySize call fails, the CIN returns the error code
returned by the manager. If the CIN is unable to resize the array,
LabVIEW disposes of the duplicate string handle.
LabVIEW Code Interface Reference Manual 2-26 © National Instruments Corporation

CIN Advanced Topics
© National Instruments Corporation 3-1 LabVIEW Code Interface Refer

Chapter

3

This chapter covers several topics that are needed only in advanced
applications, including how to use the CINInit, CINDispose,
CINAbort, CINLoad, CINUnload, and CINSave routines. The
chapter also discusses how global data works within CIN source code,
and how users of Windows 3.1, Windows 95, and Windows NT can call
a DLL from a CIN.

CIN Routines
A CIN consists of several routines, as described by the .c file that
LabVIEW creates when you select Create .c File... from the CIN pop-
up menu. The previous chapters have discussed only the CINRun
routine. The other routines are CINLoad, CINInit, CINAbort,
CINSave, CINDispose, and CINUnload.

It is important to understand that for most CINs, you need to write only
the CINRun routine. The other routines are supplied mainly for the
cases in which you have special initialization needs, such as when your
CIN is going to maintain some information across calls, and you want
to preallocate or initialize global state information.

In the case where you want to preallocate/initialize global state
information, you first need to understand more of how LabVIEW
manages data and CINs.

Data Spaces and Code Resources
When you create a CIN, you compile your source into an object code
file and load the code into the node. At that point, LabVIEW loads a
copy of the code (called a code resource) into memory and attaches it
to the node. When you save the VI, this code resource is saved along
with the VI as an attached component; the original object code file is
no longer needed.

When LabVIEW loads a VI, it allocates a data space, a block of data
storage memory, for that VI. This data space is used, for instance, to
store the values in shift registers. If the VI is reentrant, then LabVIEW
ence Manual

Chapter 3 CIN Advanced Topics
allocates a data space for each usage of the VI. See Chapter 26,
Understanding How LabVIEW Executes VIs, in your LabVIEW User
Manual for more information on reentrancy.

Within your CIN code resource, you may have declared global data.
Global data includes variables that are declared outside of the scope of
all routines, and, for the purposes of this discussion, variables that are
declared as static variables within routines. LabVIEW allocates space
for this global data. As with the code itself, there is always only one
instance of these globals in memory. Regardless of how many nodes
reference the code resource and regardless of whether the surrounding
VI is reentrant, there is only one copy of these globals in memory, and
their values are consistent.

When you create a CIN node, LabVIEW allocates a CIN data space, a
4-byte storage location in the VI data space(s), strictly for the use of
the CIN node. Each CIN may have one or more CIN data spaces
reserved for the node, depending on how many times the node appears
in a VI or collection of VIs. You can use this CIN data space to store
global data on a per data space basis, as described in the Code Globals
and CIN Data Space Globals section later in this chapter.

Figure 3-1. Data Storage Spaces for One CIN, Simple Case

VI data space

(for data space globals)

4-byte CIN
data space

global storage

(for code globals)

VI

code resource
LabVIEW Code Interface Reference Manual 3-2 © National Instruments Corporation

Chapter 3 CIN Advanced Topics
A CIN node references the code resource by name, using the name you
specified when you created the code resource. When you load a VI
containing a CIN, LabVIEW looks in memory to see if a code resource
with the desired name is already loaded. If so, LabVIEW links the CIN
to the code resource for execution purposes.

This linking behaves the same way as links between VIs and subVIs.
When you try to reference a subVI and another VI with the same name
already exists in memory, LabVIEW references the one already in
memory instead of the one you selected. In the same way, if you try to
load references to two different code resources that have the same
name, only one code resource is actually loaded into memory, and both
references point to the same code. The difference is that LabVIEW can
verify that a subVI call matches the subVI connector pane terminal, but
LabVIEW cannot verify that your source code matches the CIN call.

CIN Routines: The Basic Case
The following discussion describes what happens in the standard case,
in which you have a code resource that is referenced by only one CIN,
and the VI that contains the CIN is non-reentrant. The other cases have
slightly more complicated behavior, described in later sections of this
chapter.

Loading a VI
When you first load a VI, LabVIEW calls the CINLoad routines for
any CINs contained in that VI. This gives you a chance to load any file-
based resources at load time, because LabVIEW calls this routine only
when the VI is first loaded (see the Loading a New Resource into the
CIN section that follows for an exception to this rule). After LabVIEW
calls the CINLoad routine, it calls CINInit. Together, these two
routines perform any initialization you need before the VI runs.

LabVIEW calls CINLoad once for a given code resource, regardless
of the number of data spaces and the number of references to that code
resource. This is why you should initialize code globals in CINLoad.

LabVIEW calls CINInit for a given code resource a total of one time
for each CIN data space multiplied by the number of references to the
code resource in the VI that corresponds to that data space. If you want
to use CIN data space globals, you should initialize them in CINInit.
See the Code Globals and CIN Data Space Globals, the Loading a New
© National Instruments Corporation 3-3 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics
Resource into the CIN, and the Compiling a VI sections of this chapter
for related information.

Unloading a VI
When you close a VI front panel, LabVIEW checks to see if there are
any references to that VI in memory. If so, then the VI code and data
space remain in memory. When all references to a VI are removed from
memory, and its front panel is not open, that VI is unloaded from
memory.

When a VI is unloaded from memory, LabVIEW calls the
CINDispose routine, giving you a chance to dispose of anything you
allocated earlier. CINDispose is called for each CINInit call. For
instance, if you used XXNewHandle in your CINInit routine, you
should use XXDisposeHandle in your CINDispose routine.
LabVIEW calls CINDispose for a code resource once for each
individual CIN data space.

As the last reference to the code resource is removed from memory,
LabVIEW calls the CINUnload routine for that code resource once,
giving you the chance to dispose of anything that had been allocated in
CINLoad. As with CINDispose/CINInit, a CINUnload is
called for each CINLoad. For example, if you loaded some resources
from a file in CINLoad, you can free the memory that those resources
are using in CINUnload. After LabVIEW calls CINUnload, the
code resource itself is unloaded from memory.

Loading a New Resource into the CIN
If you load a new code resource into a CIN, the old code resource is
first given a chance to dispose of anything it needs to dispose. First,
LabVIEW calls CINDispose for each CIN data space and each
reference to the code resource, followed by the CINUnload for the
old resource. The new code resource is then given a chance to perform
any initialization that it needs to perform: LabVIEW calls the
CINLoad for the new code resource, followed by the CINInit
routine, called once for each data space and each reference to the code
resource.

Compiling a VI
When you compile a VI, LabVIEW recreates the VI data space,
resetting all uninitialized shift registers, for instance, to their default
values. In the same way, your CIN is given a chance to dispose or
LabVIEW Code Interface Reference Manual 3-4 © National Instruments Corporation

Chapter 3 CIN Advanced Topics
initialize any storage that it manages. Before disposing of the current
data space, LabVIEW calls the CINDispose routine for each
reference to the code resource within the VI(s) that are being compiled
to give the code resource a chance to dispose of any old results it is
managing. LabVIEW then compiles the VI and creates a new data
space for the VI(s) being compiled (multiple data spaces for any VI that
is reentrant). The CINInit routine is then called for each reference to
the code resource within the VI(s) that were compiled to give the code
resource a chance to create or initialize any data that it wants to
manage.

Running a VI
When you press the Run button of a VI, that VI begins to execute.
When LabVIEW encounters a code interface node, it calls the CINRun
routine for that node.

Saving a VI
When you save a VI, LabVIEW calls the CINSave routine for that VI,
giving you the chance to save any resources (for example, something
you loaded in CINLoad). Notice that when you save a VI, LabVIEW
creates a new version of the file, even if you are saving the VI with the
same name. If the save is successful, LabVIEW deletes the old file and
renames the new file with the original name. Therefore, anything you
expect to be able to load in CINLoad needs to be saved in CINSave.

Aborting a VI
When you abort a VI, LabVIEW calls the CINAbort routine for every
reference to a code resource contained in the VI that is being aborted.
The CINAbort routine of all actively running subVIs is also called. If
a CIN is in a reentrant VI, it is called for each CIN data space as well.
CINs in VIs that are not currently executing are not notified by
LabVIEW of the abort event.

CINs are synchronous. When a CIN begins execution, it takes over
control of the program until the CIN completes. LabVIEW is not
notified if the user clicks on the abort button and therefore cannot abort
the CIN. No other LabVIEW tasks can execute while a CIN executes.
© National Instruments Corporation 3-5 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics
Multiple References to the Same CIN
If you have loaded the same code resource into multiple CINs, or you
have duplicated a given code interface node, LabVIEW gives each
reference to the code resource a chance to perform initialization or
deallocation. No matter how many references you have in memory to a
given code resource, the LabVIEW calls the CINLoad routine only
once when the resource is first loaded into memory (though it is also
called if you load a new version of the resource, as described in the
previous section). When you unload the VI, LabVIEW calls
CINUnload once.

After LabVIEW calls CINLoad, it calls CINInit once for each
reference to the CIN, because its CIN data space may need
initialization. Thus, if you have two nodes in the same VI, where both
reference the same code, the LabVIEW calls the CINLoad routine
once, and the CINInit twice. If you later load another VI that
references the same code resource, then LabVIEW calls CINInit
again for the new version. LabVIEW has already called CINLoad
once, and does not call it again for this new reference.
LabVIEW Code Interface Reference Manual 3-6 © National Instruments Corporation

Chapter 3 CIN Advanced Topics
LabVIEW calls CINDispose and CINAbort for each individual
CIN data space. LabVIEW calls CINSave only once, regardless of the
number of references to a given code resource within the VI you are
saving.

Reentrancy
When you make a VI reentrant, LabVIEW creates a separate data space
for each usage of that VI. If you have a CIN data space in a reentrant
VI and you call that VI in seven places, LabVIEW allocates memory to
store seven CIN data spaces for that VI, each of which contains a
unique storage location for the CIN data space for that calling instance.

Figure 3-2. Three CINs Referencing the Same Code Resource

VI data space

4-byte CIN
Data Space

4-byte CIN
Data Space

4-byte CIN
Data Space

(data space globals)

VI

global storage

(code globals)

code resource
© National Instruments Corporation 3-7 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics
As with multiple instances of the same node, LabVIEW calls the
CINInit, CINDispose, and CINAbort routines for each
individual CIN data space.

In the case where you have a reentrant VI that contains multiple copies
of the same code resource, LabVIEW calls the CINInit,
CINDispose, and CINAbort routines once for each use of the
reentrant VI, multiplied by the number of references to the code
resource within that VI.

Code Globals and CIN Data Space Globals
When you declare global or static local data within a CIN code
resource, LabVIEW allocates storage for that data. LabVIEW
maintains your globals across calls to various routines.

When you allocate a global in a CIN code resource, LabVIEW creates
storage for only one instance of it, regardless of whether the CIN’s VI
is reentrant or whether you have multiple references to the same code
resource in memory.

Figure 3-3. Three VIs Referencing a Reentrant VI Containing One CIN

global storage

(code globals)

code resource

My VI
data space 1

(data space globals)

4-byte CIN
data space

My VI
data space 3

(data space globals)

4-byte CIN
data space

My VI
data space 2

(data space globals)

4-byte CIN
data space

caller 1 caller 2 caller 3

My VI
LabVIEW Code Interface Reference Manual 3-8 © National Instruments Corporation

Chapter 3 CIN Advanced Topics
In some cases, you may want globals for each reference to the code
resource multiplied by the number of usages of the VI (if the VI is
reentrant). For each instance of one of these globals, LabVIEW
allocates the CIN data space for the use of the code interface node.
Within the CINInit, CINDispose, CINAbort, and CINRun
routines you can call the GetDSStorage routine to retrieve the value
of the CIN data space for the current instance. You can also call
SetDSStorage to set the value of the CIN data space for this
instance.

You can use this storage location to store any 4-byte quantity that you
want to have for each instance of one of these globals. If you need more
than four bytes of global data, you can store a handle or pointer to a
structure containing your globals.

The following two lines of code are examples of the exact syntax of
these two routines, defined in extcode.h.

int32 GetDSStorage(void);

This routine returns the value of the 4-byte quantity in the CIN data
space that LabVIEW allocates for each CIN code resource, or for each
use of the surrounding VI (if the VI is reentrant). You should call this
routine only from CINInit, CINDispose, CINAbort, or
CINRun.

int32 SetDSStorage(int32 newVal);

This routine sets the value of the 4-byte quantity in the CIN data space
that LabVIEW allocates for each CIN use of that code resource, or the
uses of the surrounding VI, (if the VI is reentrant). It returns the old
value of the 4-byte quantity in that CIN data space. You should call this
routine only from CINInit, CINDispose, CINAbort, or
CINRun.

Examples
The following two examples illustrate the differences between code
globals and CIN data space globals. In both examples, the CIN takes a
© National Instruments Corporation 3-9 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics
number and returns the average of that number and the previous
numbers passed to it.

When you design your code, decide whether it is appropriate to use
code globals or data space globals. If you use code globals, calling the
same code resource from multiple nodes or different reentrant VIs will
affect the same set of globals. In the code globals averaging example,
the result will indicate the average of all values passed to the CIN.

If you use CIN data space globals, each CIN that calls the same code
resource and each VI, if the VI is reentrant, can have its own set of
globals. In the CIN data space averaging example, the results would
indicate the average of values passed to a specific node for a specific
data space.

If you have only one CIN referencing the code resource, and the VI that
contains that CIN is not reentrant, it does not matter which method you
choose.

Using Code Globals
The following code implements averaging using code globals. Notice
that the variables are initialized in CINLoad. If the variables are
dynamically created (that is, if they are pointers or handles), you can
allocate the memory for the pointer or handle in CINLoad, and
deallocate it in CINUnload. You can do this because CINLoad and
CINUnload are called only once, regardless of the number of
references to the code resources and the number of data spaces. Notice
that the UseDefaultCINLoad macro is not used, because this .c
file has a CINLoad function.

/*

 * CIN source file

 */

#include "extcode.h"
LabVIEW Code Interface Reference Manual 3-10 © National Instruments Corporation

Chapter 3 CIN Advanced Topics
float64 gTotal;

int32 gNumElements;

/* stubs for advanced CIN functions */

UseDefaultCINInit

UseDefaultCINDispose

UseDefaultCINAbort

UseDefaultCINUnload

UseDefaultCINSave

CIN MgErr CINRun(float64 *new_num, float64 *avg);

CIN MgErr CINRun(float64 *new_num, float64 *avg)

{

gTotal += *new_num;

gNumElements++;

*avg = gTotal / gNumElements;

return noErr;

}

CIN MgErr CINLoad(RsrcFile rf)

{

gTotal=0;

gNumElements=0;

return noErr;

}

Using CIN Data Space Globals
The following is an alternative implementation of averaging using CIN
data space globals. A handle for the global data is allocated in
CINInit, and stored in the CIN data space storage using
SetDSStorage. When LabVIEW calls the CINInit,
CINDispose, CINAbort, or CINRun routines, it ensures that
GetDSStorage and SetDSStorage will return the 4 byte CIN
data space value for that node or CIN data space.

When you want to access that data, use GetDSStorage to retrieve
the handle and then dereference the appropriate fields (see the code for
© National Instruments Corporation 3-11 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics
CINRun in the following example). Finally, in your CINDispose
routine you need to dispose of the handle.

/*

 * CIN source file

 */

#include "extcode.h"

/* stubs for advanced CIN functions */

UseDefaultCINAbort

UseDefaultCINLoad

UseDefaultCINUnload

UseDefaultCINSave

typedef struct {

float64 total;

int32 numElements;

} dsGlobalStruct;

CIN MgErr CINInit() {

dsGlobalStruct **dsGlobals;

MgErr err = noErr;

if (!(dsGlobals = (dsGlobalStruct **)

DSNewHandle(sizeof(dsGlobalStruct))))

{

/* if 0, ran out of memory */

err = mFullErr;

goto out;

}

(*dsGlobals)->numElements=0;

(*dsGlobals)->total=0;

SetDSStorage((int32) dsGlobals);

out:

return noErr;

}

CIN MgErr CINDispose()
LabVIEW Code Interface Reference Manual 3-12 © National Instruments Corporation

Chapter 3 CIN Advanced Topics
{

dsGlobalStruct **dsGlobals;

dsGlobals=(dsGlobalStruct **) GetDSStorage();

if (dsGlobals)

DSDisposeHandle(dsGlobals);

return noErr;

}

CIN MgErr CINRun(float64 *new_num, float64 *avg);

CIN MgErr CINRun(float64 *new_num, float64 *avg)

{

dsGlobalStruct **dsGlobals;

dsGlobals=(dsGlobalStruct **) GetDSStorage();

if (dsGlobals) {

(*dsGlobals)->total += *new_num;

(*dsGlobals)->numElements++;

*avg = (*dsGlobals)->total /

 (*dsGlobals)->numElements;

}

return noErr;

}

Calling a Windows 95 or Windows NT Dynamic Link
Library

No special techniques are necessary to call a Windows 95 or Windows
NT DLL. Call DLLs the way you ordinarily would in a Windows 95 or
Windows NT program.

Calling a Windows 3.1 Dynamic Link Library
Although dynamic link libraries (DLLs) can be called from a CIN, the
method for doing so is somewhat cumbersome. The Call Library
Function is a more convenient way to call a DLL, and the Watcom
© National Instruments Corporation 3-13 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics
compiler is not required. For more information on the Call Library
Function, see Chapter 11, Advanced Functions, in the LabVIEW
Function Reference Manual, and Chapter 24, Calling Code from Other
Languages, in your LabVIEW User Manual.

Before attempting to link a dynamic link library with a CIN, you
should first write a C program that calls it. The reasons for doing this
are to ensure that you are calling the DLL properly, and that the DLL
behaves as expected. You can test the C program using the debugging
tools supplied by your compiler.

After you are sure that the DLL works and that you are calling it
correctly, write the 32-bit CIN that LabVIEW can call. The main
purpose of this CIN is to act as a go-between, translating LabVIEW 32-
bit data to 16-bit data. This CIN will take 32-bit pointers from
LabVIEW and then call the DLL with the appropriate arguments.

See the Calling 16-bit DLLs section of Chapter 37, Programming
Overview, in the Windows 32-bit Programming Guide section of the
Watcom C/386 User’s Guide for a detailed discussion of how to call a
16-bit DLL.

No special techniques are necessary to call a Windows 95 or Windows
NT DLL.

Calling a 16-Bit DLL
The following steps are a brief summary of how to call a 16-bit DLL
from a CIN. If you are not familiar with the functions used in this
example, you should refer to Microsoft Windows Programmer’s
Reference or the Watcom C/386 User’s Guide.

1. Load the DLL
Load the DLL by calling the function LoadLibrary() with the
name of the DLL. For example, the following code returns a handle to
a specified library.

HANDLE hDLL;

hDLL = LoadLibrary("library name");

This is a standard Windows function, and is documented in the
Microsoft Windows Programmer’s Reference.
LabVIEW Code Interface Reference Manual 3-14 © National Instruments Corporation

Chapter 3 CIN Advanced Topics
Note: If you do not specify a full path, Windows searches the Windows directory,
the Windows system directory, the LabVIEW directory, and the directories
listed in the Path variable.

2. Get the address of the desired function
Call GetProcAddress() with the name of the function that you
want to call. For example, the following code returns the address of a
specified function. This address is a 16-bit pointer, and cannot be
called using standard DLL call methods. Instead you have to use the
Watcom C method, shown as follows.

FARPROC lpfn;

lpfn = GetProcAddress(hDLL, "function name");

As with LoadLibrary, this function is a standard Windows
function, and is documented in the Microsoft Windows Programmer’s
Reference.

3. Describe the function
Use GetIndirectFunctionHandle() to describe the function
and the types of each parameter that it accepts. This function uses the
following format.

HINDIR GetIndirectFunctionHandle(FARPROC proc

[, long param1type,long param2type,

...,] long terminator);

proc is the address of the function that was returned in step 2.

The paramXtype values should be one of the following five constants
that describe the parameters for the call to the function.

INDIR_DWORD The parameter will be a long word
value (a 32-bit integer).

INDIR_WORD The parameter will be a word value (a
16-bit integer).

INDIR_CHAR The parameter will be a byte value (an
8-bit integer).
© National Instruments Corporation 3-15 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics
INDIR_PTR The parameter is a pointer. Watcom
will automatically convert the 32-bit
address to a 16-bit far pointer before
calling the code. Notice that this 16-bit
pointer is good only for the duration of
the call; after the function returns, the
16-bit reference to the data is no longer
valid.

INDIR_CDECL Make the call using Microsoft C
calling conventions. This keyword can
be present anywhere in the parameter
list.

For terminator, pass a value of INDIR_ENDLIST, which marks the
end of the parameter list.

GetIndirectFunctionHandle() returns a handle that is used
when you want to call the function.

4. Call the function
Use InvokeIndirectFunction() to call the function. Pass it the
handle that was returned in step 3, along with the arguments that you
want to pass to the CIN. This function uses the following format.

long InvokeIndirectFunction(HINDIR proc

[, param1, param2, ...]);

proc is the address of the function returned in step 3. Following that
are the parameters that you want to pass to the DLL.

Example: A CIN that Displays a Dialog Box
You cannot call most Windows functions directly from a CIN. You
can, however, call a DLL, which in turn can call Windows functions.
The following example shows how to call a DLL from a CIN. The DLL
calls the Windows MessageBox function, which displays a window
containing a specified message. This function returns after the user
presses a button in the window.
LabVIEW Code Interface Reference Manual 3-16 © National Instruments Corporation

Chapter 3 CIN Advanced Topics
The DLL
Most Windows compilers can create a DLL. Regardless of the
compiler you use to create a DLL, the way you call it from a CIN will
be roughly the same. Because you must have Watcom C/386 to write a
Windows CIN, the following example is for a Watcom DLL. The
process for creating a DLL using the Watcom compiler is described in
Chapter 38, Windows 32-Bit Dynamic Link Libraries, of the Watcom
C/386 User's Guide.

The following code is for a Watcom C/386 32-bit DLL that calls the
MessageBox function. The _16MessageBox function calls the
Windows MessageBox function; the only difference between these
functions is that the former takes far 16-bit pointers, which are the type
of pointers passed to the DLL. In this 32-bit environment,
MessageBox expects near 32-bit pointers.

Passing pointers to 32-bit DLLs is inherently tricky. In this example, a
32-bit near pointer is converted to a 16-bit far pointer and passed to
MessageBox via _16MessageBox. You cannot dereference a 16-bit
pointer directly in this DL—it must first be converted to a 32-bit pointer.
These pointer issues are not related to LabVIEW, but are unique to the
Windows 3.1 environment. It may be helpful to build a rudimentary 32-bit
Windows application (in place of LabVIEW) that calls the DLL to test the
use of pointers.

The DLL function will accept two parameters. The first is the message
to display in the window. The second is the title to display in the
window. Both parameters are C strings, meaning that they are pointers
to the characters of the string, followed by a terminating null character.
Save the code in a file called MSGBXDLL.C.

/*

 * MSGBXDLL.C

 */

#include <windows.h>

#include <dos.h>

void FAR PASCAL Lib1(LPSTR message,

LPSTR winTitle)

{

_16MessageBox(NULL,

message,

winTitle,

MB_OK | MB_TASKMODAL);
© National Instruments Corporation 3-17 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics
}

int PASCAL WinMain(HANDLE hInstance,

HANDLE x1,

LPSTR lpCmdLine,

int x2)

{

DefineDLLEntry(1,

(void *) Lib1,

DLL_PTR,

DLL_PTR,

DLL_ENDLIST);

 return(1);

}

In addition to the C file, you also need to create the following
MSGBXDLL.LNK file.

system win386

file msgbxdll

option map

option stack=12K

option maxdata=8K

option mindata=4K

Enter the following commands at the DOS prompt to create the DLL.

C>wcc386 msgbxdll /zw

C>wlink @msgbxdll

C>wbind msgbxdll -d -n
LabVIEW Code Interface Reference Manual 3-18 © National Instruments Corporation

Chapter 3 CIN Advanced Topics
The Block Diagram
Following is the LabVIEW block diagram for a VI that calls a CIN that
calls the previously described DLL. It passes two LabVIEW strings to
the CIN, and the CIN returns an error code.

The CIN Code
The following C code is for a CIN that calls the DLL you created
previously. This code assumes that the .h file created by LabVIEW is
named msgbox.h.

This example does not pass a full path to LoadLibrary. You should
move the DLL to the top level of your LabVIEW directory so that it
will be found. See the note in the section 1. Load the DLL, earlier in
this chapter for more information.

/*

 * CIN source file

 */

#include "extcode.h"

#include "hosttype.h"

#include <windows.h>

/* stubs for advanced CIN functions */

UseDefaultCINInit

UseDefaultCINDispose

UseDefaultCINAbort

UseDefaultCINLoad

UseDefaultCINUnload

UseDefaultCINSave
© National Instruments Corporation 3-19 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics
CIN MgErr CINRun(LStrHandle message,

LStrHandle winTitle,

int32 *err)

{

HANDLE hDLL = NULL;

FARPROC addr = NULL;

HINDIR hMessageBox;

int cb;

char *messageCStr = NULL,

*winTitleCStr = NULL;

MgErr cinErr = noErr;

*err=0;

hDLL = LoadLibrary("msgbxdll.dll");

if (hDLL < HINSTANCE_ERROR) {

err = 1;/ LoadLibrary failed */

goto out;

}

addr = GetProcAddress(hDLL, "Win386LibEntry");

if (!addr) {

err = 2;/ GetProcAddress failed */

goto out;

}

hMessageBox = GetIndirectFunctionHandle(

addr,

INDIR_PTR,

INDIR_PTR,

INDIR_WORD,

INDIR_ENDLIST);

if (!hMessageBox) {

err = 3;/ GetIndirectFunctionHandle

 failed */

goto out;

}

if (!(messageCStr =

DSNewPtr(LStrLen(*message)+1))) {

/* mem errs are serious-stop execution */

cinErr=mFullErr;

goto out;
LabVIEW Code Interface Reference Manual 3-20 © National Instruments Corporation

Chapter 3 CIN Advanced Topics
}

if (!(winTitleCStr =

DSNewPtr(LStrLen(*winTitle)+1))) {

/* mem errs are serious-stop execution */

cinErr=mFullErr;

goto out;

}

SPrintf(messageCStr, (CStr) "%P", *message);

SPrintf(winTitleCStr, (CStr) "%P", *winTitle);

cb = (WORD)InvokeIndirectFunction(

hMessageBox,

messageCStr,

winTitleCStr,

0x1);

out:

if (messageCStr)

DSDisposePtr(messageCStr);

if (winTitleCStr)

DSDisposePtr(winTitleCStr);

if (hDLL)

FreeLibrary(hDLL);

return cinErr;

}

The CIN first loads the library, and then gets the address of the DLL
entry point. As described in the Watcom C/386 User’s Guide, a
Watcom DLL has only one entry point, Win386LibEntry. Calling
GetProcAddress for a Watcom DLL requests the address of this
entry point. For a DLL created using a compiler other than the Watcom
C compiler, request the address of the function you want to call.

To prepare for the DLL call after getting the address, the example calls
GetIndirectFunctionHandle. Use this function to specify the
data types for the parameters that you want to pass. The list is
terminated with the INDIR_ENDLIST value. Because there is only
one entry point with a Watcom DLL, pass an additional parameter (the
INDIR_WORD parameter) that is the number of the routine you want
to call in the DLL. With a DLL created using another compiler, you do
© National Instruments Corporation 3-21 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics
not need to pass a function number, because GetProcAddress
returns the address of the desired function.

This example uses InvokeIndirectFunction to call the desired
DLL function, passing the number of the routine that the example calls
as the last parameter. With a DLL made by a compiler other than the
Watcom C compiler, you don’t need to pass the function number,
because GetProcAddress returns the address of the desired
function.

Notice that at each stage of calling the DLL, the code checks for errors
and returns an error code if it fails.

Notice also that LabVIEW strings are different from C strings. C
strings are terminated with a null character. LabVIEW strings are not
null-terminated; instead, they begin with a four byte value that
indicates the length of the string. Because the DLL expects C strings,
this example creates temporary buffers for the C strings using
DSNewPtr, and then uses SPrintf to copy the LabVIEW string into
the temporary buffers. You might consider modifying the DLL to
accept LabVIEW strings instead, because that would require no
temporary copies of the strings.

Compiling the CIN
Following is the LabVIEW makefile for this CIN. It assumes that the
.c file is named msgbox.c, the makefile is named msgbox.lvm,
and the three pathnames for the directives codeDir, cinToolsDir,
and wcDir are set correctly.

name=msgbox

type=CIN

codeDir=c:\labview\examples\cins\dll

cinToolsDir=c:\labview\cintools

wcDir=c:\wc

!include $(cinToolsDir)\generic.mak

The following command line prompt compiles the CIN.

c:> wmake /f msgbox.lvm
LabVIEW Code Interface Reference Manual 3-22 © National Instruments Corporation

Chapter 3 CIN Advanced Topics
Optimization
To optimize the performance of this CIN call LoadLibrary during
the CINLoad routine, and call FreeLibrary during the
CINUnload routine. This keeps the overhead of loading and
unloading the DLL from affecting your run-time performance. The
following code shows the modifications you need to make to CINRun,
CINLoad, and CINUnload to implement this optimization.

