
© Copyright 1994, 1996 National Instruments Corporation.
All Rights Reserved.

NI-488.2M™

User Manual for Windows NT

January 1996 Edition

Part Number 320646B-01

National Instruments Corporate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 794-0100
Technical support fax: (800) 328-2203

(512) 794-5678

Branch Offices:
Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521,
Denmark 45 76 26 00, Finland 90 527 2321, France 1 48 14 24 24,
Germany 089 741 31 30, Hong Kong 2645 3186, Italy 02 48301892,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 95 800 010 0793,
Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886,
Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51,
Taiwan 02 377 1200, U.K. 01635 523545

Limited Warranty

The media on which you receive National Instruments software are warranted not to fail
to execute programming instructions, due to defects in materials and workmanship, for a
period of 90 days from date of shipment, as evidenced by receipts or other
documentation. National Instruments will, at its option, repair or replace software media
that do not execute programming instructions if National Instruments receives notice of
such defects during the warranty period. National Instruments does not warrant that the
operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and
clearly marked on the outside of the package before any equipment will be accepted for
warranty work. National Instruments will pay the shipping costs of returning to the
owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The
document has been carefully reviewed for technical accuracy. In the event that technical
or typographical errors exist, National Instruments reserves the right to make changes to
subsequent editions of this document without prior notice to holders of this edition. The
reader should consult National Instruments if errors are suspected. In no event shall
National Instruments be liable for any damages arising out of or related to this document
or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER'S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE
ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT
THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE
LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF
PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF
THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will
apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause
of action accrues. National Instruments shall not be liable for any delay in performance
due to causes beyond its reasonable control. The warranty provided herein does not
cover damages, defects, malfunctions, or service failures caused by owner's failure to
follow the National Instruments installation, operation, or maintenance instructions;
owner's modification of the product; owner's abuse, misuse, or negligent acts; and power
failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any
form, electronic or mechanical, including photocopying, recording, storing in an
information retrieval system, or translating, in whole or in part, without the prior written
consent of National Instruments Corporation.

Trademarks

NI-488®, NI-488.2™, NI-488.2M™, and TNT4882C™ are trademarks of National
Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective
companies.

Warning Regarding Medical and Clinical Use
of National Instruments Products

National Instruments products are not designed with components and testing intended to
ensure a level of reliability suitable for use in treatment and diagnosis of humans.
Applications of National Instruments products involving medical or clinical treatment can
create a potential for accidental injury caused by product failure, or by errors on the part
of the user or application designer. Any use or application of National Instruments
products for or involving medical or clinical treatment must be performed by properly
trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent
serious injury or death should always continue to be used when National Instruments
products are being used. National Instruments products are NOT intended to be a
substitute for any form of established process, procedure, or equipment used to monitor
or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corp. v NI-488.2M UM for Windows NT

Contents

About This Manual ... xi
How to Use This Manual Set ... xi
Organization of This Manual ... xii
Conventions Used in This Manual... xiii
Related Documentation ... xiv
Customer Communication ... xiv

Chapter 1
Introduction .. 1-1

GPIB Overview ... 1-1
Talkers, Listeners, and Controllers ... 1-1
Controller-In-Charge and System Controller 1-1
GPIB Addressing... 1-2
Sending Messages Across the GPIB ... 1-2

Data Lines ... 1-2
Handshake Lines... 1-3
Interface Management Lines... 1-3

Setting Up and Configuring Your System... 1-4
Controlling More Than One Board..................................... 1-5

Configuration Requirements ... 1-5
The NI-488.2M Software Elements... 1-6

NI-488.2M Driver and Driver Utilities ... 1-6
DOS and 16-bit Windows Support Files ... 1-7
C Language Files ... 1-7
Sample Application Files .. 1-7

How the NI-488.2M Software Works with Windows NT............................... 1-8
Unloading and Reloading the NI-488.2M Driver .. 1-9

Chapter 2
Application Examples ... 2-1

Example 1: Basic Communication ... 2-2
Example 2: Clearing and Triggering Devices... 2-4
Example 3: Asynchronous I/O.. 2-6
Example 4: End-of-String Mode... 2-8
Example 5: Service Requests .. 2-10
Example 6: Basic Communication with IEEE 488.2-Compliant Devices 2-14
Example 7: Serial Polls Using NI-488.2 Routines ... 2-16
Example 8: Parallel Polls .. 2-18
Example 9: Non-Controller Example ... 2-20

Chapter 3
Developing Your Application .. 3-1

Choosing How to Access the NI-488.2M DLL ... 3-1

Contents

NI-488.2M UM for Windows NT vi © National Instruments Corp.

Choosing Between NI-488 Functions and NI-488.2 Routines 3-1
Using NI-488 Functions: One Device for Each Board 3-2

NI-488 Device Functions .. 3-2
NI-488 Board Functions ... 3-2

Using NI-488.2 Routines: Multiple Boards and/or
Multiple Devices ... 3-3

Checking Status with Global Variables ... 3-3
Status Word – ibsta ... 3-3
Error Variable – iberr .. 3-5
Count Variables – ibcnt and ibcntl .. 3-5

Using ibic to Communicate with Devices ... 3-6
Writing Your NI-488 Application ... 3-6

Items to Include ... 3-6
NI-488 Program Shell ... 3-7
General Program Steps and Examples .. 3-8

Step 1. Open a Device.. 3-8
Step 2. Clear the Device... 3-8
Step 3. Configure the Device ... 3-9
Step 4. Trigger the Device ... 3-9
Step 5. Wait for the Measurement 3-9
Step 6. Read the Measurement ... 3-10
Step 7. Process the Data... 3-10
Step 8. Place the Device Offline .. 3-10

Writing Your NI-488.2 Application .. 3-11
Items to Include ... 3-11
NI-488.2 Program Shell... 3-12
General Program Steps and Examples .. 3-13

Step 1. Initialization ... 3-13
Step 2. Find All Listeners .. 3-13
Step 3. Identify the Instrument ... 3-13
Step 4. Initialize the Instrument ... 3-14
Step 5. Configure the Instrument 3-15
Step 6. Trigger the Instrument ... 3-15
Step 7. Wait for the Measurement 3-15
Step 8. Read the Measurement ... 3-16
Step 9. Process the Data... 3-16
Step 10. Place the Board Offline.. 3-17

Compiling, Linking and Running Your
GPIB Win32 Application... 3-17

Microsoft Visual C/C++ .. 3-17
Direct Entry with C ... 3-17

Microsoft Visual C/C++ ... 3-19
Borland C/C++.. 3-19

Running Existing DOS and Windows GPIB Applications.............................. 3-20

Contents

© National Instruments Corp. vii NI-488.2M UM for Windows NT

Chapter 4
Debugging Your Application ... 4-1

Running the Software Diagnostic Test .. 4-1
Presence Test of Driver ... 4-1

Examining NT Devices to Verify the NI-488.2M
Installation... 4-1
Examining the NT System Log Using the
Event Viewer... 4-2

GPIB Cables Connected .. 4-2
Running GPIBInfo... 4-3
Debugging with the Global Status Variables ... 4-3
Debugging with ibic... 4-4
GPIB Error Codes .. 4-4
Configuration Errors .. 4-5
Timing Errors ... 4-5
Communication Errors ... 4-5

Repeat Addressing... 4-5
Termination Method.. 4-6

Common Questions ... 4-6

Chapter 5
ibic-Interface Bus Interactive Control Utility .. 5-1

Overview.. 5-1
Example Using NI-488 Functions ... 5-1
ibic Syntax ... 5-4

Number Syntax.. 5-4
String Syntax ... 5-5
Address Syntax.. 5-5
ibic Syntax for NI-488 Functions .. 5-5
ibic Syntax for NI-488.2 Routines... 5-8

Status Word ... 5-9
Error Information... 5-9
Count .. 5-10
Common NI-488 Functions ... 5-10

ibfind ... 5-10
ibdev .. 5-10
ibwrt... 5-12
ibrd... 5-12

Common NI-488.2 Routines in ibic ... 5-13
Set 488.2 .. 5-13
Send and SendList ... 5-13
Receive .. 5-13

Auxiliary Functions ... 5-14
Set (udname or 488.2) ... 5-14
Help (Display Help Information) .. 5-15
! (Repeat Previous Function)... 5-15
- (Turn OFF Display) and + (Turn ON Display)............................... 5-15
n* (Repeat Function n Times) ... 5-16

Contents

NI-488.2M UM for Windows NT viii © National Instruments Corp.

$ (Execute Indirect File) .. 5-16
Print (Display the ASCII String) ... 5-17

Chapter 6
GPIB Programming Techniques ... 6-1

Termination of Data Transfers ... 6-1
High-Speed Data Transfers (HS488)... 6-2

Enabling HS488... 6-2
System Configuration Effects on HS488 .. 6-3

Waiting for GPIB Conditions .. 6-3
Device-Level Calls and Bus Management... 6-3
Talker/Listener Applications ... 6-4

Waiting for Messages from the Controller .. 6-4
Using the Event Queue.. 6-4
Requesting Service .. 6-5

Serial Polling ... 6-5
Service Requests from IEEE 488 Devices .. 6-5
Service Requests from IEEE 488.2 Devices 6-5
Automatic Serial Polling ... 6-6

Stuck SRQ State .. 6-6
Autopolling and Interrupts .. 6-7

SRQ and Serial Polling with NI-488 Device Functions.................... 6-7
SRQ and Serial Polling with NI-488.2 Routines............................... 6-8

Example 1: Using FindRQS... 6-9
Example 2: Using AllSpoll .. 6-9

Parallel Polling... 6-10
Implementing a Parallel Poll ... 6-10

Parallel Polling with NI-488 Functions 6-10
Parallel Polling with NI-488.2 Routines............................. 6-11

Chapter 7
ibconf-Interface Bus Configuration Utility ... 7-1

Overview.. 7-1
Starting and Exiting ibconf .. 7-1
Board Configuration .. 7-2

Use this Board ... 7-3
Bus Timing .. 7-4
Cable Length for High Speed .. 7-4
OK ... 7-4
Cancel .. 7-4
Help ... 7-4
Software... 7-4
Base/IO Address.. 7-4
Interrupt Level ... 7-5
DMA Channel ... 7-5
Use Demand Mode DMA ... 7-5

Contents

© National Instruments Corp. ix NI-488.2M UM for Windows NT

Expanded Board Configuration ... 7-5
GPIB Primary Address .. 7-6
GPIB Secondary Address .. 7-6
Terminate Read on EOS.. 7-6
Set EOI with EOS on Write... 7-7
8-bit EOS Compare ... 7-7
Send EOI and end of Write ... 7-7
EOS Byte... 7-7
System Controller .. 7-7
I/O Timeout ... 7-7
Parallel Poll Duration .. 7-7
Enable Auto Serial Polling .. 7-7
Enable CIC Protocol .. 7-8
Assert REN When SC ... 7-8

Device Template Configuration... 7-8
Name ... 7-9
Access Board... 7-9
GPIB Primary Address .. 7-9
GPIB Secondary Address .. 7-9
Terminate Read on EOS.. 7-9
Set EOI with EOS on Write... 7-9
8-bit EOS Compare ... 7-9
Send EOI at end of Write .. 7-9
EOS Byte... 7-10
I/O Timeout ... 7-10
Serial Poll Timeout .. 7-10
Repeat Addressing... 7-10

Appendix A
Status Word Conditions .. A-1

Appendix B
Error Codes and Solutions ... B-1

Appendix C
Customer Communication ... C-1

Glossary ... Glossary-1

Index ...Index-1

Contents

NI-488.2M UM for Windows NT x © National Instruments Corp.

Figures

Figure 1-1. GPIB Address Bits ... 1-2
Figure 1-2. Linear and Star System Configuration ... 1-4
Figure 1-3. Example of Multiboard System Setup ... 1-5
Figure 1-4. How the NI-488.2M Software Works with Windows NT 1-9

Figure 2-1. Program Flowchart for Example 1 ... 2-3
Figure 2-2. Program Flowchart for Example 2 ... 2-5
Figure 2-3. Program Flowchart for Example 3 ... 2-7
Figure 2-4. Program Flowchart for Example 4 ... 2-9
Figure 2-5. Program Flowchart for Example 5 ... 2-12
Figure 2-6. Program Flowchart for Example 6 ... 2-15
Figure 2-7. Program Flowchart for Example 7 ... 2-17
Figure 2-8. Program Flowchart for Example 8 ... 2-19
Figure 2-9. Program Flowchart for Example 9 ... 2-21

Figure 3-1. General Program Shell Using NI-488 Device Functions 3-7
Figure 3-2. General Program Shell Using NI-488.2 Routines 3-12

Figure 7-1. Main Dialog Box in ibconf... 7-2
Figure 7-2. Board Configuration for an AT-GPIB Interface Board.............................. 7-3
Figure 7-3. Expanded Board Configuration for an AT-GPIB Board 7-6
Figure 7-4. Device Template Configuration ... 7-8

Tables

Table 1-1. GPIB Handshake Lines ... 1-3
Table 1-2. GPIB Interface Management Lines ... 1-3

Table 3-1. Status Word (ibsta) Layout .. 3-4

Table 4-1. GPIB Error Codes .. 4-4

Table 5-1. Syntax for Device-Level NI-488 Functions in ibic 5-6
Table 5-2. Syntax for Board-Level NI-488 Functions in ibic....................................... 5-7
Table 5-3. Syntax for NI-488.2 Routines in ibic... 5-8
Table 5-4. Auxiliary Functions in ibic .. 5-14

Table A-1. Status Word Bits ... A-1

Table B-1. GPIB Error Codes ... B-1

© National Instruments Corp. xi NI-488.2M UM for Windows NT

About This Manual

This manual describes the features and functions of the NI-488.2M software for
Windows NT. The NI-488.2M software is meant to be used with the Microsoft
Windows NT operating system version 3.1 or higher, and the Microsoft Windows NT
Advanced Server version 3.1 or higher. This manual assumes that you are already
familiar with Windows NT.

How to Use This Manual Set

NI-488.2M
User Manual for

Windows NT

Application
Development
and Examples

Getting Started
Manual

Novice
Users

Installation and
Configuration

NI-488.2M Function
Reference Manual
for Windows NT

Experienced
Users

Function
and Routine
Descriptions

Use the getting started manual to install and configure your GPIB hardware and
NI-488.2M software for Windows NT.

Use the NI-488.2M User Manual for Windows NT to learn the basics of GPIB and how to
develop an application program. The user manual also contains debugging information
and detailed examples.

Use the NI-488.2M Function Reference Manual for Windows NT for specific NI-488
function and NI-488.2 routine information, such as format, parameters, and possible
errors.

About This Manual

NI-488.2M UM for Windows NT xii © National Instruments Corp.

Organization of This Manual

This manual is organized as follows:

• Chapter 1, Introduction , gives an overview of GPIB and the NI-488.2M software.

• Chapter 2, Application Examples, contains nine sample applications designed to
illustrate specific GPIB concepts and techniques that can help you write your own
applications. The description of each example includes the programmer's task, a
program flowchart, and numbered steps which correspond to the numbered blocks on
the flowchart.

• Chapter 3, Developing Your Application, explains how to develop a GPIB
application program using NI-488 functions and NI-488.2 routines.

• Chapter 4, Debugging Your Application, describes several ways to debug your
application program.

• Chapter 5, ibic–Interface Bus Interactive Control Utility, introduces you to ibic ,
the interactive control program that you can use to communicate with GPIB devices
interactively.

• Chapter 6, GPIB Programming Techniques, describes techniques for using some
NI-488 functions and NI-488.2 routines in your application program.