HANDLE hDLL = NULL;

CIN MgErr CINLoad(RsrcFile rf)

{

hDLL = LoadLibrary("msgbxdll.dll");

return noErr;

}

CIN MgErr CINRun(LStrHandle message,

LStrHandle winTitle,

int32 *err)

{

FARPROC addr = NULL;

HINDIR hMessageBox;

int cb;

char *messageCStr = NULL,

*winTitleCStr = NULL;

MgErr cinErr = noErr;

*err=0;

if (hDLL < HINSTANCE_ERROR) {

err = 1;/ LoadLibrary failed */

goto out;

}

addr = GetProcAddress(hDLL,"Win386LibEntry");

if (!addr) {

err = 2;/ GetProcAddress failed */

goto out;

}

hMessageBox = GetIndirectFunctionHandle(

addr,

INDIR_PTR,

 INDIR_PTR,
© National Instruments Corporation 3-23 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics
INDIR_WORD,

 INDIR_ENDLIST);

if (!hMessageBox) {

/* GetIndirectFunctionHandle failed */

*err = 3;

goto out;

}

if (!(messageCStr =

DSNewPtr(LStrLen(*message)+1))) {

 /* mem errs are serious-stop execution */

cinErr=mFullErr;

goto out;

}

if (!(winTitleCStr =

DSNewPtr(LStrLen(*winTitle)+1))) {

 /* mem errs are serious-stop execution */

cinErr=mFullErr;

goto out;

}

SPrintf(messageCStr, (CStr) "%P", *message);

SPrintf(winTitleCStr, (CStr) "%P", *winTitle);

cb = (WORD)InvokeIndirectFunction(

hMessageBox,

messageCStr,

winTitleCStr,

0x1);

out:

if (messageCStr)

DSDisposePtr(messageCStr);

if (winTitleCStr)

DSDisposePtr(winTitleCStr);

return cinErr;

}

CIN MgErr CINUnload(void)

{

LabVIEW Code Interface Reference Manual 3-24 © National Instruments Corporation

Chapter 3 CIN Advanced Topics
if (hDLL)

FreeLibrary(hDLL);

return noErr;

}

© National Instruments Corporation 3-25 LabVIEW Code Interface Reference Manual

Chapter 3 CIN Advanced Topics
LabVIEW Code Interface Reference Manual 3-26 © National Instruments Corporation

External Subroutines
© National Instruments Corporation 4-1 LabVIEW Code Interface Refer

Chapter

4

This chapter describes how to create and call shared external
subroutines from other external code modules.

Introduction
An external subroutine (or shared external subroutine) is a function
that you can call from multiple external code modules. By placing
common code in an external subroutine, you can avoid duplicating the
code in each external code module. You can also use external
subroutines to store information that must be accessible to multiple
external code modules.

External subroutines are different from CINs in that LabVIEW
diagrams do not call them directly. Instead, an external subroutine is a
function that CINs and other external subroutines call. You store
external subroutines in separate files, not in VIs.

When you load a VI that contains a CIN, LabVIEW determines
whether the CIN references external subroutines. If it does, LabVIEW
loads the external subroutines into memory and modifies the calling
code so that it can call the subroutine. LabVIEW modifies any
additional subroutines that reference the same external subroutine to
reference the code already in memory. When you remove the last code
that references the external subroutine from memory (when you close
the VI containing the CIN), LabVIEW also unloads the external
subroutine.

Placing code in external subroutines is helpful for several reasons.

• A single subroutine is easier to maintain, because you need update
only a single file to affect all calls on the subroutine.

• A single subroutine can also reduce memory requirements,
because only a single instance of the code is in memory, regardless
of the number of calls to the subroutine.

• An external subroutine can maintain information used by multiple
external code modules. The first time the external subroutine is
ence Manual

Chapter 4 External Subroutines
called, it can store data in a variable that is global to the external
subroutine. Other external code modules can call the same external
subroutine to retrieve the common data.

You store external subroutines as files, so you have to give each one a
unique name. When LabVIEW searches for a subroutine file, it loads
the first file it finds that has the correct name.

Note: External subroutines are not supported on the Power Macintosh. The
Macintosh OS on the Power Macintosh provides a much cleaner
mechanism for sharing code, namely, shared libraries. If you need to
share code among multiple CINs on the Power Macintosh, consult your
development environment documentation to learn how to build a shared
library.

Although external subroutines are supported on Solaris 2 and HP-UX, it
is suggested that you use shared libraries instead.

Shared library mechanisms compatible with LabVIEW are available on
all platforms. Under Microsoft Windows 3.1, Windows 95, and Windows
NT, they are referred to as DLLs (dynamic link libraries). Under UNIX
they are referred to as shared libraries or dynamic libraries.

Creating Shared External Subroutines
Normally, when you use a compiler to create a program, the compiler
includes the code for all subroutines in a single file called the
executable. External subroutines differ from standard subroutines in
that you do not compile the code for the external subroutine with the
code for the calling subroutine. Instead, your makefile, and
consequently the code, indicate that the calling code references an
external subroutine. LabVIEW loads external subroutines based on this
information and links the calling code in memory, so that the calling
code points correctly to the external subroutine.

You need to compile the calling code, even though its subroutines are
not all present. LabVIEW must be able to determine that your code
calls an external subroutine, find the subroutine, and load it into
memory. When the subroutine is loaded, LabVIEW must be able to
modify the memory image of the calling code so that it correctly
references the memory location of the external code. Finally,
LabVIEW may need to create and initialize memory space that the
LabVIEW Code Interface Reference Manual 4-2 © National Instruments Corporation

Chapter 4 External Subroutines
external subroutine uses for global data. The following sections
describe how to make this work.

External Subroutine
LabVIEW calls CINs, but only your code calls external subroutines.
Instead of creating seven routines (CINRun, CINSave, and so on),
you create only one entry point (LVSBMain) for an external
subroutine. When another external code module calls this external
subroutine, the LVSBMain subroutine executes.

LVSBMain is similar to CINRun. You can have an arbitrary number
of parameters, and each parameter can be of arbitrary data type. Also,
because only your code calls the subroutine, you can declare any return
data type, and you do not need to place the word CIN in front of the
function prototype. You will have to ensure that the parameters and
return value are consistent between the calling and called code.

You compile an external subroutine almost the same way you compile
a CIN. Because multiple external code modules can call the same
external subroutine, LabVIEW does not load the code into a specific
VI. Instead, LabVIEW loads the code from the file created by the
makefile when the code is needed.

Macintosh

THINK C Compiler and CodeWarrior 68K Compiler
To make a subroutine using the THINK C Compiler, build the code
resource (the .tmp file) as discussed in the Steps for Creating a CIN
section of Chapter 1, CIN Overview, but leave out the CINLib library
and select the subroutine option when running lvsbutil.app.

MPW Compiler
The only difference between the makefiles of subroutines and of CINs
is that for a subroutine you specify a type of LVSB in your .lvm file
instead of CIN. See the Steps for Creating a CIN section of Chapter 1,
CIN Overview, for a discussion of the makefile contents.

Microsoft Windows 3.1, Windows 95, and
Windows NT
The only difference between the makefiles of subroutines and of CINs
is that for a subroutine you specify a type of LVSB in your .lvm file
© National Instruments Corporation 4-3 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines
instead of CIN. See the Steps for Creating a CIN section of Chapter 1,
CIN Overview, for a discussion of the makefile contents.

Solaris 1.x, Solaris 2.x, and HP-UX

Unbundled Sun C Compiler and HP-UX C/ANSI C Compiler
The lvmkmf command for a CIN that calls an external subroutine is
the same as described in the Steps for Creating a CIN section of
Chapter 1, CIN Overview, except you use the -t option with the type
LVSB to indicate that you are creating a LabVIEW subroutine instead
of a CIN.

For example, if you want to create an external subroutine called find,
you could use the following command:

lvmkmf -t LVSB find

This command creates a makefile that you could use to create the
external subroutine.

Calling Code
You call external subroutines the same way that you call standard C
subroutines. LabVIEW modifies the code at load time to ensure that the
calling code passes control to the subroutine correctly.

When you call the external subroutine, do not use the function name
LVSBMain to call the function. Instead, use the name you gave the
external subroutine. If you created an external subroutine called
fact.lsb, which in turn contained an LVSBMain() subroutine, for
example, you should call the function as though it were named
fact(). The argument list and return type should be the same as the
argument and return type for the LVSBMain() subroutine.

You should also create a prototype for the function. This prototype
should have the keyword extern so that the compiler will compile the
CIN, even though the subroutine is not present.

When you create the makefile for the CIN, you identify the names of
the external subroutines that the CIN calls. The LabVIEW makefile
embeds information in your code that LabVIEW uses to determine that
your code calls external subroutines. When you load external code that
references external subroutines into a VI, LabVIEW searches for the
LabVIEW Code Interface Reference Manual 4-4 © National Instruments Corporation

Chapter 4 External Subroutines
subroutine files. If it finds the subroutines, LabVIEW performs the
appropriate linking. If a file is not found, LabVIEW displays a dialog
box prompting you to find it. If you dismiss the dialog box without
selecting the file, the VI loads into memory with a broken run arrow,
indicating that the VI is not executable.

One way to ensure that LabVIEW can find external subroutines is to
place them in the directories that you defined in the search path section
of the LabVIEW defaults file. See the Configuring LabVIEW section of
Chapter 8, Customizing Your LabVIEW Environment, of your
LabVIEW User Manual for more information on setting path
preferences.

Macintosh

THINK C Compiler
The THINK C project must have an extra file named glue.c that
specifies each external subroutine. Each reference to the external
subroutine should have an entry as follows in the glue.c file:

long gLVSB<external subroutine name> = 'LVSB';
void <external subroutine name>(void);
void <external subroutine name>(void) {

asm {

move.l gLVSB<external subroutine name>, a0
jmp (a0)

}

}

CodeWarrior 68K Compiler
The CodeWarrior project must have an extra file called glue.c, which
specifies each external subroutine. Each reference to the external
subroutine should have an entry as follows in the glue.c file:

long gLVSB<external subroutine name> = 'LVSB';
void <external subroutine name>(void);
asm void <external subroutine name>(void) {

move.l gLVSB<external subroutine name>, a0
jmp (a0)

}

© National Instruments Corporation 4-5 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines
MPW Compiler
The makefile for a calling CIN is the same as described in the Steps for
Creating a CIN section of Chapter 1, CIN Overview, except you use the
optional subrNames directive to identify the subroutines that the CIN
references. Specifically, if your code calls two external subroutines, A
and B, you need to have the following line in the makefile code:

subrNames = A B

Microsoft Windows 3.1, Windows 95, and Windows
NT
The makefile for a calling CIN is the same as described in the Steps for
Creating a CIN section of Chapter 1, CIN Overview, except you use the
optional subrNames directive to identify the subroutines that the CIN
references. Specifically, if your code calls two external subroutines,
A and B, you need to have the following line in the code makefile, prior
to the !include statement.

subrNames = A B

Solaris 1.x, Solaris 2.x, and HP-UX

Unbundled Sun C Compiler and HP-UX C/ANSI C Compiler
The lvmkmf command for a calling CIN is the same as described in
the Steps for Creating a CIN section of Chapter 1, CIN Overview,
except you use the optional -ext option with the name of a file that
lists the names of the subroutines called by the CIN, one name per line.
The makefile that lvmkmf creates uses this file to append linkage
information to the CIN object file.

For example, if your code calls two external subroutines, A and B, you
create a new text file with the name A on the first line and B on the
second. If the list of subroutines is in a file called subrs, and you want
to call the calling CIN lookup, you can use the following command to
create a makefile.

lvmkmf -ext subrs lookup

This command creates a makefile that you can use to create the CIN.
LabVIEW Code Interface Reference Manual 4-6 © National Instruments Corporation

Chapter 4 External Subroutines
Simple Example
The following example illustrates the process of building an external
subroutine that sums the elements of an array. This external subroutine
can be used by a CIN that computes the mean and also by a CIN that
computes the definite integral.

External Subroutine Example
As described in the External Subroutine section of this chapter, you
must write a function called LVSBMain(). When you call the external
subroutine from your CIN or another external subroutine, LabVIEW
passes control to the LVSBMain() function. When you call the
external subroutine, the arguments to it and to its return type should be
the same as in the definition of LVSBMain().

The following is the C code for this external subroutine. Name it
sum.c.

/*

 * sum.c

 */

#include "extcode.h"

float64 LVSBMain(float64 *x, int32 n);

float64 LVSBMain(float64 *x, int32 n)

{

int32 i;

float64 sum;

sum = 0.0;

for (i=0; i<n; i++)

sum += *x++;

return sum;

}

© National Instruments Corporation 4-7 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines
Compiling the External Subroutine

Macintosh

THINK C Compiler and CodeWarrior 68K Compiler
To make a subroutine using the THINK C Compiler, create a project
named sum and add sum.c and LVSBLib to the project. Do not
include the CINLib file in your project. Set the options in the
Options... and Set Project Type dialog boxes as described in the Steps
for Creating a CIN section of Chapter 1, CIN Overview. After you
create sum.tmp, run lvsbutil.app and select the Subroutine
option.

MPW Compiler
As described in the External Subroutine section of this chapter, you
compile an external subroutine the same way you compile a CIN. The
first step is to create a makefile specification. Following are the
contents of the makefile specification for this example. Notice that all
Dir commands must end with a colon (:). Name the file sum.lvm.

name = name sum

type = type LVSB

codeDir = codeDir: Complete pathname to the folder
containing the .c file.

cinToolsDir = cinToolsDir:
Complete or partial pathname to the
LabVIEW cintools folder.

inclDir = inclDir: (optional) Complete or partial
pathname to a folder containing any
additional .h files.

Create the subroutine using the following command.

Directory <full pathname to CIN directory>

cinmake sum
LabVIEW Code Interface Reference Manual 4-8 © National Instruments Corporation

Chapter 4 External Subroutines
Microsoft Windows 3.1

Watcom C Compiler
As described in the External Subroutine section of this chapter, you
compile an external subroutine the same way you compile a CIN. The
first step is to create a makefile specification. Following are the
contents of the makefile specification for this example. Notice that all
Dir commands must end without a backslash(\). Name the file
sum.lvm.

name = name sum

type = type LVSB

codeDir = codeDir Complete pathname to the directory
containing the .c file.

cinToolsDir = cinToolsDir
Complete or partial pathname to the
LabVIEW cintools directory.

inclDir = inclDir (optional) Complete or partial
pathname to a directory containing any
additional .h files.

wcDir = wcDir Complete pathname to the directory
containing Watcom.

!include $(cinToolsDir)\generic.mak

Create the subroutine using the following command.

wmake /f sum.lvm

Microsoft Windows 95 and Windows NT
As described in the External Subroutine section of this chapter, you
compile an external subroutine the same way you compile a CIN. The
first step is to create a makefile specification. Following are the
contents of the makefile specification for this example. Name the file
sum.lvm.

name = name sum

type = type LVSB

!include $(CINTOOLSDIR)\ntlvsb.mak
© National Instruments Corporation 4-9 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines
Create the subroutine using the following command.

nmake /f sum.lvm

Solaris 1.x, Solaris 2.x, and HP-UX

Unbundled Sun C Compiler and HP-UX C/ANSI C Compiler
As described in the External Subroutine section of this chapter, you
compile an external subroutine the same way you compile a CIN. The
first step is to create the makefile for the subroutine using the shell
script lvmkmf. You can then use the standard make command to make
the subroutine code. For this example, enter the following command.

lvmkmf -t LVSB sum

This creates a file called Makefile. After executing lvmkmf, enter
make, which uses the makefile to create a file called sum.lsb. CINs
and other external subroutines can call this sum.lsb file.

Calling Code
The following example shows how to call an external subroutine. In
this example, a CIN uses the external subroutine to calculate the mean
of an array.

The diagram for the VI is shown in the following illustration. To avoid
confusion, create the calling source code and makefiles in a directory
separate from the external subroutine. Save the VI as calcmean.vi.

Save the .c file for the CIN as calcmean.c. The following is a
listing of calcmean.c, with its CINRun routine filled in and the
prototype for the sum external routine added.

/*

 * CIN source file

 */

#include "extcode.h"
LabVIEW Code Interface Reference Manual 4-10 © National Instruments Corporation

Chapter 4 External Subroutines
/* stubs for advanced CIN functions */

UseDefaultCINInit

UseDefaultCINDispose

UseDefaultCINAbort

UseDefaultCINLoad

UseDefaultCINUnload

UseDefaultCINSave

/*

 * typedefs

 */

typedef struct {

int32 dimSize;

float64 arg1[1];

} TD1;

typedef TD1 **TD1Hdl;

extern float64 sum(float64 *x, int32 n);

CIN MgErr CINRun(TD1Hdl xArray, float64 *mean);

CIN MgErr CINRun(TD1Hdl xArray, float64 *mean)

{

float64 *x, total;

int32 n;

x = (*xArray)->arg1;

n = (*xArray)->dimSize;

total = sum(x, n);

*mean = total/(float64)n;

return noErr;

}

CINRun calculates the mean using the external subroutine sum to
calculate the sum of the array. The external subroutine is declared with
the keyword extern so that the code compiles even though the
subroutine is not present.
© National Instruments Corporation 4-11 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines
Compiling the Calling Code

Macintosh

THINK C Compiler
The THINK C project must have an extra file called glue.c which
specifies each external subroutine. The reference to the external
subroutine sum should have an entry as follows in the glue.c file:

long gLVSBsum = 'LVSB';

void sum(void);

void sum(void) {

asm {

move.l gLVSBsum, a0

jmp (a0)

}

}

This is the entire text of the glue.c file.

CodeWarrior 68K Compiler
The CodeWarrior project must have an extra file called glue.c,
which specifies each external subroutine. Each reference to the
external subroutine sum should have an entry as follows in the
glue.c file:

long gLVSBsum = 'LVSB';

void sum(void);

asm void sum(void){

move.l gLVSBsum, a0

jmp (a0)

}

This is the entire text of the glue.c file.

MPW Compiler
As described in the Calling Code section of this chapter, when you
compile a CIN that references an external subroutine, you use the same
makefile as described in the Steps for Creating a CIN section of the
Chapter 1, CIN Overview, with the addition of a directive that identifies
the subroutines that this CIN uses. Following are the contents of the
LabVIEW Code Interface Reference Manual 4-12 © National Instruments Corporation

Chapter 4 External Subroutines
makefile specification for this example. Notice that the Dir command
must end in a colon (:). Name the makefile calcmean.lvm.

name = name calcmean

type = type CIN

codeDir = codeDir: Complete pathname to the folder
containing the .c file.

cinToolsDir = cinToolsDir:
Complete or partial pathname to the
LabVIEW cintools folder.

inclDir = inclDir: (optional) Complete or partial
pathname to a folder containing any
additional .h files.

subrNames = subrNames sum

Create the CIN using the following command.

Directory <full pathname to CIN directory>

cinmake sum

Microsoft Windows 3.1

Watcom C Compiler
As described in the Calling Code section of this chapter, when you
compile a CIN that references an external subroutine, you use the same
makefile as described in the Steps for Creating a CIN section of the
Chapter 1, CIN Overview, with the addition of a directive that identifies
the subroutines that this CIN uses. Following are the contents of the
makefile specification for this example. Notice that the Dir command
must end without a backslash (\). Name the makefile
calcmean.lvm.

name = name calcmean

type = type CIN

codeDir = codeDir Complete pathname to the directory
containing the .c file.
© National Instruments Corporation 4-13 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines
cinToolsDir = cinToolsDir
Complete or partial pathname to the
LabVIEW cintools directory.

inclDir = inclDir (optional) Complete or partial
pathname to a directory containing any
additional .h files.

wcDir = wcDir Complete pathname to the directory
containing the Watcom C compiler.

subrNames = subrNames sum

!include $(cinToolsDir)\generic.mak

Create the CIN using the following command.

wmake /f calcmean.lvm

Microsoft Windows 95 and Windows NT
As described in the Calling Code section of this chapter, when you
compile a CIN that references an external subroutine, you use the same
makefile as described in the Steps for Creating a CIN section of the
Chapter 1, CIN Overview, with the addition of a directive that identifies
the subroutines that this CIN uses. Following are the contents of the
makefile specification for this example. Name the makefile
calcmean.lvm.

name = name calcmean

type = type CIN

subrNames = subrNames sum

!include $(CINTOOLSDIR)\ntlvsb.mak

Create the CIN using the following command.

nmake /f calcmean.lvm

Solaris 1.x, Solaris 2.x, and HP-UX

Unbundled Sun C Compiler and HP-UX C/ANSI C Compiler
As described in the Calling Code section of this chapter, when you
compile a CIN that references an external subroutine, you use the
LabVIEW Code Interface Reference Manual 4-14 © National Instruments Corporation

Chapter 4 External Subroutines
lvmkmf script with an addition directive that identifies a file with the
names of all subroutines that the CIN calls.

For this example, create a text file with the name meansubs. It should
contain a single line with the word sum.

You then create the makefile for this CIN using the following
command.

lvmkmf -ext meansubs calcmean

This creates a file called Makefile. After executing lvmkmf, enter
make, which uses the makefile to create a file called
calcmean.lsb. You can load the calcmean.lsb file into the
CIN.
© National Instruments Corporation 4-15 LabVIEW Code Interface Reference Manual

Chapter 4 External Subroutines
LabVIEW Code Interface Reference Manual 4-16 © National Instruments Corporation

Manager Overview
© National Instruments Corporation 5-1 LabVIEW Code Interface Refer

Chapter

5

This chapter gives an overview of the function libraries, called
managers, which you can use in external code modules. These include
the memory manager, the file manager, and the support manager. The
chapter also introduces many of the basic constants, data types, and
globals contained in the LabVIEW libraries.

Note: For descriptions of specific manager functions, see the Function and VI
Reference topic in LabVIEW’s Online Reference, or the Code Interface
Node Reference online manual.

Introduction
External code modules have a large set of functions you can use to
perform simple and complex operations. These functions, organized
into libraries called managers, range from low-level byte manipulation
to routines for sorting data and managing memory. All manager
routines described in this chapter are platform-independent. If you use
these routines, you can create external code modules that will work on
all platforms that LabVIEW supports.

A fundamental component of platform independence are data types that
do not depend on the peculiarities of various compilers. The C
language, for example, does not define the size of an integer. Without
an explicit definition of the size of each data type, it is almost
impossible to create code that works identically across multiple
compilers.

LabVIEW managers use data types that explicitly indicate their size.
For example, if a routine requires a 4-byte integer as a parameter, you
define the parameter as an int32. The managers define data types in
terms of the fundamental data types for each compiler. Thus, on one
compiler, the managers might define an int32 as an int, while on
another compiler, the managers might define an int32 as a long
int. When writing external code modules, use the manager data types
instead of the host computer data types, because your code will be more
portable and have fewer errors.
ence Manual

Chapter 5 Manager Overview
Most applications need routines for allocating and deallocating
memory on request. You can use the memory manager to dynamically
allocate, manipulate, and release memory. The LabVIEW memory
manager supports dynamic allocation of both non-relocatable and
relocatable blocks, using pointers and handles. For more information,
see the Function and VI Reference topic in LabVIEW’s Online
Reference, or the Code Interface Node Reference online manual.

Applications that manipulate files can use the functions in the file
manager. This set of routines supports basic file operations such as
creating, opening, and closing files, writing data to files, and reading
data from files. In addition, file manager routines allow you to create
directories, determine characteristics of files and directories, and copy
files. File manager routines use a LabVIEW data type for file
pathnames (Paths) that provides a platform-independent way of
specifying a file or directory path. You can translate a Path to and
from a host platform's conventional format for describing a file
pathname. See the Online Reference for more information.

The support manager contains a collection of generally useful
functions, such as functions for bit or byte manipulation of data, string
manipulation, mathematical operations, sorting, searching, and
determining the current time and date. See the Online Reference for
more information.

Basic Data Types

Scalar Data Types
Note: The names of several types used by the manager routines have changed for

version 4.0. These changes are strictly textual—that is, the actual types
have not changed. The changes are: boolean was changed to Bool32,
Ptr was changed to UPtr, and Handle was changed to UHandle.

Booleans
External code modules work with two kinds of Booleans—those that
exist in LabVIEW block diagrams and those that pass to and from
manager routines. The manager routines use a conventional form of
Boolean, where 0 is FALSE and 1 is TRUE. This form of Boolean is
called a Bool32, and it is stored as a 32-bit value.
LabVIEW Code Interface Reference Manual 5-2 © National Instruments Corporation

Chapter 5 Manager Overview
LabVIEW block diagrams store Boolean scalars as 16-bit values. The
high-bit is set if the Boolean is TRUE, and clear if the Boolean is
FALSE. This form of Boolean is called an LVBoolean.

The two forms of Booleans are summarized in the following table.

Numerics
The managers support 8-, 16-, and 32-bit signed and unsigned integers.
For floating-point numbers, LabVIEW supports the single (32-bit),
double (64-bit), and extended floating-point (at least 80-bit) data types.
LabVIEW supports complex numbers that contain two floating-point
numbers, with different complex numeric types for each of the
floating-point data types. The following lists show the basic LabVIEW
data types for numbers.

• Signed Integers

– int8 8-bit integer

– int16 16-bit integer

– int32 32-bit integer

• Unsigned Integers

– uInt8 8-bit unsigned integer

– uInt16 16-bit unsigned integer

– uInt32 32-bit unsigned integer

• Floating-Point Numbers

– float32 32-bit floating-point number

– float64 64-bit floating-point number

– floatExt extended-precision floating-point number

In Windows, extended-precision numbers are stored as an 80-bit
structure with two int32 components, mhi and mlo, and an int16
component, e. On the Sun, extended-precision numbers are stored as
128-bit floating-point numbers. On the 68K Macintosh,
extended-precision numbers are stored in the 96-bit MC68881 format.

Name Description

Bool32 32-bit integer, 1 if TRUE, 0 if FALSE

LVBoolean 16-bit integer, high-bit set if TRUE, clear if FALSE
© National Instruments Corporation 5-3 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview
On the Power Macintosh, extended-precision numbers are stored in the
128-bit double-double format.

Complex Numbers
The complex data types are structures with two floating-point
components, re and im. As with floating-point numbers, complex
numbers can have 32-bit, 64-bit, and extended-precision components.
The following segments of code give the type definitions for each of
these complex data types.

typedef struct {

float32 re, im;

} cmplx64;

typedef struct {

float64 re, im;

} cmplx128;

typedef struct {

floatExt re, im;

} cmplxExt;

char Data Type
The char data type is defined by C to be a signed byte value.
LabVIEW defines an unsigned char data type, with the following type
definition.

typedef uInt8 uChar;

Dynamic Data Types
LabVIEW defines a number of data types that you must allocate and
deallocate dynamically. Arrays, strings, and paths have data types that
you must allocate using memory manager and file manager routines.

Arrays
LabVIEW supports arrays of any of the basic data types described in
the Scalar Data Types section of this chapter. You can construct more
complicated data types using clusters, which can in turn contain
scalars, arrays, and other clusters.

The first four bytes of a LabVIEW array indicate the number of
elements in the array. The elements of the array follow the length field.
Chapter 2, CIN Parameter Passing, gives examples of how to
manipulate arrays.
LabVIEW Code Interface Reference Manual 5-4 © National Instruments Corporation

Chapter 5 Manager Overview
Strings
LabVIEW supports C-style strings and Pascal-style strings, a special
string data type you use for string parameters to external code modules
called LStr, and lists of strings. The support manager contains
routines for manipulating strings and converting them among the
different types of strings.

C-Style Strings (CStr)
A C string (CStr) is a series of zero or more unsigned characters,
terminated by a zero. C strings have no effective length limit. Most
manager routines use C strings, unless you specify otherwise. The
following code segment is the type definition for a C-style string.

typedef uChar *CStr;

Pascal-Style Strings (PStr)
A Pascal string (PStr) is a series of unsigned characters. The value of
the first character indicates the length of the string. This gives a range
of 0 to 255 characters. The following code segment is the type
definition for a Pascal-style string.

typedef uChar Str255[256], Str31[32],

*StringPtr,

**StringHandle;

typedef uChar *PStr;

LabVIEW Strings (LStr)
The first four bytes of a LabVIEW string (LStr) indicate the length of
the string, and the specified number of characters follow. This is the
string data type used by LabVIEW block diagrams. The following code
segment is the type definition for an LStr string.

typedef struct {

int32 cnt;

/* number of bytes that follow */

uChar str[1];

/* cnt bytes */

} LStr, *LStrPtr, **LStrHandle;
© National Instruments Corporation 5-5 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview
Concatenated Pascal String (CPStr)
Many algorithms require manipulation of lists of strings. Arrays of
strings are usually the most convenient representation for lists. This
representation can place a burden on the memory manager, however,
because of the large number of dynamic objects that must be managed.
To make working with lists more efficient, LabVIEW supports the
concatenated Pascal string (CPStr) data type that is a list of
Pascal-style strings concatenated into a single block of memory. You
can use support manager routines to create and manipulate lists using
this data structure.

This data type is defined as follows.

typedef struct {

int32 cnt;

/* number of pascal strings that follow */

uChar str[1];

/* cnt concatenated pascal strings */

} CPStr, *CPStrPtr, **CPStrHandle;

Paths (Path)
A path (short for pathname) specifies the location of a file or directory
in a computer’s file system. There is a separate LabVIEW data type for
a path (represented as Path), which the file manager defines in a
platform-independent manner. The actual data type for a path is private
to the file manager and subject to change. You create and manipulate
Paths using file manager routines.

Memory-Related Types
LabVIEW uses pointers and handles to reference dynamically
allocated memory. These data types are described in detail in the
Online Reference and have the following type definitions.

typedef uChar *UPtr;

typedef uChar **UHandle;

Constants
The managers define the following constant for use with external code
modules.

NULL 0(uInt32)
LabVIEW Code Interface Reference Manual 5-6 © National Instruments Corporation

Chapter 5 Manager Overview
The following constants define the possible values of the Bool32 data
type.

FALSE 0 (int32)

TRUE 1 (int32)

The following constants define the possible values of the LVBoolean
data type.

LVFALSE 0 (uInt16)

LVTRUE 0x8000 (uInt16)

Memory Manager
This section describes the memory manager, a set of
platform-independent routines for allocating, manipulating, and
deallocating memory from external code modules.

Read this section if you need to perform dynamic memory allocation
or manipulation from external code modules. If your external code
operates on data types other than scalars, you need to understand how
LabVIEW manages memory and know the utilities that manipulate
data.

Note: For descriptions of specific memory manager functions, see the Function
and VI Reference topic in LabVIEW’s Online Reference, or the Code
Interface Node Reference online manual.

Memory Allocation
Applications use two types of memory allocation: static and dynamic.