• Chapter 7, ibconf–Interface Bus Configuration Utility , contains a description of
ibconf , the software configuration program you can use to configure the
NI-488.2M software.

• Appendix A, Status Word Conditions , gives a detailed description of the conditions
reported in the status word, ibsta .

• Appendix B, Error Codes and Solutions, lists a description of each error, some
conditions under which it might occur, and possible solutions.

• Appendix C, Customer Communication, contains forms you can use to request help
from National Instruments or to comment on our products and manuals.

• The Glossary contains an alphabetical list and description of terms used in this
manual, including abbreviations, acronyms, metric prefixes, mnemonics, and
symbols.

• The Index contains an alphabetical list of key terms and topics in this manual,
including the page where you can find each one.

About This Manual

© National Instruments Corp. xiii NI-488.2M UM for Windows NT

Conventions Used in This Manual

The following conventions are used in this manual.

bold Bold text denotes menu items and dialog box buttons or
options.

bold italic Bold italic text denotes a note, caution, or warning.

italic Italic text denotes emphasis, cross references, field names, or
an introduction to a key concept.

monospace Text in this font denotes text or characters that you enter from
the keyboard. Sections of code, programming examples, and
syntax examples also appear in this font. This font is also
used for the proper name of disk drives, paths, directories,
device names, variables, and for statements taken from
program code.

bold monospace Bold text in this font denotes the messages and responses that
the computer automatically prints to the screen.

italic monospace Italic text in this font denotes that you must supply the
appropriate words or values in the place of these items.

< > Angle brackets enclose the name of a key on the keyboard–for
example, <PageDown>.

- A hyphen between two or more key names enclosed in angle
brackets denotes that you should simultaneously press the
named keys–for example, <Control-C>.

IEEE 488 and IEEE 488 and IEEE 488.2 are used throughout this manual
IEEE 488.2 to refer to the ANSI/IEEE Standard 488.1-1987 and the

ANSI/IEEE Standard 488.2-1992, respectively, which define
the GPIB.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and terms are listed in
the Glossary.

About This Manual

NI-488.2M UM for Windows NT xiv © National Instruments Corp.

Related Documentation

The following documents contain information that you may find helpful as you read this
manual:

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface for Programmable
Instrumentation

• ANSI/IEEE Standard 488.2-1992, IEEE Standard Codes, Formats, Protocols, and
Common Commands

• Microsoft Windows NT System Guide

• Microsoft Win 32 Software Development Kit for Windows NT: Tools

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We
are interested in the applications you develop with our products, and we want to help if
you have problems with them. To make it easy for you to contact us, this manual
contains comment and configuration forms for you to complete. These forms are in
Appendix C, Customer Communication, at the end of this manual.

© National Instruments Corp. 1-1 NI-488.2M UM for Windows NT

Chapter 1
Introduction

This chapter gives an overview of GPIB and the NI-488.2M software.

GPIB Overview

The ANSI/IEEE Standard 488.1-1987, also known as GPIB (General Purpose Interface
Bus), describes a standard interface for communication between instruments and
controllers from various vendors. It contains information about electrical, mechanical,
and functional specifications. The GPIB is a digital, 8-bit parallel communications
interface with data transfer rates of 1 Mbytes/s and above, using a 3-wire handshake. The
bus supports one System Controller, usually a computer, and up to 14 additional
instruments. The ANSI/IEEE Standard 488.2-1987 extends IEEE 488.1 by defining a bus
communication protocol, a common set of data codes and formats, and a generic set of
common device commands.

Talkers, Listeners, and Controllers

GPIB devices can be Talkers, Listeners, or Controllers. A Talker sends out data
messages. Listeners receive data messages. The Controller, usually a computer, manages
the flow of information on the bus. It defines the communication links and sends GPIB
commands to devices.

Some devices are capable of playing more than one role. A digital voltmeter, for
example, can be a Talker and a Listener. If your personal computer has a National
Instruments GPIB interface board and NI-488.2M software installed, it can function as a
Talker, Listener, and Controller.

Controller-In-Charge and System Controller

You can have multiple Controllers on the GPIB, but only one Controller at a time can be
the active Controller, or Controller-In-Charge (CIC). The CIC can either be active or
inactive (Standby) Controller. Control can pass from the current CIC to an idle
Controller, but only the System Controller, usually a GPIB interface board, can make
itself the CIC.

Introduction Chapter 1

NI-488.2M UM for Windows NT 1-2 © National Instruments Corp.

GPIB Addressing

All GPIB devices and boards must be assigned a unique GPIB address. A GPIB address
is made up of two parts: a primary address and an optional secondary address.

The primary address is a number in the range 0 to 30. The GPIB Controller uses this
address to form a talk or listen address that is sent over the GPIB when communicating
with a device.

A talk address is formed by setting bit 6, the TA (Talk Active) bit of the GPIB address.
A listen address is formed by setting bit 5, the LA (Listen Active) bit of the GPIB
address. For example, if a device is at address 1, the Controller sends hex 41 (address 1
with bit 6 set) to make the device a Talker. Because the Controller is usually at primary
address 0, it sends hex 20 (address 0 with bit 5 set) to make itself a Listener. Figure 1-1
shows the configuration of the GPIB address bits.

Bit
Position 7 6 5 4 3 2 1 0

Meaning 0 TA LA GPIB Primary Address (range 0 to 30)

Figure 1-1. GPIB Address Bits

With some devices, you can use secondary addressing. A secondary address is a number
in the range hex 60 to hex 7E. When secondary addressing is in use, the Controller sends
the primary talk or listen address of the device followed by the secondary address of the
device.

Sending Messages Across the GPIB

Devices on the bus communicate by sending messages. Signals and lines transfer these
messages across the GPIB interface, which consists of 16 signal lines and eight ground
return (shield drain) lines. The 16 signal lines are discussed in the following sections.

Data Lines

Eight data lines, DIO1 through DIO8, carry both data and command messages.

Chapter 1 Introduction

© National Instruments Corp. 1-3 NI-488.2M UM for Windows NT

Handshake Lines

Three hardware handshake lines asynchronously control the transfer of message bytes
between devices. This process is a three-wire interlocked handshake, and it guarantees
that devices send and receive message bytes on the data lines without transmission error.
Table 1-1 summarizes the GPIB handshake lines.

Table 1-1. GPIB Handshake Lines

Line Description

NRFD (not ready for data) Listening device is ready/not ready to receive a message
byte. Also used by the Talker to signal high-speed GPIB
transfers.

NDAC (not data accepted) Listening device has/has not accepted a message byte.

DAV (data valid) Talking device indicates signals on data lines are stable
(valid) data.

Interface Management Lines

Five GPIB hardware lines manage the flow of information across the bus. Table 1-2
summarizes the GPIB interface management lines.

Table 1-2. GPIB Interface Management Lines

Line Description

ATN (attention) Controller drives ATN true when it sends commands and
false when it sends data messages.

IFC (interface clear) System Controller drives the IFC line to initialize the bus
and make itself CIC.

REN (remote enable) System Controller drives the REN line to place devices
in remote or local program mode.

SRQ (service request) Any device can drive the SRQ line to asynchronously
request service from the Controller.

EOI (end or identify) Talker uses the EOI line to mark the end of a data
message. Controller uses the EOI line when it conducts
a parallel poll.

Introduction Chapter 1

NI-488.2M UM for Windows NT 1-4 © National Instruments Corp.

Setting Up and Configuring Your System

Devices are usually connected with a cable assembly consisting of a shielded
24-conductor cable with both a plug and receptacle connector at each end. With this
design, you can link devices in a linear configuration, a star configuration, or a
combination of the two. Figure 1-2 shows the linear and star configurations.

Device B

Device C

Device A
Linear

Configuration

Device D

Device CDevice B

Device A

Star
Configuration

Figure 1-2. Linear and Star System Configuration

Chapter 1 Introduction

© National Instruments Corp. 1-5 NI-488.2M UM for Windows NT

Controlling More Than One Board

The NI-488.2M driver can control up to 10 GPIB boards. Figure 1-3 shows an example
of a multiboard system configuration. gpib0 is the access board for the voltmeter, and
gpib1 is the access board for the plotter and printer. The control functions of the
devices automatically access their respective boards.

Printer

Plotter

Digital Voltmeter

gpib0

gpib1

One
GPIB

Another
GPIB

Figure 1-3. Example of Multiboard System Setup

Configuration Requirements

To achieve the high data transfer rate that the GPIB was designed for, you must limit the
physical distance between devices and the number of devices on the bus. The following
restrictions are typical:

• A maximum separation of four meters between any two devices and an average
separation of two meters over the entire bus.

• A maximum total cable length of 20 m.

• A maximum of 15 devices connected to each bus, with at least two-thirds powered
on.

Introduction Chapter 1

NI-488.2M UM for Windows NT 1-6 © National Instruments Corp.

For high-speed operation, the following restrictions apply:

• All devices in the system must be powered on.

• Cable lengths as short as possible up to a maximum of 15 m of cable for each
system.

• With at least one equivalent device load per meter of cable.

If you want to exceed these limitations, you can use bus extenders to increase the cable
length or expander to increase the number of device loads. Extenders and expanders are
available from National Instruments.

The following sections describe the NI-488.2M software, which controls the flow of
communication on the GPIB.

The NI-488.2M Software Elements

The following section highlights important elements of the NI-488.2M software for
Windows NT and describes the function of each element.

NI-488.2M Driver and Driver Utilities

The distribution disk contains the following driver and utility files:

• readme.txt is a documentation file that contains important information about the
NI-488.2M software and a description of any new features. Before you use the
software, read this file for the most recent information.

• gpibclsd.sys is the Windows NT kernel driver that implements the NI-488.2
device-level functions.

• gpibclsb.sys is the Windows NT kernel driver that implements the NI-488.2
board-level functions.

• gpibxxxx.sys (where xxxx represents a particular type of GPIB hardware–for
example, gpib-mc.sys for the MC-GPIB board or gpibatnt.sys for the
AT-GPIB/TNT board) is the Windows NT kernel driver that implements
hardware-specific features of the NI-488.2M software.

• gpib-32.dll is a 32-bit dynamic link library that acts as the interface between all
applications and the kernel mode GPIB driver.

• ibic.exe is an interactive control program that you use to communicate with the
GPIB devices interactively using NI-488.2 functions and routines. It helps you to
learn the NI-488.2 routines and to program your instrument or other GPIB devices.

Chapter 1 Introduction

© National Instruments Corp. 1-7 NI-488.2M UM for Windows NT

• ibconf.cpl is a control panel application that you use to modify the software
configuration parameters of the NI-488.2M software.

• ibconf.hlp is a Windows help file that is used by the ibconf application.

• ibtest.exe is the NI-488.2M software installation diagnostic test.

• gpibinfo.exe is a utility you can use to obtain information about your GPIB
hardware and software, such as the version of the NI-488.2M software and the type
of interface board you are using.

DOS and 16-bit Windows Support Files

• readme.txt is a documentation file that contains information about using existing
DOS and 16-bit Windows applications under Windows NT.

• gpib-vdd.dll is the virtual device driver that allows existing NI-488.2 for DOS
and 16-bit Windows applications to access the NI-488.2M software.

• gpib-nt.com is the DOS device driver. When you run an existing NI-488.2
application for DOS in the Windows NT environment, this file replaces the
gpib.com driver that you used in the DOS environment.

• gpib.dll is the 16-bit Windows dynamic link library. When you run an existing
NI-488.2 application for Windows in the Windows NT environment, this file
replaces the GPIB DLL that you used in the Windows (16-bit) environment.

C Language Files

• readme.txt is a documentation file that contains information about the C
language interface.

• decl-32.h is a 32-bit include file. It contains NI-488 function and NI-488.2
routine prototypes and various predefined constants.

• gpib-32.obj is a 32-bit C language interface file. An application links with this
file in order to access the 32-bit DLL.

Sample Application Files

The NI-488.2M software includes nine sample applications along with source code for
each language supported by the NI-488.2M software. For a detailed description of the
sample application files, refer to Chapter 2, Application Examples.

Introduction Chapter 1

NI-488.2M UM for Windows NT 1-8 © National Instruments Corp.

How the NI-488.2M Software Works with Windows NT

The main components of the NI-488.2M software are a dynamic link library that runs in
user mode and a layered NT device driver that runs in kernel mode. The layered NT
device driver consists of three drivers: a device class driver that handles device-level
calls, a board class driver that handles board-level calls, and a GPIB port driver that uses
the Hardware Abstraction Layer (HAL) to communicate with the GPIB hardware. The
top two layers of the layered NT device driver are accessed from user mode by
gpib-32.dll , a 32-bit Windows NT dynamic link library.

GPIB applications access the NI-488.2M software through gpib-32.dll as follows:

• A 32-bit Windows application can either link with the language interface
(gpib-32.obj) or directly access the functions exported by the DLL.

• If you already have an existing 16-bit Windows applications, use the 16-bit DLL
(gpib.dll) to access the GPIB virtual device driver (gpib-vdd.dll).

• If you have an existing DOS application, use the DOS device driver
(gpib-nt.com) to access the GPIB virtual device driver.

Figure 1-4 shows how you can use the NI-488.2M software with Windows NT and your
GPIB application programs.

Chapter 1 Introduction

© National Instruments Corp. 1-9 NI-488.2M UM for Windows NT

DOS
Application

Win16
Application

Win 32
Application

Win32
Application
gpib-32.obj

gpib-32.dll

Win 32
Subsystem

gpib-vdd.dll

gpib.dll gpib-nt.com

User Mode

Kernel Mode

System Services

GPIB Hardware

Hardware Abstraction Layer (HAL)

I/O Manager

gpibclsd.sys

A
pp

lic
at

io
ns

Protected
Subsystem

gpibclsb.sysN
T

 E
xe

cu
tiv

e

Kernel

gpibxxxx.sys

Figure 1-4. How the NI-488.2M Software Works with Windows NT

Unloading and Reloading the NI-488.2M Driver

You can unload and restart the NI-488.2M driver using the ibconf utility. The icon for
ibconf is located in the Control Panel window in the Program Manager .
Double-click on the ibconf icon to start it. The main ibconf window has an Unload
button and a Restart button. If you click on the Unload button, the NI-488.2M driver is
unloaded. If you click on the Restart button, the NI-488.2M driver is automatically
unloaded and then reloaded. Refer to Chapter 7, ibconf–Interface Bus Configuration
Utility , for a more complete description.

© National Instruments Corp. 2-1 NI-488.2M UM for Windows NT

Chapter 2
Application Examples

This chapter contains nine sample applications designed to illustrate specific GPIB
concepts and techniques that can help you write your own applications. The description
of each example includes the programmer's task, a program flowchart, and numbered
steps which correspond to the numbered blocks on the flowchart.

Use this chapter along with your NI-488.2M software, which includes the C source code
for each of the nine examples. The programs are listed in order of increasing complexity.
If you are new to GPIB programming, you might want to study the contents and concepts
of the first sample, simple.c , before moving on to more complex examples.

The following example programs are included with your NI-488.2 software:

• simple.c is the source code file for Example 1. It illustrates how you can
establish communication between a host computer and a GPIB device.

• clr_trg.c is the source code file for Example 2. It illustrates how you can clear
and trigger GPIB devices.

• asynch.c is the source code file for Example 3. It illustrates how you can perform
non-GPIB tasks while data is being transferred over the GPIB.

• eos.c is the source code file for Example 4. It illustrates the concept of the
end-of-string (EOS) character.

• rqs.c is the source code file for Example 5. It illustrates how you can
communicate with GPIB devices that use the GPIB SRQ line to request service.
This sample is written using NI-488 functions.

• easy4882.c is the source code file for Example 6. It is an introduction to
NI-488.2 routines.

• rqs4882.c is the source code file for Example 7. It uses NI-488.2 routines to
communicate with GPIB devices that use the GPIB SRQ line to request service.

• ppoll.c is the source code file for Example 8. It uses NI-488.2 routines to
conduct parallel polls.

• non_cic.c is the source code file for Example 9. It illustrates how you can use
the NI-488.2M driver in a non-Controller application.

Application Examples Chapter 2

NI-488.2M UM for Windows NT 2-2 © National Instruments Corp.

Example 1: Basic Communication

This example focuses on the basics of establishing communication between a host
computer and a GPIB device.

A technician needs to monitor voltage readings using a GPIB multimeter. His computer
is equipped with an IEEE 488.2 interface board. The NI-488.2M software is installed,
and a GPIB cable runs from the computer to the GPIB port on the multimeter.

The technician is familiar with the multimeter remote programming command set. This
list of commands is specific to his multimeter and is available from the multimeter
manufacturer.

He sets up the computer to direct the multimeter to take measurements and record each
measurement as it occurs. To do this, he has written an application that uses some simple
high-level GPIB commands. The following steps correspond to the program flowchart in
Figure 2-1.

1. The application initializes the GPIB by bringing the interface board in the computer
online.

2. The application sends the multimeter an instruction, setting it up to take voltage
measurements in autorange mode.

3. The application sends the multimeter an instruction to take a voltage measurement.

4. The application tells the multimeter to transmit the data it has acquired to the
computer.

The process of requesting a measurement and reading from the multimeter (Steps 3
and 4) is repeated as long as there are readings to be obtained.

5. As a cleanup step before exiting, the application returns the interface board to its
original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-3 NI-488.2M UM for Windows NT

Computer Multimeter

INIT

Read
Measurement

from Multimeter

Finished Getting
Measurements?

CLEAN UP

Yes

No

ibwrt

ibrd

"VOLTS?"Tell Multimeter to
Take Measurement

"+ 5 volts"

1

2

3

5

Set Up Multimeter
to Take Voltages

ibwrt

"VOLTS DC;AUTO"

4

GPIB Cable

Figure 2-1. Program Flowchart for Example 1

Application Examples Chapter 2

NI-488.2M UM for Windows NT 2-4 © National Instruments Corp.

Example 2: Clearing and Triggering Devices

This example illustrates how you can clear and trigger GPIB devices.

Two freshman physics lab partners are learning how to use a GPIB digital oscilloscope.
They have successfully loaded the NI-488.2M software on a personal computer and
connected their GPIB board to a GPIB digital oscilloscope. Their current lab assignment
is to write a small application to practice using the oscilloscope and its command set
using high-level GPIB commands. The following steps correspond to the program
flowchart in Figure 2-2.

1. The application initializes the GPIB by bringing the interface board in the computer
online.

2. The application sends a GPIB clear command to the oscilloscope. This command
clears the internal registers of the oscilloscope, reinitializing it to default values and
settings.

3. The application sends a command to the oscilloscope telling it to read a waveform
each time it is triggered. Predefining the task in this way decreases the execution
time required. Each trigger of the oscilloscope is now sufficient to get a new run.

4. The application sends a GPIB trigger command to the oscilloscope which causes it to
acquire data.

5. The application queries the oscilloscope for the acquired data. The oscilloscope
sends the data.

6. The application reads the data from the oscilloscope.

7. The application calls an external graphics routine to display the acquired waveform.

Steps 4, 5, 6, and 7 are repeated until all of the desired data has been acquired by the
oscilloscope and received by the computer.

8. As a cleanup step before exiting, the application returns the interface board to its
original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-5 NI-488.2M UM for Windows NT

GPIB Cable

Computer Oscilloscope

INIT

Trigger
Oscilloscope to

Get Reading

Finished
Reading?

CLEAN UP

Yes

No

ibclr

ibtrg

Clear
Command

Request Data
from

Oscilloscope
"CURV?"

Clear
Oscilloscope

ibwrt

Define Task to Be Done
When Oscilloscope is

Triggered

Trigger
Command

1

2

3

4

5

6
Read Data

from
Oscilloscope

 Display
Waveform

Data

7

8

"WAV=TRIG"

ibwrt

ibrd

Figure 2-2. Program Flowchart for Example 2

Application Examples Chapter 2

NI-488.2M UM for Windows NT 2-6 © National Instruments Corp.

Example 3: Asynchronous I/O

This example illustrates how an application conducts data transfers with a GPIB device
and immediately returns to perform other non-GPIB related tasks while GPIB I/O is
occurring in the background. This asynchronous mode of operation is particularly useful
when the requested GPIB activity may take some time to complete.

In this example, a research biologist is trying to obtain accurate CAT scans of a
laboratory animal’s liver. She will print out a color copy of each scan as it is acquired.
The entire operation is computer-controlled. The CAT scan machine sends the images it
acquires to a computer that has the NI-488.2M software installed and is connected to a
GPIB color printer. The biologist is familiar with the command set of her color printer,
as described in the user manual provided by the manufacturer. She acquires and prints
images with the aid of an application program she wrote using high-level GPIB
commands. The following steps correspond to the program flowchart in Figure 2-3.

1. The application initializes the GPIB by bringing the interface board in the computer
online.

2. An image is scanned in.

3. The application sends the GPIB printer a command to print the new image and
immediately returns without waiting for the I/O operation to be completed.

4. The application saves the image obtained to a file.

5. The application inquires as to whether the printing operation has completed by
issuing a GPIB wait command. If the status reported by the wait command indicates
completion (CMPL is in the status returned) and more scans need to be acquired,
Steps 2 through 5 are repeated until the scans have all been acquired. If the status
reported by the wait command in Step 5 does not indicate that printing is finished,
statistical computations are performed on the scan obtained and Step 5 is repeated.

6. As a cleanup step before exiting, the application returns the interface board to its
original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-7 NI-488.2M UM for Windows NT

Computer

INIT

Print Image
Asynchronously

CLEAN UP

Non-GPIB
Activity: Save

to Disk

Color Printer

Print Image

Image
Scan

Non-GPIB Activity:
Compute Statistics

More
Images?

Yes

No

Yes

No

ibwrta

1

2

3

4

5

6

GPIB Cable

Is GPIB
Printing
Done?

ibwait

Figure 2-3. Program Flowchart for Example 3

Application Examples Chapter 2

NI-488.2M UM for Windows NT 2-8 © National Instruments Corp.

Example 4: End-of-String Mode

This example illustrates how to use the end-of-string modes to detect that the GPIB
device has finished sending data.

A journalist is using a GPIB scanner to scan some pictures into his personal computer for
a news story. A GPIB cable runs between the scanner and the computer. He is using an
application written by an intern in the department who has read the scanner's instruction
manual and is familiar with the scanner's programming requirements. The following
steps correspond to the program flowchart in Figure 2-4.

1. The application initializes the GPIB by bringing the interface board in the computer
online.

2. The application sends a GPIB clear message to the scanner, initializing it to its
power-on defaults.

3. The scanner needs to detect a delimiter indicating the end of a command. In this
case, the scanner expects the commands to be terminated with <CR><LF> (carriage
return, \r , and linefeed, \n). The application sets its end-of-string (EOS) byte to
<LF>. The linefeed code indicates to the scanner that no more data is coming, and is
called the end-of-string byte. It flags an end-of-string condition for this particular
GPIB scanner. The same effect could be accomplished by asserting the EOI line
when the command is sent.

4. With the exception of the scan resolution, all the default settings are appropriate for
the task at hand. The application changes the scan resolution by writing the
appropriate command to the scanner.

5. The scanner sends back information describing the status of the change resolution
command. This is a string of bytes terminated by the end-of-string character to tell
the application it is done changing the resolution.

6. The application s tarts the scan by writing the scan command to the scanner.

7. The application reads the scan data into the computer.

8. As a cleanup step before exiting, the application returns the interface board to its
original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-9 NI-488.2M UM for Windows NT

Read Status

Computer Scanner

INIT

Set EOS
Mode

CLEAN UP

ibclr

ibeos

Change
Scan

Resolution

Reset
Internal
State

"RES:3 \ r \ n"

ibwrt

Read
Data

ibwrt

ibrd

Start Scan

"OK"

"scan \ r \ n"

Scanned
Data

ibrd

1

2

3

4

5

6

7

8

Clear
Command

GPIB Cable

Figure 2-4. Program Flowchart for Example 4

Application Examples Chapter 2

NI-488.2M UM for Windows NT 2-10 © National Instruments Corp.

Example 5: Service Requests

This example illustrates how an application communicates with a GPIB device that uses
the GPIB service request (SRQ) line to indicate that it needs attention.

A graphic arts designer is transferring digital images stored on her computer to a roll of
color film, using a GPIB digital film recorder. A GPIB cable connects the GPIB port on
the film recorder to the IEEE 488.2 interface board installed in her computer. She has
installed the NI-488.2M software on the host computer and is familiar with the
programming instructions for the film recorder, as described in the user manual provided
by the manufacturer. She places a fresh roll of film in the camera and launches a simple
application she has written using high-level GPIB commands. With the aid of the
application, she records a few images on film. The following steps correspond to the
program flowchart in Figure 2-5.

1. The application initializes the GPIB by bringing the interface board in the computer
online.

2. The application brings the film recorder to a ready state by issuing a device clear
instruction. The film recorder is now set up for operation using its default values.
(The graphic arts designer has previously established that the default values for the
film recorder are appropriate for the type of film she is using).

3. The application advances the new roll of film into position so the first image can be
exposed on the first frame of film. This is done by sending the appropriate
instructions as described in the film recorder programming guide.

4. The application waits for the film recorder to signify that it is done loading the film,
by waiting for RQS (request for service). The film recorder asserts the GPIB SRQ
line when it has finished loading the film.

5. As soon as the film recorder asserts the GPIB SRQ line, the application’s wait for the
RQS event completes. The application conducts a serial poll by sending a special
command message to the film recorder that directs it to return a response in the form
of a serial poll status byte. This byte contains information indicating what kind of
service the film recorder is requesting or what condition it is flagging. In this
example, it indicates the completion of a command.

6. A color image transfers to the digital film recorder in three consecutive passes–one
pass each for the red, green and blue components of the image. Sub-steps 6a, 6b,
and 6c are repeated for each of the passes:

6a. The application sends a command to the film recorder directing it to accept
data to create a single pass image. The film recorder asserts the SRQ line as
soon as a pass is completed.

6b. The application waits for RQS.

Chapter 2 Application Examples

© National Instruments Corp. 2-11 NI-488.2M UM for Windows NT

6c. When the SRQ line is asserted, the application serial polls the film recorder to
see if it requested service, as in Step 5.

7. The application issues a command to the film recorder to advance the film by one
frame. The advance occurs successfully unless the end of film is reached.

8. The application waits for RQS, which completes when the film recorder asserts the
SRQ line to signal it is done advancing the film.

9. As soon as the application's wait for RQS completes, the application serial polls the
film recorder to see if it requested service, as in Step 5. The returned serial poll
status byte indicates either of two conditions–the film recorder finished advancing
the film as requested or the end of film was reached and it can no longer advance.
Steps 6 through 9 are repeated as long as film is in the camera and more images need
to be recorded.

10. As a cleanup step before exiting, the application returns the interface board to its
original state by taking it offline.

Application Examples Chapter 2

NI-488.2M UM for Windows NT 2-12 © National Instruments Corp.

GPIB Cable

Computer Digital Film Recorder

INIT

Wait for the
Film Recorder to
Request Service

Finished
Loading

Film?

ibclr

ibwait

"FRM+"

Read
Response from

the Film
Recorder

Response

Advance
Film

Clear Film Recorder Clear Command

ibrsp

1

2

4

3

5

No

ibwrt

YesExit Application
and Repair

Film Recorder

Request
Service

Did You Request
Service ?

Yes

(continues)

Figure 2-5. Program Flowchart for Example 5

Chapter 2 Application Examples

© National Instruments Corp. 2-13 NI-488.2M UM for Windows NT

(Continued)

CLEAN UP

Yes

Wait for Film
Recorder to

Request
Service

Create a
Single Pass

Image

Read Response
From Film
Recorder

ibrsp

Wait for Film
Recorder to

Request
Service

Advance Film

Read Response From
Film Recorder

6

6a

6b

6c

7

8

9

10

Yes

ibwait
These steps
are repeated 3
times, once for
each color
pass

ibwrt

ibwait

Reached
End of
Film?No

Computer Digital Film Recorder

ibrsp

ibwrt

Data for Red, Green,
or Blue Pass

Request
Service

Did You Request
Service?

Yes

Response

 "ADV"

Request
Service

Did You Request
Service?

Yes

Response

Figure 2-5. Program Flowchart for Example 5 (Continued)

Application Examples Chapter 2

NI-488.2M UM for Windows NT 2-14 © National Instruments Corp.

Example 6: Basic Communication with
IEEE 488.2-Compliant Devices

This example provides an introduction to communicating with IEEE 488.2-compliant
devices.

A test engineer in a metal factory is using IEEE 488.2-compliant tensile testers to find out
the strength of metal rods as they come out of production. There are several tensile
testers and they are all connected to a central computer equipped with an IEEE 488.2
interface board. These machines are fairly voluminous and it is difficult for the engineer
to reach the address switches of each machine. For the purposes of his future work with
these tensile testers, he needs to determine what GPIB addresses they have been set to.
He can do so with the aid of a simple application he has written. The following steps
correspond to the program flowchart in Figure 2-6.

1. The application initializes the GPIB by bringing the interface board in the computer
online.

2. The application issues a command to detect the presence of listening devices on the
GPIB and compiles a list of the addresses of all such devices.

3. The application sends an identification query (“*IDN?”) all of the devices detected
on the GPIB in Step 2.

4. The application reads the identification information returned by each of the devices
as it responds to the query in Step 3.

5. As a cleanup step before exiting, the application returns the interface board to its
original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-15 NI-488.2M UM for Windows NT

Computer Tensile Tester 1

INIT

Tell Device 1
to Identify

Itself

CLEAN UP

FindLstn

Send

 "*IDN?"

Receive

Tensile Tester 2 Tensile Tester 3

Who's
Listening?

Get a List
of Devices
Present on

GPIB

Device 1
is Here

Device 2
is Here

Device 3
is Here

"MUTT 10426"

"MUTT 10528"

1

2

3

4

5

"MUTT 10383"

GPIB Cable GPIB Cable GPIB Cable

Receive

Receive

Read
Response

from
Device 2

Read
Response

from
Device 3

Tell Device 2
to Identify

Itself

Tell Device 3
to Identify

Itself

Send

Send

 "*IDN?"

 "*IDN?"

Read
Response

from
Device 1

3

4

3

4

Figure 2-6. Program Flowchart for Example 6

Application Examples Chapter 2

NI-488.2M UM for Windows NT 2-16 © National Instruments Corp.

Example 7: Serial Polls Using NI-488.2 Routines

This example illustrates how you can take advantage of the NI-488.2 routines to reduce
the complexity of performing serial polls of multiple devices.

A candy manufacturer is using GPIB strain gauges to measure the consistency of the
syrup used to make candy. The plant has four big mixers containing syrup. The syrup
has to reach a certain consistency to make good quality candy. This is measured by strain
gauges that monitor the amount of pressure used to move the mixer arms. When a certain
consistency is reached, the mixture is removed and a new batch of syrup is poured in the
mixer. The GPIB strain gauges are connected to a computer with an IEEE 488.2
interface board and the NI-488.2M software installed. The process is controlled by an
application that uses NI-488.2 routines to communicate with the IEEE 488.2-compliant
strain gauges. The following steps correspond to the program flowchart in Figure 2-7.