Static Memory Allocation
With static allocation, the compiler determines memory requirements
when you create a program. When you launch the program, LabVIEW
creates memory for the known global memory requirements of the
application. This memory remains allocated while the program runs.
This form of memory management is very simple to work with because
the compiler handles all the details.

Static memory allocation cannot address the memory management
requirements of most real-world applications, however, because you
cannot determine most memory requirements until run-time. Also,
© National Instruments Corporation 5-7 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview
statically declared memory may result in larger memory requirements,
because the memory is allocated for the life of the program.

Dynamic Memory Allocation: Pointers and Handles
With dynamic memory allocation, you reserve memory when you need
it, and free memory when you are no longer using it. Dynamic
allocation requires more work on your part than static memory
allocation, because you have to determine memory requirements and
allocate and deallocate memory as necessary.

The LabVIEW memory manager supports two kinds of dynamic
memory allocation. The more conventional method uses pointers to
allocate memory. With pointers, you request a block of memory of a
given size, and the routine returns the address of the block to your CIN.
When you no longer need the block of memory, you call a routine to
free the block. You can use the block of memory to store data, and you
reference that data using the address that the manager routine returned
when you created the pointer. You can make copies of the pointer and
use them in multiple places in your program to refer to the same data.

Pointers in the LabVIEW memory manager are nonrelocatable, which
means that the manager never moves the memory block to which a
pointer refers while that memory is allocated for a pointer. This avoids
problems that occur when you need to change the amount of memory
allocated to a pointer because other references would be out of date. If
you need more memory, there might not be sufficient memory to
expand the pointer's memory space without moving the memory block
to a new location. This would cause problems if an application had
multiple references to the pointer, because each pointer refers to the old
memory address of the data. Using invalid pointers can cause severe
problems.

A second form of memory allocation uses handles to address this
problem. As with pointers, when you allocate memory using handles,
you request a block of memory of a given size. The memory manager
allocates the memory and adds the address of the memory block to a
list of master pointers. The memory manager returns a handle that is a
pointer to the master pointer. If you reallocate a handle and it moves to
another address, the memory manager updates the master pointer to
refer to the new address. As long as you look up the correct address
using the handle, you access the correct data.
LabVIEW Code Interface Reference Manual 5-8 © National Instruments Corporation

Chapter 5 Manager Overview
You use handles to perform most memory allocation in LabVIEW.
Pointers are available, however, because in some cases they are more
convenient and simpler to use.

Memory Zones
LabVIEW's memory manager interface has the ability to distinguish
between two distinct sections, called zones. LabVIEW uses the data
space (DS) zone only to hold VI execution data. LabVIEW uses the
application zone (AZ) to hold all other data. Most memory manager
functions have two corresponding routines, one for each of the two
zones. Routines that operate on the data space zone begin with DS and
routines for the application zone begin with AZ.

Currently, the two zones are actually one zone, but this may change in
future releases of LabVIEW; therefore, a CIN programmer should
write programs as if the two zones actually exist.

External code modules work almost exclusively with data created in
the DS zone, although exceptions exist. In most cases, you use the DS
routines when you need to work with dynamically allocated memory.

All data passed to or from a CIN is allocated in the DS zone except for
Paths, which use AZ handles. You should only use file manager
functions (not the AZ memory manager routines) to manipulate
Paths. Thus, your CINs should use the DS memory routines when
working with parameters passed from the block diagram. The only
exceptions to this rule are handles created using the SizeHandle
function, which allocates handles in the application zone. If you pass
one of these handles to a CIN, your CIN should use AZ routines to
work with the handle.

Using Pointers and Handles
Most memory manager functions have a DS routine and an AZ routine.
In the following discussion, XXFunctionName refers to a function in
a general context. In these situations, XX can be either DS or AZ. When
a difference exists between the two zones, the specific function name
is given.

You create a handle using XXNewHandle, with which you specify the
size of the memory block. You create a pointer using XXNewPtr.
XXNewHandleClr and XXNewPtrClr are variations that create the
memory block and set it to all zeros.
© National Instruments Corporation 5-9 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview
When you are finished with the handle or pointer, release it using
XXDisposeHandle or XXDisposePtr.

If you need to resize an existing handle, you can use the
XXSetHandleSize routine. XXGetHandleSize determines the
size of an existing handle. Because pointers are not relocatable, you
cannot resize them.

A handle is a pointer to a pointer. In other words, a handle is the
address of an address. The second pointer, or address, is a master
pointer, which means that it is maintained by the memory manager.
Languages that support pointers provide operators for accessing data
by its address. With a handle, you use this operator twice; once to get
to the master pointer, and a second time to get to the actual data. A
simple example of how to work with pointers and handles in C is shown
in the following section. Examples in the Online Reference show more
complex ways to work with handles.

While operating within a single call of a CIN node, an AZ handle will
not move unless you specifically resize it. In this context there is no
need to lock or unlock handles. If your CIN maintains an AZ handle
across different calls of the same CIN (an asynchronous CIN), the AZ
handle may be relocated between calls. In this case, AZHLock and
AZHUnlock may be useful if you do not want the handle to relocate.
A DS handle will never move unless you resize it.

You can explicitly purge a handle using XXEmptyHandle. You can
reallocate a purged master pointer using XXReallocHandle. Notice
that XXReallocHandle does not actually recover the data to which
the handle refers; this routine only reallocates a block of memory for
the handle.

Additional routines make it easy to copy and concatenate handles and
pointers to other handles, check the validity of handles and pointers,
and copy or move blocks of memory from one place to another.

Simple Example
The following example code shows how you work with a pointer to an
int32.

int32 *myInt32P;

myInt32P = (int32 *)DSNewPtr(sizeof(int32));

*myInt32P = 5;
LabVIEW Code Interface Reference Manual 5-10 © National Instruments Corporation

Chapter 5 Manager Overview
x = *myInt32P + 7;

...

DSDisposePtr(myInt32P);

The first line declares the variable myInt32P as a pointer to, or the
address of, a signed 32-bit integer. This does not actually allocate
memory for the int32; it creates memory for an address and
associates the name myInt32P with that address. The P at the end of
the variable name is a convention used in this example to indicate that
the variable is a pointer.

The second line creates a block of memory in the data space large
enough to hold a single signed 32-bit integer and sets myInt32P to
refer to this memory block.

The third line places the value 5 in the memory location to which
myInt32P refers. The * operator refers to the value in the address
location.

The fourth line sets x equal to the value at address myInt32P plus 7.

Finally, the last line frees the pointer.

The following code is the same example using handles instead of
pointers.

int32 **myInt32H;

myInt32H =(int32**)DSNewHandle(sizeof(int32));

**myInt32H = 5;

x = **myInt32H + 7;

...

DSDisposeHandle(myInt32H);

The first line declares the variable myInt32H as a handle to an a
signed 32-bit integer. Strictly speaking, this line declares myInt32H
as a pointer to a pointer to an int32. As with the previous example,
this declaration does not allocate memory for the int32; it creates
memory for an address and associates the name myInt32H with that
address. The H at the end of the variable name is a convention used in
this example to indicate that the variable is a handle.
© National Instruments Corporation 5-11 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview
The second line creates a block of memory in the data space that is
large enough to hold a single int32. DSNewHandle places the
address of the memory block as an entry in the master pointer list and
returns the address of the master pointer entry. Finally, this line sets
myInt32H to refer to the master pointer.

The third line places the value 5 in the memory location to which
myInt32H refers. Because myInt32H is a handle, you use the *
operator twice to get to the data.

The fourth line sets x equal to the value referenced by myInt32H
plus 7.

Finally, the last line frees the handle.

This example shows only the simplest aspects of how to work with
pointers and handles in C. Other examples throughout this manual
show different aspects of using pointers and handles. Refer to a C
manual for a list of other operators that you can use with pointers and
a more detailed discussion of how to work with pointers.

Reference to the Memory Manager
See the Online Reference for descriptions of the routines used for
managing memory in external code segments of LabVIEW. For every
function, if XX is AZ, the referenced handle, pointer, or block of
memory is in the application zone. If XX is DS, the referenced handle,
pointer, or block of memory is in the data space zone.

Memory Manager Data Structures
The memory manager defines generic handle and pointer data types as
follows.

typedef uChar *Ptr;

typedef uChar **UHandle;

File Manager
This section describes the file manager, a set of platform-independent
routines for creating and manipulating files and directories.
LabVIEW Code Interface Reference Manual 5-12 © National Instruments Corporation

Chapter 5 Manager Overview
Note: For descriptions of specific file manager functions, see the Function and
VI Reference topic in LabVIEW’s Online Reference, or the Code Interface
Node Reference online manual.

Introduction
The file manager supports routines for opening and creating files,
reading data from and writing data to files, and closing files. In
addition, with these routines you can manipulate the end-of-file mark
of a file and position the current read or write mark to an arbitrary
position in the file. With other file routines you can move, copy, and
rename files, determine and set file characteristics and delete files.

The file manager contains a number of routines for directories. With
these routines you can create and delete directories. You can also
determine and set directory characteristics and obtain a list of a
directory's contents.

LabVIEW supports concurrent access to the same file, so you can have
a file open for both reading and writing simultaneously. When you
open a file, you can indicate whether you want the file to be read from
and written to concurrently. You can also lock a range of the file, if you
need to ensure that a range is nonvolatile at a given time.

Finally, the file manager provides many routines for manipulating
paths (short for pathnames) in a platform-independent manner. The file
manager supports the creation of path descriptions, which are either
relative to a specific location or absolute (the full path). With file
manager routines you can create and compare paths, determine
characteristics of paths, and convert a path between platform-specific
descriptions and the platform-independent form.

Identifying Files and Directories
When you perform operations on files and directories, you need to
identify the target of the operation. The platforms that LabVIEW
supports use a hierarchical file system, meaning that files are stored in
directories, possibly nested several levels deep. These file systems
support the connection of multiple discrete storage media, called
volumes. For example, DOS-based systems support multiple drives
connected to the system. For most of these file systems, you must
include the volume name to completely specify the location of a file.
On other systems, such as UNIX, you do not specify the volume name
© National Instruments Corporation 5-13 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview
because the physical implementation of the file system is hidden from
the user.

How you identify a target depends upon whether the target is an open
or closed file. If a target is a closed file or a directory, you specify the
target using the target's path. The path describes the volume containing
the target, the directories between the top level and the target, and the
target's name. If the target is an open file, you use a file descriptor to
specify that LabVIEW should perform an operation on the open file.
The file descriptor is an identifier that the file manager associates with
the file when you open it. When you close the file, the file manager
dissociates the file descriptor from the file.

Path Specifications

Conventional Path Specifications
All platforms have a method for describing the paths for files and
directories. These path specifications are similar, but they are usually
incompatible from one platform to another. You usually specify a path
as a series of names separated by separator characters. Typically, the
first name is the top level of the hierarchical specification of the path,
and the last name is the file or directory that the path identifies.

There are two types of paths—relative paths and absolute paths. A
relative path describes the location of a file or directory relative to an
arbitrary location in the file system. An absolute path describes the
location of a file or directory starting from the top level of the file
system.

A path does not necessarily go from the top of the hierarchy down to
the target. You can often use a platform-specific tag in place of a name
that indicates that the path should go up a level from the current
location.

For instance, on a UNIX system, you specify the path of a file or
directory as a series of names separated by the slash (/) character. If
the path is an absolute path, you begin the specification with a slash.
You can indicate that the path should move up a level using two periods
in a row (..). Thus, the following path specifies a file README relative
to the top level of the file system.

/usr/home/gregg/myapps/README

Two relative paths to the same file are as follows.
LabVIEW Code Interface Reference Manual 5-14 © National Instruments Corporation

Chapter 5 Manager Overview
gregg/myapps/README relative to /usr/home

../myapps/README relative to a directory
inside of the gregg directory

On the PC, you separate names in a path with a backslash (\) character.
If the path is an absolute path, you begin the specification with a drive
designation, followed by a colon (:), followed by the backslash. You
can indicate that the path should move up a level using two periods in
a row (..). Thus, the following path specifies a file README relative
to the top level of the file system, on a drive named C.

C:\HOME\GREGG\MYAPPS\README

Two relative paths to the same file are as follows.

GREGG\MYAPPS\README relative to the HOME directory

..\MYAPPS\README relative to a directory inside of
the GREGG directory

On the Macintosh, you separate names in a path with the colon (:)
character. If the path is an absolute path, you begin the specification
with the name of the volume containing the file. If an absolute path
consists of only one name (it specifies a volume), it must end with a
colon. If the path is a relative path, it begins with a colon. This colon
is optional for a relative path consisting of only one name. You can
indicate that the path should move up a level using two colons in a row
(::). Thus, the following path specifies a file README relative to the
top level of the file system, on a drive named Hard Drive.

Hard Drive:Home:Gregg:MyApps:README

Two relative paths to the same file are as follows.

:Gregg:MyApps:README relative to the Home directory

::MyApps:README relative to a directory inside of
the Gregg directory

Empty Path Specifications
In LabVIEW you can define a path with no names, called an empty
path. An empty path is either absolute or relative. The empty absolute
path is the highest point you can specify in the file hierarchy. The
empty relative path is a path relative to an arbitrary location in the file
system to itself.
© National Instruments Corporation 5-15 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview
On a UNIX system, a slash (/) represents the empty absolute path. The
slash specifies the root of the file hierarchy. A period (.) represents
the empty relative path.

On the PC, you represent the empty absolute path as an empty string.
It specifies the set of all volumes on the system. A period (.) represents
the empty relative path.

On the Macintosh, the empty absolute path is represented as an empty
string. It specifies the set of all volumes on the system. A colon (:)
represents the empty relative path.

LabVIEW Path Specification
In LabVIEW, you specify a path using a special LabVIEW data type,
represented as Path. The exact structure of the Path data type is
private to the file manager. You create and manipulate the Path data
type using file manager routines.

A Path is a dynamic data structure. Just as you use memory manager
routines to allocate and deallocate handles and pointers, you use file
manager routines to create and deallocate Paths. Just as with handles,
declaring a Path variable does not actually create a Path. Before you
can use the Path to manipulate a file, you must dynamically allocate
the Path using file manager routines. When you are finished using the
Path variable, you should release the Path using file manager
routines.

In addition to providing routines for the creation and elimination of
Paths, the file manager provides routines for comparing Paths,
duplicating Paths, determining characteristics of Paths, and
converting Paths to and from other formats, such as the
platform-specific format for the system on which LabVIEW is running.

File Descriptors
When you open a file, LabVIEW returns a file descriptor associated
with the file. A file descriptor is a data type LabVIEW uses to identify
open files. All operations performed on an open file use the file
descriptor to identify the file.

A file descriptor is valid only while the file is open. If you close the
file, the file descriptor is no longer associated with the file. If you
subsequently open the file, the new file descriptor will most likely be
different from the file descriptor LabVIEW used previously.
LabVIEW Code Interface Reference Manual 5-16 © National Instruments Corporation

Chapter 5 Manager Overview
File Refnums
In the file manager, LabVIEW accesses open files using file
descriptors. On the front panel and block diagram, however, LabVIEW
accesses open files through file refnums. A file refnum contains a file
descriptor for use by the file manager, and additional information used
by LabVIEW.

LabVIEW specifies file refnums using the LVRefNum data type, the
exact structure of which is private to the file manager. If you want to
pass references to open files into or out of a CIN, use the functions in
the Manipulating File Refnums topic of the Online Reference to
convert file refnums to file descriptors, and to convert file descriptors
to file refnums.

Support Manager
The support manager is a collection of constants, macros, basic data
types, and functions that perform operations on strings and numbers.
The support manager also has functions for determining the current
time in a variety of formats.

Note: This section gives only a brief overview of the support manager. For
descriptions of specific support manager functions, see the Function and VI
Reference topic in LabVIEW’s Online Reference, or the Code Interface
Node Reference online manual.

The support manager’s string functions contain much of the
functionality of the string libraries supplied with standard C compilers,
such as string concatenation and formatting. You can use variations of
many of these functions with LabVIEW strings (4-byte length field
followed by data, generally stored in a handle), Pascal strings (1-byte
length field followed by data), and C strings (data terminated by a null
character).

With the utility functions you can sort and search on arbitrary data
types, using quicksort and binary search algorithms.

The support manager contains transcendental functions for many
complex and extended floating-point operations.

Certain routines specify time as a data structure with the following
form.
© National Instruments Corporation 5-17 LabVIEW Code Interface Reference Manual

Chapter 5 Manager Overview
typedef struct {

int32 sec;/* 0:59 */

int32 min;/* 0:59 */

int32 hour;/* 0:23 */

int32 mday;/* day of the month, 1:31 */

int32 mon;/* month of the year, 1:12 */

int32 year;/* year, 1904:2040 */

int32 wday;/* day of the week, 1:7 for Sun:Sat */

int32 yday;/* day of year (julian date), 1:366 */

int32 isdst;/* 1 if daylight savings time */

} DateRec;
LabVIEW Code Interface Reference Manual 5-18 © National Instruments Corporation

Memory Manager Functions
© National Instruments Corporation 6-1 LabVIEW Code Interface Refe

Chapter

6

Allocating and Releasing Handles

AZDisposeHandle
DSDisposeHandle
syntax MgErr AZDisposeHandle(h);

MgErr DSDisposeHandle(h);

XXDisposeHandle releases the memory referenced by the specified handle.

Parameter Type Description
h UHandle Handle you want to dispose of.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.

mZoneErr Handle or pointer not in specified zone.

AZEmptyHandle
DSEmptyHandle
syntax MgErr AZEmptyHandle(h);

MgErr DSEmptyHandle(h);

XXEmptyHandle releases the memory referenced by a handle, and replaces the
handle's master pointer with NULL.

The master pointer is set to NULL, but remains a valid master pointer after this call. All
handle-based references to the block of memory point to the NULL handle. If you
reallocate space for the handle using XXReallocHandle, all references to the old
handle will reference the new block of memory.

Parameter Type Description
h UHandle Handle to empty.
rence Manual

Chapter 6 Memory Manager Functions
returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.

mZoneErr Handle or pointer not in specified zone.

AZGetHandleSize
DSGetHandleSize
syntax int32 AZGetHandleSize(h);

int32 DSGetHandleSize(h);

XXGetHandleSize returns the size of the block of memory referenced by the
specified handle.

Parameter Type Description
h UHandle Handle whose size you want to determine.

returns The size in bytes of the relocatable block referenced by the handle h. If an error
occurs, XXGetHandleSize returns a negative number.

AZNewHandle
DSNewHandle
syntax UHandle ZNewHandle(size);

UHandle DSNewHandle(size);

XXNewHandle creates a new handle to a relocatable block of memory of the specified
size. The routine aligns all handles and pointers in DS to accommodate the largest
possible data representations for the platform in use.

Parameter Type Description
size int32 Size, in bytes, of the handle to create.

returns A handle of the specified size. Returns NULL if the routine fails.

AZNewHClr
DSNewHClr
LabVIEW Code Interface Reference Manual 6-2 © National Instruments Corporation

Chapter 6 Memory Manager Functions
syntax UHandle AZNewHClr(size);
UHandle DSNewHClr(size);

XXNewHClr creates a new handle to a relocatable block of memory of the specified size
and initializes the memory to zero.

Parameter Type Description
size int32 Size, in bytes, of the handle to create.

returns A handle of the specified size, where the block of memory is set to all zeros.
Returns NULL if the routine fails.

AZReallocHandle
DSReallocHandle
syntax MgErr AZReallocHandle(h, size);

MgErr DSReallocHandle(h, size);

XXReallocHandle creates a new block of memory and sets the specified handle to
reference the block of memory.

If h is not already an empty handle, the function releases the block of memory referenced
by h before creating the new block. A handle is an empty handle if you called
XXEmptyHandle on the handle, or if you marked the handle as purgeable and the
memory manager purged it from memory.

Parameter Type Description
h UHandle Handle to recover.

size int32 New size, in bytes, of the handle.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.

mgArgErr Invalid argument.

mFullErr Not enough memory to perform operation.

mZoneErr Handle or pointer not in specified zone.

AZRecoverHandle
DSRecoverHandle
© National Instruments Corporation 6-3 LabVIEW Code Interface Reference Manual

Chapter 6 Memory Manager Functions
syntax UHandle AZRecoverHandle(p);
UHandle DSRecoverHandle(p);

Given a pointer to a block of memory that was originally declared as a handle,
XXRecoverHandle returns a handle to the block of memory.

This function is useful when you have the address of a block of memory that you know
is a handle, and you need to get a true handle to the block of memory.

Parameter Type Description
p UPtr Pointer to a relocatable block of memory.

returns A handle to the block of memory to which p refers. Returns NULL if the
routine fails.

AZSetHandleSize
DSSetHandleSize
syntax MgErr AZSetHandleSize(h, size);

MgErr DSSetHandleSize(h, size);

XXSetHandleSize changes the size of the block of memory referenced by the
specified handle.

While LabVIEW arrays are stored in DS handles, you should not use this function to
resize array handles. Many platforms have memory alignment requirements that make it
difficult to determine the correct size for the resulting array. Instead, you should use
either NumericArrayResize or SetCINArraySize, which are described in the
Resizing Arrays and Strings section of Chapter 2, CIN Parameter Passing. You should
not use these functions on a locked handle.

Parameter Type Description
h UHandle Handle to resize.

size int32 New size, in bytes, of the handle.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.

mFullErr Not enough memory to perform operation.

mZoneErr Handle or pointer not in specified zone.
LabVIEW Code Interface Reference Manual 6-4 © National Instruments Corporation

Chapter 6 Memory Manager Functions
AZSetHSzClr
DSSetHSzClr
syntax MgErr ZSetHSzClr(h, size);

MgErr DSSetHSzClr(h, size);

XXSetHSzClr changes the size of the block of memory referenced by the specified
handle and sets any new memory to zero. You should not use this function on a locked
handle.

Parameter Type Description
h UHandle Handle to resize.

size int32 New size, in bytes, of the handle.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.

mFullErr Not enough memory to perform operation.

mZoneErr Handle or pointer not in specified zone.

Allocating and Releasing Pointers

AZDisposePtr
DSDisposePtr
syntax MgErr AZDisposePtr(p);

MgErrD SDisposePtr(p);

XXDisposePtr releases the memory referenced by the specified pointer.

Parameter Type Description
p UPtr Pointer to dispose.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.

mZoneErr Handle or pointer not in specified zone.
© National Instruments Corporation 6-5 LabVIEW Code Interface Reference Manual

Chapter 6 Memory Manager Functions
AZNewPClr
DSNewPClr
syntax UPtr AZNewPClr(size);

UPtr DSNewPClr(size);

XXNewPClr creates a new pointer to a nonrelocatable block of memory of the specified
size and initializes the memory to zero.

Parameter Type Description
size int32 Size, in bytes, of the pointer to create.

returns A pointer to a block of size bytes filled with zeros. Returns NULL if the allocation
could not be performed.

AZNewPtr
DSNewPtr
syntax UPtr AZNewPtr(size);

UPtr DSNewPtr(size);

XXNewPtr creates a new pointer to a nonrelocatable block of memory of the specified
size.

Parameter Type Description
size int32 Size, in bytes, of the pointer to create.

returns A pointer to a block of size bytes. Returns NULL if the allocation could not
be performed.

Manipulating Properties of Handles

AZHLock
syntax MgErr AZHLock(h);

AZHLock locks the memory referenced by the application zone handle h so that the
memory cannot move. This means the memory manager cannot move the block of
memory to which the handle refers.

Do not lock handles more than necessary; it interferes with efficient memory
management. Also, do not enlarge a locked handle.
LabVIEW Code Interface Reference Manual 6-6 © National Instruments Corporation

Chapter 6 Memory Manager Functions
Parameter Type Description
h UHandle Application zone handle to lock.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.

mZoneErr Handle or pointer not in specified zone.

AZHPurge
syntax void AZHPurge(h);

AZHPurge marks the memory referenced by the application zone handle h as
purgeable. This means that in tight memory conditions the memory manager can
perform an AZEmptyHandle on h. Use AZReallocHandle() to reuse a handle if
the manager purges it.

If you mark a handle as purgeable, check the handle before using it to see if it has
become an empty handle.

Parameter Type Description
h UHandle Application zone handle to mark as purgeable.

AZHNoPurge
syntax void AZHNoPurge(h);

AZHNoPurge marks the memory referenced by the application zone handle h as
unpurgeable.

Parameter Type Description
h UHandle Application zone handle to mark as unpurgeable.

AZHUnlock
syntax MgErr AZHUnlock(h);
© National Instruments Corporation 6-7 LabVIEW Code Interface Reference Manual

Chapter 6 Memory Manager Functions
AZHUnlock unlocks the memory referenced by the application zone handle h so that it
can be moved. This means that the memory manager can move the block of memory to
which the handle refers if other memory operations need space.

Parameter Type Description
h UHandle Application zone handle to unlock.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.

mZoneErr Handle or pointer not in specified zone.

Memory Utilities

AZHandAndHand
DSHandAndHand
syntax MgErr AZHandAndHand(h1, h2);

MgErr DSHandAndHand(h1, h2);

XXHandAndHand appends the data referenced by h1 to the end of the memory block
referenced by h2.

The function resizes handle h2 to hold h1 and h2 data. If h1 is an AZ handle, you should
lock it, because this routine can move memory.

Parameter Type Description
h1 UHandle Source of data to append to h2.

h2 UHandle Initial handle, to which the data of h1 is appended.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.

mFullErr Not enough memory to perform operation.

mZoneErr Handle or pointer not in specified zone.

AZHandToHand
DSHandToHand
LabVIEW Code Interface Reference Manual 6-8 © National Instruments Corporation

Chapter 6 Memory Manager Functions
syntax MgErr AZHandToHand(hp);
MgErr DSHandToHand(hp);

XXHandToHand copies the data referenced by the handle to which hp points into a new
handle, and returns a pointer to the new handle in hp.

You can use this routine to copy an existing handle into a new handle. The old handle
remains allocated. This routine writes over the pointer that is passed in, so you should
maintain a copy of the original handle.

Parameter Type Description
hp UHandle * Pointer to handle to duplicate. A pointer to the

resulting handle is returned in this parameter. See
the Pointers as Parameters section of Chapter 1,
CIN Overview, for more information about using
this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.

mFullErr Not enough memory to perform operation.

mZoneErr Handle or pointer not in specified zone.

AZPtrAndHand
DSPtrAndHand
syntax MgErr AZPtrAndHand(p, h, size);

MgErr DSPtrAndHand(p, h, size);

XXPtrAndHand appends size bytes from the address referenced by p to the end of the
memory block referenced by h.

Parameter Type Description
p UPtr Source of data to append to h.

h UHandle Handle to which the data of p is appended.

size int32 Number of bytes to copy from p.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.
© National Instruments Corporation 6-9 LabVIEW Code Interface Reference Manual

Chapter 6 Memory Manager Functions
mFullErr Not enough memory to perform operation.

mZoneErr Handle or pointer not in specified zone.

AZPtrToHand
DSPtrToHand
syntax MgErr AZPtrToHand(p, hp, size);

MgErrD SPtrToHand(p, hp, size);

XXPtrToHand creates a new handle of size bytes and copies size bytes from the
address referenced by p to the handle.

Parameter Type Description
p UPtr Source of data to copy to the handle pointed to by

hp.

hp UHandle * Pointer to new handle. See the Pointers as
Parameters section of Chapter 1, CIN Overview, for
more information about using this parameter.

size int32 Number of bytes to copy from p to the new handle.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.

mFullErr Not enough memory to perform operation.

AZPtrToXHand
DSPtrToXHand
syntax MgErr AZPtrToXHand(p, h, size);

MgErr DSPtrToXHand(p, h, size);

XXPtrToXHand copies size bytes from the address referenced by p to the existing
handle h, resizing h, if necessary, to hold the results.

Parameter Type Description
p UPtr Source of data to copy to the handle h.

h UHandle Destination handle.

size int32 Number of bytes to copy from p to the existing
handle.
LabVIEW Code Interface Reference Manual 6-10 © National Instruments Corporation

Chapter 6 Memory Manager Functions
returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.

mFullErr Not enough memory to perform operation.

mZoneErr Handle or pointer not in specified zone.

ClearMem
syntax void ClearMem(p, size);

ClearMem sets size bytes starting at the address referenced by p to 0.

Parameter Type Description
p UPtr Pointer to block of memory to clear.

size int32 Number of bytes to clear.

MoveBlock
syntax void MoveBlock(ps, pd, size);

MoveBlock moves size bytes from one address to another. The source and destination
memory blocks can overlap.

Parameter Type Description
ps UPtr Pointer to source.

pd UPtr Pointer to destination.

size int32 Number of bytes to move.

SwapBlock
syntax void SwapBlock(ps, pd, size);

SwapBlock swaps size bytes between the section of memory referred to by ps and pd.
The source and destination memory blocks should not overlap.

Parameter Type Description
ps UPtr Pointer to source.

pd UPtr Pointer to destination.
© National Instruments Corporation 6-11 LabVIEW Code Interface Reference Manual

Chapter 6 Memory Manager Functions
size int32 Number of bytes to move.

Handle and Pointer Verification

AZCheckHandle
DSCheckHandle
syntax MgErr AZCheckHandle(h);

MgErr DSCheckHandle(h);

XXCheckHandle verifies that the specified handle is really a handle. If the handle is
not a real handle, this function returns mZoneErr.

Parameter Type Description
h UHandle Handle to verify.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.

mZoneErr Handle or pointer not in specified zone.

AZCheckPtr
DSCheckPtr
syntax MgErr AZCheckPtr(p);

MgErr DSCheckPtr(p);

XXCheckPtr verifies that the specified pointer is a pointer allocated with XXNewPtr
or XXNewPClr. If the pointer is not a real pointer, this function returns mZoneErr.

Parameter Type Description
p UPtr Pointer to verify.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.

mZoneErr Handle or pointer not in specified zone.
LabVIEW Code Interface Reference Manual 6-12 © National Instruments Corporation

Chapter 6 Memory Manager Functions
Memory Zone Utilities

AZHeapCheck
DSHeapCheck
syntax int32 AZHeapCheck(Bool32 d);

int32 DSHeapCheck(Bool32 d);

XXHeapCheck verifies that the specified heap is not corrupt. This function returns a zero
for an intact heap and a nonzero value for a corrupt heap.