1. The application initializes the GPIB by bringing the interface board in the computer
online.

2. The application configures the strain gauges to request service when they have a
significant pressure reading or a mechanical failure occurs. They signal their request
for service by asserting the SRQ line.

3. The application waits for one or more of the strain gauges to indicate that they have a
significant pressure reading. This wait event ends as soon as the SRQ line is
asserted.

4. The application serial polls each of the strain gauges to see if it requested service.

5. Once the application has determined which one of the strain gauges requires service,
it takes a reading from that strain gauge.

6. If the reading matches the desired consistency, a dialog window appears on the
computer screen and prompts the mixer operator to remove the mixture and start a
new batch. Otherwise, a dialog window prompts the operator to service the mixer in
some other way.

Steps 3 through 6 are repeated as long as the mixers are in operation.

7. After the last batch of syrup has been processed, the application returns the interface
board to its original state by taking it offline.

Chapter 2 Application Examples

© National Instruments Corp. 2-17 NI-488.2M UM for Windows NT

Computer Strain
Gauge 1

INIT

CLEAN UP

SendList

WaitSRQ

FindRQS

Strain
Gauge 2

Strain
Gauge 3

Request
Service

Receive

Done for
the

Day?

1

7

GPIB Cable GPIB CableGPIB Cable

Yes

No

Wait for 1 or More
Strain Gauges to
Request Service

3

No
Did You Request

Service?

Did You Request
Service?

Yes

Serial Poll Each
Strain Gauge

Until One
Requesting
Service is
Located

4

Response
Get a Reading

From Strain
Gauge

5

No

Yes

Provide
Whatever
Service is
Required

Does the
Gauge Need

Service?

6

Mixture is Ready.
Display "Remove

Mixture"
Message

"SRQ=HI"

Configure Strain
Gauges to

Request Service
When They

Have a Reading

2

Figure 2-7. Program Flowchart for Example 7

Application Examples Chapter 2

NI-488.2M UM for Windows NT 2-18 © National Instruments Corp.

Example 8: Parallel Polls

This example illustrates how you can use NI-488.2 routines to obtain information from
several IEEE 488.2-compliant devices at once using a procedure called parallel polling.

The process of manufacturing a particular alloy involves bringing three different metals
to specific temperatures before mixing them to form the alloy. Three vats are used, each
containing a different metal. Each is monitored by a GPIB ore monitoring unit. The
monitoring unit consists of a GPIB temperature transducer and a GPIB power supply.
The temperature transducer is used to probe the temperature of each metal. The power
supply is used to start a motor to pour the metal into the mold when it reaches a
predefined temperature. The three monitoring units are connected to the IEEE 488.2
interface board of a computer that has the NI-488.2M software installed. An application
using NI-488.2 routines operates the three monitoring units. The application will obtain
information from the multiple units by conducting a parallel poll, and will then determine
when to pour the metals into the mixture tank. The following steps correspond to the
program flowchart in Figure 2-8.

1. The application initializes the GPIB by bringing the interface board in the computer
online.

2. The application configures the temperature transducer in the first monitoring unit by
choosing which of the eight GPIB data lines the transducer uses to respond when a
parallel poll is conducted. The application also sets the temperature threshold. The
transducer manufacturer has defined the individual status (ist) bit to be true when
the temperature threshold is reached, and the configured status mode of the
transducer is assert the data line. When a parallel poll is conducted, the transducer
asserts its data line if the temperature has exceeded the threshold.

3. The application configures the temperature transducer in the second monitoring unit
for parallel polls.

4. The application configures the temperature transducer in the third monitoring unit for
parallel polls.

5. The application conducts non-GPIB activity while the metals are heated.

6. The application conducts a parallel poll of all three temperature transducers to
determine whether the metals have reached the appropriate temperature. Each
transducer asserts its data line during the configuration step if its temperature
threshold has been reached.

7. If the response to the poll indicates that all three metals are at the appropriate
temperature, the application sends a command to each of the three power supplies,
directing them to power on. Then the motors start and the metals pour into the mold.

If only one or two of the metals is at the appropriate temperature, Steps 5 and 6 are
repeated until the metals can be successfully mixed.

Chapter 2 Application Examples

© National Instruments Corp. 2-19 NI-488.2M UM for Windows NT

8. The application unconfigures all of the transducers so that they no longer participate
in parallel polls.

9. As a cleanup step before exiting, the application returns the interface board to its
original state by taking it offline.

Computer

INIT

CLEAN UP

PPollConfig

Configure
Transducer 3

for Parallel Polls

Non-GPIB
Activity

Parallel Poll
Enable

Start Power
Supplies

No

Temp
Transducer

Yes

1

2

3

4

5

6

7

9

PPollConfig

PPollConfig

 PPoll
Unconfigure8

PPoll

"MIX ON"
SendList

PPollUnconfig

Power
Supply

Configure
Transducer 2

for Parallel Polls

Configure
Transducer 1 for

Parallel Polls

UNIT 1

GPIB
CableGPIB Cable

GPIB
Cable

GPIB
Cable

GPIB
Cable

GPIB
Cable

Are All
Metals
Ready?

Yes

Temp
Transducer

Power
Supply

UNIT 2
Temp

Transducer
Power
Supply

UNIT 3

Parallel Poll
Enable

YesYes

Parallel Poll
Enable

Parallel Poll

Parallel Poll
Disable

Figure 2-8. Program Flowchart for Example 8

Application Examples Chapter 2

NI-488.2M UM for Windows NT 2-20 © National Instruments Corp.

Example 9: Non-Controller Example

This example illustrates how you can use the NI-488.2M software to emulate a GPIB
device that is not the GPIB Controller.

A software engineer has written firmware to emulate a GPIB device for a research project
and is testing it using an application that makes simple GPIB calls. The following steps
correspond to the program flowchart in Figure 2-9.

1. The application brings the device online.

2. The application waits for any of three events to occur: the device to become listen-
addressed, become talk-addressed, or receive a GPIB clear message.

3. As soon as one of the events occurs, the application takes an action based upon the
event that occurred. If the device was cleared, the application resets the internal state
of the device to default values. If the device was talk-addressed, it writes data back
to the Controller. If the device was listen-addressed, it reads in new data from the
Controller.

Chapter 2 Application Examples

© National Instruments Corp. 2-21 NI-488.2M UM for Windows NT

Device Controller

INIT

Wait to be Talk
Addressed,

Listen
Addressed, or

Cleared

Write Out
New Data

No

ibwait

fffffffffff

Is This the
Clear Event?

Is This the
Talk

Addressed
Event?

Reset
Internal
State Yes

Yes

Data

No

Read In
New Data

Data

ibwrt

ibrd

1

2

3

3

3

Figure 2-9. Program Flowchart for Example 9

© National Instruments Corp. 3-1 NI-488.2M UM for Windows NT

Chapter 3
Developing Your Application

This chapter explains how to develop a GPIB application program using NI-488
functions and NI-488.2 routines.

Choosing How to Access the NI-488.2M DLL

Applications can access the NI-488.2M dynamic link library (gpib-32.dll) either by
using an NI-488.2M language interface or with direct access.

If you need to access the gpib-32.dll from a language other than C, you must
directly access the gpib-32.dll . You can directly access the DLL from any
programming environment that allows you to request addresses of variables and functions
that a DLL exports. The gpib-32.dll exports pointers to each of the global variables:

• user_ibsta is a pointer to ibsta

• user_iberr is a pointer to iberr

• user_ibcntl is a pointer to ibcntl

The gpib-32.dll also exports pointers to all of the NI-488 and NI-488.2 calls. For
example, it exports a pointer to the NI-488 ibwrt function. For a detailed example
showing how to use direct access, refer to the sample program dlldev.c that came
with your NI-488.2M software.

Choosing Between NI-488 Functions and NI-488.2 Routines

Your distribution disk contains two distinct sets of subroutines to meet your application
needs. Both of these sets, the NI-488 functions and the NI-488.2 routines, are compatible
across computer platforms and operating systems, so you can port programs to other
platforms with little or no source code modification. For most application programs, the
NI-488 functions are sufficient. You should use the NI-488.2 routines if you have a
complex configuration with one or more interface boards and multiple devices.
Regardless of which option you choose, the driver automatically addresses and performs
other bus management operations necessary for device communication.

The following sections discuss some differences between NI-488 functions and NI-488.2
routines.

Developing Your Application Chapter 3

NI-488.2M UM for Windows NT 3-2 © National Instruments Corp.

Using NI-488 Functions: One Device for Each Board

If your system has only one device attached to each board, the NI-488 functions are
probably sufficient for your programming needs. Some other factors that make the
NI-488 functions more convenient include the following:

• With NI-488 asynchronous I/O functions (ibcmda , ibrda , and ibwrta), you can
initiate an I/O sequence while maintaining control over the CPU for non-GPIB tasks.

• NI-488 functions include built-in file transfer functions (ibrdf and ibwrtf).

• With NI-488 functions, you can control the bus in non-typical ways or communicate
with non-compliant devices.

The NI-488 functions consist of high-level (or device) functions that hide much of the
GPIB management operations and low-level (or board) functions that offer you more
control over the GPIB than NI-488.2 routines. The following sections describe these
different function types.

NI-488 Device Functions

Device functions are high-level functions that automatically execute commands that
handle bus management operations such as reading from and writing to devices or polling
them for status. If you use device functions, you do not need to understand GPIB
protocol or bus management. For information about device-level calls and how they
manage the GPIB, refer to Device-Level Calls and Bus Management, in Chapter 6, GPIB
Programming Techniques.

NI-488 Board Functions

Board functions are low-level functions that perform rudimentary GPIB operations.
Board functions access the interface board directly and require you to handle the
addressing and bus management protocol. In cases when the high-level device functions
might not meet your needs, low-level board functions give you the flexibility and control
to handle situations such as the following:

• Communicating with non-compliant (non-IEEE 488.2) devices

• Altering various low-level board configurations

• Managing the bus in non-typical ways

Chapter 3 Developing Your Application

© National Instruments Corp. 3-3 NI-488.2M UM for Windows NT

The NI-488 board functions are compatible with, and can be interspersed within,
sequences of NI-488.2 routines. When you use board functions within a sequence of
NI-488.2 routines, you do not need a prior call to ibfind to obtain a board descriptior.
You simply substitute the board index as the first parameter of the board function call.
With this flexibility, you can handle non-standard or unusual situations that you cannot
resolve using NI-488.2M routines only.

Using NI-488.2 Routines: Multiple Boards and/or Multiple Devices

When your system includes a board that must access multiple devices, use the NI-488.2
routines. NI-488.2 routines can perform the following tasks with a single call:

• Find all of the Listeners on the bus

• Find a device requesting service

• Determine the state of the SRQ line, or wait for SRQ to be asserted

• Address multiple devices to listen

Checking Status with Global Variables

Each NI-488 function and NI-488.2 routine updates four global variables to reflect the
status of the device or board that you are using. The status word (ibsta), the error
variable (iberr) and the count variables (ibcnt and ibcntl) contain useful
information about the performance of your application program. Your program should
check these variables frequently. The following sections describe each of these global
variables and how you can use them in your application program.

Status Word – ibsta

All functions update a global status word, ibsta , which contains information about the
state of the GPIB and the GPIB hardware. The value stored in ibsta is the return value
of all of the NI-488 functions except ibfind and ibdev . You can test for the
conditions reported in ibsta and use that information to make decisions about
continued processing. If you check for possible errors after each call, debugging your
application is much easier.

ibsta is a 16-bit value. A bit value of one (1) indicates that a certain condition is in
effect. A bit value of zero (0) indicates that the condition is not in effect. Each bit in
ibsta can be set for NI-488 device calls (dev), NI-488 board calls (brd) and NI-488.2
calls, or all (dev, brd).

Developing Your Application Chapter 3

NI-488.2M UM for Windows NT 3-4 © National Instruments Corp.

Table 3-1 shows the condition that each bit position represents, the bit mnemonics, and
the type of calls for which the bit can be set. For a detailed explanation of each of the
status conditions, refer to Appendix A, Status Word Conditions .

Mnemonic
Bit
Pos.

Hex
Value Type Description

ERR 15 8000 dev, brd GPIB error

TIMO 14 4000 dev, brd Time limit exceeded

END 13 2000 dev, brd END or EOS detected

SRQI 12 1000 brd SRQ interrupt received

RQS 11 800 dev Device requesting service

SPOLL 10 400 brd Board has been serial polled by the
Controller

EVENT 9 200 brd A DCAC, DTAS, or IFC event has
occurred

CMPL 8 100 dev, brd I/O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CIC 5 20 brd Controller-In-Charge

ATN 4 10 brd Attention is asserted

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State

DCAS 0 1 brd Device Clear State

Table 3-1. Status Word (ibsta) Layout

Chapter 3 Developing Your Application

© National Instruments Corp. 3-5 NI-488.2M UM for Windows NT

The language header file included on your distribution disk contains the mnemonic
constants for ibsta . You can check a bit position in ibsta by using its numeric value
or its mnemonic constant. For example, bit position 15 (hex 8000) detects a GPIB error.
The mnemonic for this bit is ERR. To check for a GPIB error, use either of the following
statements after each NI-488 function and NI-488.2 routine as shown:

if (ibsta & ERR) gpiberr();

or

if (ibsta & 0x8000) gpiberr();

where gpiberr() is an error-handling routine.

Error Variable – iberr

If the ERR bit is set in the status word (ibsta), a GPIB error has occurred. When an
error occurs, the error type is specified by the value in iberr .

Note: The value in iberr is meaningful as an error type only when the ERR bit is
set in ibsta , indicating that an error has occurred.

For more information on error codes and solutions refer to Chapter 4, Debugging Your
Application , or Appendix B, Error Codes and Solutions.

Count Variables – ibcnt and ibcntl

The count variables are updated after each read, write, or command function. ibcnt
and ibcntl are 32-bit integers. On some systems, like MS-DOS, ibcnt is a 16-bit
integer, and ibcntl is a 32-bit integer. For cross-platform compatibility, all
applications should use ibcntl . If you are reading data, the count variables indicate the
number of bytes read. If you are sending data or commands, the count variables reflect
the number of bytes sent.

In your application program, you can use the count variables to null-terminate an ASCII
string of data received from an instrument. For example, if data is received in an array of
characters, you can use ibcntl to null-terminate the array and print the measurement on
the screen as follows:

char rdbuf[512];
ibrd (ud, rdbuf, 20L);
if (!(ibsta & ERR)){

rdbuf[ibcntl] = '\0';
printf ("Read: %s\n", rdbuf);

}
else {

error();
}

Developing Your Application Chapter 3

NI-488.2M UM for Windows NT 3-6 © National Instruments Corp.

ibcntl is the number of bytes received. Data begins in the array at index zero (0);
therefore, ibcntl is the position for the null character that marks the end of the string.

Using ibic to Communicate with Devices

Before you begin writing your application program, you might want to use the ibic
utility. With ibic (Interface Bus Interactive Control), you communicate with your
instruments from the keyboard rather than from an application program. You can use
ibic to learn to communicate with your instruments using the NI-488 functions or
NI-488.2 routines. For specific device communication instructions, refer to the user
manual that came with your instrument. For information about using ibic and for
detailed examples, refer to Chapter 5, ibic–Interface Bus Interactive Control Utility.

Writing Your NI-488 Application

This section discusses items you should include in your application program, general
program steps, and an NI-488 example. In this manual the example code is presented in
C using the standard C language interface. The NI-488.2M software includes the source
code for this example written in C (devsamp.c) and the source code for this example
written to use direct entry to access the gpib-32.dll (dlldev.c).