Parameter Type Description
d Bool32 Dump extensive heap examination to auxiliary

screen.

returns int32, which can contain the errors in the following list.

Value Description
noErr The heap is intact.

mCorruptErr The heap is corrupt.

AZMaxMem
DSMaxMem
syntax int32 AZMaxMem();

int32 DSMaxMem();

XXMaxMem returns the size of the largest block of contiguous memory available for
allocation.

returns int32, the size of the largest block of contiguous memory available for
allocation.
© National Instruments Corporation 6-13 LabVIEW Code Interface Reference Manual

Chapter 6 Memory Manager Functions
AZMemStats
DSMemStats
syntax void AZMemStats(MemStatRec *msrp);

void DSMemStats(MemStatRec *msrp);

XXMemStats returns various statistics about the memory in a zone.

Parameter Type Description
msrp MemStatRec* Returns statistics about the zone's free memory in a

MemStatRec structure. See the Pointers as
Parameters section of Chapter 1, CIN Overview, for
more information about using this parameter.

A MemStatRec structure is defined as follows.

typedef struct {

int32 totFreeSize, maxFreeSize, nFreeBlocks;

int32 totAllocSize, maxAllocSize;

int32 nPointers, nUnlockedHdls, nLockedHdls;

int32 reserved [4];

}

The free memory in a zone consists of a number of blocks of contiguous memory. In the
MemStatRec structure, totFreeSize is the sum of the sizes of these blocks,
maxFreeSize is the largest of these blocks (as returned by XXMaxMem), and
nFreeBlocks is the number of these blocks.

Similarly, the allocated memory in a zone consists of a number of blocks of contiguous
memory. In the MemStatRec structure, totAllocSize is the sum of the sizes of these
blocks and maxAllocSize is the largest of these blocks.

Because there are three different varieties of allocated blocks, the numbers of blocks of
each type is returned separately.

nPointers (int32) is the number of pointers. nUnlockedHdls (int32) is the number
of unlocked handles. nLockedHdls (int32) is the number of locked handles. Add these
three values together to find the total number of allocated blocks.

The four reserved fields are reserved for use by National Instruments.
LabVIEW Code Interface Reference Manual 6-14 © National Instruments Corporation

File Manager Functions
 National Instruments Corporation 7-1 LabVIEW Code Interface Refe

Chapter

7

File Manager Data Structures

File/Directory Information Record
Several routines in the file manager work with a data structure that
defines the attributes of a file or directory. The following list gives the
file/directory information record.

typedef struct {

int32 type; * system specific file type-

- 0 for directories */

int32 creator; * system specific file

creator-- 0 for folders (on

Mac only)*/

int32 permissions; * system specific file access

rights */

int32 size; /* file size in bytes (data

fork on Mac) or entries in

directory*/

int32 rfSize; /* resource fork size (on Mac

only) */

uInt32 cdate; /* creation date: seconds

since system reference time

*/

uInt32 mdate; /* last modification date:

seconds since system ref time

*/

Bool32 folder; /* indicates whether path

refers to a folder */

Bool32 isInvisible; /* indicates whether file is

visible in File Dialog (on

Mac only)*/
rence Manual

Chapter 7 File Manager Functions
Point location; /* system specific desktop

geographical location (on Mac

only)*/

Str255 owner; /* owner (in pascal string

form) of file or folder */

Str255 group; /* group (in pascal string

form) of file or folder */

} FInfoRec, *FInfoPtr;

File Type Record
The file type record is:

typedef struct {

int32 flags;

int32 type;

} FileType;

Only the least significant four bits of flags contain useful
information. The remaining bits are reserved for use by LabVIEW.
You can test these four bits using the following four masks:

#define kIsFile 0x01

#define kRecognizedType 0x02

#define kIsLink 0x04

#define kFIsInvisible 0x08

The kIsFile bit is set if the item described by the file type record is
a file; otherwise it is clear. The kRecognizedType bit is set if the
item described is a file for which you can determine a 4-character file
type; otherwise it is clear. The kIsLink bit is set if the item described
is a UNIX link or Macintosh alias; otherwise it is clear. The
kFIsInvisible bit is set if the item described will not appear in a
file dialog; otherwise it is clear.

The value of type is defined only if the kRecognizedType bit is
set in flags. In this case, type is the 4-character file type of the file
described by the file type record. This 4-character file type is provided
by the file system on the Macintosh and is computed by examining the
file name extension on other systems.
LabVIEW Code Interface Reference Manual 7-2  National Instruments Corporation

Chapter 7 File Manager Functions

Path Data Type
The file manager defines the Path data type for use in describing
paths to files and directories. The data structure for the Path data type
is private. You use file manager routines to create and manipulate
Paths.

Permissions
The file manager uses the int32 data type to describe permissions for
files and directories. The manager uses only the least significant nine
bits of the int32.

On a UNIX computer, the nine bits of permissions correspond exactly
to nine UNIX permission bits governing read, write, and execute
permissions for user, group, and others. Permission bits on a UNIX
system are represented in the following illustration.

On the PC, permissions are ignored for directories. For files, only bit 7
(the UNIX user write permission bit) is used. If this bit is clear, the file
is read-only. Otherwise, you can write to the file.

On the Macintosh, all nine bits are used for directories (folders). The
bits which control read, write, and execute permissions, respectively,
on a UNIX system are used to control See Files, Make Changes, and
See Folders access rights, respectively, on the Macintosh. For files,
only bit 7 (the UNIX user write permission bit) is used. If this bit is
clear, the file is locked. Otherwise, the file is not locked.

Volume Information Record
The volume information record is:

bit

r - read permission
w - write permission
x - execute permission

permission }} }r w x r w x r w x

user group others

31 8 7 6 5 4 3 2 1 0
 National Instruments Corporation 7-3 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
typedef struct {

int32 size; /* size in bytes of a kuhvkjhgvku

volume */

int32 used; /* number of bytes used on volume

*/

int32 free; /* number of bytes available for

use on volume */

} VInfoRec;

File Manager Functions

Performing Basic File Operations

FCreate
syntax MgErr FCreate(fdp, path, permissions, openMode,

denyMode, group);

FCreate creates a file with the name and location specified by path and with the
specified permissions, and opens it for writing and reading, as specified by openMode.
If the file already exists, an error is returned.

You can use denyMode to control concurrent access to the file from within LabVIEW.
The group parameter allows you to assign the file to a UNIX group; under Windows or
Macintosh, group is ignored.

If the function creates the file, the resulting file descriptor is stored in the address
referred to by fdp. If an error occurs, the function stores 0 in the address referred to by
fdp and returns an error.

Note: Before attempting to call this function, make sure that you understand
how to use the fdp parameter. See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information about this parameter.

Parameter Type Description
fdp File * Address at which FCreate stores the file

descriptor for the new file. If FCreate fails, it
stores 0 in the address fdp.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

path Path Path of the file that you want to create.
LabVIEW Code Interface Reference Manual 7-4  National Instruments Corporation

Chapter 7 File Manager Functions
permissions int32 Permissions to assign to the new file. See the File
Manager Data Structures section for a description
of permissions.

openMode int32 Access mode to use in opening the file. Can have the
following values, which are defined in the file
extcode.h.

• openReadOnly: Open for reading.

• openWriteOnly: Open for writing

• openReadWrite: Open for both reading
and writing

denyMode int32 Mode that determines what level of concurrent
access to the file is allowed. Can have the following
values, which are defined in the file extcode.h.

• denyReadWrite: Prevents others from
reading from and writing to the file while it is
open.

• denyWriteOnly: Prevents others from
writing to the file only while it is open

• denyNeither: allows others to read from
and write to the file while it is open.

group PStr UNIX group you want to assign to the new file.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

fIsOpen File is already open for writing. This error is returned only on the
Macintosh and the Sun. The PC returns fIOErr when the file is
already open for writing.

fNoPerm Access denied (something is locked/protected).

fDupPath A file of that name already exists.

fTMFOpen Too many files open.

fIOErr Unspecified I/O error occurred.

FCreateAlways
syntax MgErr FCreateAlways(fdp, path, permissions,

openMode, denyMode, group);
 National Instruments Corporation 7-5 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
FCreateAlways creates a file with the name and location specified by path and with
the specified permissions, and opens the file for writing and reading, as specified by
openMode. If the file already exists, this function opens and truncates the file.

You can use denyMode to control concurrent access to the file from within LabVIEW.
The group parameter allows you to assign the file to a UNIX group; under Windows or
Macintosh, group is ignored.

If the function creates the file, the resulting file descriptor is stored in the address
referred to by fdp. If an error occurs, the function stores 0 in the address referred to by
fdp and returns an error.

Note: Before attempting to call this function, make sure that you understand
how to use the fdp parameter. See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information about this parameter.

Parameter Type Description
fdp File * Address at which FCreateAlways stores the file

descriptor for the new file. If FCreateAlways
fails, it stores 0 in the address fdp.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

path Path Path of the file that you want to create.

permissions int32 Permissions to assign to the new file. See the File
Manager Data Structures section of this chapter for
a description of permissions.

openMode int32 See FMOpen for a description of openMode.

denyMode int32 See FMOpen for a description of denyMode.

group PStr UNIX group you want to assign to the new file.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

fIsOpen File is already open for writing. This error is returned only on the
Macintosh and the Sun. The PC returns fIOErr when the file is
already open for writing.

fNoPerm Access denied (something is locked/protected).

fDupPath A file of that name exists.

fTMFOpen Too many files open.

fIOErr Unspecified I/O error occurred.
LabVIEW Code Interface Reference Manual 7-6  National Instruments Corporation

Chapter 7 File Manager Functions
FMClose
syntax MgErr FMClose(fd);

FMClose closes the file associated with the file descriptor fd.

Parameter Type Description
fd File File descriptor associated with the file you want to

close.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Not a valid file descriptor.

fIOErr Unspecified I/O error occurred.

FMOpen
syntax MgErr FMOpen(fdp, path, openMode, denyMode);

Note: Before attempting to call this function, make sure that you understand
how to use the fdp parameter. See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information about this parameter.

FMOpen opens a file with the name and location specified by path for writing and
reading, as specified by openMode.

With the denyMode parameter, you control concurrent access to the file from within
LabVIEW.

If this function opens the file, the resulting file descriptor is stored in the address referred
to by fdp. If an error occurs, 0 is stored in the address referred to by fdp and the error
is returned.

Parameter Type Description
fdp File * Address at which FMOpen stores the file descriptor

for the opened file. If the function fails, FMOpen
stores 0 in the address fdp.
 National Instruments Corporation 7-7 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

path Path Path of the file that you want to open.

openMode int32 Access mode to use in opening the file. Can have the
following values, which are defined in the file
extcode.h.

• openReadOnly: Open for reading.

• openWriteOnly: Open for writing; file is
not truncated (data is not removed). On the
Macintosh, this mode provides true write-
only access to files. On a PC or a UNIX
system, LabVIEW I/O functions are built in
the C standard I/O library, with which you
have write-only access to a file only if you are
truncating the file or making the access
append-only. Therefore, this mode actually
allows both read and write access to files on
a PC or UNIX system.

• openReadWrite: Open for both reading
and writing.

• openWriteOnlyTruncate: Open for
writing; truncates the file.

denyMode int32 Mode that determines what level of concurrent
access to the file is allowed. Can have the following
values, which are defined in the file extcode.h.

• denyReadWrite: Prevents others from
reading from and writing to the file while it is
open.

• denyWriteOnly: Prevents others from
writing to the file only while it is open

• denyNeither: allows others to read from
and write to the file while it is open.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
LabVIEW Code Interface Reference Manual 7-8  National Instruments Corporation

Chapter 7 File Manager Functions
fIsOpen File is already open for writing. This error is returned only on the
Macintosh and the Sun. The PC returns fIOErr when the file is
already open for writing.

fNotFound File not found.

fTMFOpen Too many files open.

fIOErr Unspecified I/O error occurred.

FMRead
syntax MgErr FMRead(fd, inCount, outCountp, buffer);

FMRead reads inCount bytes from the file specified by the file descriptor fd. The
function starts from the current position mark (see the FSeek and FTell functions),
and reads the data into memory, starting at the address specified by buffer.

The function stores the actual number of bytes read in *outCountp. The number of bytes
can be less than inCount if the function encounters end-of-file before reading inCount
bytes. The number of bytes will be zero if any other error occurs.

Parameter Type Description
fd File File descriptor associated with the file from which

you want to read.

inCount int32 Number of bytes you want to read.

outCountp int32 * Address at which FMRead stores the number of
bytes read. FMRead will not store any value if
NULL is passed.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

buffer UPtr Address where FMRead will store the data.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Not a valid file descriptor or inCount < 0.

fEOF EOF encountered.

fIOErr Unspecified I/O error occurred.

FMWrite
 National Instruments Corporation 7-9 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
syntax MgErr FMWrite(fd, inCount, outCountp, buffer);

FMWrite writes inCount bytes from memory, starting at the address specified by
buffer, to the file specified by the file descriptor fd, starting from the current position
mark (see the FSeek and FTell functions).

The function stores the actual number of bytes written in *outCountp. The number of
bytes stored can be less than inCount if an fDiskFull error occurs before the function
writes inCount bytes. The number of bytes stored will be zero if any other error occurs.

Parameter Type Description
fd File File descriptor associated with the file to which you

want to write.

inCount int32 Number of bytes you want to write.

outCountp int32 * Address at which FMWrite stores the number of
bytes actually written. FMWrite will not store any
value if NULL is passed.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

buffer UPtr Address of the data you want to write.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Not a valid file descriptor or inCount < 0.

fDiskFull Out of space.

fNoPerm Access denied.

fIOErr Unspecified write error occurred.

Positioning the Current Position Mark

FMSeek
syntax MgErr FMSeek(fd, ofst, mode);

FMSeek sets the current position mark for a file to the specified point, relative to the
beginning of the file, the current position in the file, or the end of the file. If an error
occurs, the current position mark does not move.

Parameter Type Description
LabVIEW Code Interface Reference Manual 7-10  National Instruments Corporation

Chapter 7 File Manager Functions
fd File File descriptor associated with the file.

ofst int32 New position of the current position mark. The
position is the number of bytes from the beginning
of the file, the current position mark, or the end of
the file, as determined by mode.

mode int32 Position in the file relative to which FMSeek sets
the current position mark for a file.

If mode is fStart, the current position mark
moves to ofst bytes relative to the start of the file
(ofst must be greater than or equal to 0).

If mode is fCurrent, the current position mark
moves ofst bytes from the current position mark
(ofst can be positive, 0, or negative).

If mode is fEnd, the current position mark moves
to ofst bytes from the end of the file (ofst must be
less than or equal to 0).

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Not a valid file descriptor.

fEOF Attempt to seek before the start or after the end of the file.

fIOErr Unspecified I/O error occurred.

FMTell
syntax MgErr FMTell(fd, ofstp);

FMTell returns the position of the current position mark in the file.

Parameter Type Description
fd File File descriptor associated with the file.

ofstp int32 * Address at which FMTell stores the position of the
current position mark, in terms of bytes relative to
the beginning of the file. If an error occurs, the
contents of ofstp is undefined.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MgErr, which can contain the errors in the following list.
 National Instruments Corporation 7-11 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
Error Description
mgArgErr Not a valid file descriptor.

fIOErr Unspecified I/O error occurred.

Positioning the End-Of-File Mark

FGetEOF
syntax MgErr FGetEOF(fd, sizep);

FGetEOF returns the size of the specified file.

Parameter Type Description
fd File File descriptor associated with the file.

sizep int32 * Address at which FGetEOF stores the size of the
file in bytes. If an error occurs, the contents of
*sizep is undefined.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Not a valid file descriptor.

fIOErr Unspecified I/O error occurred.

FSetEOF
syntax MgErr FSetEOF(fd, size);

FSetEOF sets the size of the specified file. If an error occurs, the file size does not
change.

Parameter Type Description
fd File File descriptor associated with the file.

size int32 New file size in bytes.

returns MgErr, which can contain the errors in the following list.
LabVIEW Code Interface Reference Manual 7-12  National Instruments Corporation

Chapter 7 File Manager Functions
Error Description
mgArgErr Not a valid file descriptor or size < 0.

fDiskFull Disk is full.

fNoPerm Access denied (file exists or something is locked/protected).

fIOErr Unspecified I/O error occurred.

Flushing File Data to Disk

FFlush
syntax MgErr FFlush(fd);

FFlush writes any buffered data for the specified file out to the disk.

Parameter Type Description
fd File File descriptor associated with the file.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Not a valid file descriptor.

fIOErr Unspecified I/O error occurred.

Determining File, Directory, and Volume Information

FExists
syntax int32 FExists(path);

FExists returns information about the specified file or directory. It returns less
information than FGetInfo, but it is much quicker on many platforms.

Parameter Type Description
path Path Path of the file or directory about which you want

information.

returns int32, which is one of the following values.

Error Description
kFIsFile Specified item is a file.
 National Instruments Corporation 7-13 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
kFIsFolder Specified item is a directory or folder.

kFNotExist Specified item does not exist.

FGetAccessRights
syntax MgErr FGetAccessRights(path, owner, group,

permPtr);

FGetAccessRights returns access rights information about the specified file or
directory.

Parameter Type Description
path Path Path of the file or directory about which you want

access rights information.

owner PStr Address at which FGetAccessRights stores the
owner of the file or directory.

group PStr Address at which FGetAccessRights stores the
group of the file or directory.

permPtr int32 * Address at which FGetAccessRights stores the
permissions of the file or directory. See the File
Manager Data Structures section of this chapter for
a description of permissions.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

fNotFound File not found.

fIOErr Unspecified I/O error occurred.

FGetInfo
syntax MgErr FGetInfo(path, infop);

FGetInfo returns information about the specified file or directory.

Parameter Type Description
LabVIEW Code Interface Reference Manual 7-14  National Instruments Corporation

Chapter 7 File Manager Functions
path Path Path of the file or directory about which you want
information.

infop FInfoPtr Address where FGetInfo stores information
about the file or directory. If an error occurs, the
information is undefined. See the File Manager
Data Structures section of this chapter for a
description of the FInfoPtr data type.

See also the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

fNotFound File not found.

fIOErr Unspecified I/O error occurred.

FGetVolInfo
syntax MgErr FGetVolInfo(path, vinfo);

FGetVolInfo gets a path specification and information for the volume containing the
specified file or directory.

Parameter Type Description
path Path Path of a file or directory contained on the volume

from which you want to get information. This path
is overwritten with a path specifying the volume
containing the specified file or directory. If an error
occurs, this path is undefined.

vinfo VInfoRec * Address at which FGetVolInfo stores the
information about the volume. If an error occurs, the
information is undefined. See the File Manager
Data Structures section of this chapter for a
description of the VInfoRec data type.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MgErr, which can contain the errors in the following list.
 National Instruments Corporation 7-15 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
Error Description
mgArgErr A bad argument was passed to the function. Verify path.

fIOErr Unspecified I/O error occurred.

FSetAccessRights
syntax MgErr FSetAccessRights(path, owner, group,

permPtr);

FSetAccessRights sets access rights information for the specified file or directory.
If an error occurs, no information changes.

Parameter Type Description
path Path Path of the file or directory for which you want to set

access rights information.

owner PStr New owner that FSetAccessRights sets for the
file or directory if owner is not NULL.

group PStr New group that FSetAccessRights sets for the
file or directory if group is not NULL.

permPtr int32 * Address of new permissions that
FSetAccessRights sets for the file or directory
if permPtr is not NULL.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

fNotFound File not found.

fIOErr Unspecified I/O error occurred.

FSetInfo
syntax MgErr FSetInfo(path, infop);

FSetInfo sets information for the specified file or directory. If an error occurs, no
information changes.

Parameter Type Description
path Path Path of the file or directory for which you want to set

information.
LabVIEW Code Interface Reference Manual 7-16  National Instruments Corporation

Chapter 7 File Manager Functions
infop FInfoPtr Address of information FSetInfo sets for the file
or directory. See the File Manager Data Structures
section of this chapter for a description of the
FInfoPtr data type.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

fNotFound File not found.

fIOErr Unspecified I/O error occurred.

Getting Default Access Rights Information

FGetDefGroup
syntax LStrHandle FGetDefGroup(groupHandle);

FGetDefGroup gets the LabVIEW default group for a file or directory.

Parameter Type Description
groupHandle LStrHandle Handle that represents the LabVIEW default group

for a file or directory.

If groupHandle is NULL, FGetDefGroup
allocates a new handle and returns the default group
in it. If groupHandle is a handle, FGetDefGroup
returns it, and groupHandle resizes to hold the
default group.

returns The resulting LStrHandle; if groupHandle was not NULL, then the return
value is the same LStrHandle as groupHandle. If an error occurs, NULL is
returned.

Creating and Determining the Contents of Directories

FListDir
syntax MgErr FListDir(path, list, typeH);

FListDir determines the contents of a directory.
 National Instruments Corporation 7-17 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
The function fills the (AZ) handle passed in list with a CPStr, where the cnt field
specifies the number of concatenated Pascal strings that follow in the str[] field. See
the Dynamic Data Types section of Chapter 5, Manager Overview, for a description of
the CPStr data type. If typeH is not NULL, the function fills the AZ handle passed in
typeH with the file type information for each file name or directory name stored in list.

Parameter Type Description
path Path Path of the directory whose contents you want to

determine.

list CPStrHandle Application zone handle in which FListDir
stores a series of concatenated Pascal strings,
preceded with a 4-byte integer field, cnt, that
indicates the number of items in the buffer.

typeH FileType Application zone handle in which FListDir
stores a series of FileType records. If typeH is
not NULL, then FListDir stores one FileType
record in typeH for each Pascal string in list. The
nth FileType in typeH denotes the file type
information about the file or directory named in the
nth string in list. See the File Manager Data
Structures section of this chapter for a description of
the FileType data type.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

fNotFound Directory not found.

fNoPerm Access denied (file/directory/disk is locked/protected).

mFullErr Insufficient memory.

fIOErr Unspecified I/O error occurred.

FNewDir
syntax MgErr FNewDir(path, permissions);

FNewDir creates a new directory with the specified permissions. If an error occurs, the
function does not create the directory.

Parameter Type Description
path Path Path of the directory you want to create.
LabVIEW Code Interface Reference Manual 7-18  National Instruments Corporation

Chapter 7 File Manager Functions
permissions int32 Permissions for the new directory. See the File
Manager Data Structures section of this chapter for
a description of permissions.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

fNoPerm Access denied (file/directory/disk is locked /protected).

fDupPath Directory already exists.

fIOErr Unspecified I/O error occurred.

Copying Files

FCopy
syntax MgErr FCopy(oldPath, newPath);

FCopy copies a file, preserving the type, creator, and access rights. The file to be copied
must not be open. If an error occurs, the new file is not created.

Parameter Type Description
oldPath Path Path of the file you want to copy.

newPath Path Path, including filename, where you want the new
file to be stored.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

fNotFound The original file could not be found.

fNoPerm Access denied (file/directory/disk is locked/protected).

fDiskFull Disk is full.

fDupPath The new file already exists.

fIsOpen The original file is open for writing.

fTMFOpen Too many files open.

mFullErr Insufficient memory.

fIOErr Read, write, or unspecified I/O error occurred
 National Instruments Corporation 7-19 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
Moving and Deleting Files and Directories

FMove
syntax MgErr FMove(oldPath, newPath);

FMove moves a file or renames it if the new path indicates the file is to remain in the
same directory.

Parameter Type Description
oldPath Path Path of the file or directory you want to move.

newPath Path Path, including the name of the file or directory,
where you want the file or directory to be moved.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

fNotFound The original file could not be found.

fNoPerm Access denied (file/directory/disk is locked/protected).

fDiskFull Disk is full.

fDupPath The new file already exists.

fIsOpen The original file is open for writing.

fTMFOpen Too many files open.

mFullErr Insufficient memory.

fIOErr Read, write, or unspecified I/O error occurred.

FRemove
syntax MgErr FRemove(path);

FRemove deletes a file or a directory. If an error occurs, this function does not remove
the file or directory.

Parameter Type Description
path Path Path of the file or directory you want to delete.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
LabVIEW Code Interface Reference Manual 7-20  National Instruments Corporation

Chapter 7 File Manager Functions
fNotFound The file could not be found.

fNoPerm Access denied (file/directory/disk is locked/protected).

fIsOpen File is open or directory is not empty.

fIOErr Unspecified I/O error occurred.

Locking a File Range

FLockOrUnlockRange
syntax MgErr FLockOrUnlockRange(fd, mode, offset,

count, lock);

FLockOrUnlockRange locks or unlocks a section of a file.

Parameter Type Description
fd File File descriptor associated with the file.

mode int32 Position in the file relative to which
FLockOrUnlockRange determines the first byte
to lock or unlock.

If mode is fStart, the first byte to lock or unlock
is located offset bytes from the start of the file
(offset must be greater than or equal to 0).

If mode is fCurrent, the first byte to lock or
unlock is located offset bytes from the current
position mark (offset can be positive, 0, or
negative).

If mode is fEnd, the first byte to lock or unlock is
located offset bytes from the end of the file (offset
must be less that or equal to 0).

offset int32 The position of the first byte to lock or unlock. The
position is the number of bytes from the beginning
of the file, the current position mark, or the end of
the file, as determined by mode.

count int32 Number of bytes to lock or unlock starting at the
location specified by mode and offset.

lock Bool32 A boolean that specifies whether
FLockOrUnlockRange locks or unlocks a range
of bytes. If lock is TRUE this functions locks a
range; if FALSE the function unlocks a range.
 National Instruments Corporation 7-21 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
returns MgErr, which can contain the errors in the following list.

Error Description
fIOErr Unspecified I/O error occurred.

Matching Filenames with Patterns

FStrFitsPat
syntax Bool32 FStrFitsPat(pat, str, pLen, sLen);

FStrFitsPat determines whether a filename, str, matches a pattern, pat.

Parameter Type Description
pat uChar * Pattern (string) to which filename is to be compared.

The following characters have special meanings in
the pattern.

• \ : The following character is literal, not
treated as having a special meaning. A single
backslash at the end of pat is the same as two
backslashes.

• ? : Match any one character.

• * : Match zero or more characters.

str uChar * Filename (string) to compare to pattern.

pLen int32 Number of characters in pat.
sLen int32 Number of characters in str.

returns FStrFitsPat returns TRUE if the filename fits the pattern; FALSE if
otherwise.

Creating Paths

FAddPath
syntax MgErr FAddPath(basePath, relPath, newPath);

FAddPath creates an absolute path by appending a relative path to an absolute path
LabVIEW Code Interface Reference Manual 7-22  National Instruments Corporation

Chapter 7 File Manager Functions
Note: You can pass in the same path variable for the new path that you use for
the basePath or relPath. Thus, the following three variations for
calling this function work.

FAddPath(basePath, relPath, newPath);

/* the new path is returned in a third path variable */

FAddPath(path, relPath, path);

/* the new path writes over the old base path */

FAddPath(basepath, path, path);

/* the new path writes over the old relative path */

Parameter Type Description
basePath Path Absolute path to which you want to append a

relative path.

relPath Path Relative path you want to append to the existing
base path.

newPath Path Path returned by FAddPath.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

mFullErr Insufficient memory.

FAppendName
syntax MgErr FAppendName(path, name);

FAppendName appends a file or directory name to an existing path.

Parameter Type Description
path Path Base path to which you want to append a new file or

directory name. FAppendName returns the
resulting path in this parameter.

name PStr File or directory name that you want to append to the
existing path.
 National Instruments Corporation 7-23 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

mFullErr Insufficient memory.

FAppPath
syntax MgErr FAppPath(p);

FAppPath determines the path to the currently executing LabVIEW application.

Parameter Type Description
p Path Path in which FAppPath stores the path to the

currently executing LabVIEW application. p must
already be an allocated path.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

mFullErr Insufficient memory.

fNotFound File not found.

fIOErr Unspecified I/O error occurred.

FEmptyPath
syntax Path FEmptyPath(p);

FEmptyPath makes an empty absolute path. Making a path an empty absolute path is
not the same as disposing the path.

Parameter Type Description
p Path Path allocated by FEmptyPath. If p is NULL,

FEmptyPath allocates a new path and returns the
value. If p is a path, the existing path is set to be an
empty path, and the new p is returned.

returns The resulting path; if p was not NULL, the return value is the same empty
absolute path as p. If an error occurs, NULL is returned.
LabVIEW Code Interface Reference Manual 7-24  National Instruments Corporation

Chapter 7 File Manager Functions
FMakePath
syntax Path FMakePath(path, type, [volume, directory,

directory, ..., name,] NULL);

The brackets indicate that the volume, directory, and name parameters are optional.

FMakePath creates a new path. If path is NULL, the function allocates and returns a
new path. Otherwise, path is set to the new path, and path is returned. If an error occurs,
or the path is not specified correctly, NULL is returned.

When you are finished using a path, you should dispose of it using FDisposePath.

Parameter Type Description
path Path Parameter in which FMakePath returns the newly

created path if path is not NULL.

type int32 Type of path to create. If type is fAbsPath, the
new path will be absolute. If type is fRelPath, the
new path will be relative.

vol PStr Pascal string containing a legal volume name. An
empty string means go up a level in the path
hierarchy. This parameter is optional, and is only
used for absolute paths on Macintosh or Windows
platforms.

directory PStr Pascal string containing a legal directory name. An
empty string means go up a level in the path
hierarchy. Parameter is optional.

name PStr File or directory name. An empty string means go up
a level in the path hierarchy. Parameter is optional.

NULL PStr Marker indicating the end of the path.

returns The resulting path; if you specified path, the return value is the same path as
path. If an error occurs, NULL is returned.

FNotAPath
syntax Path FNotAPath(p);

FNotAPath creates a path that is the canonical invalid path.

Parameter Type Description
p Path Path allocated by FNotAPath. If p is NULL,

FNotAPath allocates a new canonical invalid path
 National Instruments Corporation 7-25 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
and returns the value. If p is a path, the existing path
is set to the canonical invalid path, and the new p is
returned.

returns The resulting path. If p was not NULL, the return value is the same canonical
invalid path as p. If an error occurs, NULL is returned.