The NI-488.2M software also includes the source code for nine application examples,
which are described in Chapter 2, Application Examples.

Items to Include

• Include the appropriate GPIB header file. This file contains prototypes for the
NI-488 functions and constants that you can use in your application program.

• Check for errors after each NI-488 function call.

• Declare and define a function to handle GPIB errors. This function takes the device
offline and closes the application. If the function is declared as:

void gpiberr (char * msg); /* function prototype */

then your application invokes it as follows:

if (ibsta & ERR) {
gpiberr("GPIB error");

}

Chapter 3 Developing Your Application

© National Instruments Corp. 3-7 NI-488.2M UM for Windows NT

NI-488 Program Shell

Figure 3-1 is a flowchart of the steps to create your application program using NI-488
functions. The flowchart is for device-level calls.

No

Yes

No

No

Closed All
Devices?

Yes

START

Make a Device-Level Call
• Send Data to Device
• Receive Data from Device
• Clear Device
• Serial Poll Device
 and so on

(ibwrt)
(ibrd)

(ibclr)
(ibrsp)

Finished GPIB
Programming?

Close Device (ibonl)

END

Yes

Are All
Devices
Open?

Open Device (ibdev)

Figure 3-1. General Program Shell Using NI-488 Device Functions

Developing Your Application Chapter 3

NI-488.2M UM for Windows NT 3-8 © National Instruments Corp.

General Program Steps and Examples

The following steps demonstrate how to use the NI-488 device functions in your
program. This example configures a digital multimeter, reads 10 voltage measurements,
and computes the average of these measurements.

Step 1. Open a Device

Your first NI-488 function call should be to ibdev to open a device.

ud = ibdev(0, 1, 0 , T10s, 1, 0);

if (ibsta & ERR) {
 gpiberr("ibdev error");
}

The input arguments of the ibdev function are as follows:

0 - board index for GPIB0

1 - primary GPIB address of the device

0 - no secondary GPIB address for the device

T10s - I/O timeout value (10 s)

1 - send END message with the last byte when writing to device

0 - disable EOS detection mode

When you call ibdev , the driver automatically initializes the GPIB by sending an
Interface Clear (IFC) message and placing the device in remote programming state.

Step 2. Clear the Device

Clear the device before you configure the device for your application. Clearing the
device resets its internal functions to a default state.

ibclr(ud);
if (ibsta & ERR) {

gpiberr("ibclr error");
}

Chapter 3 Developing Your Application

© National Instruments Corp. 3-9 NI-488.2M UM for Windows NT

Step 3. Configure the Device

After you open and clear the device, it is ready to receive commands. To configure the
instrument, you send device-specific commands using the ibwrt function. Refer to the
instrument user manual for the command bytes that work with your instrument.

ibwrt(ud, "*RST; VAC; AUTO; TRIGGER 2; *SRE 16", 35L);
if (ibsta & ERR) {

gpiberr("ibwrt error");
}

The programming instruction in this example resets the multimeter (*RST). The meter is
instructed to measure the volts alternating current (VAC) using auto-ranging (AUTO), to
wait for a trigger from the GPIB interface board before starting a measurement
(TRIGGER 2), and to assert the SRQ line when the measurement completes and the
multimeter is ready to send the result (*SRE 16).

Step 4. Trigger the Device

If you configure the device to wait for a trigger, you must send a trigger command to the
device before reading the measurement value. Then instruct the device to send the next
triggered reading to its GPIB output buffer.

ibtrg(ud);
if (ibsta & ERR) {

gpiberr("ibtrg error");
}
ibwrt(ud,"VAL1?", 5L);
if (ibsta & ERR) {

gpiberr("ibwrt error");
}

Step 5. Wait for the Measurement

After you trigger the device, the RQS bit is set when the device is ready to send the
measurement. You can detect RQS by using the ibwait function. The second
parameter indicates what you are waiting for. Notice that the ibwait function also
returns when the I/O timeout value is exceeded.

printf("Waiting for RQS...\n");
ibwait (ud, TIMO|RQS);
if (ibsta & (ERR|TIMO)) {

gpiberr("ibwait error");
}

Developing Your Application Chapter 3

NI-488.2M UM for Windows NT 3-10 © National Instruments Corp.

When SRQ has been detected, serial poll the instrument to determine if the measured data
is valid or if a fault condition exists. For IEEE 488.2 instruments, you can find out by
checking the message available (MAV) bit, bit 4 in the status byte that you receive from
the instrument.
ibrsp (ud, &StatusByte);
if (ibsta & ERR) {

gpiberr("ibrsp error");
}

if (!(StatusByte & MAVbit)) {
gpiberr("Improper Status Byte");
printf(" Status Byte = 0x%x\n", StatusByte);

}

Step 6. Read the Measurement

If the data is valid, read the measurement from the instrument. (AsciiToFloat is a
function that takes a null-terminated string as input and outputs the floating point number
it represents.)

ibrd (ud, rdbuf, 10L);
if (ibsta & ERR) {

gpiberr("ibrd error");
}

rdbuf[ibcntl] = '\0';
printf("Read: %s\n", rdbuf);

 /* Output ==> Read: +10.98E-3 */

sum += AsciiToFloat(rdbuf);

Step 7. Process the Data

Repeat Steps 4 through 6 in a loop until 10 measurements have been read. Then print the
average of the readings as shown:

printf("The average of the 10 readings is %f\n", sum/10.0);

Step 8. Place the Device Offline

As a final step, take the device offline using the ibonl function.

ibonl (ud, 0);

Chapter 3 Developing Your Application

© National Instruments Corp. 3-11 NI-488.2M UM for Windows NT

Writing Your NI-488.2 Application

This section discusses items you should include in an application program that uses
NI-488.2 routines, general program steps, and an NI-488.2 example. In this manual the
example code is presented in C using the standard C language interface. The NI-488.2M
software includes the source code for this example written in C (samp4882.c) and the
code for this example written to use direct entry to access the gpib-32.dll
(dll4882.c).

The NI-488.2M software also includes the source code for nine application examples,
which are described in Chapter 2, Application Examples.

Items to Include

• Include the appropriate GPIB header file. This file contains prototypes for the
NI-488.2 routines and constants that you can use in your application program.

• Check for errors after each NI-488.2 routine call.

• Declare and define a function to handle GPIB errors. This function takes the device
offline and closes the application. If the function is declared as:

void gpiberr (char * msg); /* function prototype */

then your application invokes it as follows:

if (ibsta & ERR) {
gpiberr("GPIB error");

}

Developing Your Application Chapter 3

NI-488.2M UM for Windows NT 3-12 © National Instruments Corp.

NI-488.2 Program Shell

Figure 3-2 is a flowchart of the steps to create your application program using NI-488.2
routines.

No

END

Make a High-Level CallMake a Low-Level Call

No

• Send Data to Device (Send)
• Receive Data from Device
 (Receive)
• Clear Device (DevClear)
• Serial Poll Device
 (ReadStatusByte)
 and so on

• Address Devices to Listen (SendSetup)
• Send Data to Addressed Listener
 (SendDataBytes)
• Address Device to Talk (ReceiveSetup)
• Receive Data from Addressed Talker
 (RcvRespMsg)
 and so on

Low-Level High-Level

Yes

Close Board
(ibonl)

Are All Boards
Closed?

Finished GPIB
Programming?

Making
High-Level or

Low-Level Call?

START

Yes

Are All Boards
Initialized?

Yes

No

Initialize Specified GPIB
Interface (SendIFC)

Figure 3-2. General Program Shell Using NI-488.2 Routines

Chapter 3 Developing Your Application

© National Instruments Corp. 3-13 NI-488.2M UM for Windows NT

General Program Steps and Examples

The following steps demonstrate how to use the NI-488.2 routines in your program. This
example configures a digital multimeter, reads 10 voltage measurements, and computes
the average of these measurements.

Step 1. Initialization

Use the SendIFC routine to initialize the bus and the GPIB interface board so that the
GPIB board is Controller-In-Charge (CIC). The only argument of SendIFC is the GPIB
interface board number.

SendIFC(0);
if (ibsta & ERR) {

gpiberr("SendIFC error");
}

Step 2. Find All Listeners

Use the FindLstn routine to create an array of all of the instruments attached to the
GPIB. The first argument is the interface board number, the second argument is the list
of instruments that was created, the third argument is a list of instrument addresses that
the procedure actually found, and the last argument is the maximum number of devices
that the procedure can find (that is, it must stop if it reaches the limit). The end of the list
of addresses must be marked with the NOADDR constant, which is defined in the header
file that you included at the beginning of the program.

for (loop = 0; loop <=30; loop++){
instruments[loop] = loop;

}
instruments[31] = NOADDR;

printf("Finding all Listeners on the bus...\n");

Findlstn(0, instruments, result, 30);
if (ibsta & ERR) {

gpiberr("FindLstn error");
}

Step 3. Identify the Instrument

Send an identification query to each device for identification. For this example, assume
that all of the instruments are IEEE 488.2-compatible and can accept the identification
query, *IDN? . In addition, assume that FindLstn found the GPIB interface board at
primary address 0 (default) and, therefore, you can skip the first entry in the result
array.

Developing Your Application Chapter 3

NI-488.2M UM for Windows NT 3-14 © National Instruments Corp.

for (loop = 1; loop <= num_Listeners; loop++) {
Send(0, result[loop], "*IDN?", 5L, NLend);
if (ibsta & ERR) {

gpiberr("Send error");
}

Receive(0, result[loop], buffer, 10L, STOPend);
 if (ibsta & ERR) {

gpiberr("Receive error");
}

buffer[ibcntl] = '\0';
printf("The instrument at address %d is a %s\n",

 result[loop], buffer);
if (strncmp(buffer, "Fluke, 45", 9) == 0) {

fluke = result[loop];
printf("**** Found the Fluke ****\n");
break;

}
}

if (loop > num_Listeners) {
printf("Did not find the Fluke!\n");
ibonl(0,0);
exit(1);

}

The constant NLend signals that the new line character with EOI is automatically
appended to the data to be sent.

The constant STOPend indicates that the read is stopped when EOI is detected.

Step 4. Initialize the Instrument

After you find the multimeter, use the DevClear routine to clear it. The first argument
is the GPIB board number. The second argument is the GPIB address of the multimeter.
Then send the IEEE 488.2 Reset command to the meter.

DevClear(0, fluke);
if (ibsta & ERR) {

gpiberr("DevClear error")
}

Send(0, fluke, "*RST", 4L, NLend);
if (ibsta & ERR) {

gpiberr("Send *RST error");
}
sum = 0.0;
for(m =0; m<10; m++){
/* start of loop for Steps 5 through 8 */

Chapter 3 Developing Your Application

© National Instruments Corp. 3-15 NI-488.2M UM for Windows NT

Step 5. Configure the Instrument

After initialization, the instrument is ready to receive instructions. To configure the
multimeter, use the Send routine to send device-specific commands. The first argument
is the number of the access board. The second argument is the GPIB address of the
multimeter. The third argument is a string of bytes to send to the multimeter.

The bytes in this example instruct the meter to measure volts alternating current (VAC)
using auto-ranging (AUTO), to wait for a trigger from the Controller before starting a
measurement (TRIGGER 2), and to assert SRQ when the measurement has been
completed and the meter is ready to send the result (*SRE 16). The fourth argument
represents the number of bytes to be sent. The last argument, NLend , is a constant
defined in the header file which tells Send to append a linefeed character, with EOI
asserted, to the end of the message sent to the multimeter.

Send (0, fluke, "VAC; AUTO; TRIGGER 2; *SRE 16", 29L, NLend);
if (ibsta & ERR) {

gpiberr("Send setup error");
}

Step 6. Trigger the Instrument

In the previous step, the multimeter was instructed to wait for a trigger before conducting
a measurement. Now send a trigger command to the multimeter. You could use the
Trigger routine to accomplish this, but because the Fluke 45 is IEEE 488.2-
compatible, you can just send it the trigger command, *TRG. The VAL1? command
instructs the meter to send the next triggered reading to its output buffer.

Send(0, fluke, "*TRG; VAL1?", 11L, NLend);
if (ibsta & ERR) {

gpiberr("Send trigger error");
}

Step 7. Wait for the Measurement

After the meter is triggered, it takes a measurement and displays it on its front panel and
then asserts SRQ. You can detect the assertion of SRQ using either the TestSRQ or
WaitSRQ routine. If you have a process that you want to execute while you are waiting
for the measurement, use TestSRQ . For this example, you can use the WaitSRQ
routine. The first argument in WaitSRQ is the GPIB board number. The second
argument is a flag returned by WaitSRQ that indicates whether or not SRQ is asserted.

WaitSRQ(0, &SRQasserted);
if (!SRQasserted) {

gpiberr("WaitSRQ error");
}

Developing Your Application Chapter 3

NI-488.2M UM for Windows NT 3-16 © National Instruments Corp.

After you have detected SRQ, use the ReadStatusByte routine to poll the meter and
determine its status. The first argument is the GPIB board number, the second argument
is the GPIB address of the instrument, and the last argument is a variable that
ReadStatusByte uses to store the status byte of the instrument.

ReadStatusByte(0, fluke, &statusByte);
if (ibsta & ERR) {

gpiberr("ReadStatusByte error");
}

After you have obtained the status byte, you must check to see if the meter has a message
to send. You can do this by checking the message available (MAV) bit, bit 4, in the
status byte.

if (!(statusByte & MAVbit) {
gpiberr("Improper Status Byte");
printf("Status Byte = 0x%x\n", statusByte);

}

Step 8. Read the Measurement

Use the Receive function to read the measurement over the GPIB. The first argument
is the GPIB interface board number, and the second argument is the GPIB address of the
multimeter. The third argument is a string into which the Receive function places the
data bytes from the multimeter. The fourth argument represents the number of bytes to
be received. The last argument indicates that the Receive message terminates upon
receiving a byte accompanied with the END message.

Receive(0, fluke, buffer, 10L, STOPend);
if (ibsta & ERR) {

gpiberr("Receive error");
}

buffer[ibcntl] = '\0';
printf (Reading : %s\n", buffer);
sum += AsciiToFloat(buffer);
} /* end of loop started in Step 5 */

Step 9. Process the Data

Repeat Steps 5 through 8 in a loop until 10 measurements have been read. Then print the
average of the readings as shown:

printf ("The average of the 10 readings is : %f\n", sum/10);

Chapter 3 Developing Your Application

© National Instruments Corp. 3-17 NI-488.2M UM for Windows NT

Step 10. Place the Board Offline

Before ending your application program, take the board offline using
the ibonl function.

ibonl(0,0);

Compiling, Linking, and Running Your GPIB Win32
Application

The following sections describe how to compile, link, and run your Win32 GPIB
application.

Microsoft Visual C/C++

Before you compile your Win32 C application, make sure that the following line is
included at the beginning of your program:

#include "decl-32.h"

After you have written your C application program, you must compile the application
program using Microsoft Visual C/C++ (version 2.0 or higher). Next, link the
application with the C language interface, gpib-32.obj . To compile and link a
Win32 console application named cprog in a DOS shell, type the following on the
command line:

cl cprog.c gpib-32.obj

To run your application from the Windows environment, select the Run... option from
the Start menu. Enter the name of the compiled program in the dialog box that appears.
To run your application from a DOS shell, type the name of your compiled program on
the DOS command line.

Direct Entry with C

Before you compile your Win32 C application, make sure that the following lines are
included at the beginning of your application:

#ifdef __cplusplus
extern "C"{
#endif

#include "decl-32.h"

Developing Your Application Chapter 3

NI-488.2M UM for Windows NT 3-18 © National Instruments Corp.