FRelPath
syntax MgErr FRelPath(startPath, endPath, relPath);

FRelPath computes a relative path between two absolute paths.

Note: You can pass in the same path variable for the new path that you use for
the startPath or relPath. Thus, the following three variations for
calling this function work.

FRelPath(startPath, endPath, relPath);

/* the relative path is returned in a third path variable */

FRelPath(startPath, endPath, startPath);

/* the new path writes over the old startPath */

FRelPath(startPath, endPath, endPath);

/* the new path writes over the old endPath */

Parameter Type Description
startPath Path Absolute path from which you want the relative path

to be computed.

endPath Path Absolute path to which you want the relative path to
be computed.

relPath Path Path returned by fAddPath.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

mFullErr Insufficient memory.
LabVIEW Code Interface Reference Manual 7-26  National Instruments Corporation

Chapter 7 File Manager Functions
Disposing Paths

FDisposePath
syntax MgErr FDisposePath(p);

FDisposePath disposes of the specified path.

Parameter Type Description
p Path Path you want to dispose of.

returns MgErr, which can contain the errors in the following list.

Error Description
mZoneErr Invalid path.

Duplicating Paths

FPathCpy
syntax MgErr FPathCpy(dst, src);

FPathCpy duplicates the path specified by src, and stores the resulting path in the
existing path, dst.

Parameter Type Description
dst Path Path where FPathCpy places the resulting

duplicate path. This path must already have been
created.

src Path Path that you want to duplicate.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

FPathToPath
syntax MgErr FPathToPath(p);
 National Instruments Corporation 7-27 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
FPathToPath duplicates the specified path and returns the new path in the same
variable.

Parameter Type Description
p Path * Address of path to duplicate. Variable to which

FPathToPath returns the resulting path.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

Extracting Information from a Path

FDepth
syntax int32 FDepth(path);

FDepth computes the depth (number of component names) of a specified path.

Parameter Type Description
path Path Path whose depth you want to determine.

returns int32 indicating the depth of the specified path, which can have the following
values for this function.

Value Description
-1 Badly formed path.

0 Path is the root directory.

1 Path is in the root directory.

2 Path is in a subdirectory of the root directory, one level from the root
directory.

n-1 Path is n-2 levels from the root directory.

n Path is n-1 levels from the root directory.
LabVIEW Code Interface Reference Manual 7-28  National Instruments Corporation

Chapter 7 File Manager Functions
FDirName
syntax MgErr FDirName(path, dir);

FDirName creates a path for the parent directory of a specified path.

Note: You can pass in the same path variable for the parent path that you use for
path. Thus, the following variations for calling this function work.

err = FDirName(path, dir);

/* the parent path is returned in a second path variable */

err = FDirName(path, path);

/* the parent path writes over the existing path */

Parameter Type Description
path Path Path whose parent path you want to determine.

dir Path Parameter in which FDirName stores the parent
path.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

FName
syntax MgErr FName(path, name);

FName copies the last component name of a specified path into a string handle and
resizes the handle as necessary.

Parameter Type Description
path Path Path whose last component name you want to

determine.

name StringHandle
Handle in which FName returns the last component
name as a Pascal string.

returns MgErr, which can contain the errors in the following list.

Error Description
 National Instruments Corporation 7-29 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
mgArgErr Badly formed path or path is root directory.

mFullErr Insufficient memory.

FNamePtr
syntax MgErr FNamePtr(path, name);

FNamePtr copies the last component name of a specified path to the address specified
by name. This routine does not allocate space for the returned data, so name must
specify allocated memory of sufficient size to hold the component name.

Parameter Type Description
path Path Path whose last component name you want to

determine.

name PStr Address at which FNamePtr stores the last
component name as a Pascal string. This address
must specify allocated memory of sufficient size to
hold the name.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Badly formed path or path is root directory.

mFullErr Insufficient memory.

FVolName
syntax MgErr FVolName(path, vol);

FVolName creates a path for the volume of a specified absolute path by removing all
but the first component name from path.

Note: You can pass in the same path variable for the volume path that you use
for path. Thus, the following variations for calling this function work.

err = FVolName(path, vol);

/* the parent path is returned in a second path variable */
LabVIEW Code Interface Reference Manual 7-30  National Instruments Corporation

Chapter 7 File Manager Functions
err = FVolName(path, path);

/* the parent path writes over the existing path */

Parameter Type Description
path Path Path whose volume path you want to determine.

vol Path Parameter in which FVolName stores the volume
path.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

Converting Paths to and from Other Representations

FArrToPath
syntax MgErr FArrToPath(arr, relative, path);

FArrToPath converts a specified one-dimensional LabVIEW array of strings to a path
of the type specified by relative. Each string in the specified array is converted in order
into a component name of the resulting path.

If no error occurs, path is set to a path whose component names are the strings in arr. If
an error occurs, path is set to the canonical invalid path.

Parameter Type Description
arr UHandle The (DS) handle containing the array of strings

which you wish to convert to a path.

relative Bool32 If relative is TRUE, then the resulting path is
relative; otherwise, the resulting path is absolute.

path Path Path where FArrToPath stores the resulting path.
This path must already have been allocated.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

mFullErr Insufficient memory.
 National Instruments Corporation 7-31 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
FFlattenPath
syntax int32 FFlattenPath(p, fp);

FFlattenPath converts a path into a flat form that you can use to write the path as
information to a file. The function stores the resulting flat path in a pre-allocated buffer
and returns the number of bytes.

You can determine the size needed for the flattened path by passing NULL for fp, in
which case the function returns the necessary size without writing anything into the
location pointed to by fp.

Parameter Type Description
p Path Path you want to flatten.

fp UPtr Address in which FFlattenPath stores the
resulting flattened path. If this value is NULL,
FFlattenPath does not write anything to this
address, but does return the size that the flattened
path would require.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns int32, indicating the number of bytes required to store the flattened path.

FPathToArr
syntax MgErr FPathToArr(path, relativePtr, arr);

FPathToArr converts a specified path to a one-dimensional LabVIEW array of strings
and determines whether the specified path is relative. Each component name of the
specified path is converted in order into a string in the resulting array.

If no error occurs, arr is set to an array of strings containing the component names of
path. If an error occurs, arr is set to an empty array.

Parameter Type Description
path Path The path which you wish to convert to an array of

strings.

relativePtr Bool32 * Address at which to store a boolean value telling
whether the specified path is relative.
LabVIEW Code Interface Reference Manual 7-32  National Instruments Corporation

Chapter 7 File Manager Functions
See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

arr UHandle (DS) Handle where FPathToArr stores the
resulting array of strings. This handle must already
have been allocated.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Badly formed path or unallocated array.

mFullErr Insufficient memory.

FPathToAZString
syntax MgErr FPathToAZString(p, txt);

FPathToAZString converts a specified path to an LStr and stores the string as an
application zone handle. The LStr contains the platform-specific syntax for the path.

Parameter Type Description
p Path Path that you want to convert to a string.

txt LStrHandle * Address at which FPathToAZString stores the
resulting string. If the value at txt is nonzero, the
function assumes that it is a valid handle, resizes the
handle, fills in its value, and stores the handle at the
address referred to by txt.
See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

mFullErr Insufficient memory.

fIOErr Unspecified I/O error occurred.
 National Instruments Corporation 7-33 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
FPathToDSString
syntax MgErr FPathToDSString(p, txt);

FPathToDSString converts a specified path to an LStr and stores the string as a
data space zone handle. The LStr contains the platform-specific syntax for the path.

Parameter Type Description
p Path Path that you want to convert to a string.

txt LStrHandle * Address at which FPathToDSString stores the
resulting string. If the value at txt is nonzero, the
function assumes that it is a valid handle, resizes the
handle, fills in its value, and stores the handle at the
address referred to by txt.
See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

mFullErr Insufficient memory.

fIOErr Unspecified I/O error occurred.

FStringToPath
syntax MgErr FStringToPath(text, p);

FStringToPath creates a path from an LStr. The LStr contains the platform-
specific syntax for a path.

Parameter Type Description
text LStrHandle String that contains the path in platform-specific

syntax.

p Path * Address at which FStringToPath stores the
resulting path. If the value at p is non-zero, the
function assumes that it is a valid path, resizes the
path, and fills in its value. If the value at p is zero
(NULL), the function creates a new path, fills in its
value, and stores the path at the address referred to
by p.
LabVIEW Code Interface Reference Manual 7-34  National Instruments Corporation

Chapter 7 File Manager Functions
See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mFullErr Insufficient memory.

FTextToPath
syntax MgErr FTextToPath(text, tlen, *p);

FTextToPath creates a path from a string (at the address text) that represents a path
in the platform-specific syntax for a path.

Parameter Type Description
text UPtr String that contains the path in platform-specific

syntax.

tlen int32 Number of characters in text.
p Path * Address at which FTextToPath stores the

resulting path. If the value at p is non-zero, the
function assumes that it is a valid path, resizes the
path, and fills in its value. If the value at p is zero
(NULL), the function creates a new path, fills in its
value, and stores the path at the address referred to
by p.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mFullErr Insufficient memory.

FUnFlattenPath
syntax int32 FUnFlattenPath(fp, pPtr);
 National Instruments Corporation 7-35 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
FUnFlattenPath converts a flattened path (created using FFlattenPath) into a
path.

Parameter Type Description
fp UPtr Pointer to the flattened path you want to convert to

a path.

pPtr Path * Address at which FUnFlattenPath stores the
resulting path.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns The number of bytes the function interpreted as a path.

Comparing Paths

FIsAPath
syntax Bool32 FIsAPath(path);

FIsAPath determines whether path is a valid path.

Parameter Type Description
path Path Path whose validity you want to determine.

returns A boolean, which can have the following values for this function.

Value Description
TRUE Path is well formed and type is absolute or relative.

FALSE Otherwise.

FIsAPathOrNotAPath
syntax Bool32 FIsAPathOrNotAPath(path);

FIsAPathOrNotAPath determines whether path is a valid path or the canonical
invalid path.

Parameter Type Description
path Path Path whose validity you want to determine.
LabVIEW Code Interface Reference Manual 7-36  National Instruments Corporation

Chapter 7 File Manager Functions
returns A boolean, which can have the following values for this function.

Value Description
TRUE Path is well formed, and type is absolute, relative, or not a path.

FALSE Otherwise.

FIsEmptyPath
syntax Bool32 FIsEmptyPath(path);

FIsEmptyPath determines whether path is a valid empty path.

Parameter Type Description
path Path Path whose validity and emptiness you want to

determine.

returns A boolean, which can have the following values for this function.

Value Description
TRUE Path is well formed and empty, and type is absolute or relative.

FALSE Otherwise.

FPathCmp
syntax int32 FPathCmp(lsp1, lsp2);

FPathCmp compares the two specified paths.

Parameter Type Description
lsp1 Path First path to compare.

lsp2 Path Second path to compare.

returns int32, which can have the following values for this function.

Value Description
-1 Paths are of different types (for example, one is absolute and the other

is relative).

0 Paths are identical.

n+1 Paths have the same first n components, but are not identical.
 National Instruments Corporation 7-37 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
Determining a Path Type

FGetPathType
syntax MgErr FGetPathType(path, typePtr)

FGetPathType returns the type (relative, absolute, or not a path) of the specified path.

Parameter Type Description
path Path Path whose type you want to determine.

typePtr int32 * Address at which FGetPathType stores the type.
*typePtr can have the following values:

• fAbsPath: The path is an absolute path.

• fRelPath: The path is a relative path.

• fNotAPath: The path is the canonical
invalid path or an error occurred.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

FIsAPathOfType
syntax Bool32 FIsAPathOfType(path, ofType);

FIsAPathOfType determines whether the specified path is a valid path of the
specified type (relative or absolute).

Parameter Type Description
path Path Path that you want to compare to the specified type.

ofType int32 Type that you want to compare to the path's type.
type can have the following values:

• fAbsPath: Compare the path's type to
absolute.

• fRelPath: Compare the path's type to
relative.
LabVIEW Code Interface Reference Manual 7-38  National Instruments Corporation

Chapter 7 File Manager Functions
returns A boolean, which can have the following values for this function.

Values Description
TRUE Path is well formed and type is identical to ofType.

FALSE Otherwise.

FSetPathType
syntax MgErr FSetPathType(path, type);

FSetPathType changes the type of the specified path (which must be a valid path) to
the specified type (relative or absolute).

Parameter Type Description
path Path Path whose type you want to change.

type int32 New type that you want the path to have. type can
have the following values:

• fAbsPath: The path is an absolute path.

• fRelPath: The path is a relative path.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Badly formed path or invalid type.

Manipulating File Refnums

FDisposeRefNum
syntax MgErr FDisposeRefNum(refNum);

FDisposeRefNum disposes of the specified file refnum.

Parameter Type Description
refNum LVRefNum File refnum of which you want to dispose.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Invalid file refnum.
 National Instruments Corporation 7-39 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
FIsARefNum
syntax Bool32 FIsARefNum(refNum);

FIsARefNum determines whether refNum is a valid file refnum.

Parameter Type Description
refNum LVRefNum File refnum whose validity you want to determine.

returns A boolean, which can have the following values for this function.

Value Description
TRUE File refnum has been created and not yet disposed.

FALSE Otherwise.

FNewRefNum
syntax MgErr FNewRefNum(path, fd, refNumPtr);

FNewRefNum creates a new file refnum for an open file with the name and location
specified by path and the file descriptor fd.

If the file refnum is created, the resulting file refnum is stored in the address referred to
by refNumPtr. If an error occurs, NULL is stored in the address referred to by
refNumPtr and the error is returned.

Parameter Type Description
path Path The path of the open file for which you wish to

create a file refnum.

fd File The file descriptor of the open file for which you
wish to create a file refnum.

refNumPtr LVRefNum * Address at which FNewRefNum stores the new file
refnum.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

mFullErr Insufficient memory.
LabVIEW Code Interface Reference Manual 7-40  National Instruments Corporation

Chapter 7 File Manager Functions
FRefNumToFD
syntax MgErr FRefNumToFD(refNum, fdp);

FRefNumToFD gets the file descriptor associated with the specified file refnum.

If no error occurs, the resulting file descriptor is stored in the address referred to by fdp.
If an error occurs, NULL is stored in the address referred to by fdp and the error is
returned.

Parameter Type Description
refNum LVRefNum The file refnum whose associated file descriptor you

wish to get.

fdp File * Address at which FRefNumToFD stores the file
descriptor associated with the specified file refnum.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Invalid file refnum.

FRefNumToPath
syntax MgErr FRefNumToPath(refNum, path);

FRefNumToPath gets the path associated with the specified file refnum, and stores the
resulting path in the existing path, path.

If no error occurs, path is set to the path associated with the specified file refnum. If an
error occurs, path is set to the canonical invalid path.

Parameter Type Description
refNum LVRefNum The file refnum whose associated path you wish to

get.

path Path Path where FRefNumToPath stores the path
associated with the specified file refnum. This path
must already have been created.

returns MgErr, which can contain the errors in the following list.
 National Instruments Corporation 7-41 LabVIEW Code Interface Reference Manual

Chapter 7 File Manager Functions
Error Description
mgArgErr A bad argument was passed to the function. Verify path.

mFullErr Insufficient memory.
LabVIEW Code Interface Reference Manual 7-42  National Instruments Corporation

Support Manager Functions
© National Instruments Corporation 8-1 LabVIEW Code Interface Refe

Chapter

8

Byte Manipulation Operations

Cat4Chrs *Macro*
syntax int32 Cat4Chrs(a,b,c,d);

Cat4Chrs constructs an int32 from four uInt8s, with the first parameter as the high
byte and the last parameter as the low byte.

Parameter Type Description
a uInt8 High order byte of the high word of the resulting

int32.

b uInt8 Low order byte of the high word of the resulting
int32.

c uInt8 High order byte of the low word of the resulting
int32.

d uInt8 Low order byte of the low word of the resulting
int32.

returns The resulting int32.

GetALong *Macro*
syntax int32 GetALong(p);

GetALong retrieves an int32 from a void pointer. On the SPARCstation, this
function can retrieve an int32 at any address, even if the int32 is not long word
aligned.

Parameter Type Description
p void * Address from which you wish to read an int32.

returns int32 stored at the specified address.
rence Manual

Chapter 8 Support Manager Functions
Hi16 *Macro*
syntax int16 Hi16(x);

Hi16 returns the high order int16 of an int32.

Parameter Type Description
x int32 int32 of which you want to determine the high

int16.

HiByte *Macro*
syntax int8 HiByte(x);

HiByte returns the high order int8 of an int16.

Parameter Type Description
x int16 int16 of which you want to determine the high

int8.

HiNibble *Macro*
syntax uInt8 HiNibble(x);

HiNibble returns the value stored in the high four bits of an uInt8.

Parameter Type Description
x uInt8 uInt8 whose high four bits you want to extract.

Lo16 *Macro*
syntax int16 Lo16(x);

Lo16 returns the low order int16 of an int32.

Parameter Type Description
x int32 int32 of which you want to determine the low

int16.
LabVIEW Code Interface Reference Manual 8-2 © National Instruments Corporation

Chapter 8 Support Manager Functions
HiNibble *Macro*
syntax uInt8 HiNibble(x);

HiNibble returns the value stored in the high four bits of an uInt8.

Parameter Type Description
x uInt8 uInt8 whose high four bits you want to extract.

LoByte *Macro*
syntax int8 LoByte(x);

LoByte returns the low order int8 of an int16.

Parameter Type Description
x int16 int16 of which you want to determine the low

int8.

Long *Macro*
syntax int32 Long(hi, lo);

Long creates an int32 from two int16s.

Parameter Type Description
hi int16 High int16 for the resulting int32.

lo int16 Low int16 for the resulting int32.

returns The resulting int32.

LoNibble *Macro*
syntax uInt8 LoNibble(x);

LoNibble returns the value stored in the low four bits of an uInt8.

Parameter Type Description
x uInt8 uInt8 whose low four bits you want to extract.
© National Instruments Corporation 8-3 LabVIEW Code Interface Reference Manual

Chapter 8 Support Manager Functions
Offset *Macro*
syntax int16 Offset(type, field);

Offset returns the offset of the specified field within the structure called type.

Parameter Type Description
type - Structure that contains field.

field - Field whose offset you want to determine.

returns An offset as an int16.

SetALong *Macro*
syntax void SetALong(p,x);

SetALong stores an int32 at the address specified by a void pointer. On the
SPARCstation, this function can retrieve an int32 at any address, even if it is not long
word aligned.

Parameter Type Description
p void * Address at which you want to store an int32.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

x int32 Value that you want to store at the specified address.

Word *Macro*
syntax int16 Word(hi, lo);

Word creates an int16 from two int8s.

Parameter Type Description
hi int8 High int8 for the resulting int16.

lo int8 Low int8 for the resulting int16.

returns The resulting int16.
LabVIEW Code Interface Reference Manual 8-4 © National Instruments Corporation

Chapter 8 Support Manager Functions
Mathematical Operations
In addition to the mathematical operations documented in this section, LabVIEW
supports a number of other mathematical functions. These functions are implemented as
defined in The C Programming Language by Brian W. Kernighan and Dennis M.
Ritchie. Table 8.1 lists the prototypes for these functions.

Table 8-1. Mathematical Functions Supported by LabVIEW

double atan(double);

double cos(double);

double exp(double);

double fabs(double);

double log(double);

double sin(double);

double sqrt(double);

double tan(double);

double acos(double);

double asin(double);

double atan2(double, double);

double ceil(double);

double cosh(double);

double floor(double);

double fmod(double, double);

double frexp(double, int *);

double ldexp(double, int);

double log10(double);

double modf(double, double *);

double pow(double, double);

double sinh(double);

double tanh(double);
© National Instruments Corporation 8-5 LabVIEW Code Interface Reference Manual

Chapter 8 Support Manager Functions
For THINK C Users
To link the math functions when using THINK C, you need to add additional files to your
project. You can link a modified version of an ANSI library provided by THINK C. The
ANSI library must be modified to reference its globals from A4 instead of A5; this
process is explained in the THINK C documentation in the section concerning building
code resources (the section has different names in the various THINK C versions).

To make such a library, make a copy of the ANSI-A4 project (shipped with THINK C),
and name it ANSI-A4 copy (or any unique name). Add the math.c file (shipped with
THINK C) to ANSI-A4 copy, and then select Build Library... under the Project menu.
Name your new library mathlib (or any unique name). Adding mathlib to your CIN
project makes it possible for your math functions to link.

Abs
syntax int32 Abs(n);

Abs returns the absolute value of n, unless n is -2^31, in which case the function returns
the number unmodified.

Parameter Type Description
n int32 int32 whose absolute value you want to find.

Max
syntax int32 Max(n,m);

Max returns the maximum of the two specified int32s.

Parameter Type Description
n,m int32 int32s whose maximum value you want to

determine.

Min
syntax int32 Min(n,m);

Min returns the minimum of the two specified int32s.

Parameter Type Description
LabVIEW Code Interface Reference Manual 8-6 © National Instruments Corporation

Chapter 8 Support Manager Functions
n,m int32 int32s whose minimum value you want to
determine.

Pin
syntax int32 Pin(i,low,high);

Pin returns i coerced to fall within the range from low to high inclusive.

Parameter Type Description
i int32 Value you want to coerce to the specified range.

n int32 Low value of the range to which you want to coerce
i.

m int32 High value of the range to which you want to coerce
i.

returns i coerced to the specified range.

RandomGen
syntax void RandomGen(xp);

RandomGen generates a random number between 0 and 1 and stores it at xp.

Parameter Type Description
xp float64 * Location to store the resulting double-precision

floating-point random number.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

String Manipulation

BlockCmp
syntax int32 BlockCmp(p1, p2, numBytes);

BlockCmp compares two blocks of memory to determine whether one is less than, the
same as, or greater than the other.
© National Instruments Corporation 8-7 LabVIEW Code Interface Reference Manual

Chapter 8 Support Manager Functions
Parameter Type Description
p1 UPtr Pointer to a block of memory.

p2 UPtr Pointer to a block of memory.

numBytes int32 Number of bytes to compare.

returns A negative number, zero, or a positive number if s1 is less than, the same as, or
greater than s2.

CPStrBuf *Macro*
syntax uChar *CPStrBuf(sp);

CPStrBuf returns the address of the first string in a concatenated list of Pascal strings
(that is, the address of sp->str).

Parameter Type Description
sp CPStrPtr Pointer to a concatenated list of Pascal strings.

returns The address of the first string of the concatenated list of Pascal strings.

CPStrCmp
syntax int32 CPStrCmp(s1p, s2p);

CPStrCmp lexically compares two concatenated lists of Pascal strings to determine
whether one is less than, the same as, or greater than the other. This comparison is case
sensitive, and the function compares the lists as if they were one string.

Parameter Type Description
s1p CPStrPtr Pointer to a concatenated list of Pascal strings.

s2p CPStrPtr Pointer to a concatenated list of Pascal strings.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1
is an initial substring of s2.

CPStrIndex
syntax PStr CPStrIndex(s1h, index);
LabVIEW Code Interface Reference Manual 8-8 © National Instruments Corporation

Chapter 8 Support Manager Functions
CPStrIndex returns a pointer to the Pascal string denoted by index in a list of strings.
If index is greater than or equal to the number of strings in the list, the function returns
the pointer to the last string.

Parameter Type Description
s1h CPStrHandle Handle to a concatenated list of Pascal strings.

index int32 Number of the string that you want, with 0 as the
first string.

returns A pointer to the specified Pascal string.

CPStrInsert
syntax MgErr CPStrInsert(s1h, s2, index);

CPStrInsert inserts a new Pascal string before the index numbered Pascal string in
a concatenated list of Pascal strings. If index is greater than or equal to the number of
strings in the list, the function places the new string at the end of the list.
CPStrInsert resizes the list to make room for the new string.

Parameter Type Description
s1h CPStrHandle Handle to a concatenated list of Pascal strings.

s2 PStr Pointer to a Pascal string.

index int32 Position that you want the new Pascal string to have
in the list of Pascal strings, with 0 as the first string.

returns mFullErr if there is not enough memory. Returns noErr otherwise.

CPStrLen *Macro*
syntax int32 CPStrLen(sp);

CPStrLen returns the number of Pascal strings in a concatenated list of Pascal strings
(that is, sp->cnt). Use the CPStrSize function to get the total number of characters
in the list.

Parameter Type Description
sp CPStrPtr Pointer to a concatenated list of Pascal strings.

returns The number of strings in the concatenated list of Pascal strings.
© National Instruments Corporation 8-9 LabVIEW Code Interface Reference Manual

Chapter 8 Support Manager Functions
CPStrRemove
syntax void CPStrRemove(s1h, index);

CPStrRemove removes a Pascal string from a list of Pascal strings. If index is greater
than or equal to the number of strings in the list, the function removes the last string.
CPStrRemove resizes the list after removing the string.

Parameter Type Description
s1h CPStrHandle Handle to a concatenated list of Pascal strings.

index int32 Number of the string that you want to remove, with
0 as the first string.

CPStrReplace
syntax MgErr CPStrReplace(s1h, s2, index);

CPStrReplace replaces a Pascal string in a concatenated list of Pascal strings with a
new Pascal string.

Parameter Type Description
s1h CPStrHandle Handle to a concatenated list of Pascal strings.

s2 PStr Pointer to a Pascal string.

index int32 Number of the string that you want to replace, with
0 as the first string.

returns mFullErr if there is not enough memory. Returns noErr otherwise.

CPStrSize
syntax int32 CPStrSize(sp);

CPStrSize returns the number of characters in a concatenated list of Pascal strings.
Use the CPStrLen function to get the number of Pascal strings in the concatenated list.

Parameter Type Description
sp CPStrPtr Pointer to a concatenated list of Pascal strings.

returns The number of characters in the concatenated list of Pascal strings.
LabVIEW Code Interface Reference Manual 8-10 © National Instruments Corporation

Chapter 8 Support Manager Functions
CToPStr
syntax int32 CToPStr(cstr, pstr);

CToPStr converts a C string to a Pascal string. This function works even if the pointers
cstr and pstr refer to the same memory location. If the length of cstr is greater than 255
characters, the function converts only the first 255 characters. The function assumes that
pstr is large enough to contain cstr.

Parameter Type Description
cstr CStr Pointer to a C string.

pstr PStr Pointer to a Pascal string.

returns The length of the string, truncated to a maximum of 255 characters.

FileNameCmp *Macro*
syntax int32 FileNameCmp(s1, s2);

FileNameCmp lexically compares two file names, to determine whether one is less
than, the same as, or greater than the other. This comparison uses the same case
sensitivity as the file system (that is, case insensitive for the Macintosh and the PC, case
sensitive for the Sun SPARCstation).

Parameter Type Description
s1 PStr Pointer to a Pascal string.

s2 PStr Pointer to a Pascal string.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1
is an initial substring of s2.

FileNameIndCmp *Macro*
syntax int32 FileNameIndCmp(s1p, s2p);

FileNameIndCmp is the same as FileNameCmp, except you pass the function
handles to the string data instead of pointers. You can use FileNameIndCmp to
compare two file names and lexically determine whether one is less than, the same as,
or greater than the other. This comparison uses the same case sensitivity as the file
© National Instruments Corporation 8-11 LabVIEW Code Interface Reference Manual

Chapter 8 Support Manager Functions
system (that is, case insensitive for the Macintosh and the PC, and case sensitive for the
Sun SPARCstation).

Parameter Type Description
s1p PStr * Pointer to a Pascal string.

s2p PStr * Pointer to a Pascal string.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1
is an initial substring of s2.

FileNameNCmp *Macro*
syntax int32 FileNameNCmp(s1, s2, n);

FileNameNCmp lexically compares two file names to determine whether one is less
than, the same as, or greater than the other, limiting the comparison to n characters. This
comparison uses the same case sensitivity as the file system (that is, case insensitive for
the Macintosh and the PC, case sensitive for the Sun SPARCstation).

Parameter Type Description
s1 CStr Pointer to a C string.

s2 CStr Pointer to a C string.

n uInt32 Maximum number of characters to compare.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1
is an initial substring of s2.

HexChar
syntax int32 HexChar(n);

HexChar returns the ASCII character in hex that represents the specified value n
(0<=n<=15).

Parameter Type Description
n int32 Decimal value between 0 and 15.

returns The corresponding ASCII hex character. If n is out of range, the ASCII
character corresponding to n modulo 16 is returned.
LabVIEW Code Interface Reference Manual 8-12 © National Instruments Corporation

Chapter 8 Support Manager Functions
IsAlpha
syntax Bool32 IsAlpha(c);

IsAlpha returns TRUE if the character c is a lowercase or uppercase letter (that is, in
the set a to z or A to Z). On the SPARCstation, this function also returns TRUE for
international characters (à, á, Ä, and so on).

Parameter Type Description
c char Character that you want to analyze.

returns TRUE if the character is an alphabetic character, and FALSE otherwise.

IsDigit
syntax Bool32 IsDigit(c);

IsDigit returns TRUE if the character c is between 0 and 9.

Parameter Type Description
c char Character that you want to analyze.

returns TRUE if the character is a numerical digit, and FALSE otherwise.

IsLower
syntax Bool32 IsLower(c);

IsLower returns TRUE if the character c is a lowercase letter (that is, in the set a to z).
On the SPARCstation, this function also returns TRUE for lowercase international
characters (ó, ö, and so on).

Parameter Type Description
c char Character that you want to analyze.

returns TRUE if the character is a lowercase letter, and FALSE otherwise.

IsUpper
syntax Bool32 IsUpper(c);
© National Instruments Corporation 8-13 LabVIEW Code Interface Reference Manual

Chapter 8 Support Manager Functions
IsUpper returns TRUE if the character c is between an uppercase letter (that is, in the
set A to Z). On the SPARCstation, this function also returns TRUE for uppercase
international characters (Ó, Ä, and so on).

Parameter Type Description
c char Character that you want to analyze.

returns TRUE if the character is an uppercase letter, and FALSE otherwise.

LStrBuf *Macro*
syntax uChar *LStrBuf(s);

LStrBuf returns the address of the string data of a long Pascal string (that is, the
address of s->str).

Parameter Type Description
s LStrPtr Pointer to a long Pascal string.

returns The address of the string data of the long Pascal string.

LStrCmp
syntax LStrPtr LStrCmp(l1p, l2p);

LStrCmp lexically compares two long Pascal strings to determine whether one is less
than, the same as, or greater than the other. This comparison is case sensitive.

Parameter Type Description
l1p LStrPtr Pointer to a long Pascal string.

l2p LStrPtr Pointer to a long Pascal string.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1
is an initial substring of s2.

LStrLen *Macro*
syntax int32 LStrLen(s);

LStrLen returns the length of a long Pascal string (that is, s->cnt).
LabVIEW Code Interface Reference Manual 8-14 © National Instruments Corporation

Chapter 8 Support Manager Functions
Parameter Type Description
s LStrPtr Pointer to a long Pascal string.

returns The number of characters in the long Pascal string.

LToPStr
syntax int32 LToPStr(lstrp, pstr);

LToPStr converts a long Pascal string to a Pascal string. If the long Pascal string is
more than 255 characters, the function converts only the first 255 characters. This
function works even if the pointers lstrp and pstr refer to the same memory location.
The function assumes that pstr is large enough to contain lstrp.

Parameter Type Description
lstrp LStrPtr Pointer to a long Pascal string.

pstr PStr Pointer to a Pascal string.

returns The length of the string, truncated to a maximum of 255 characters.

PPStrCaseCmp
syntax int32 PPStrCaseCmp(s1p, s2p);

PPStrCaseCmp is the same as PStrCaseCmp, except you pass the function handles
to the string data instead of pointers. You can use PPStrCaseCmp to compare two
Pascal strings lexically and determine whether one is less than, the same as, or greater
than the other. This comparison ignores differences in case.

Parameter Type Description
s1p PStr * Pointer to a Pascal string.

s2p PStr * Pointer to a Pascal string.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1
is an initial substring of s2.

PPStrCmp
syntax int32 PPStrCmp(s1p, s2p);
© National Instruments Corporation 8-15 LabVIEW Code Interface Reference Manual

Chapter 8 Support Manager Functions
PPStrCmp is the same as PStrCmp, except you pass the function handles to the string
data instead of pointers. You can use PPStrCmp to compare two Pascal strings lexically
and determine whether one is less than, the same as, or greater than the other. This
comparison is case sensitive.

Parameter Type Description
s1p PStr * Pointer to a Pascal string.

s2p PStr * Pointer to a Pascal string.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1
is an initial substring of s2.

PStrBuf *Macro*
syntax uChar *PStrBuf(s);

PStrBuf returns the address of the string data of a Pascal string (that is, the address
following the length byte).

Parameter Type Description
s PStr Pointer to a Pascal string.

PStrCaseCmp
syntax int32 PStrCaseCmp(s1, s2);

PStrCaseCmp lexically compares two Pascal strings to determine whether one is less
than, the same as, or greater than the other. This comparison ignores differences in case.

Parameter Type Description
s1 PStr Pointer to a Pascal string.

s2 PStr Pointer to a Pascal string.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1
is an initial substring of s2.

PStrCat
syntax int32
LabVIEW Code Interface Reference Manual 8-16 © National Instruments Corporation

Chapter 8 Support Manager Functions
PStrCat(s1, s2);

PStrCat concatenates a Pascal string, s2, to the end of another Pascal string, s1, and
places the result in s1. This function assumes that s1 is large enough to contain the
resulting string. If the resulting string is larger than 255 characters, then PStrCat
limits the resulting string to 255 characters.

Parameter Type Description
s1 PStr Pointer to a Pascal string.

s2 PStr Pointer to a Pascal string.

returns The length of the resulting string.

PStrCmp
syntax int32 PStrCmp(s1, s2);

PStrCmp lexically compares two Pascal strings to determine whether one is less than,
the same as, or greater than the other. This comparison is case sensitive.

Parameter Type Description
s1 PStr Pointer to a Pascal string.

s2 PStr Pointer to a Pascal string.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1
is an initial substring of s2.

PStrCpy
syntax PStr PStrCpy(dst, src);

PStrCpy copies the Pascal string src to the Pascal string dst. This function assumes
that the destination string is large enough to contain the source string.

Parameter Type Description
dst PStr Pointer to a Pascal string.

src PStr Pointer to a Pascal string.

returns A copy of the destination Pascal string pointer.
© National Instruments Corporation 8-17 LabVIEW Code Interface Reference Manual

Chapter 8 Support Manager Functions
PStrLen *Macro*
syntax uInt8 PStrLen(s);

PStrLen returns the length of a Pascal string (that is, the value at the first byte at the
specified address).

Parameter Type Description
s PStr Pointer to a Pascal string.

PStrNCpy
syntax PStr PStrNCpy(dst, src, n);

PStrNCpy copies the Pascal string src to the Pascal string dst. If the source string is
greater than n, the function copies only n bytes. This function assumes that the
destination string is large enough to contain the source string.

Parameter Type Description
dst PStr Pointer to a Pascal string.

src PStr Pointer to a Pascal string.

n int32 Maximum number of bytes to copy including the
length byte.

returns A copy of the destination Pascal string pointer.

PToCStr
syntax int32 PToCStr(pstr, cstr);

PToCStr converts a Pascal string to a C string. This function works even if the pointers
pstr and cstr refer to the same memory location. This function assumes that cstr is large
enough to contain pstr.

Parameter Type Description
pstr PStr Pointer to a Pascal string.

cstr CStr Pointer to a C string.

returns The length of the string.
LabVIEW Code Interface Reference Manual 8-18 © National Instruments Corporation

Chapter 8 Support Manager Functions
PToLStr
syntax int32 PToLStr(pstr, lstrp);

PToLStr converts a Pascal string to a long Pascal string. This function works even if
the pointers pstr and lstrp refer to the same memory location. The function assumes that
lstrp is large enough to contain pstr.

Parameter Type Description
pstr PStr Pointer to a Pascal string.

lstrp LStrPtr Pointer to a long Pascal string.

returns The length of the string.

SPrintf
SPrintfp
PPrintf
PPrintfp
FPrintf
LStrPrintf
syntax int32 SPrintf(CStr destCSt, CStr cfmt, ...);

int32 SPrintfp(CStr destCSt, PStr pfmt, ...);
int32 PPrintf(PStr destPSt, CStr cfmt, ...);
int32 PPrintfp(PStr destPSt, PStr pfmt, ...);
int32 FPrintf(File destFile, CStr cfmt, ...);
MgErr LStrPrintf(LStrHandle destLsh, CStr cfmt,

...);

All these functions format data into an ASCII format to a specified destination. A format
string describes the desired conversions. These functions take a variable number of
arguments, and each argument follows the format string paired with a conversion
specification embedded in the format string. The second parameter, cfmt or pfmt, must
be cast appropriately to either type CStr or PStr.

SPrintf prints to a C string, just like the C library function sprintf. sprintf
returns the actual character count and appends a null byte to the end of the destination
C string.

SPrintfp is the same as SPrintf, except the format string is a Pascal string instead
of a C string. As with SPrintf, SPrintfp appends a null byte to the end of the
destination C string.
© National Instruments Corporation 8-19 LabVIEW Code Interface Reference Manual

Chapter 8 Support Manager Functions
If you pass NULL for destCStr, SPrintf and SPrintfp do not write data to memory,
and they return the number of characters required to contain the resulting data (not
including the terminating null character).

PPrintf prints to a Pascal string with a maximum of 255 characters. PPrintf sets
the length byte of the Pascal string to reflect the size of the resulting string. PPrintf
does not append a null byte to the end of the string.

PPrintfp is the same as PPrintf, except the format string is a Pascal string instead
of a C string. As with PPrintf, PPrintfp sets the length byte of the Pascal string to
reflect the size of the resulting string.

FPrintf prints to a file specified by the refnum in fd. FPrintf does not embed a
length count or a terminating null character in the data written to the file.

LStrPrintf prints to a LabVIEW string specified by destLsh. Because the
LabVIEW string is a handle that may be resized, LStrPrintf can return memory
errors just as DSSetHandleSize does.

These functions accept the following standard formats and special characters.

• Special characters that can be embedded in strings:

– \b backspace

– \f form feed

– \n new line (inserts the system-dependent end-of-line char(s); for example,
CR on Macintosh, NL on UNIX, CRNL on DOS)

– \r carriage return

– \s space

– \t tab

– %% percentage character (to print %)

• Format arguments:

%[-] [field size] [.precision] [argument size] [conversion]

– [-] Left-justifies what is printed; if not specified, the data is right-
justified.

– [field size] Specifies the minimum width of the field to print into. If
not specified, this defaults to 0. If there is less than the specified number of
characters in the data to print, the function pads with spaces on the left if
you specified -; otherwise the function pads on the right.

– [.precision] Sets the precision for floating-point numbers (that is, the
number of characters after the decimal place). For strings, this specifies the
maximum number of characters to print.
LabVIEW Code Interface Reference Manual 8-20 © National Instruments Corporation

Chapter 8 Support Manager Functions
– [argument size] Specifies the data size for an argument. It applies
only to the d, o, u, and x conversion specifiers. By default, the conversion
for one of the specifiers is from a word (16-bit integer). The flag l causes
this conversion to convert the data so that the function assumes the data is a
long integer value.

– [conversion] b binary

c print a character (%2c, %4c print on int16, int32 as a
2,4 char constant)

d decimal

e exponential

f fixed point format

H string handle (LStrHandle)

o octal

p Pascal string

P long Pascal string (LStrPtr)

q print a point (passed by value) as %d,%d representing
horizontal, vertical coordinates

Q print a point (passed by value) as hv(%d,%d)
representing horizontal, vertical coordinates

r print a rectangle (passed by reference) as
%d,%d,%d,%d representing top,left, bottom, right
coordinates

R print a rectangle (passed by reference) as
tlbr(%d,%d,%d,%d) representing top,left, bottom,
right coordinates

s string

u unsigned decimal

x hex

z Path

Any of the numeric conversion characters (x, o, d, u, b, e, f) can be preceded by {cc}
to indicate that the number is passed by reference. cc can be iB, iW, … , cX depending
on the corresponding numeric type. If cc is an asterisk (*) the numeric type (iB
through cX) is an int16 in the argument list.
© National Instruments Corporation 8-21 LabVIEW Code Interface Reference Manual

Chapter 8 Support Manager Functions
StrCat
syntax int32 StrCat(s1, s2);

StrCat concatenates a C string, s2, to the end of another C string, s1, placing the result
in s1. This function assumes that s1 is large enough to contain the resulting string.

Parameter Type Description
s1 CStr Pointer to a C string.

s2 CStr Pointer to a C string.

returns The length of the resulting string.

StrCmp
syntax int32 StrCmp(s1, s2);

StrCmp lexically compares two strings to determine whether one is less than, the same
as, or greater than the other.

Parameter Type Description
s1 CStr Pointer to a C string.

s2 CStr Pointer to a C string.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1
is an initial substring of s2.

StrCpy
syntax CStr StrCpy(dst, src);

StrCpy copies the C string src to the C string dst. This function assumes that the
destination string is large enough to contain the source string.

Parameter Type Description
dst CStr Pointer to a C string.

src CStr Pointer to a C string.

returns A copy of the destination C string pointer.
LabVIEW Code Interface Reference Manual 8-22 © National Instruments Corporation

Chapter 8 Support Manager Functions
StrLen
syntax int32 StrLen(s);

StrLen returns the length of a C string.

Parameter Type Description
s CStr Pointer to a C string.

returns The number of characters in the C string, not including the NULL terminating
character.

StrNCaseCmp
syntax int32 StrNCaseCmp(s1, s2, n);

StrNCaseCmp lexically compares two strings to determine whether one is less than,
the same as, or greater than the other, limiting the comparison to n characters.
StrNCaseCmp ignores differences in case in performing the comparison.

Parameter Type Description
s1 CStr Pointer to a C string.

s2 CStr Pointer to a C string.

n uInt32 Maximum number of characters to compare.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1
is an initial substring of s2.

StrNCmp
syntax int32 StrNCmp(s1, s2, n);

StrNCmp lexically compares two strings to determine whether one is less than, the
same as, or greater than the other, limiting the comparison to n characters.

Parameter Type Description
s1 CStr Pointer to a C string.

s2 CStr Pointer to a C string.

n uInt32 Maximum number of characters to compare.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1
is an initial substring of s2.
© National Instruments Corporation 8-23 LabVIEW Code Interface Reference Manual

Chapter 8 Support Manager Functions
StrNCpy
syntax CStr StrNCpy(dst, src, n);

StrNCpy copies the C string src to the C string dst. If the source string is less than n
characters, the function pads the destination with null characters. If the source string is
greater than n, then only n characters are copied. This function assumes that the
destination string is large enough to contain the source string.

Parameter Type Description
dst CStr Pointer to a C string.

src CStr Pointer to a C string.

n int32 Maximum number of characters to copy.

returns A copy of the destination C string pointer.

ToLower
syntax uChar ToLower(c);

ToLower returns the lowercase value of c if c is an uppercase alphabetic character.
Otherwise, it returns c unmodified. On the SPARCstation, this function also works for
international characters (Ä -> ä, and so on).

Parameter Type Description
c uChar Character that you want to analyze.

returns The lowercase value of c.

ToUpper
syntax uChar ToUpper(c);

ToUpper returns the uppercase value of c if c is a lowercase alphabetic character.
Otherwise, it returns c unmodified. On the SPARCstation, this function also works for
international characters (ä -> Ä, and so on).

Parameter Type Description
c uChar Character that you want to analyze.
LabVIEW Code Interface Reference Manual 8-24 © National Instruments Corporation

Chapter 8 Support Manager Functions
returns The uppercase value of c

Utility Functions

BinSearch
syntax int32 BinSearch(arrayp, n, elmtSize, key,

compareProcP);

BinSearch searches an array of an arbitrary data type using the binary search
algorithm. In addition to passing the array that you want to search to this routine, you
also pass a comparison procedure that this sort routine then uses to compare elements in
the array.

The comparison routine should return a number less than zero if a is less than b, zero if
a is equal to b, and a number greater than zero if a is greater than b.

You should declare the comparison routine to have the following parameters and return
type.

int32 compareProcP(UPtr a, UPtr b);

Parameter Type Description
arrayp UPtr Pointer to an array of data.

n int32 Number of elements in the array that you want to
search.

elmtSize int32 Size in bytes of an array element.

key UPtr Pointer to the data that you want to search for.

compareProcP procPtr Comparison routine that you want BinSearch to
use in comparing array elements. BinSearch
passes this routine the addresses of two elements
that it needs to compare.

returns The position in the array where the data is found (with 0 being the first element
of the array), if it is found. If the data is not found, BinSearch returns -i-1,
where i is the position where x should be placed.
© National Instruments Corporation 8-25 LabVIEW Code Interface Reference Manual

Chapter 8 Support Manager Functions
QSort
syntax void QSort(arrayp,n,elmtSize,

compareProcP());

QSort sorts an array of an arbitrary data type using the QuickSort algorithm. In addition
to passing the array that you want to sort to this routine, you also pass a comparison
procedure that this sort routine then uses to compare elements in the array.

The comparison routine should return a number less than zero if a is less than b, zero if
a is equal to b, and a number greater than zero if a is greater than b.

You should declare the comparison routine to have the following parameters and return
type.

int32 compareProcP(UPtr a, UPtr b);

Parameter Type Description
arrayp UPtr Pointer to an array of data.

n int32 Number of elements in the array that you want to
sort.

elmtSize int32 Size in bytes of an array element.

compareProcP procPtr Comparison routine that you want QSort to use to
compare array elements. QSort passes this routine
the addresses of two elements that it needs to
compare.

Unused *Macro*
syntax void Unused(x)

Unused indicates that a function parameter or local variable is not used by that
function. This is useful for suppressing compiler warnings for many compilers. Notice
that no semicolon is used with this macro.

Parameter Type Description
x - Unused parameter or local variable.
LabVIEW Code Interface Reference Manual 8-26 © National Instruments Corporation

Chapter 8 Support Manager Functions
Time Functions

ASCIITime
syntax CStr ASCIITime(secs);

ASCIITime returns a pointer to a string representing the date and time of day
corresponding to t seconds after January 1, 1904, 12:00 AM, GMT. This function uses
the same date format as that returned by the DateCString function using a mode of
2. The date is followed by a space, and the time is in the same format as that returned by
the TimeCString function using a mode of 0. As an example, this function might
return Tuesday, Dec 22, 1992 5:30. On the SPARCstation, this function accounts for
international conventions for representing dates.

Parameter Type Description
secs uInt32 Seconds since the January 1, 1904, 12:00 AM,

GMT.

returns The date and time as a C string.

DateCString
syntax CStr DateCString(secs, fmt);

Note: This function was formerly called DateString.

DateCString returns a pointer to a string representing the date corresponding to t
seconds after January 1, 1904, 12:00 AM, GMT. On the SPARCstation, this function
accounts for international conventions for representing dates.

Parameter Type Description
secs uInt32 Seconds since January 1, 1904, 12:00 AM, GMT.

fmt int32 Code describing the format for the returned string.

This parameter determines the format of the
returned date string and can have the following
values.

Fmt Meaning

0 Return the date in short date format, mm/
dd/yy, where mm is a number between 1
and 12 representing the current month, dd
is the current day of the month (1 through
© National Instruments Corporation 8-27 LabVIEW Code Interface Reference Manual

Chapter 8 Support Manager Functions
31), and yy is the last two digits of the
corresponding year. An example is 12/31/
92.

1 Return the date in long date format,
dayName, MonthName, DayOfMonth,
LongYear. An example is Thursday,
December 31, 1992.

2 Return the date in abbreviated date format,
AbbrevDayName, AbbrevMonthName,
DayOfMonth, LongYear. An example is
Thu, Dec 31, 1992.

returns The date as a C string.

DateToSecs
syntax uInt32 DateToSecs(dateRecordP);

DateToSecs converts from a time described using the DateRec data structure to the
number of seconds since January 1, 1904, 12:00 AM, GMT.

Parameter Type Description
dateRecordP DateRec * Pointer to a DateRec structure. DateToSecs

stores the converted date in the fields of the date
structure referred to by dateRecordP. This data
structure is described in the Introduction section of
this chapter.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

returns The corresponding number of seconds since January 1, 1904, 12:00 AM, GMT.

MilliSecs
syntax uInt32 MilliSecs();

returns The time since an undefined system time in milliseconds. The actual
resolution of this timer is system dependent.
LabVIEW Code Interface Reference Manual 8-28 © National Instruments Corporation

Chapter 8 Support Manager Functions
SecsToDate
syntax void SecsToDate(secs, dateRecordP);

SecsToDate converts the seconds since January 1, 1904, 12:00 AM, GMT into a data
structure containing numerical information about the date, including the year (1904
through 2040), the month (1 through 12), the day as it corresponds to the current year (1
through 366), month (1 through 31), and week (1 through 31), hour (0 through 23), the
hour (0 through 23), minute (0 through 59), and second (0 through 59) of that day, and
a value indicating whether the time specified uses daylight savings time.

Parameter Type Description
secs uInt32 Seconds since January 1, 1904, 12:00 AM, GMT.

dateRecordP DateRec * Pointer to a DateRec structure. SecsToDate
stores the converted date in the fields of the date
structure referred to by dateRecordP. This data
structure is described in the Introduction section of
this chapter.

See the Pointers as Parameters section of
Chapter 1, CIN Overview, for more information
about using this parameter.

TimeCString
syntax CStr TimeCString(secs, fmt);

Note: This function was formerly called TimeString.

TimeCString returns a pointer to a string representing the time of day corresponding
to t seconds after January 1, 1904, 12:00 AM, GMT. On the SPARCstation, this function
accounts for international conventions for representing dates.

Parameter Type Description
secs uInt32 Seconds since January 1, 1904, 12:00 AM, GMT.

fmt int32 Code describing the format for the returned string.

The parameter fmt determines the format of the
returned time string and can have the following
values.

Fmt Meaning
© National Instruments Corporation 8-29 LabVIEW Code Interface Reference Manual

Chapter 8 Support Manager Functions
0 Return the time in the format hh:mm. The
first value, hh, represents the hour (0
through 23, with 0 as midnight), and the
second value, mm, represents the minute (0
through 59).

1 Return the time in the format hh:mm:ss.
The first value, hh, represents the hour, the
second value, mm, represents the minute (0
through 59), and the third value, ss,
represents the second (0 through 59).

returns The time as a C string.

TimeInSecs
syntax uInt32 TimeInSecs();

returns The current date and time in seconds relative to January 1, 1904, 12:00 AM,
Greenwich mean time (GMT).
LabVIEW Code Interface Reference Manual 8-30 © National Instruments Corporation

CIN Common Questions
© National Instruments Corporation A-1 LabVIEW Code Interface Refer

Appendix

A

This appendix answers some of the questions commonly asked by
LabVIEW CIN users.

What compilers can be used to write CINs for LabVIEW?

Microsoft Windows 3.1, Windows 95, and Windows NT
You can use the Watcom C/386 compiler, version 9.0 or later, to write
CINs for LabVIEW for Windows 3.1. Other compilers for Windows
3.1 (including the Microsoft C compiler) do not generate the proper
code for LabVIEW to operate as a 32-bit application. For a compiler to
work with LabVIEW, it must generate a file in the .REX format (a
32-bit Phar Lap relocatable executable).

LabVIEW for Windows 95/NT supports additional compilers,
including Microsoft C/C++ and Visual C++ for NT.

Macintosh
You can use the following compilers to compile your CIN source code:
THINK C, version 5-7, for 68K (from Symantec Corporation of
Cupertino, CA); Symantec C++, version 8, for PowerPC (from
Symantec Corporation of Cupertino, CA); Metrowerks CodeWarrior
for 68K (from Metrowerks Corporation of Austin, TX); Metrowerks
CodeWarrior for Power Macintosh (from Metrowerks Corporation of
Austin, TX); Macintosh Programmer’s Workshop (MPW) for 68K and
PowerPC (from Apple Computer, Inc. of Cupertino, CA).

Sun
You can use the Sun ANSI-compatible compiler and the gcc compiler.
The only officially supported compiler is the ANSI C compiler, also
known as the unbundled C compiler or SPARCompiler C, which can
be purchased from Sun. On Solaris 1.x machines, this compiler is
commonly referred to as acc (ANSI C compiler); on Solaris 2.x
machines, the compiler is called cc. The Gnu C compiler (gcc) is also
ANSI-compatible and can be used to create CINs for LabVIEW for
Sun. The only known limitation of the gcc compiler is that, under
ence Manual

Appendix A CIN Common Questions
Solaris 1.x, it does not support extended-precision floating point
numbers. Source code for the gcc compiler is available for both
Solaris 1.x and 2.x through anonymous ftp to prep.ai.mit.edu.

SPARCstations with Solaris 1.x come with the bundled C compiler
(cc) that is not ANSI-compliant. Because the cc compiler requires
substantial modification to the header files included with LabVIEW,
National Instruments does not recommend using this compiler for CIN
development.

Please note that LabVIEW for Solaris 1.x does not accept object files
created with the -g debugging flag turned on during compilation.

My VI, which contains a CIN, crashes LabVIEW or gives a
memory.c error.
In almost all cases this indicates an error in the C code of the CIN.
Make sure that the CIN code properly allocates or deallocates memory
as necessary. See the section entitled How LabVIEW Passes Variably
Sized Data to CINs in Chapter 2, CIN Parameter Passing, of this
manual for further details and examples.

How do I debug my CIN?
You have several debugging options, depending upon the platform you
use. The following list gives descriptions of some of the available
methods.

• Use the DbgPrintf function, which creates a debugging
window. Although the position and size of the window cannot be
controlled, information can be posted to the window as the CIN
code executes. Notice that the window does not contain a
scrollbar. DbgPrintf is described in the section entitled
Debugging External Code in Chapter 1, CIN Overview, of this
manual.

• If you are using a Macintosh and have Macsbug, you can use the
Debugger and DebugStr statements to set breakpoints in the
code.

• If you suspect that your CIN is corrupting memory, use
DSHeapCheck(FALSE) to test for integrity. Observe the heap
integrity when you enter and again when you exit the CIN code to
determine if your code is corrupting the heap.

• Use the File Manager functions to write your debugging
information out to a file. If you are observing this file while the
LabVIEW Code Interface Reference Manual A-2 © National Instruments Corporation

Appendix A CIN Common Questions
CIN is running, do not forget to flush the file before the
information physically gets to the disk.

• If the VI containing the CIN executes without crashing, but you do
not have an external window and decide not to use DbgPrintf,
then a) determine what information is pertinent to your problem,
and b) return the information from one of the parameters of the
CIN to the block diagram of the VI.

Is there any sort of scanf function in the LabVIEW manager
routines?
No. National Instruments is investigating this functionality for a future
version of LabVIEW. CINs with LabVIEW for Sun can call the
standard scanf and related functions.

I can't seem to link to any of the globals mentioned in the
LabVIEW Code Interface Reference Manual.
Examples of these globals include: decimalPt, CrgRtnChar,
LnFeedChar, EOLChar, TabChar, EmptyStrChar,
SInfinity, SNegInfinity, DInfinity,
DNegInfinity, EMaxW, EMaxL, EInfinity,
ENegInfinity, DPi, DHalfPi, DThreeHalvesPi,
DTwoPi, DRad2Deg, DTwo, DNan, EPi, EHalfPi,
ETwoPi, EE, Eln10, Eln2, Elog10e, ELog2e, EHalf,
EOne, ETwo, ETen, EZero, ERecipPi, ERecipE,
EPlanck, EElemChg, ESpeedLt, EGravity, EAvgdro,
ERydbrg, EMlrGas, ELnOfPi, ELogOfE, ELnOfTwo, and
ENan.

Although mentioned in the documentation, these globals are not
exported for use in CINs. To get these values into your CIN code, pass
them in as parameters to the CIN.

Can LabVIEW be used to call a DLL in Windows?
Yes. The new Call Library Function calls a DLL function directly. The
function is located in the Advanced palette of the Functions palette.
Refer to Chapter 11 of the LabVIEW Function Reference Manual for
more details on this new feature.
© National Instruments Corporation A-3 LabVIEW Code Interface Reference Manual

Appendix A CIN Common Questions
I get an error linking to a function when I build my CIN using
the Windows platform.
The Watcom linker usually does not allow you to link with the Watcom
library function modules when making a stand-alone module. If it does
allow you to link, the code should work properly. Unfortunately, there
is no clearly defined way to determine which functions will link and
which will not; it is trial and error.

If this error occurs, the only way to work through the problem is to
write a DLL that calls the library functions.

Why do I get garbage back from math functions such as
atan2, pow, ceil, floor, ldexp, frexp, modf, and fmod when
using MPW C?
Include "Math.h" at the top of your .c file.

Why can't I link to the math functions (sin, cos, and so on)
when using THINK C?
Find the math.c and error.c functions that came with THINK C
and include them in the project. Be sure to also include "Math.h" in
the .c file. Then enable the 68881 options under THINK C
preferences.
LabVIEW Code Interface Reference Manual A-4 © National Instruments Corporation

Customer Communication
© National Instruments Corporation B-1 LabVIEW Code Interface Refer

Appendix

B

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form
and the configuration form, if your manual contains one, about your system configuration to
answer your questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to
quickly provide the information you need. Our electronic services include a bulletin board
service, an FTP site, a FaxBack system, and e-mail support. If you have a hardware or software
problem, first try the electronic support systems. If the information available on these systems
does not answer your questions, we offer fax and telephone support through our technical support
centers, which are staffed by applications engineers.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded
instructions on how to use the bulletin board and FTP services and for BBS automated
information, call (512) 795-6990. You can access these services at:

United States: (512) 794-5422 or (800) 327-3077
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 1 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support

To access our FTP site, log on to our Internet host, ftp.natinst.com, as anonymous and use
your Internet address, such as joesmith@anywhere.com, as your password. The support files
and documents are located in the /support directories.
ence Manual

FaxBack is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access FaxBack from a touch-tone telephone at the
following numbers:

(512) 418-1111 or (800) 329-7177

E-Mail Support (currently U.S. only)

You can submit technical support questions to the appropriate applications engineering team
through e-mail at the Internet addresses listed below. Remember to include your name, address,
and phone number so we can contact you with solutions and suggestions.

GPIB: gpib.support@natinst.com LabVIEW: lv.support@natinst.com
DAQ: daq.support@natinst.com HiQ: hiq.support@natinst.com
VXI: vxi.support@natinst.com VISA: visa.support@natinst.com
LabWindows: lw.support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the
technical support number for your country. If there is no National Instruments office in your
country, contact the source from which you purchased your software to obtain support.

Telephone Fax
Australia 03 9 879 9422 03 9 879 9179
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 519 622 9310 519 622 9311
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 71 11
Finland 90 527 2321 90 502 2930
France 1 48 14 24 24 1 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Italy 02 48301892 02 48301915
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

FaxBack Support

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and
use the completed copy of this form as a reference for your current configuration. Completing
this form accurately before contacting National Instruments for technical support helps our
applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name ___

Company __

Address ___

__

Fax (____) ___________________ Phone (____) ____________________________________

Computer brand ________________ Model ________________ Processor __________________

Operating system (include version number) ___

Clock speed ______ MHz RAM _____ MB Display adapter _________________________

Mouse ___ yes ___ no Other adapters installed _____________________________________

Hard disk capacity _____ MB Brand __

Instruments used __

__

National Instruments hardware product model_______________ Revision _________________

Configuration __

National Instruments software product ___________________________ Version _____________

Configuration __

The problem is: ___

__

__

__

__

List any error messages: __

__

__

The following steps reproduce the problem: ___

__

__

__

__

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our
products. This information helps us provide quality products to meet your needs.

Title: LabVIEW® Code Interface Reference Manual

Edition Date: November 1995

Part Number: 320539C-01

Please comment on the completeness, clarity, and organization of the manual.

__

__

__

__

__

__

__

If you find errors in the manual, please record the page numbers and describe the errors.