/* Global variable for the handle to the loaded gpib-32.dll. */
HINSTANCE Gpib32Lib = NULL;
/* Pointers to NI-488.2 global status variables */
int *Pibsta;
int *Piberr;
long *Pibcntl;

#ifdef __cplusplus
}
#endif

In addition to pointers to the status variables and a handle to the loaded gpib-32.dll ,
you must define the direct entry prototypes for the functions you use in your application.
The prototypes for each function that gpib-32.dll exports can be found in the
NI-488.2M Function Reference Manual for Windows NT . The NI-488.2M direct entry
sample programs illustrate how to use direct entry to access gpib-32.dll . Use the
LoadLibrary and GetProcAddress functions to load the gpib-32.dll and get
pointers to its exported functions. For more information on direct entry, refer to the
Win32 SDK (Software Development Kit) documentation.

In your Win32 application, you first need to load gpib-32.dll . The following code
fragment demonstrates how to call the LoadLibrary function and check for an error:

Gpib32Lib=LoadLibrary("GPIB-32.DLL");
if (Gpib32Lib == NULL) {
 return FALSE;
}

Next, your Win32 application must use GetProcAddress . The following code
fragment demonstrates how to retrieve the addresses of the pointers to the status variables
and any functions your application needs:

Pibsta = (int *) GetProcAddress(Gpib32Lib, (LPCSTR)"user_ibsta");
Piberr = (int *) GetProcAddress(Gpib32Lib, (LPCSTR)"user_iberr");
Pibcntl = (long *) GetProcAddress(Gpib32Lib,
(LPCSTR)"user_ibcnt");

Pibdev = (int (__stdcall *)(int, int, int, int, int, int))
 GetProcAddress(Gpib32Lib, (LPCSTR)"ibdev");
Pibonl = (int (__stdcall *)(int, int)) GetProcAddress(Gpib32Lib,
 (LPCSTR)"ibonl");

If GetProcAddress fails, it returns a NULL pointer. The following code fragment
demonstrates how to verify that none of the calls to GetProcAddress failed:

if ((Pibsta == NULL) ||
 (Piberr == NULL) ||
 (Pibcntl == NULL) ||
 (Pibdev == NULL) ||
 (Pibonl == NULL)) {
 // ERROR!

Chapter 3 Developing Your Application

© National Instruments Corp. 3-19 NI-488.2M UM for Windows NT

 }

Your Win32 application dereferences the pointer to access either the status variables or
function. The following code demonstrates how to call a function and access the status
variable from within your application:

dvm = (*Pibdev) (0, 1, 0, T10s, 1, 0);
if (*Pibsta & ERR) {
 printf("Call failed");
}

Before exiting your application, you must free gpib-32.dll with the following
command:

FreeLibrary(Gpib32Lib);

For more information on direct entry, refer to the Win32 SDK (Software
Development Kit) documentation.

Microsoft Visual C/C++

After you have written your Win32 application, you must compile the application using
Microsoft Visual C/C++ (version 2.0 or higher). To compile and link a Win32 console
application named cprog in a DOS shell, type the following on the command line:

cl cprog.c

To run your application from the Windows environment, select the Run... option from
the Start menu. Enter the path and name of the compiled program in the dialog box that
appears. To run your application from a DOS shell, type the name of your compiled
program on the DOS command line.

Borland C/C++

After you have written your Win32 Borland C/C++ (version 4.0 or higher) application,
compile it using the -w32 option to create a console application. From the command
line in a DOS shell, type the following command to compile and link a Win32 application
named cprog :

bcc32 -w32 cprog.c

To run your application from the Windows environment, select the Run... option from
the Start menu. Enter the name of the compiled program in the dialog box that appears.
To run your application from a DOS shell, type the name of your compiled program on
the DOS command line.

Developing Your Application Chapter 3

NI-488.2M UM for Windows NT 3-20 © National Instruments Corp.

Running Existing DOS and Windows GPIB Applications

You can run existing DOS and Windows GPIB applications under Windows NT by using
the GPIB Virtual Device Driver, gpib-vdd.dll , which is included with your
NI-488.2M software.

To run DOS GPIB applications, load the special GPIB device driver gpib-nt.com
instead of gpib.com , which you normally use with DOS. When you install the
NI-488.2M software, gpib-nt.com is copied into a new subdirectory called
doswin16 . To use gpib-nt.com , you must modify your config.nt file to load
gpib-nt.com whenever a DOS application is executed. The config.nt file is
located in your <winnt>\system32 directory, where <winnt> is your Windows NT
directory, for example c:\windows . To load gpib-nt.com , add the following line
to your config.nt file:

device=<path>\doswin16\gpib-nt.com

where <path> is the directory where you installed the GPIB software (the default
installation directory is c:\gpib-nt).

To run 16-bit Windows GPIB applications, the system uses the special GPIB dynamic
link library, gpib.dll . When you install the NI-488.2M software, gpib.dll is
copied into the <winnt>\system32 directory, where <winnt> is your Windows NT
directory, for example c:\windows). As long as gpib.dll is in that directory, it is
automatically accessed whenever you launch a 16-bit Windows GPIB application.

© National Instruments Corp. 4-1 NI-488.2M UM for Windows NT

Chapter 4
Debugging Your Application

This chapter describes several ways to debug your application program.

Running the Software Diagnostic Test

Before you run your application program, you should run the software diagnostic test,
ibtest , that was installed with your NI-488.2M software. The ibtest program is an
NI-488.2M application that makes calls to the driver. If ibtest passes, your GPIB
hardware and NI-488.2M software are interacting correctly. The following paragraphs
describe the messages you might receive while running ibtest , and how to resolve
each problem.

Presence Test of Driver

The ibtest program tests for the presence of the NI-488.2M driver. ibtest displays
the following message if it detects a problem:

<<< IBTEST was unable to access the NI-488.2M driver. Please be
sure that the installation completed successfully, the hardware is
installed correctly without conflicts, and the software is
configured correctly. See your Getting Started manual for more
information. >>>

There are several reasons why ibtest might be unable to access the NI-488.2M driver.
If the software is not properly installed or if there is a conflict between the GPIB
hardware and the other hardware in the system, the NI-488.2M driver fails to start. Two
Windows NT utilities are useful in determining the source of the problem: the Devices
applet in the Control Panel in the Main group, and the Event Viewer in the
Administrative Tools group. The information available through each utility is described
in the following sections.

Examining NT Devices to Verify the NI-488.2M Installation

To verify whether the NI-488.2M devices are installed correctly (that is, that the devices
are started), run the Devices applet in the Control Panel window in the Program
Manager . This utility lists all of the devices known to Windows NT. Each device has a
status associated with it. If the NI-488.2M driver is installed correctly, the following
lines appear in the list of NT devices:

 Device Status Started
GPIB Board Class Driver Started Automatic
GPIB Device Class Driver Started Automatic

Debugging Your Application Chapter 4

NI-488.2M UM for Windows NT 4-2 © National Instruments Corp.

You should also see one or more lines similar to the following:

 Device Status Started
GPIB Port Driver (AT-GPIB) **** System
GPIB Port Driver (MC-GPIB) **** System

The GPIB Board Class Driver and the GPIB Device Class Driver
should both have a status of Started . If not, refer to the next section, Examining the
NT System Log Using the Event Viewer .

At least one of the GPIB Port Drivers listed by the Devices applet should have a status of
Started . If not, refer to the next section, Examining the NT System Log Using the
Event Viewer .

If the GPIB Class Driver lines are not present or at least one GPIB Port Driver line is not
present, the NI-488.2M software is not installed properly. You must reinstall the
NI-488.2M software.

Examining the NT System Log Using the Event Viewer

Windows NT maintains a system log. If the NI-488.2M driver is unable to start, it
records entries in the system log explaining why it failed to start. You can examine the
system log by running the Event Viewer utility in the Administrative Tools window of
the Program Manager . Events that might appear in the system log include the
following:

• The system is unable to locate the device file for one or more of the devices that
make up the NI-488.2M driver and an event is logged that The system cannot
find the file specified . In this case, the NI-488.2M software is
incorrectly installed. You should reinstall the software.

• A conflict exists between the GPIB hardware and the other hardware in the system.
If this is the case, an event is logged that indicates the nature of the resource conflict.
To correct this conflict, reconfigure the GPIB hardware and NI-488.2M software.
Refer to the getting started manual that came with your GPIB board.

GPIB Cables Connected

The following error messages appear if a GPIB cable is connected to the board when you
run ibtest .

Call(25) 'ibcmd " "' failed, ibsta (0x134) not what was expected
(0x8130)

Call(25) 'ibcmd " "' failed, expected ibsta (0x100) to have the
ERR bit set.

Disconnect all GPIB cables before trying the test again.

Chapter 4 Debugging Your Application

© National Instruments Corp. 4-3 NI-488.2M UM for Windows NT

Running GPIBInfo

The GPIBInfo utility program is a simple diagnostic tool you can use to obtain
information about the NI-488.2M software you are using and any GPIB interface boards
in your system. This information helps you determine the capabilities of your NI-488.2M
software and is also helpful if you need to call National Instruments for technical support.

Run GPIBInfo with no parameters. The program displays software information such as
the name and version of your GPIB software, the type of GPIB interface board and
functions that you can use with the software, and whether or not you can use the HS488
high-speed protocol. GPIBInfo also displays information about each GPIB interface
board installed in your system, including the name of the board, the type of Controller
chip it uses, the hardware settings, the type of functions that the board can use, and
whether or not the board can use the HS488 high-speed communication protocol. The
typical GPIBInfo output is as follows:

GPIBInfo (Sep 29 1993)
Copyright 1993 National Instruments Corp. All rights reserved.

Software Information:
 The NI-488.2M Software for Windows NT is loaded.
 You are running Version 1.0 for the AT-GPIB/TNT board.
 It supports both the NI-488 functions and the NI-488.2 routines.
 It supports the HS488 high-speed protocol.

Hardware Information:
 GPIB0: an AT-GPIB/TNT board using the TNT4882C chip.

It supports both the NI-488 functions and NI-488.2
routines.
It supports the HS488 high-speed protocol.
It uses base I/O address 0x2C0.
It uses interrupt level 11.
It uses DMA channel 5.

Debugging with the Global Status Variables

After each function call to your NI-488.2M driver, ibsta , iberr , ibcnt , and
ibcntl are updated before the call returns to your application. You should check for an
error after each GPIB call. Refer to Chapter 3, Developing Your Application, for more
information about how to use these variables within your program to automatically check
for errors.

After you determine which GPIB call is failing and note the corresponding values of the
global variables, refer to Appendix A, Status Word Conditions , and Appendix B, Error
Codes and Solutions. These appendixes can help you interpret the state of the driver.

Debugging Your Application Chapter 4

NI-488.2M UM for Windows NT 4-4 © National Instruments Corp.

Debugging with ibic

If your application does not automatically check for and display errors, you can locate an
error by using ibic . Simply issue the same functions or routines, one at a time as they
appear in your application program. Because ibic returns the status values and error
codes after each call, you should be able to determine which GPIB call is failing. For
more information about ibic , refer to Chapter 5, ibic–Interface Bus Interactive Control
Utility .

After you determine which GPIB call is failing and note the corresponding values of the
global variables, refer to Appendix A, Status Word Conditions , and Appendix B, Error
Codes and Solutions. These appendixes can help you interpret the state of the driver.

GPIB Error Codes

Table 4-1 lists the GPIB error codes. Remember that the error variable is meaningful
only when the ERR bit in the status variable is set. For a detailed description of each
error and possible solutions, refer to Appendix B, Error Codes and Solutions.

Table 4-1. GPIB Error Codes

Error
Mnemonic

iberr
Value Meaning

EDVR 0 System error

ECIC 1 Function requires GPIB board to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB board not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB board not System Controller as required

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB board

EOIP 10 Asynchronous I/O in progress

ECAP 11 No capability for operation

EFSO 12 File system error

EBUS 14 GPIB bus error

ESTB 15 Serial poll status byte queue overflow

ESRQ 16 SRQ stuck in ON position

ETAB 20 Table problem

Chapter 4 Debugging Your Application

© National Instruments Corp. 4-5 NI-488.2M UM for Windows NT

Configuration Errors

Several applications require customized configuration of the GPIB driver. For example,
you might want to terminate reads on a special end-of-string character, or you might
require secondary addressing. In these cases, you can use either the ibconf utility to
permanently reconfigure the driver, or you can use the dynamic configuration function
call ibconfig to modify the driver while your application is running.

ibconfig does not change the state of the driver permanently. Using dynamic
configuration automatically configures the driver as necessary.

Note : To change settings other than base I/O address, interrupt level, or DMA
channel, National Instruments recommends using ibconfig instead of
running the ibconf utility.

If your program uses dynamic configuration, it will always work regardless of the
previous configuration of the driver. Refer to the description of ibconfig in the
NI-488.2M Function Reference Manual for Windows NT for more information.

To test the configuration of your hardware, you can use the ibdiag program as
described in your getting started manual.

Timing Errors

If your application fails, but the same calls issued in ibic are successful, your program
might be issuing the NI-488.2 calls too quickly for your device to process and respond to
them. This problem can also result in corrupted or incomplete data.

A well behaved IEEE 488 device should hold off handshaking and set the appropriate
transfer rate. If your device is not well behaved, you can test for and resolve the timing
error by single-stepping through your program and inserting finite delays between each
GPIB call. One way to do this is to have your device communicate its status whenever
possible. Although this method is not possible with many devices, it is usually the best
option. Your delays will be controlled by the device and your application can adjust
itself and work independently on any platform. Other delay mechanisms will probably
cause varying delay times on different platforms.

Communication Errors

Repeat Addressing

Some devices require GPIB addressing before any GPIB activity. Devices adhering to
the IEEE 488.2 standard should remain in their current state until specific commands are
sent across the GPIB to change their state. You might need to configure your NI-488.2M
driver to perform repeat addressing if your device does not remain in its currently

Debugging Your Application Chapter 4

NI-488.2M UM for Windows NT 4-6 © National Instruments Corp.

addressed state. Refer to Chapter 7, ibconf–Interface Bus Configuration Utility , or to the
description of ibconfig (option IbcREADDR) in the NI-488.2M Function Reference
Manual for Windows NT for more information about reconfiguring your software.

Termination Method

You should be aware of the data termination method that your device uses. By default,
your NI-488.2M software is configured to send EOI on writes and terminate reads on
EOI or a specific byte count. If you send a command string to your device and it does not
respond, it might be because it does not recognize the end of the command. You might
need to send a termination message such as <CR> <LF> after a write command as
follows:

ibwrt(dev,”COMMAND\x0A\x0D”,9);

Common Questions

What do I do if ibtest fails with an error?

Refer to the Running the Software Diagnostic Test section of this manual or the section
about ibdiag in the getting started manual for specific information about what might
cause these tests to fail.

How do I communicate with my instrument over the GPIB?

Refer to the documentation that came from the instrument manufacturer. The command
sequences you use are totally dependent on the specific instrument. The documentation
for each instrument should include the GPIB commands you need to communicate with
it. In most cases, NI-488 device-level calls are sufficient for communicating with
instruments. Refer to Chapter 3, Developing Your Application, for more information.

Can I use the NI-488 and NI-488.2 calls together in the same application?

Yes, you can mix NI-488 functions and NI-488.2 routines.

Can I use the same name for my application and a GPIB device listed in ibconf?

No. Devices share the same name space that file and directory names use. Windows NT
might not operate properly if you have a file or a directory name that conflicts with one
of the GPIB device names. By default, the names used by the DOS driver are gpib0 ,
gpib1 , gpib2 , gpib3 , and dev1 , dev2 , dev3 , and so on through dev32 .