__

__

__

__

__

__

__

Thank you for your help.

Name ___

Title __

Company __

Address ___

__

Phone () __

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678
Austin, TX 78730-5039

© National Instruments Corporation G-i LabVIEW Code Interface Refer

Glossary
Numbers

1D One-dimensional.

2D Two-dimensional.

A

active window Window that is currently set to accept user input. Usually the
front window. The title bar of an active window is highlighted.
You make a window active by clicking on it, or be selecting it
from the Windows menu.

ADC Analog-to-digital converter. An electronic device, often an
integrated circuit, that converts an analog voltage to a digital
number.

ANSI American National Standards Institute.

application zone See AZ.

array Ordered, indexed set of data elements of the same type.

array shell Front panel object that houses an array. It consists of an index
display, a data object window, and an optional label. It can accept
various data types.

Prefix Meaning Value

m- milli- 10-3

µ- micro- 10-6

n- nano- 10-9
ence Manual

Glossary
artificial data dependency Condition in a dataflow programming language in which the
arrival of data rather than its value triggers execution of a node.
See also data dependency.

asynchronous execution Mode in which multiple processes share processor time, one
executing while the others, for example, wait for interrupts, as
while performing device I/O or waiting for a clock tick.

auto-indexing Capability of loop structures to disassemble and assemble arrays
at their borders. As an array enters a loop with auto-indexing
enabled, the loop automatically disassembles it with scalars
extracted from one dimensional arrays, one dimensional arrays
extracted from two dimensional arrays, and so on. Loops
assemble data into arrays as they exit the loop according to the
reverse of the same procedure.

autoscaling Ability of scales to adjust to the range of plotted values. On graph
scales, this feature determines maximum and minimum scale
values, as well.

AZ (application zone) Memory allocation section that holds all data in a VI except
execution data.

B

block diagram Pictorial description or representation of a program or algorithm.
In LabVIEW, the block diagram, which consists of executable
icons called nodes and wires that carry data between the nodes, is
the source code for the virtual instrument. The block diagram
resides in the block diagram of the VI.

Boolean controls Front panel objects used to manipulate and display or input and
and indicators output Boolean (True or False) data. Several styles are available,

such as switches, buttons and LEDs.

breakpoint Mode that halts execution when a subVI is called. You set a
breakpoint by clicking on the toolbar and then on a node.

broken VI VI that cannot be compiled or run; signified by a run button with
a broken arrow.

Bundle node Function that creates clusters from various types of elements.
LabVIEW Code Interface Reference Manual G-ii © National Instruments Corporation

Glossary
C

C string (CStr) A series of zero or more unsigned characters, terminated by a
zero, used in the C programming language.

case One subdiagram of a Case Structure.

Case Structure Conditional branching control structure, which executes one and
only one of its subdiagrams based on its input. It is the
combination of the IF THEN ELSE and CASE statements in
control flow languages.

cast To change the type descriptor of a data element without altering
the memory image of the data.

chart See scope chart, strip chart, and sweep chart.

CIN See Code Interface Node.

CIN source code Original, uncompiled text code. See object code.

Cloning To make a copy of a control or some other LabVIEW object by
<Key>-clicking on it and dragging the copy to its new location.
In Windows, click on the object with the left mouse button while
holding down the <Ctrl> key and drag the copy to its new
location. On the Macintosh, <option>-click on the object and
drag the copy to its new location. On the Sun, click the left mouse
button while holding down the <meta> key, and drag the copy
to its new location, or click on the object with the middle mouse
button and drag the copy.

cluster A set of ordered, unindexed data elements of any data type
including numeric, Boolean, string, array, or cluster. The
elements must be all controls or all indicators.

cluster shell Front panel object that contains the elements of a cluster.

Code Interface Node Special block diagram node through which you can link
conventional, text-based code to a VI.

code resource Resource that contains executable machine code. You link code
resources to LabVIEW through a CIN.

coercion The automatic conversion LabVIEW performs to change the
numeric representation of a data element.

coercion dot Glyph on a node or terminal indicating that the numeric
representation of the data element changes at that point.

Color tool Tool you use to color objects and backgrounds.
© National Instruments Corporation G-iii LabVIEW Code Interface Reference Manual

Glossary
compile Process that converts high-level code to machine-executable
code. LabVIEW automatically compiles VIs before they run for
the first time after creation or alteration.

concatenated Pascal string A list of Pascal-type strings concatenated into a single block of
(CPStr) memory.

connector Part of the VI or function node that contains its input and output
terminals, through which data passes to and from the node.

connector pane Region in the upper right corner of a front panel window that
displays the VI's connector. It underlies the Icon pane.

constant See universal and user-defined constants.

control Front panel object for entering data to a VI interactively or to a
subVI programmatically.

control flow Programming system in which the sequential order of
instructions determines execution order. Most conventional text-
based programming languages, such as C, Pascal, and BASIC, are
control flow languages.

Controls palette Menu of controls and indicators.

conversion Changing the type of a data element.

CPStr See concatenated Pascal string

current VI VI whose front panel, block diagram, or Icon Editor is the active
window.

custom PICT controls Controls and indicators whose parts can be replaced by graphics
and indicators you supply.

D

data acquisition Process of acquiring data, typically from A/D or digital input
plug-in boards.

data dependency Condition in a dataflow programming language in which a node
cannot execute until it receives data from another node. See also
artificial data dependency.

data flow Programming system consisting of executable nodes in which
nodes execute only when they have received all required input
data and produce output automatically when they have executed.
LabVIEW is a dataflow system.
LabVIEW Code Interface Reference Manual G-iv © National Instruments Corporation

Glossary
data logging Generally, to acquire data and simultaneously store it in a disk
file. LabVIEW file I/O functions can also log data.

data space zone See DS zone.

data type descriptor Code that identifies data types, used in data storage and
representation.

dB Decibels.

Description box Online documentation for a LabVIEW object.

diagram window VI window that contains the VI's block diagram code.

dimension Size and structure attribute of an array.

DS (data space) zone Memory allocation section that holds VI execution data.

DUT Device under test.

E

empty array Array that has zero elements, but has a defined data type. For
example, an array that has a numeric control in its data display
window but has no defined values for any element is an empty
numeric array.

EOF End-of-file. Character offset of the end of file relative to the
beginning of the file (that is, the EOF is the size of the file).

executable A stand-alone piece of code that will run, or execute.

execution highlighting Feature that animates VI execution to illustrate the data flow in
the VI.

external routine See shared external routine.

F

flattened data Data of any type that has been converted to a string, usually for
writing it to a file.

For Loop Iterative loop structure that executes its subdiagram a set number
of times. Equivalent to conventional code: For i=0 to n-1,
do … .
© National Instruments Corporation G-v LabVIEW Code Interface Reference Manual

Glossary
Formula Node Node that executes formulas that you enter as text. Especially
useful for lengthy formulas that would be cumbersome to build in
block diagram form.

frame Subdiagram of a Sequence Structure.

free label Label on the front panel or block diagram that does not belong to
any other object.

front panel The interactive user interface of a VI. Modeled from the front
panel of physical instruments, it is composed of switches, slides,
meters, graphs, charts, gauges, LEDs, and other controls and
indicators.

function Built-in execution element, comparable to an operator, function,
or statement in a conventional language.

G

G LabVIEW graphical programming language.

global variable Non-reentrant subVI with local memory that uses an uninitialized
shift register to store data from one execution to the next. The
memory of copies of these subVIs is shared and thus can be used
to pass global data between them.

GMT Greenwich Mean Time.

GPIB General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE
Standard 488.1-1987 and ANSI/IEEE Standard 488.2-1987.
Hewlett-Packard, the inventor of the bus, calls it the HP-IB.

graph control and indicator Front panel object that displays data in a Cartesian plane.

H

handle Pointer to a pointer to a block of memory; handles reference
arrays and strings. An array of strings is a handle to a block of
memory containing handles to strings.

Help window Special window that displays the names and locations of the
terminals for a function or subVI, the description of controls and
indicators, the values of universal constants, and descriptions and
data types of control attributes.

hierarchical menu Menu that contains submenus or palettes.
LabVIEW Code Interface Reference Manual G-vi © National Instruments Corporation

Glossary
housing Nonmoving part of front panel controls and indicators that
contains sliders and scales.

Hz Hertz. Cycles per second.

I

icon Graphical representation of a node on a block diagram.

Icon Editor Interface similar to that of a paint program for creating VI icons.

icon pane Region in the upper right-hand corner of the front panel and block
diagram windows that displays the VI icon.

IEEE Institute of Electrical and Electronic Engineers.

indicator Front panel object that displays output.

Inf Digital display value for a floating point representation of
infinity.

inplace Characteristic of an operation whose input and output data can
use the same memory space.

instrument driver VI that controls a programmable instrument.

I/O Input/output.

L

label Text object used to name or describe other objects or regions on
the front panel or block diagram.

Labeling tool Tool used to create labels and enter text into text windows.

LabVIEW Laboratory Virtual Instrument Engineering Workbench.

LabVIEW string (LStr) The string data type used by LabVIEW block diagrams.

legend Object owned by a chart or graph that display the names and plot
styles of plots on that chart or graph.

M

matrix Two-dimensional array.

MB Megabytes of memory.
© National Instruments Corporation G-vii LabVIEW Code Interface Reference Manual

Glossary
mechanical-action controls Front panel objects that look and operate like familiar
and indicators mechanical or electro-mechanical devices. Examples include

toggle switches, slides, meters, knobs, and LEDs

meta-click On the Sun, to click the mouse button while pressing the <meta>
key.

MPW Macintosh Programmer’s Workshop.

MSB Most significant bit.

N

NaN Digital display value for a floating-point representation of not-a-
number, typically the result of an undefined operation, such as
log(-1).

nodes Execution elements of a block diagram consisting of functions,
structures, and subVIs.

nondisplayable ASCII characters that cannot be displayed, such as ESC, NUL,
indicators SOH, indicators and so on.

numeric controls Front panel objects used to manipulate and display or input and
and indicators output numeric data.

O

object Generic term for any item on the front panel or block diagram,
including controls, nodes, wires, and imported pictures.

object code Compiled version of source code. Object code is not stand-alone
because you must load it into LabVIEW to run it.

Operating tool Tool used to enter data into controls as well as operate them.
Resembles a pointing finger.

P

palette Menu that displays a palette of pictures that represent possible
options.

panel window VI window that contains the front panel, the toolbar, and the icon/
connector pane.
LabVIEW Code Interface Reference Manual G-viii © National Instruments Corporation

Glossary
Pascal string (PStr) A series of unsigned characters, with the value of the first
character indicating the length of the string. Used in the Pascal
programming language.

plot A graphical representation of an array of data shown either on a
graph or chart.

pointer Variable that contains an address. Commonly this address refers
to a dynamically-allocated block of memory.

polymorphism Ability of a node to automatically adjust to data of different
representation, type, or structure.

pop up To call up a special menu by clicking on an object with the right
mouse button (Windows, Sun and HP-UX) or holding down the
<command> key while clicking (Macintosh).

pop-up menus Menus accessed by popping up on an object. Menu options
pertain to that object specifically.

portable Able to compile on any platform that supports LabVIEW.

Positioning tool Tool used to move and resize objects.

private data structures Data structures whose exact format is not described and is usually
subject to change.

pull-down menus Menus accessed from a menu bar. Menu options are usually
general in nature.

R

RAM Random Access Memory.

reentrant execution Mode in which calls to multiple instances of a subVI can execute
in parallel with distinct and separate data storage.

reference See pointer.

relocatable Able to be moved by the memory manager to a new memory
location.

representation Subtype of the numeric data type, of which there are signed and
unsigned byte, word, and long integers, as well as single-,
double-, and extended-precision floating-point numbers both real
and complex.

ring control Special numeric control that associates 32-bit integers, starting at
0 and increasing sequentially, with a series of text labels or
graphics.
© National Instruments Corporation G-ix LabVIEW Code Interface Reference Manual

Glossary
S

scalar Number capable of being represented by a point on a scale. A
single value as opposed to an array. Scalar Booleans, strings and
clusters are explicitly singular instances of their respective data
types.

scale Part of mechanical-action, chart, and graph controls and
indicators that contains a series of marks or points at known
intervals to denote units of measure.

scope chart Numeric indicator modeled on the operation of an oscilloscope.

sequence local Terminal used to pass data between the frames of a Sequence
Structure.

Sequence Structure Program control structure that executes its subdiagrams in
numeric order. Commonly used to force nodes that are not data
dependent to execute in a desired order.

shared external routine Subroutine that can be shared by several CIN code resources.

shift register Optional mechanism in loop structures used to pass a variable's
value from one iteration of a loop to a subsequent iteration.

sink terminal Terminal that absorbs data. Also called a destination terminal.

slider Moveable part of slide controls and indicators.

source code Original, uncompiled text code.

source terminal Terminal that emits data.

string controls and indicators Front panel objects used to manipulate and display or input and
output text.

strip chart A numeric plotting indicator modeled after a paper strip chart
recorder, which scrolls as it plots data.

structure Program control element, such as a Sequence, Case, For Loop, or
While Loop.

subdiagram Block diagram within the border of a structure.

subVI VI used in the block diagram of another VI; comparable to a
subroutine.

sweep chart Similar to a scope chart except a line sweeps across the screen to
separate old data from new data.
LabVIEW Code Interface Reference Manual G-x © National Instruments Corporation

Glossary
T

terminal Object or region on a node through which data passes.

tool Special LabVIEW cursors with which you can perform specific
operations.

top-level VI VI at the top of the VI hierarchy. This term is used to distinguish
the VI from its subVIs.

tunnel Data entry or exit terminal on a structure.

type descriptor See data type descriptor.

U

universal constant Uneditable block diagram object that emits a particular ASCII
character or standard numeric constant, for example, pi.

user-defined constant Block diagram object that emits a value you set.

UUT Unit under test.

V

V Volts.

vector One-dimensional array.

virtual instrument (VI) LabVIEW program; so called because it models the appearance
of a physical instrument.

W

While Loop Post-iterative-test loop structure that repeats a section of code
until a condition is met. Comparable to a Do loop or a Repeat-
Until loop in conventional programming languages.

wire Data path between nodes.

Wiring tool Tool used to define data paths between source and sink terminals.
© National Instruments Corporation G-xi LabVIEW Code Interface Reference Manual

Glossary
LabVIEW Code Interface Reference Manual G-xii © National Instruments Corporation

Index

©

 National Instruments Corporation

Index

-13 LabVIEW Code Interface Reference Manual

Numerics

680x0 (68K) Macintosh support, 1-3

A

absolute paths
conventional path specifications, 5-14

to 5-15
definition, 5-14
empty path specifications, 5-15 to 5-16

access rights functions
FGetAccessRights, 1-38

Add parameter options, CIN terminal pop-up
menu, 1-6, 1-7

Advanced palette, 1-6
alignment considerations for arrays and

strings, 2-10 to 2-12
ANSI C compiler.

See

 unbundled Sun ANSI C
compiler.

arrays and strings.

See also

NumericArrayResize function;
SetCINArraySize function; string data types;
string manipulation functions.

alignment considerations, 2-10 to 2-12
array data type, 5-4
clusters containing variably sized

data, 2-12
examples

computing cross product of two
two-dimensional arrays, 2-19
to 2-22

concatenating two strings, 2-16
to 2-19

working with clusters, 2-23 to 2-26
parameter passing, 2-11
paths, 2-12

resizing, 2-12 to 2-13
AZHandToHand function, 1-37
AZMemStats function, 1-38
AZPtrToHand function, 1-38
AZSetHandleSize function, 2-10

B

block diagram
placing CIN on block diagram, 1-6
unlimited number of CINs per block

diagram, 1-36
Booleans

comparing two numbers and producing
Boolean scalar (example), 2-9 to 2-10

description, 5-2 to 5-3
forms of (table), 5-3
parameter passing, 2-2 to 2-3

byte manipulation functions
GetALong, 1-37
SetALong, 1-38

C

.c files.

See also

 CIN source code, compiling;
CIN source code, creating; header files.

CIN routine prototypes (example), 2-5
to 2-6

creating, 2-4 to 2-5
explicit data type sizes, 2-1
for parameter passing, 2-1

calling code
calling external subroutines (example),

4-10 to 4-11
compiling, 4-12 to 4-15

HP-UX C/ANSI C compiler, 4-14

Index

LabVIEW Code Interface Reference Manual

Index

-14

©

 National Instruments Corporation

MPW compiler, 4-12
not compiled with external

subroutines, 4-2
THINK C compiler, 4-12
unbundled Sun ANSI C

compiler, 4-14
Watcom C compiler, 4-13 to 4-14

creating
HP-UX C/ANSI C compiler, 4-6
Microsoft Windows 3.x, Windows

95, and Windows NT, 4-6
MPW compiler, 4-6
requirements, 4-4 to 4-6
THINK C compiler, 4-5
unbundled Sun ANSI C compiler, 4-6

calling conventions
C, 2-3
Pascal, 2-3

calling Dynamic Link Libraries (DLLs), 3-13
to 3-25

calling 16-bit DLL, 3-14 to 3-16
calling the function, 3-16
describing the function, 3-15 to 3-16
getting address of desired

function, 3-15
loading the DLL, 3-14

CIN displaying dialog box (example),
1-4, 3-16 to 3-25

block diagram, 3-19
CIN code, 3-19 to 3-22
compiling the CIN, 3-22
DLL code, 3-17 to 3-18
optimization, 3-23 to 3-25

using instead of Watcom C precompiled
libraries (note), 1-4

Windows NT, 3-13
char data type, 5-4
CIN data space globals.

See also

 code globals.
compared with code globals, 3-8
examples, 3-9 to 3-10
initializing in CINInit routine, 3-3
storage location, 3-9

CIN data space.

See also

 data space.

data storage space for one CIN
(illustration), 3-2

definition, 3-2
reentrancy, 3-7 to 3-8
retrieving value with CIN routines, 3-9
storing global data, 3-2

CIN MgErr data type, 2-3
CIN object code, loading, 1-36, 2-8
CIN parameter passing.

See

 parameter
passing, CIN.

CIN pop-up menu
Create .c File, 1-9 to 1-10, 2-1, 2-5
Load Code Resource, 1-36, 2-8

CIN routines, 3-1 to 3-13.

See also

 specific
CIN routines.

aborting VIs, 3-5
code globals and data space globals, 3-8

to 3-13
CIN data space globals example,

3-8 to 3-9
code global example, 3-10 to 3-11
differences between, 3-9
storage allocation, 3-9

code resources, 3-1 to 3-3
compiling VIs, 3-4 to 3-5
data spaces, 3-1 to 3-3
loading new resources into CINs, 3-4
loading VIs, 3-3
multiple references to same CIN, 3-6

to 3-7
prototyped in header file, 1-11 to

1-12, 2-5
examples, 1-11 to 1-14, 2-5
returning error codes, 2-6

reentrancy, 3-7 to 3-8
required in source code, 1-12
running VIs, 3-5
sample header files, 1-10 to 1-12
saving VIs, 3-5
unloading VIs, 3-4

CIN source code, compiling, 1-14 to 1-36
HP-UX C/ANSI C compiler, 1-34, 2-8
Macintosh considerations, 1-12 to 1-14

Index

©

 National Instruments Corporation

Index

-15 LabVIEW Code Interface Reference Manual

Macintosh Programmer’s Workshop
(MPW), 1-14 to 1-23, 2-7

Metrowerks CodeWarrior, 2-7
Microsoft SDK compiler, 2-7
Microsoft Visual C++ compiler, 2-7

to 2-8
Microsoft Windows considerations, 1-29
Solaris 1.x and 2.x considerations, 1-34
THINK C compiler, 1-15 to 1-19, 2-7
unbundled Sun ANSI C compiler, 1-34

to 1-36
utilities for simplifying, 1-14
Watcom C compiler, 1-33, 2-7, 3-21

CIN source code, creating, 1-9 to 1-14
CIN routines prototyped in header file,

1-11 to 1-12
CINAbort routine, 1-12
CINDispose routine, 1-11
CINInit routine, 1-12
CINLoad routine, 1-12
CINRun routine, 1-12
CINUnload routine, 1-13
examples, 1-10 to 1-12, 2-4 to 2-5
procedure for creating, 1-9 to 1-12

CIN terminal pop-up menu
Add parameter option, 1-6
Output Only option, 1-8
Remove Terminal option, 1-9

CINAbort routine
aborting VIs, 3-5
multiple references to same CIN, 3-7
reentrancy, 3-7 to 3-8
retrieving CIN data space value, 3-9
using CIN data space globals (example),

3-12 to 3-13
when to use, 1-12

CINDispose routine
compiling VIs, 3-4 to 3-5
loading new resources into CINs, 3-4
multiple references to same CIN, 3-7
reentrancy, 3-7 to 3-8
retrieving CIN data space value, 3-9
unloading VIs, 3-4

using CIN data space globals (example),
3-12 to 3-13

when to use, 1-12
CINInit routine

compiling VIs, 3-4 to 3-5
loading new resources into CINs, 3-4
loading VIs, 3-3
multiple references to same CIN, 3-6
reentrancy, 3-7 to 3-8
retrieving CIN data space value, 3-9
using CIN data space globals (example),

3-12 to 3-13
when to use, 1-12

CINLoad routine
loading VIs, 3-3
multiple references to same CIN, 3-6
using code globals (example), 3-10
when to use, 1-12

CINMake utility, 1-26
CINRun routine

compared with LVSBMain routine, 4-3
examples, 1-12, 2-6
parameter passing, 2-2, 2-5
retrieving CIN data space value, 3-9
running VIs, 3-5
use of ENTERLVSB and LEAVELVSB

macros, 1-13
using CIN data space globals (example),

3-12 to 3-13
writing for source code, 1-12

CINs
compiling source code

HP-UX C/ANSI C compiler, 2-8
debugging, 1-39 to 1-41
definition, 1-1
purpose and use, 1-1 to 1-2
synchronous execution and effect on

CPU, 1-1, 3-5
CINs, creating, 1-5 to 1-36

.c files, 1-9 to 1-12
adding input and output terminals, 1-7 to

1-9, 2-2
input-output terminals, 1-7 to 1-9

Index

LabVIEW Code Interface Reference Manual

Index

-16

©

 National Instruments Corporation

output-only terminals, 1-8 to 1-9
compiling source code

HP-UX C/ANSI C compiler, 1-34 to
1-36, 2-8

Macintosh considerations, 1-12
to 1-14

Macintosh Programmer’s Workshop
(MPW) compiler, 1-14 to 1-23

Metrowerks CodeWarrior, 2-7
Microsoft SDK compiler, 2-7
Microsoft Visual C++ compiler, 2-7

to 2-8
Microsoft Windows

considerations, 1-29
Solaris 1.x and Solaris 2.x

considerations, 1-34
THINK C compiler, 1-15 to 1-19, 2-7
unbundled Sun ANSI C compiler,

1-34 to 1-36
Watcom C compiler, 1-29 to

1-31, 2-7
examples

CIN that multiples two numbers, 2-4
to 2-8

comparing two numbers and
producing Boolean scalar, 2-9
to 2-10

computing cross product of two
two-dimensional arrays, 2-19
to 2-22

concatenating two strings, 2-16
to 2-19

working with clusters, 2-23 to 2-26
loading object code, 1-36, 2-8
overview, 1-5
placing CIN on block diagram, 1-6
source code, creating, 1-9 to 1-12, 2-4

to 2-6
unlimited number of CINs per block

diagram, 1-36
wiring inputs and outputs, 1-9, 2-4

CINSave routine
multiple references to same CIN, 3-7

saving VIs, 3-5
when to use, 1-11

CINUnload routine
loading new resources into CINs, 3-4
multiple references to same CIN, 3-6
using code globals (example), 3-10
when to use, 1-12

clusters containing variably-sized data, 2-12
example, 2-23 to 2-26

clusters of scalars, 2-3
code globals, 3-8 to 3-13

compared with CIN data space
globals, 3-10

example, 3-10 to 3-11
storage allocation, 3-9

Code Interface Nodes (CINs).

See

 CINs.
Code Interface Nodes function

(illustration), 1-6
code resource

definition, 3-1
loading new resource into CINs, 3-4
referencing by CIN node, 3-2 to 3-3

CodeWarrior development environment.

See

Metrowerks CodeWarrior.

comparing two numbers and producing
Boolean scalar (example), 2-9 to 2-10

compiling CIN source code.

See

 CIN source
code, compiling.

compiling shared external subroutines.

See

shared external subroutines.

complex numbers, 5-4
concatenated Pascal strings (CPStr), 5-6.

See
also

 Pascal-style strings (PStr).
constants

boolean data type values, 5-7
conflicts in extcode.h file, 1-11
defined for use with external code

modules, 5-6
LVBoolean data type values, 5-7
NULL 0, 5-6

CPStr.

See

 concatenated Pascal strings
(CPStr).

Create .c File, CIN pop-up menu, 1-9 to 1-10

Index

©

 National Instruments Corporation

Index

-17 LabVIEW Code Interface Reference Manual

creating CIN source code.

See

 CIN source
code, creating.

creating CINs.

See

 CINs, creating.
creating files.

See

 FCreate function;
FCreateAlways function.

CStr.

See

 C-style strings (CStr).
C-Style strings (CStr), 5-5
customer communication,

xi

D

data space (DS) zone, 5-9
data space globals.

See

 CIN data space
globals.

data space, 3-1 to 3-2.

See also

 CIN data
space.

data structures.

See also

 parameter passing,
CIN.

memory manager data structures, 5-12
time specified as data structures, 5-17

data types
char, 5-4
conflicts in extcode.h file, 1-11
constants, 1-11, 5-6 to 5-7
dynamic data types, 5-4 to 5-6

arrays, 5-4
concatenated Pascal strings

(CPStr), 5-6
C-style strings (CStr), 5-5
LabVIEW strings (LStr), 5-5
Pascal-style stings (PStr), 5-5
paths, 5-6
strings, 5-5

explicit data type sizes in header file, 2-1
memory-related types, 5-6
passing to CIN, 2-1
platform independence, 5-1
scalar data types

Boolean, 5-2 to 5-3
numerics, 5-3 to 5-4

complex numbers, 5-4
specified in .c file, 2-1

DateToSecs function, 1-38
DbgPrintf function, 1-39.

See also

 SPrintf

function.
debugging external code, 1-39 to 1-41

DbgPrintf function, 1-39
HP-UX, 1-41
Solaris, 1-41
Windows 95/NT, 1-40

debugging window, creating, 1-40
default access rights.

See

 access rights
functions.

directories
identifying, 5-13

directory functions.

See also

 path
management functions.

FGetAccessRights, 1-38
FGetInfo, 1-38
FGetVolInfo, 1-38

DLLs.

See

 calling Dynamic Link Libraries
(DLLs).

documentation
conventions,

x

 to

xi

organization of manual,

ix

 to

x

related documents,

xi

DSDisposePtr function
examples, 5-11

DSHandToHand function, 1-38
DSMemStats function, 1-38
DSPtrToHand function, 1-38
DSSetHandleSize function, 2-10
dynamic data types, 5-4 to 5-6

arrays, 5-4
concatenated Pascal strings (CPStr), 5-6
C-Style strings (CStr), 5-5
LabVIEW string (LStr), 5-5
Pascal-style string (PStr), 5-5
paths, 5-6, 5-16
strings, 5-5

Dynamic Link Libraries (DLLs), calling.

See

calling Dynamic Link Libraries (DLLs).

dynamic memory allocation, 5-8

E

empty path specifications, 5-15 to 5-16
ENTERLVSB macro

Index

LabVIEW Code Interface Reference Manual

Index

-18

©

 National Instruments Corporation

example, 1-13
including in CIN source code, 1-14
purpose and use, 1-14

error codes.

See also

 specific functions.
MgErr data type, 2-3
noErr, 2-3
returned by CIN routines, 2-6

executable, 4-2
extcode.h file

CIN defined as Pascal or nothing, 2-3
constant and data type conflicts, 1-11, 2-1
included with LabVIEW, 2-1
purpose and use, 1-11
required before any other code

(note), 1-14
specifying full path for THINK C

compiler, 1-18
specifying full path for THINK C

compiler (note), 2-6
external code

classes, 1-2
debugging, 1-39 to 1-41
languages supported, 1-3 to 1-5.

See also

specific compilers.

external subroutines.

See

 shared external
subroutines.

F

FCreate function, 1-38
FCreateAlways function, 1-38
FFlattenPath function, 1-38
FGetAccessRights function, 1-38
FGetEOF function, 1-38
FGetInfo function, 1-38
FGetPathType function, 1-38
FGetVolInfo function, 1-38
file descriptors, 5-13, 5-16
file manager

definition, 5-13
purpose, 5-2

file manager functions
basic file operations

FCreate, 1-38

FCreateAlways, 1-38
FMOpen, 1-38
FMRead, 1-38
FMWrite, 1-38

converting paths
FFlattenPath, 1-38
FPathToArr, 1-38
FPathToAZString, 1-38
FPathToDString, 1-38
FTextToPath, 1-38
FUnFlattenPath, 1-38

determining path type
FGetPathType, 1-38

duplicating paths
FPathToPath, 1-38

extracting information from paths
FNamePtr, 1-38

file, directory, and volume information
FGetAccessRights, 1-38
FGetInfo, 1-38
FGetVolInfo, 1-38

positioning current position mark
FMTell, 1-38

positioning end-of-file mark
FGetEOF, 1-38

refnum manipulation
FNewRefNum, 1-38
FRefNumToFD, 1-38

files
identifying, 5-13

fixed sized parameters, passing, 2-2 to 2-3
float data type, 2-5
float32 data type, 2-5, 5-3
float64 data type, 5-3
floatExt data type, 5-3
floating-point numbers, 5-3
FMOpen function, 1-38
FMRead function, 1-38
FMTell function, 1-38
FMWrite function, 1-38
FNamePtr function, 1-38
FNewRefNum function, 1-38
FPathToArr function, 1-38

Index

©

 National Instruments Corporation

Index

-19 LabVIEW Code Interface Reference Manual

FPathToAZString function, 1-38
FPathToDString function, 1-38
FRefNumToFD function, 1-38
FStringToPath function, 1-38
FTextToPath function, 1-38
function calls, LabVIEW, 1-14
Functions palette, Advanced palette, 1-6
FUnFlattenPath function, 1-38

G

generic.mak file, 1-31
GetALong function, 1-38
GetDSStorage function, 3-9
GetIndirectFunctionHandle() function, 3-16,

3-20, 3-21, 3-24
GetProcAddress() function, 3-15, 3-20,

3-21, 3-22
global data.