Chapter 4 Debugging Your Application

© National Instruments Corp. 4-7 NI-488.2M UM for Windows NT

What can I do to check for errors in my GPIB application?

Examine the value of ibsta after each NI-488 or NI-488.2 call. If a call fails, the ERR bit
of ibsta is set and an error code is stored in ibcntl . For more information about
global status variables, refer to Chapter 3, Developing Your Application.

How do I use ibic?

You can use ibic to practice communication with your instrument, troubleshoot
problems, and develop your application program. For instructions, refer to Chapter 5,
ibic–Interface Bus Interactive Control Utility.

How can I determine which type of GPIB board I have installed?

Run the GPIBInfo utility. It returns information about the GPIB boards currently
configured for use in your system.

How can I determine which version of the NI-488.2M software I have installed?

Run the GPIBInfo utility. It provides information about the version of the NI-488.2M
software currently installed.

What information should I have before I call National Instruments?

When you call National Instruments, you should have the results of the diagnostic tests
ibdiag and ibtest along with the output from the GPIBInfo utility. Also, make
sure you have filled out the technical support form in Appendix C, Customer
Communication .

© National Instruments Corp. 5-1 NI-488.2M UM for Windows NT

Chapter 5
ibic–Interface Bus Interactive Control Utility

This chapter introduces you to ibic , the interactive control program that you can use to
communicate with GPIB devices interactively.

Overview

With the Interface Bus Interactive Control (ibic) program, you communicate with the
GPIB devices through functions you enter at the keyboard. For specific information
about how to communicate with your particular device, refer to the manual that came
with the device. You can use ibic to practice communication with the instrument,
troubleshoot problems, and develop your application program.

One way ibic helps you to learn about your instrument and to troubleshoot problems is
by displaying the following information on your screen whenever you enter a command:

• The results of the status word (ibsta) in hexadecimal notation

• The mnemonic constant of each bit set in ibsta

• The mnemonic value of the error variable (iberr) if an error exists (the ERR bit is
set in ibsta)

• The count value for each read, write, or command function

• The data received from your instrument

Example Using NI-488 Functions

This section shows how you might use ibic to test a sequence of NI-488 device
function calls. You do not need to remember the parameters that each function takes. If
you enter the function name only, ibic prompts you for the necessary parameters.

ibic-Interface Bus Interactive Control Utility Chapter 5

NI-488.2M UM for Windows NT 5-2 © National Instruments Corp.

1. To run ibic , change to the appropriate drive and directory (c:\gpib-nt in this
example). Then enter the command ibic . Your screen should appear as follows:

National Instruments
IEEE 488 Interface Bus Interactive Control Program (IBIC)
Copyright 1993 National Instruments Corp. Version 3.0 (Win32)
Version Date: May 28 1993 Version Time: 09:42:25
All rights reserved

Type ‘help’ for help or ‘q’ to quit

:

2. Use ibdev to find the device name which is assigned to your device in the ibconf
program. The following example shows how you could use ibdev to open a
device, assign it to access board gpib0 , choose a primary address of 6 with no
secondary address, set a timeout of 10 s, enable the END message, and disable the
EOS mode:

:ibdev
enter board index: 0
enter primary address: 6
enter secondary address: 0
enter timeout: 13
enter 'EOI on last byte' flag: 1
enter end-of-string mode/byte: 0

id = 32256

ud0:

You could also input all the same information with the ibdev command as follows:

:ibdev 0 6 0 13 1 0
id = 32256

ud0:

3. Clear the device as follows:

ud0: ibclr
[0100] (cmpl)

Chapter 5 ibic-Interface Bus Interactive Control Utility

© National Instruments Corp. 5-3 NI-488.2M UM for Windows NT

4. Write the function, range, and trigger source instructions to your device. Refer to the
instrument user manual for the command bytes that work with your instrument.

ud0: ibwrt
enter string: "F3R7T3"

[0100] (cmpl)
count: 6

or

ud0: ibwrt "F3R7T3"
[0100] (cmpl)
count: 6

5. Trigger the device as follows:

ud0: ibtrg
[0100] (cmpl)

6. Wait for a timeout or for your device to request service. If the current timeout limit
is too short, use ibtmo to change it. Use the ibwait command as follows:

ud0: ibwait
enter wait mask: TIMO RQS

[0900] (rqs cmpl)

or

ud0: ibwait TIMO RQS
[0900] (rqs cmpl)

7. Read the serial poll status byte. This serial poll status byte varies depending on the
device used.

ud0: ibrsp
[0100] (cmpl)
Poll: 0x40 (decimal : 64)

ibic-Interface Bus Interactive Control Utility Chapter 5

NI-488.2M UM for Windows NT 5-4 © National Instruments Corp.

8. Use the read command to display the data on the screen both in hex values and their
ASCII equivalents.

ud0: ibrd
enter byte count: 18

[0100] (cmpl)
count: 18
4e 44 43 56 20 30 30 30 N D C V 0 0 0
2e 30 30 34 37 45 2b 30 . 0 0 4 7 E + 0
0a 0a . .

or

ud0: ibrd 18
[0100] (cmpl)
count: 18
4e 44 43 56 20 30 30 30 N D C V 0 0 0
2e 30 30 34 37 45 2b 30 . 0 0 4 7 E + 0
0a 0a . .

9. Place the device offline as follows:

ud0: ibonl
enter value: 0

[0100] (cmpl)

or

ud0: ibonl 0
[0100] (cmpl)

10. Terminate the ibic program by entering q at the prompt.

ibic Syntax

When you enter commands in ibic , you can either include the parameters, or the
program prompts you for values. Some commands require numbers as input values.
Others might require you to input a string.

Number Syntax

You can enter numbers as hexadecimal, octal, or decimal integer.

Hexadecimal numbers–You must precede hex numbers by zero and x (for example, 0xD).

Octal numbers–You must precede octal numbers by zero only (for example, 015).

Decimal numbers–Enter the number only.

Chapter 5 ibic-Interface Bus Interactive Control Utility

© National Instruments Corp. 5-5 NI-488.2M UM for Windows NT

String Syntax

You can enter strings as an ASCII character sequence, octal bytes, hex bytes, or special
symbols.

ASCII character sequence–You must enclose the entire sequence in quotation marks.

Octal bytes–You must use a backslash character followed by the octal value. For
example, octal 40 is represented by \40 .

Hex bytes–You must use a backslash character and an x followed by the hex value. For
example, hex 40 is represented by \x40 .

Special Symbols–Some instruments require special termination or end-of-string (EOS)
characters that indicate to the device that a transmission has ended. The two most
common EOS characters are \r and \n . \r represents a carriage return character and
\n represents a linefeed character. You can use these special characters to insert the
carriage return and linefeed characters into a string, as in "F3R5T1\r\n" .

Address Syntax

Many of the NI-488.2 routines have an address or address list parameter. An address is a
16-bit representation of the GPIB address of a device. The primary address is stored in
the low byte and the secondary address, if any, is stored in the high byte. For example, a
device at primary address 6 and secondary address 0x67 has an address of 0x6706. A
NULL address is represented as 0xffff.

ibic Syntax for NI-488 Functions

Table 5-1 and Table 5-2 summarize the syntax of NI-488 functions in ibic . v
represents a number that you input. string represents a string that you input. For more
information about the function parameters, use the ibic help feature or refer to the
NI-488.2M Function Reference Manual for Windows NT .

ibic-Interface Bus Interactive Control Utility Chapter 5

NI-488.2M UM for Windows NT 5-6 © National Instruments Corp.

Table 5-1. Syntax for Device-Level NI-488 Functions in ibic

Syntax Description
ibask mn Return configuration information where mn is a mnemonic for a

configuration parameter or equivalent integer value
ibbna brdname Change access board of device where brdname is symbolic

name of new board
ibclr Clear specified device
ibconfig mn v Alter configurable parameters where mn is mnemonic for a

configuration parameter or equivalent integer value
ibdev v v v v v v Open an unused device

ibdev parameters are board id , pad , sad , tmo , eos , eot
ibeos v Change/disable EOS message
ibeot v Enable/disable END message
ibln v v Check for presence of device on the GPIB at pad , sad
ibloc Go to local
ibonl v Place device online or offline
ibpad v Change primary address
ibpct Pass control
ibppc v Parallel poll configure
ibrd v Read data where v is the bytes to read
ibrda v Read data asynchronously where v is the bytes to read
ibrdf flname Read data to file where flname is pathname of file to read
ibrpp Conduct a parallel poll
ibrsp Return serial poll byte
ibsad v Change secondary address
ibstop Abort asynchronous operation
ibtmo v Change/disable time limit
ibtrg Trigger selected device
ibwait mask Wait for selected event where mask is a hex, octal, or decimal

integer or a mask bit mnemonic
ibwrt string Write data
ibwrta string Write data asynchronously
ibwrtf flname Write data from a file where flname is pathname of file to write

Chapter 5 ibic-Interface Bus Interactive Control Utility

© National Instruments Corp. 5-7 NI-488.2M UM for Windows NT

Table 5-2. Syntax for Board-Level NI-488 Functions in ibic

Syntax Description
ibask mn Return configuration information where mn is a mnemonic for a

configuration parameter or equivalent integer value
ibcac v Become active Controller
ibcmd string Send commands
ibcmda string Send commands asynchronously
ibconfig mn v Alter configurable parameters where mn is mnemonic for a

configuration parameter or equivalent integer value
ibdma v Enable/disable DMA
ibeos v Change/disable EOS message
ibeot v Enable/disable END message
ibfind udname Return unit descriptor where udname is the symbolic name of

board (for example, gpib0)
ibgts v Go from Active Controller to standby
ibist v Set/clear ist
iblines Read the state of all GPIB control lines
ibln v v Check for presence of device on the GPIB at pad , sad
ibloc Go to local
ibonl v Place device online or offline
ibpad v Change primary address
ibppc v Parallel poll configure
ibrd v Read data where v is the bytes to read
ibrda v Read data asynchronously where v is the bytes to read
ibrdf flname Read data to file where flname is pathname of file to read
ibrpp Conduct a parallel poll
ibrsc v Request/release system control
ibrsv v Request service
ibsad v Change secondary address
ibsic Send interface clear
ibsre v Set/clear remote enable line
ibstop Abort asynchronous operation
ibtmo v Change/disable time limit
ibwait mask Wait for selected event where mask is a hex, octal, or decimal

integer or a mask bit mnemonic
ibwrt string Write data
ibwrta string Write data asynchronously
ibwrtf flname Write data from a file where flname is pathname of file to write

ibic-Interface Bus Interactive Control Utility Chapter 5

NI-488.2M UM for Windows NT 5-8 © National Instruments Corp.

ibic Syntax for NI-488.2 Routines

Table 5-3 summarizes the syntax of NI-488.2 routines in ibic . v represents a number
that you input and string represents a string. address represents an address, and
addrlist represents a list of addresses separated by commas. For more information
about the routine parameters, use the ibic help feature or refer to the NI-488.2M
Function Reference Manual for Windows NT.

Table 5-3. Syntax for NI-488.2 Routines in ibic

Routine Syntax Description

AllSpoll addrlist Serial poll multiple devices

DevClear address Clear a device

DevClearList addrlist Clear multiple devices

EnableLocal addrlist Enable local control

EnableRemote addrlist Enable remote control

FindLstn addrlist v Find all Listeners

FindRQS addrlist Find device asserting SRQ

PassControl address Pass control to a device

PPoll Parallel poll devices

PPollConfig address v v Configure device for parallel poll

PPollUnconfig address Unconfigure device for parallel poll

RcvRespMsg address string v Receive response message

ReadStatusByte address Serial poll a device

Receive address string v Receive data from a device

ReceiveSetup address Receive setup

ResetSys addrlist Reset multiple devices

Send address string v Send data to a device

SendCmds string Send command bytes

SendDataBytes addrlist string v Send data bytes

SendIFC Send interface clear

SendList addrlist string v Send data to multiple devices

SendLLO Put devices in local lockout

(continues)

Chapter 5 ibic-Interface Bus Interactive Control Utility

© National Instruments Corp. 5-9 NI-488.2M UM for Windows NT

Table 5-3. Syntax for NI-488.2 Routines in ibic (Continued)

Routine Syntax Description

SendSetup addrlist Send setup

SetRWLS addrlist Put devices in remote with lockout state

TestSys addrlist Cause multiple devices to perform self-tests

TestSRQ Test for service request

Trigger address Trigger a device

TriggerList addrlist Trigger multiple devices

WaitSRQ Wait for service request

Status Word

In ibic , all NI-488 functions (except ibfind and ibdev) and NI-488.2 routines
return the status word ibsta in two forms: a hex value in square brackets and a list of
mnemonics in parentheses. In the following example, the status word is on the second
line. It shows that the device function write operation completed successfully:

ud0: ibwrt "f2t3x"
[0100] (cmpl)
count: 5

ud0:

For more information about the status word, refer to Chapter 3, Developing Your
Application .

Error Information

If an NI-488 function or NI-488.2 routine completes with an error, ibic displays the
relevant error mnemonic. In the following example, an error condition EBUS has
occurred during a data transfer.

ud0: ibwrt "f2t3x"
[8100] (err cmpl)
error: EBUS
count: 1

ud0:

In this example, the addressing command bytes could not be transmitted to the device.
This indicates that either dev1 is powered off, or the GPIB cable is disconnected.

ibic-Interface Bus Interactive Control Utility Chapter 5

NI-488.2M UM for Windows NT 5-10 © National Instruments Corp.

For a detailed list of the error codes and their meanings, refer to Chapter 4, Debugging
Your Application .

Count

When an I/O function completes, ibic displays the actual number of bytes sent or
received, regardless of the existence of an error condition.

If one of the addresses in an address list of an NI-488.2 routine is invalid, then the error is
EARG and ibic displays the index of the invalid address as the count.

The count has a different meaning depending on which NI-488 function or NI-488.2
routine is called. Refer to the function descriptions in the NI-488.2M Function Reference
Manual for Windows NT for the correct interpretation of the count return.

Common NI-488 Functions

ibfind

Use the ibfind function to open a board. The following example opens gpib0 .

:ibfind gpib0
id = 32000

gpib0:

id is the unit descriptor of the board. The prompt gpib0 indicates that the board is
open.

Any name you use with the ibfind function must be a valid symbolic name in the
driver. gpib0 is the default name found in the driver. For more information about valid
names, refer to Chapter 7, ibconf–Interface Bus Configuration Utility .

ibdev

The ibdev command initializes a device descriptor with the input information.

With ibdev , you specify the following values:

• Access Board for the Device

• Primary Address

• Secondary Address

Chapter 5 ibic-Interface Bus Interactive Control Utility

© National Instruments Corp. 5-11 NI-488.2M UM for Windows NT

• Timeout Setting

• EOT mode

• EOS mode

The following example shows ibdev opening an available device and assigning it to
access gpib0 (board = 0) with a primary address of 6 (pad = 6), a secondary address
of hex 67 (sad = 0x67), a timeout of 10 s. (tmo=13), the END message enabled
(eot =1), and the EOS mode disabled (eos= 0).

:ibdev 0 6 0x67 13 1 0
id = 32256

ud0:

If you use ibdev without specifying parameters, ibic prompts you for the input
parameters as shown in the following example:

:ibdev
enter board index: 0
enter primary address: 6
enter secondary address: 0x67
enter timeout: 13
enter ‘EOI on last byte’ flag: 1
enter end-of-string mode/byte: 0

id = 32256

ud0:

Three distinct errors can occur with the ibdev call:

• EDVR–No device is available, the board index entered refers to a nonexistent board
(that is, not 0, 1, 2, or 3), or the board has no driver installed. The following
example illustrates an EDVR error.