See also

 CIN data space globals;
code globals.

definition, 3-2
storing in CIN data space, 3-2

global variables
referenced by quoted strings, 1-12
referencing with ENTERLVSB and

LEAVELVSB macros, 1-12
used by all LabVIEW function

calls, 1-12
globals.

See also

 CIN data space globals; code
globals.

H

handle, 2-11
handles.

See also

 memory manager functions;
pointers.

definition, 2-10, 5-9
example code, 5-10 to 5-12
memory allocation, 5-8
memory relocation for arrays and strings,

2-10 to 2-11
using AZ and DS routine, 5-9

header files.

See also

 .c files.
CIN routine prototypes (example), 1-12

examples, 1-11, 1-11 to 1-12
extcode.h, 1-10, 1-11, 1-14, 1-19, 2-1,

2-3, 2-5
hosttype.h, 1-11
include in source code, 1-11

Help
online manual, 1-37
Online Reference, 1-37

hosttype.h file, 1-11, 1-14
HP-UX

compiling CINs, 1-34
debugging CINs, 1-41
LabVIEW support, 1-5
parameter passing, 2-8

HP-UX C/ANSI C compiler, 4-14
building CINs, 1-34 to 1-36
calling code

compiling, 4-14
creating, 4-6

external subroutines, compiling, 4-10
parameter passing, 2-8

I

input and output terminals, adding
input-output terminals, 1-7 to 1-8
output-only terminals, 1-8 to 1-9
removing terminals, 1-9

int16 data type, 5-3
int32 data type, 2-13, 5-3
int8 data type, 5-3
InvokeIndirectFunction() function, 3-16,

3-21, 3-22

L

LabVIEW manager functions.

See

 manager
functions.

LabVIEW path specifications, 5-16
LabVIEW strings (LStr), 5-5
languages supported, by platform.

See also

specific compilers.

680x0 (68K) Macintosh, 1-3
HP-UX, 1-5

Index

LabVIEW Code Interface Reference Manual

Index

-20

©

 National Instruments Corporation

Microsoft Windows 3.1, 1-4
Microsoft Windows 95/NT, 1-4
Power Macintosh, 1-3
Solaris, 1-5

LEAVELVSB macro
example, 1-13
including in CIN source code, 1-13
purpose and use, 1-12

libraries.

See

 calling Dynamic Link Libraries
(DLLs); managers.

Load Code Resource, CIN pop-up menu,
1-36, 2-8

LoadLibrary() function, 3-14
LStr.

See

 LabVIEW strings (LStr).
LVBoolean, 5-3
LVMakeMake utility

example file, 1-29
purpose, 1-25
syntax, 1-28

lvmkmf command, 1-34 to 1-35
LVSBMain routine, 4-3
LVSBName, 1-34
lvsbutil.app utility, 1-3, 1-14, 1-17, 1-21
lvsbutil.tool utility, 1-3, 1-14

M

Macintosh computers, compiler support for,
1-14 to 1-15

Macintosh Programmer’s Workshop (MPW)
compiler, 1-14 to 1-19

compiling calling code, 4-12
creating calling codes, 4-6
external subroutines

building, 4-3
compiling, 4-8

LabVIEW, 1-3
parameter passing, 2-7
placing utilities in correct folders, 1-15
pseudocode for makefile, 1-26 to 1-28

manager functions
help, 1-37

manager functions.

See also

 file manager
functions; memory manager functions;

support manager functions.
allocate space for return values

(example), 1-38
functions requiring pre-allocated

memory (table), 1-38
pointer as parameters, 1-37 to 1-38
portability, 1-37
purpose and use, 1-36

platform independence, 5-1
managers.

See also

 data types.
definition, 5-1
file manager, 5-2, 5-13
memory manager, 5-2, 5-7, 5-12
overview, 5-1 to 5-2
support manager, 5-2

manipulating properties of handles.

See

memory manager functions.

manual.

See

 documentation.
marks, positioning.

See

 position mark
functions.

master pointers, 5-8, 5-10
matching filenames with patterns.

See

FStrFitsPat function.

mathematical functions
RandomGen, 1-38

memory allocation.

See also

 handles;
pointers.

alignment considerations for arrays and
strings, 2-10 to 2-11.

allocating space for return value
(example), 1-38

dynamic, 5-8 to 5-9
functions requiring pre-allocating

memory (table), 1-38
padding, 2-11
recovering after errors, 2-3 to 2-4
static, 5-7

memory manager
data structures, 5-12
definition, 5-7
purpose, 5-1

memory manager functions
allocating and releasing handles

Index

©

 National Instruments Corporation

Index

-21 LabVIEW Code Interface Reference Manual

AZSetHandleSize, 2-10
DSSetHandleSize, 2-10

memory utilities
AZHandToHand, 1-38
AZPtrToHand, 1-38
DSHandToHand, 1-38
DSPtrToHand, 1-38

memory zone utilities
AZMemStats, 1-38
DSMemStats, 1-38

using AZ and DS routines with pointers
and handles, 5-9 to 5-10

memory utilities.

See

 memory manager
functions.

memory zone utilities.

See

 memory manager
functions.

memory zones
application space (AZ) zone, 5-9
data space (DS) zone, 5-9

memory-related types.

See

 handles; pointers.
MessageBox function, 3-16
Metrowerks CodeWarrior, 1-21 to 1-25

building CINs, 1-24
LabVIEW support for, 1-3
parameter passing, 2-7
required project preferences, 1-21

to 1-25
MgErr data type, 2-3
Microsoft SDK C/C++ Compiler

building CINs, 1-32 to 1-33
LabVIEW support for, 1-4
parameter passing, 2-7

Microsoft Visual C++ for Windows 95/NT
building CINs, 1-32 to 1-33

Microsoft Visual C++ for Windows NT
LabVIEW support for, 1-4
parameter passing, 2-7 to 2-8

Microsoft Windows 3.x.

See also

 calling
Dynamic Link Libraries (DLLs); Watcom C
compiler.

32-bit code required for LabVIEW, 1-29
external code support for CINs, 1-4

Microsoft Windows 95/NT

calling code, creating, 4-6
compiling CINs

Microsoft SDK C/C++ Compiler,
1-32 to 1-33

Visual C++ for Windows 95/NT,
1-32 to 1-33

Watcom C Compiler for Windows
3.1, 1-33

debugging CINs, 1-40
external subroutine, building, 4-3 to 4-4
external subroutine, compiling, 4-9
LabVIEW support, 1-4

Microsoft Windows.

See also

 calling
Dynamic Link Libraries (DLLs); Watcom
C compiler.

calling code, creating, 4-6
external subroutines, building, 4-3 to 4-4

Motorola 680x0 (68K) Macintosh support,
1-25 to 1-29

Motorola 680x0 (68k) Macintosh
support, 1-3

MPW compiler.

See

 Macintosh
Programmer’s Workshop (MPW) compiler.

multiple references to same CIN, 3-6 to 3-7

N

NumericArrayResize function
concatenating two strings (example),

2-17 to 2-18
description, 2-15

resizing arrays and strings, 2-12
to 2-13

resizing handles, 2-10
pre-allocated memory required, 1-37

numerics
complex numbers, 5-4
description, 5-3 to 5-4
parameters passing, 2-2

O

object code, CIN.

See

 CIN object code,
loading.

Index

LabVIEW Code Interface Reference Manual

Index

-22

©

 National Instruments Corporation

Online Reference, 1-37
opening files.

See

 FMOpen function.
optimizing DLL performance, 3-23 to 3-25
.out format (Solaris), 1-5, 1-34
Output Only option, CIN terminal pop-up

menu, 1-8
output-only terminals, adding, 1-8 to 1-9

P

padding, defined, 2-11
parameter passing, CIN

.c file, 2-1 to 2-3
examples with scalar, 2-4 to 2-10

comparing two numbers, producing
Boolean scalar, 2-9 to 2-10

creating CIN that multiples two
numbers, 2-4 to 2-8

examples with variably-sized data
computing cross product of two

two-dimensional arrays, 2-19
to 2-22

concatenating two strings, 2-16
to 2-19

working with clusters, 2-23 to 2-26
fixed-size data

cluster of scalars, 2-3
refnums, 2-3
scalars Booleans, 2-2 to 2-3
scalars numerics, 2-2

overview, 2-1
resizing arrays and strings, 2-12 to 2-16
return values for CIN routine, 2-3 to 2-4
terminal considerations, 2-2
unlimited parameter passing, 2-1
variably-sized data, 2-12

alignment considerations, 2-10
to 2-11

arrays and strings, 2-11 to 2-12
cluster containing variably-sized

data, 2-12
paths, 2-12

parameters
correspondence with wires connected to

CINs, 2-1
pointer as parameters, 1-37 to 1-38

Pascal calling conventions, 2-3
Pascal-style string (PStr), 5-5.

See also

concatenated Pascal strings (CPStr).

path data type, 5-6, 5-16
path management functions

converting paths
FFlattenPath, 1-38
FPathToArr, 1-38
FPathToAZString, 1-38
FPathToDString, 1-38
FStringToPath, 1-38
FTextToPath, 1-38
FUnFlattenPath, 1-38

determining path type
FGetPathType, 1-38

duplicating paths
FPathToPath, 1-38

extracting information from paths
FNamePtr, 1-38

path specifications
absolute paths, 5-14 to 5-15
conventional specifications, 5-14 to 5-15
empty path specifications, 5-15 to 5-16
LabVIEW path specifications, 5-16
Macintosh systems, 5-15 to 5-16
PC systems, 5-15 to 5-16
relative paths, 5-14 to 5-15
UNIX systems, 5-14 to 5-16

paths, and parameter passing, 2-12
pointers.

See also

 handles; memory manager
functions.

definition, 1-37
dynamic memory allocation, 5-8
example codes, 5-10 to 5-12
master pointers, 5-8 to 5-10
non-relocatable, 5-8
used as parameters, 1-37 to 1-38
using AZ and DS routines, 5-9 to 5-10

position mark functions
FGetEOF, 1-38

Power Macintosh support, 1-3, 1-25 to 1-29

Index

©

 National Instruments Corporation

Index

-23 LabVIEW Code Interface Reference Manual

PStr.

See

 Pascal-style strings (PStr).

Q

quoted strings referencing global variables,
1-12, 1-13

R

RandomGen function, 1-38
reading files.

See

 FMRead function.
reentrancy, 3-7 to 3-8
refnum management functions

FNewRefNum, 1-38
FRefNumToFD, 1-38

refnums
file refnums, 5-17
parameter passing, 2-3

relative paths
conventional specifications, 5-14 to 5-15
definition, 5-14
empty path specifications, 5-15 to 5-16
UNIX systems, 5-14 to 5-16

releasing handles and pointers.

See

 memory
manager functions.

Removal Terminal option, CIN terminal
pop-up menu, 1-9

return values
allocating space for return values

(example), 1-38
CIN MgErr, 2-3

.REX files, 1-4

S

scalar data types, 5-2 to 5-4
Booleans

comparing two numbers and
producing Boolean scalar, 2-9
to 2-10

description, 5-3
forms of (table), 5-3
parameter passing, 2-2 to 2-3

numerics, 2-2, 5-3 to 5-4

complex numbers, 5-4
description, 5-3 to 5-4
parameter passing, 2-2

parameter passing
cluster of scalars, 2-3
comparing two numbers, producing

Boolean, 2-9 to 2-10
creating CIN that multiples two

numbers (example), 2-4 to 2-10
SecsToDate function, 1-38
SetALong function, 1-38
SetCINArraySize function

description function, 2-13
examples

clusters containing variably-sized
data, 2-26

computing cross product to
two-dimensional arrays, 2-19
to 2-22

resizing arrays and strings, 2-12 to 2-13
resizing handles, 2-10

SetDSStorage function, 3-9
shared external subroutines, 4-1 to 4-15

advantages, 4-1 to 4-2
calling code, compiling, 4-12 to 4-15

example, 4-12 to 4-15
HP-UX C/ANSI C compiler, 4-14
Microsoft Windows NT and

Windows 95, 4-14
MPW compiler, 4-6, 4-12
requirements, 4-4 to 4-6
THINK C compiler, 4-12
unbundled Sun ANSI C

compiler, 4-14
Watcom C compiler, 4-13 to 4-14

calling code, creating, 4-4 to 4-6
example, 4-10 to 4-11
HP-UX C/ANSI C compiler, 4-6
Microsoft Windows 3.1, Windows

NT, and Windows 95, 4-6
THINK C compiler, 4-5
unbundled Sun ANSI C

compiler, 4-6

Index

LabVIEW Code Interface Reference Manual

Index

-24

©

 National Instruments Corporation

calling external subroutine (example),
4-10 to 4-11

compared with CINs, 4-1
compiling

example, 4-8 to 4-10
HP-UX C/ANSI C compiler, 4-10
Microsoft Windows NT and

Windows 95, 4-9
MPW compiler, 4-8
THINK C compiler, 4-8
unbundled Sun ANSI C

compiler, 4-10
Watcom C compiler, 4-9

creating
example, 4-7
HP-UX C/ANSI C compiler,

4-4, 4-6
Microsoft Windows 3.1, Windows

NT, and Windows 95, 4-3 to 4-4
MPW compiler, 4-3
not compiled with calling code, 4-2
requirements, 4-2 to 4-4
THINK C compiler, 1-15 to

1-17, 4-3
unbundled Sun ANSI C compiler,

1-34, 4-4, 4-6
definition, 1-2, 4-1
purpose and use, 1-2, 4-1 to 4-2
supported languages, 1-3 to 1-5

signed integers, 5-3
680x0 (68K) Macintosh support, 1-3
Solaris 1.x and 2.x.

See also

 unbundled Sun
ANSI C compiler.

compiling CINs, 1-34
debugging CINs, 1-41
LabVIEW support, 1-5
parameter passing, 2-8

source code, CIN.

See

 CIN source code,
compiling; CIN source code, creating.

SPARCstation.

See

 Solaris 1.x and 2.x.
statistics on memory.

See

 AZMemStats
function; DSMemStats function.

string data types

concatenated Pascal string (CPStr), 5-6
C-style strings (Cstr), 5-5
LabVIEW strings (LStr), 5-5
overview, 5-5
Pascal-style strings (PStr), 5-5

strings.

See

 arrays and strings.
Sun workstations.

See

 Solaris 1.x and 2.x;
unbundled Sun ANSI C compiler.

support manager
definition, 5-17
purpose, 5-2

support manager functions.

See also

manager functions.

byte manipulation operations
GetALong, 1-37
SetALong, 1-38

mathematical operations
RandomGen, 1-38

overview, 5-18
time functions

DateToSecs, 1-38
SecsToDate, 1-38

time specified as data structure, 5-17
Symantec C++

creating CINs, 1-3, 1-19 to 1-21

T

terminal pop-up menu.

See

 CIN terminal
pop-up menu.

terminals
adding input and output terminals, 1-7

to 1-9
input-output terminals, 1-7 to 1-9
output-only terminals, 1-7 to 1-9
removing terminals, 1-7 to 1-9

parameter passing, 2-2
wiring inputs and outputs to CIN, 1-7

to 1-9
THINK C compiler, 1-3, 1-15 to 1-19

calling code
compiling, 4-12
creating, 4-5

creating CIN project from scratch, 1-15

Index

©

 National Instruments Corporation

Index

-25 LabVIEW Code Interface Reference Manual

to 1-19
external subroutines

building, 4-3
compiling, 4-8
path for extcode.h file, 1-19
path for extcode.h file (note), 2-6

LabVIEW support for, 1-3
parameter passing, 2-7
setting up the project, 1-15 to 1-17

time functions
DateToSecs, 1-38
SecsToDate, 1-38

U

uInt16 data type, 5-3
uInt32 data type, 5-3
uInt8 data type, 5-3
unbundled Sun ANSI C compiler

calling code, 4-14
compiling, 4-15
creating, 4-6

compatibility with LabVIEW, 1-5, 1-34
creating makefile, 1-34 to 1-35
external subroutines

building, 4-4
compiling, 4-10

lvmkmf command syntax, 1-34
parameter passing, 2-8

unsigned integers, 5-3

V

VIs, managing with CIN routines
aborting, 3-5
compiling, 3-4 to 3-5
loading, 3-3
running, 3-5
saving, 3-5
unloading, 3-4

Visual C++ for Windows.

See

 Microsoft
Visual C++ for Windows 95/NT.

volume
definition, 5-13

W

Watcom C compiler.

See also

 calling
Dynamic Link Libraries (DLLs).

accessing functions from DLLs
(note), 1-31

calling code, 4-13 to 4-14
compatibility with LabVIEW, 1-4
executing wmake utility, 1-26
external subroutines, compiling, 4-9
inability to link precompiled libraries to

CIN (note), 1-31
pseudocode for makefile, 1-30
Windows 95/NT

building CINs, 1-33
LabVIEW support for, 1-4

wmake utility, 1-26
Win32 Microsoft SDK.

See

 Microsoft SDK
C/C++ Compiler.

Windows 3.x.

See

 Microsoft Windows 3.x.
Windows 95.

See

 Microsoft Windows
95/NT.

Windows NT.

See

 Microsoft Windows
95/NT.

wiring inputs and outputs to CIN, 1-9
wmake command, 1-26
wmake utility, 1-26
writing files.

See

 FMWrite functions.

Z

zones.

See

 memory zones.

	LabVIEW ® Code Interface Reference Manual
	Important Information
	Warranty
	Copyright
	Trademarks
	MEDICAL WARNING

	About this Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Table of Contents
	Ch. 1 CIN Overview
	Introduction
	Classes of External Code
	Supported Languages
	Macintosh
	Microsoft Windows 3.1
	Microsoft Windows 95 and Windows NT
	Solaris
	HP-UX

	Steps for Creating a CIN
	1. Place the CIN on a Block Diagram
	2. Add Input and Output Terminals to the CIN
	Input-Output Terminals
	Output-Only Terminals

	3. Wire the Inputs and Outputs to the CIN
	4. Create .c File
	Special Macintosh Considerations

	5. Compile the CIN Source Code
	Macintosh
	THINK C for 68K (Versions 5-7)
	Symantec C++ 8.0 for Power Macintosh
	Metrowerks CodeWarrior for 68K
	Metrowerks CodeWarrior for Power Macintosh
	Macintosh Programmer’s Workshop for 68K and Power ...

	Microsoft Windows 3.x
	Watcom C Compiler

	Microsoft Windows 95 and Windows NT
	Microsoft SDK C/C++ Compiler
	Visual C++ for Windows 95 or Windows NT
	Watcom C Compiler for Windows 3.1 under Windows 95...

	Solaris 1.x
	Solaris 2.x
	HP-UX
	Unbundled Sun ANSI C Compiler and HP-UX C/ANSI C C...

	6. Load the CIN Object Code

	LabVIEW Manager Routines
	Online Reference
	Pointers as Parameters

	Debugging External Code
	DbgPrintf
	Debugging CINs Under Windows 95 and Windows NT
	Debugging CINs Under Sun or Solaris
	Debugging CINs Under HP-UX

	Ch. 2 CIN Parameter Passing
	Introduction
	CIN .c File
	How LabVIEW Passes Fixed Sized Data to CINs
	Scalar Numerics
	Scalar Booleans
	Refnums
	Clusters of Scalars

	Return Value for CIN Routines
	Examples with Scalars
	Steps for Creating a CIN That Multiplies Two Numbe...
	1. Place the CIN on the Block Diagram
	2. Add Two Input and Output Terminals to the CIN
	3. Wire the Inputs and Outputs to the CIN
	4. Create the CIN Source Code
	5. Compile the CIN Source Code
	Macintosh
	THINK C for 68K and Symantec C++
	Macintosh Programmer’s Workshop for 68K and Power ...
	Metrowerks CodeWarrior for Power Macintosh and 68K...

	Microsoft Windows 3.x
	Watcom C Compiler

	Microsoft Windows 95 and Windows NT
	Microsoft SDK Compiler
	Microsoft Visual C++ Compiler

	Solaris 1.x, Solaris 2.x, and HP-UX

	6. Load the CIN Object Code

	Comparing Two Numbers, Producing a Boolean Scalar

	How LabVIEW Passes Variably Sized Data to CINs
	Alignment Considerations
	Arrays and Strings
	Paths (Path)
	Clusters Containing Variably Sized Data

	Resizing Arrays and Strings
	SetCINArraySize
	NumericArrayResize
	Examples with Variably Sized Data
	Concatenating Two Strings
	Computing the Cross Product of Two Two�Dimensional...
	Working with Clusters

	Ch. 3 CIN Advanced Topics
	CIN Routines
	Data Spaces and Code Resources

	Figure 3-1. Data Storage Spaces for One CIN, Simpl...
	CIN Routines: The Basic Case
	Loading a VI
	Unloading a VI
	Loading a New Resource into the CIN
	Compiling a VI
	Running a VI
	Saving a VI
	Aborting a VI

	Multiple References to the Same CIN

	Figure 3-2. Three CINs Referencing the Same Code R...
	Reentrancy

	Figure 3-3. Three VIs Referencing a Reentrant VI C...
	Code Globals and CIN Data Space Globals
	Examples
	Using Code Globals
	Using CIN Data Space Globals

	Calling a Windows 95 or Windows NT Dynamic Link Li...
	Calling a Windows 3.1 Dynamic Link Library
	Calling a 16-Bit DLL
	1. Load the DLL
	2. Get the address of the desired function
	3. Describe the function
	4. Call the function

	Example: A CIN that Displays a Dialog Box
	The DLL
	The Block Diagram
	The CIN Code
	Compiling the CIN
	Optimization

	Ch. 4 External Subroutines
	Introduction
	Creating Shared External Subroutines
	External Subroutine
	Macintosh
	THINK C Compiler and CodeWarrior 68K Compiler
	MPW Compiler

	Microsoft Windows 3.1, Windows 95, and Windows NT
	Solaris 1.x, Solaris 2.x, and HP-UX
	Unbundled Sun C Compiler and HP-UX C/ANSI C Compil...

	Calling Code
	Macintosh
	THINK C Compiler
	CodeWarrior 68K Compiler
	MPW Compiler

	Microsoft Windows 3.1, Windows 95, and Windows NT
	Solaris 1.x, Solaris 2.x, and HP-UX
	Unbundled Sun C Compiler and HP-UX C/ANSI C Compil...

	Simple Example
	External Subroutine Example
	Compiling the External Subroutine
	Macintosh
	THINK C Compiler and CodeWarrior 68K Compiler
	MPW Compiler

	Microsoft Windows 3.1
	Watcom C Compiler

	Microsoft Windows 95 and Windows NT
	Solaris 1.x, Solaris 2.x, and HP-UX
	Unbundled Sun C Compiler and HP-UX C/ANSI C Compil...

	Calling Code
	Compiling the Calling Code
	Macintosh
	THINK C Compiler
	CodeWarrior 68K Compiler
	MPW Compiler

	Microsoft Windows 3.1
	Watcom C Compiler

	Microsoft Windows 95 and Windows NT
	Solaris 1.x, Solaris 2.x, and HP-UX
	Unbundled Sun C Compiler and HP-UX C/ANSI C Compil...

	Ch. 5 Manager Overview
	Introduction
	Basic Data Types
	Scalar Data Types
	Booleans
	Numerics
	Complex Numbers

	char Data Type
	Dynamic Data Types
	Arrays
	Strings
	C-Style Strings (CStr)
	Pascal-Style Strings (PStr)
	LabVIEW Strings (LStr)
	Concatenated Pascal String (CPStr)
	Paths (Path)

	Memory-Related Types
	Constants

	Memory Manager
	Memory Allocation
	Static Memory Allocation
	Dynamic Memory Allocation: Pointers and Handles

	Memory Zones
	Using Pointers and Handles
	Simple Example

	Reference to the Memory Manager
	Memory Manager Data Structures

	File Manager
	Introduction
	Identifying Files and Directories
	Path Specifications
	Conventional Path Specifications
	Empty Path Specifications
	LabVIEW Path Specification

	File Descriptors
	File Refnums

	Support Manager

	Ch. 6 Memory Manager Functions
	Allocating and Releasing Handles
	AZDisposeHandle DSDisposeHandle
	AZEmptyHandle DSEmptyHandle
	AZGetHandleSize DSGetHandleSize
	AZNewHandle DSNewHandle
	AZNewHClr DSNewHClr
	AZReallocHandle DSReallocHandle
	AZRecoverHandle DSRecoverHandle
	AZSetHandleSize DSSetHandleSize
	AZSetHSzClr DSSetHSzClr
	Allocating and Releasing Pointers

	AZDisposePtr DSDisposePtr
	AZNewPClr DSNewPClr
	AZNewPtr DSNewPtr
	Manipulating Properties of Handles

	AZHLock
	AZHPurge
	AZHNoPurge
	AZHUnlock
	Memory Utilities

	AZHandAndHand DSHandAndHand
	AZHandToHand DSHandToHand
	AZPtrAndHand DSPtrAndHand
	AZPtrToHand DSPtrToHand
	AZPtrToXHand DSPtrToXHand
	ClearMem
	MoveBlock
	SwapBlock
	Handle and Pointer Verification

	AZCheckHandle DSCheckHandle
	AZCheckPtr DSCheckPtr
	Memory Zone Utilities

	AZHeapCheck DSHeapCheck
	AZMaxMem DSMaxMem
	AZMemStats DSMemStats

	Ch. 7 File Manager Functions
	File Manager Data Structures
	File/Directory Information Record
	File Type Record
	Path Data Type
	Permissions
	On a UNIX computer, the nine bits of permissions c...

	Volume Information Record

	File Manager Functions
	Performing Basic File Operations

	FCreate
	FCreateAlways
	FMClose
	FMOpen
	FMRead
	FMWrite
	Positioning the Current Position Mark

	FMSeek
	FMTell
	Positioning the End-Of-File Mark

	FGetEOF
	FSetEOF
	Flushing File Data to Disk

	FFlush
	Determining File, Directory, and Volume Informatio...

	FExists
	FGetAccessRights
	FGetInfo
	FGetVolInfo
	FSetAccessRights
	FSetInfo
	Getting Default Access Rights Information

	FGetDefGroup
	Creating and Determining the Contents of Directori...

	FListDir
	FNewDir
	Copying Files

	FCopy
	Moving and Deleting Files and Directories

	FMove
	FRemove
	Locking a File Range

	FLockOrUnlockRange
	Matching Filenames with Patterns

	FStrFitsPat
	Creating Paths

	FAddPath
	FAppendName
	FAppPath
	FEmptyPath
	FMakePath
	FNotAPath
	FRelPath
	Disposing Paths

	FDisposePath
	Duplicating Paths

	FPathCpy
	FPathToPath
	Extracting Information from a Path

	FDepth
	FDirName
	FName
	FNamePtr
	FVolName
	Converting Paths to and from Other Representations...

	FArrToPath
	FFlattenPath
	FPathToArr
	FPathToAZString
	FPathToDSString
	FStringToPath
	FTextToPath
	FUnFlattenPath
	Comparing Paths

	FIsAPath
	FIsAPathOrNotAPath
	FIsEmptyPath
	FPathCmp
	Determining a Path Type

	FGetPathType
	FIsAPathOfType
	FSetPathType
	Manipulating File Refnums

	FDisposeRefNum
	FIsARefNum
	FNewRefNum
	FRefNumToFD
	FRefNumToPath

	Ch. 8 Support Manager Functions
	Byte Manipulation Operations
	Cat4Chrs *Macro*
	GetALong *Macro*
	Hi16 *Macro*
	HiByte *Macro*
	HiNibble *Macro*
	Lo16 *Macro*
	HiNibble *Macro*
	LoByte *Macro*
	Long *Macro*
	LoNibble *Macro*
	Offset *Macro*
	SetALong *Macro*
	Word *Macro*
	Mathematical Operations
	For THINK C Users

	Abs
	Max
	Min
	Pin
	RandomGen
	String Manipulation

	BlockCmp
	CPStrBuf *Macro*
	CPStrCmp
	CPStrIndex
	CPStrInsert
	CPStrLen *Macro*
	CPStrRemove
	CPStrReplace
	CPStrSize
	CToPStr
	FileNameCmp *Macro*
	FileNameIndCmp *Macro*
	FileNameNCmp *Macro*
	HexChar
	IsAlpha
	IsDigit
	IsLower
	IsUpper
	LStrBuf *Macro*
	LStrCmp
	LStrLen *Macro*
	LToPStr
	PPStrCaseCmp
	PPStrCmp
	PStrBuf *Macro*
	PStrCaseCmp
	PStrCat
	PStrCmp
	PStrCpy
	PStrLen *Macro*
	PStrNCpy
	PToCStr
	PToLStr
	SPrintf SPrintfp PPrintf PPrintfp FPrintf LStrPrin...
	StrCat
	StrCmp
	StrCpy
	StrLen
	StrNCaseCmp
	StrNCmp
	StrNCpy
	ToLower
	ToUpper
	Utility Functions

	BinSearch
	QSort
	Unused *Macro*
	Time Functions

	ASCIITime
	DateCString
	DateToSecs
	MilliSecs
	SecsToDate
	TimeCString
	TimeInSecs

	App. A CIN Common Questions
	What compilers can be used to write CINs for LabVI...
	Microsoft Windows 3.1, Windows 95, and Windows NT
	Macintosh
	Sun

	My VI, which contains a CIN, crashes LabVIEW or gi...
	How do I debug my CIN?
	Is there any sort of scanf function in the LabVIEW...
	I can't seem to link to any of the globals mention...
	Can LabVIEW be used to call a DLL in Windows?
	I get an error linking to a function when I build ...
	Why do I get garbage back from math functions such...
	Why can't I link to the math functions (sin, cos, ...

	App. B Customer Communication
	Glossary
	Index