:ibdev 4 6 0x67 7 1 0
id = -1
[8000] (err)
error: EDVR (2)

:

• ENEB–The board index entered refers to a known board (such as 0), but the driver
cannot find the board. In this case, run ibconf to verify that the base address of
the board is set correctly and that the Use This GPIB Interface field is set
to yes .

ibic-Interface Bus Interactive Control Utility Chapter 5

NI-488.2M UM for Windows NT 5-12 © National Instruments Corp.

• EARG–One of the last five parameters is an invalid value. The ibdev call returns
with a new prompt and the EARG error (invalid function argument). If the ibdev
call returns with an EARG error, you must identify which parameter is incorrect and
use the appropriate command to correct it. In the following example, the pad has an
invalid value. You can correct it with an ibpad call as shown:

:ibdev 0 66 0x67 7 1 0
id = 32256
[8100] (err cmpl)
error: EARG

ud0: ibpad 6
previous value: 16

ibwrt

The ibwrt command sends data from one GPIB device to another. For example, to
send the six character data string F3R5T1 from the computer to a device called dev1
you enter the following string at the dev1 prompt as shown in the following example:

ud0: ibwrt "F3R5T1"
[0100] (cmpl)
count: 6

The returned status word contains the cmpl bit, which indicates a successful I/O
completion. The byte count 6 indicates that all six characters were sent from the
computer and received by the device.

ibrd

The ibrd command causes a GPIB device to receive data from another GPIB device.
The following example acquires data from the device and displays it on the screen in hex
format and in its ASCII equivalent, along with the status word and byte count.

ud0: ibrd 20
[2100] (end cmpl)
count: 18
4e 44 43 56 28 30 30 30 N D C V 9 0 0 0
2e 30 30 34 37 45 2b 30 . 0 0 4 7 E + 0
0d 0a . .

Chapter 5 ibic-Interface Bus Interactive Control Utility

© National Instruments Corp. 5-13 NI-488.2M UM for Windows NT

Common NI-488.2 Routines in ibic

Set 488.2

You must use the set command before you can use NI-488.2 routines in ibic . The
syntax for this form of the set command is as follows:

set 488.2 n

where n represents a board number (for example, n=0 for gpib0).

Send and SendList

The Send routine sends data to a single GPIB device. You can use the SendList
command to send data to multiple GPIB devices. For example, suppose you want to send
the five character string *IDN? followed by the new line character with EOI. You want
to send the message from the computer to the devices at primary address 2 and 17. To do
this, enter the SendList command at the 488.2 (0) prompt as shown in the
following example:

488.2 (0): SendList 2, 17 “*IDN?” NLend
[0128] (cmpl cic tacs)
count: 6

The returned status word contains the cmpl bit, which indicates a successful I/O
completion. The byte count 6 indicates that all six characters, including the added new
line, were sent from the computer and received by both devices.

Receive

The Receive routine causes the GPIB board to receive data from another GPIB device.
The following example acquires 10 data bytes from the device at primary address 5. It
stops receiving data when 10 characters have been received or when the END message is
received. The acquired data is then displayed in hex format along with its ASCII
equivalent. The ibic program also displays the status word and the count of transferred
bytes.

488.2 (0): Receive 5 10 STOPend
[2124] (end cmpl cic lacs)
count: 5
48 65 6c 6c 6f Hello

ibic-Interface Bus Interactive Control Utility Chapter 5

NI-488.2M UM for Windows NT 5-14 © National Instruments Corp.

Auxiliary Functions

Table 5-4 summarizes the auxiliary functions that you can use in ibic .

Table 5-4. Auxiliary Functions in ibic

Function Description
set udname Select active device or board where udname is the symbolic

name of the new device or board (for example, dev1 or gpib0).
Call ibfind or ibdev initially to open each device or board.

Set 488.2 v Enter 488.2 mode for board v

help [option] Display help information where option is any NI-488 or
NI-488.2 call. If you do not enter an option , a menu of options
appears.

! Repeat previous function.

- Turn OFF display.

+ Turn ON display.

n* function Execute function n times where function represents the
correct ibic function syntax.

n* ! Execute previous function n times.

$ filename Execute indirect file where filename is the pathname of a file
that contains ibic functions to be executed.

print string Display string on screen where string is an ASCII character
sequence, octal bytes, hex bytes, or special symbols.

e Exit or quit.

q Exit or quit.

Set (udname or 488.2)

You can use the set command to select 488.2 mode or to communicate with a different
device or board.

The following example shows how to enter 488.2 mode. The 488.2 (0) prompt
indicates that you are in NI-488.2 mode on board 0 .

: set 488.2 0

488.2 (0):

Chapter 5 ibic-Interface Bus Interactive Control Utility

© National Instruments Corp. 5-15 NI-488.2M UM for Windows NT

The next example switches communication from using NI-488.2 routines for gpib0 to
using a unit descriptor (ud0) previously acquired by an ibdev call.

488.2 (0): set ud0

ud0:

Help (Display Help Information)

The help feature displays a menu of topics to choose from. Each topic lists relevant
functions and other information. You can access help for a specific NI-488 function or
NI-488.2 routine by typing help followed by the call name (for example, help
ibwrt). Help describes the function syntax for all NI-488 functions and NI-488.2
routines.

! (Repeat Previous Function)

The ! function repeats the most recent function executed. The following example issues
an ibsic command and then repeats that same command:

gpib0: ibsic
[0130] (cmpl cic atn)

gpib0: !
[0130] (cmpl cic atn)

- (Turn Display Off) and + (Turn Display On)

The - function turns off all screen output except for the prompt. This function is useful
when you want to repeat any I/O function quickly without waiting for screen output to be
displayed.

The + function turns the screen output on.

In the following example 24 consecutive letters of the alphabet are read from a device
using three ibrd calls.

ud0: ibrd 8
[2100] (end cmpl)
count: 8
61 62 63 64 65 66 67 68 a b c d e f g h

ud0: -

ud0: ibrd 8

ibic-Interface Bus Interactive Control Utility Chapter 5

NI-488.2M UM for Windows NT 5-16 © National Instruments Corp.

ud0: +

ud0: ibrd 8
[2100] (end cmpl)
count: 8
71 72 73 74 75 76 77 78 q r s t u v w x

n* (Repeat Function n Times)

The n* function repeats the execution of the specified function n times, where n is an
integer. In the following example, the message Hello is sent five times to the device
described by ud0 .

ud0: 5*ibwrt "Hello"

In the following example, the word Hello is sent 5 times, 20 times, and then 10 more
times.

ud0: 5*ibwrt "Hello"
ud0: 20* !
ud0: 10* !

Notice that the multiplier (*) does not become part of the function name; that is, ibwrt
"Hello" is repeated 20 times, not 5* ibwrt "Hello" .

$ (Execute Indirect File)

The $ function reads a specified file and executes the ibic functions listed in that file,
in sequence, as if they were entered in that order from the keyboard. The following
example executes the ibic functions listed in the file userfile .

gpib0: $ userfile

The following example repeats the operation three times.

gpib0: 3*$ userfile

The display mode that is in effect before this function was executed can be changed by
functions in the indirect file.

Chapter 5 ibic-Interface Bus Interactive Control Utility

© National Instruments Corp. 5-17 NI-488.2M UM for Windows NT

Print (Display the ASCII String)

You can use the print function to echo a string to the screen. The following example
shows how you can use ASCII or hex with the print command.

dev1: print "hello"
hello

dev1: print "and\r\n\x67\x6f\x6f\x64\x62\x79\x65"
and
goodbye

You can also use print to display comments from indirect files. The print string
appears even if the display is suppressed with the - function.

© National Instruments Corp. 6-1 NI-488.2M UM for Windows NT

Chapter 6
GPIB Programming Techniques

This chapter describes techniques for using some NI-488 functions and NI-488.2 routines
in your application program.

For more detailed information about each function or routine, refer to the NI-488.2
Function Reference Manual for Windows NT.

Termination of Data Transfers

GPIB data transfers are terminated either when the GPIB EOI line is asserted with the
last byte of a transfer or when a preconfigured end-of-string (EOS) character is
transmitted. By default, the NI-488.2M driver asserts EOI with the last byte of writes and
the EOS modes are disabled.

You can use the ibeot function to enable or disable the end of transmission (EOT)
mode. If EOT mode is enabled, the NI-488.2M driver asserts the GPIB EOI line when
the last byte of a write is sent out on the GPIB. If it is disabled, the EOI line is not
asserted with the last byte of a write.

You can use the ibeos function to enable, disable, or configure the EOS modes. EOS
mode configuration includes the following information:

• A 7-bit or 8-bit EOS byte

• EOS comparison method–This indicates whether the EOS byte has seven or eight
significant bits. For a 7-bit EOS byte, the eighth bit of the EOS byte is ignored.

• EOS write method–If this is enabled, the NI-488.2M driver automatically asserts the
GPIB EOI line when the EOS byte is written to the GPIB. If the buffer passed into
an ibwrt call contains five occurrences of the EOS byte, the EOI line is asserted as
each of the five EOS bytes are written to the GPIB. If an ibwrt buffer does not
contain an occurrence of the EOS byte, the EOI line is not asserted (unless the EOT
mode is enabled, in which case the EOI line is asserted with the last byte of the
write).

• EOS read method–If this is enabled, the NI-488.2M driver terminates ibrd , ibrda ,
and ibrdf calls when the EOS byte is detected on the GPIB or when the GPIB EOI
line is asserted or when the specified count is reached. If the EOS read method is
disabled, ibrd , ibrda , and ibrdf calls terminate only when the GPIB EOI line is
asserted or the specified count has been read.

GPIB Programming Techniques Chapter 6

NI-488.2M UM for Windows NT 6-2 © National Instruments Corp.

You can use the ibconfig function to configure the software to inform you whether or
not the GPIB EOI line was asserted when the EOS byte was read in. Use the
IbcEndBitIsNormal option to configure the software to report only the END bit in
ibsta when the GPIB EOI line is asserted. By default, the NI-488.2M driver reports
END in ibsta when either the EOS byte is read in or the EOI line is asserted during a
read.

High-Speed Data Transfers (HS488)

National Instruments has designed a high-speed data transfer protocol for IEEE 488
called HS488. This protocol increases performance for GPIB reads and writes up to
8 Mbytes/s, depending on your system.

HS488 is a superset of the IEEE 488 standard; thus, you can mix IEEE 488.1,
IEEE 488.2, and HS488 devices in the same system. If HS488 is enabled, the
TNT4882C hardware implements high-speed transfers automatically when
communicating with HS488 instruments. To determine whether your GPIB interface
board has the TNT4882C hardware, use the GPIBInfo utility. If you attempt to enable
HS488 on a GPIB board that does not have the TNT4882C hardware, the error ECAP is
returned.

Enabling HS488

To enable HS488 for your GPIB board, use the ibconfig function (option
IbcHSCableLength). The value passed to ibconfig should specify the number of
meters of cable in your GPIB configuration. If you specify a cable length that is much
smaller than what you actually use, the transferred data could become corrupted. If you
specify a cable length longer than what you actually use, the data is transferred
successfully, but more slowly than if you specified the correct cable length.

In addition to using ibconfig to configure your GPIB board for HS488, the
Controller-In-Charge must send out GPIB command bytes (interface messages) to
configure other devices for HS488 transfers.

If you are using device-level calls, the NI-488.2M software automatically sends the
HS488 configuration message to devices. If you enabled the HS488 protocol in
wibconf , the NI-488.2M software sends out the HS488 configuration message when
you use ibdev to bring a device online. If you call ibconfig to change the GPIB
cable length, the NI-488.2M software sends out the HS488 message again the next time
you call a device-level function.

If you are using board-level functions or NI-488.2 routines and you want to configure
devices for high-speed, you must send the HS488 configuration messages using ibcmd
or SendCmds . The HS488 configuration message is made up of two GPIB command
bytes. The first byte, the Configure Enable (CFE) message (hex 1F), places all HS488
devices into their configuration mode. Non-HS488 devices should ignore this message.

Chapter 6 GPIB Programming Techniques

© National Instruments Corp. 6-3 NI-488.2M UM for Windows NT

The second byte is a GPIB secondary command that indicates the number of meters of
cable in your system. It is called the Configure (CFGn) message. Because HS488 can
operate only with cable lengths of 1 to 15 meters, only CFGn values of 1 through 15
(hex 61 through 6F) are valid. If the cable length was configured properly in wibconf ,
you can determine how many meters of cable are in your system by calling ibask
(option IbaHSCableLength) in your application program. For CFE and CFGn
messages, refer to Appendix A, Multiline Interface Messages , in the NI-488.2M Function
Reference Manual for Windows NT .

System Configuration Effects on HS488

Maximum data transfer rates can be limited by your host computer and GPIB system
setup. For example, even though the theoretical maximum transfer rate with HS488 is
8 Mbytes/s, the maximum transfer rate obtainable on PC -compatible computers with an
ISA bus is 2 Mbytes/s. The same IEEE 488 cabling constraints for a 350 ns T1 delay
apply to HS488. As you increase the amount of cable in your GPIB configuration, the
maximum data transfer rate using HS488 decreases. For example, two HS488 devices
connected by two meters of cable can transfer data faster than three HS488 devices
connected by four meters of cable.

Waiting for GPIB Conditions

You can use the ibwait function to obtain the current ibsta value or to suspend your
application until a specified condition occurs on the GPIB. If you use ibwait with a
parameter of zero, it immediately updates ibsta and returns. If you want to use
ibwait to wait for one or more events to occur, then pass a wait mask to the function.
The wait mask should always include the TIMO event; otherwise, your application is
suspended indefinitely until one of the wait mask events occurs.

Device-Level Calls and Bus Management

The NI-488 device-level calls are designed to perform all of the GPIB management for
your application program. However, the NI-488.2M driver can handle bus management
only when the GPIB interface board is CIC (Controller-In-Charge). Only the CIC is able
to send command bytes to the devices on the bus to perform device addressing or other
bus management activities. Use one of the following methods to make your GPIB board
the CIC:

• If your GPIB board is configured as the System Controller (default), it automatically
makes itself the CIC by asserting the IFC line the first time you make a device-level
call.

• If your setup includes more than one Controller, or if your GPIB interface board is
not configured as the System Controller, use the CIC Protocol method. To use the
protocol, issue the ibconfig function (option IbcCICPROT) or use the ibconf
configuration utility to activate the CIC protocol. If the interface board is not CIC,

GPIB Programming Techniques Chapter 6

NI-488.2M UM for Windows NT 6-4 © National Instruments Corp.

and you make a device-level call with the CIC Protocol enabled, the following
sequence occurs:

1. The GPIB interface board asserts the SRQ line.

2. The current CIC serial polls the board.

3. The interface board returns a response byte of hex 42.

4. The current CIC passes control to the GPIB board.

If the current CIC does not pass control, the NI-488.2M driver returns the ECIC error
code to your application. This error can occur if the current CIC does not understand
the CIC Protocol. If this happens, you could send a device-specific command
requesting control for the GPIB board. Then use a board-level ibwait command to
wait for CIC.

Talker/Listener Applications

Although designed for Controller-In-Charge applications, you can also use the
NI-488.2M software in most non-Controller situations. These situations are known as
Talker/Listener applications because the interface board is not the GPIB Controller. A
typical Talker/Listener application waits for events from the Controller and responds as
appropriate. The following paragraphs describe some programming techniques for
Talker/Listener applications.

Waiting for Messages from the Controller

A Talker/Listener application typically uses ibwait with a mask of 0 to monitor the
status of the interface board. Then, based on the status bits set in ibsta , the application
takes whatever action is appropriate. For example, the application could monitor the
status bits TACS (Talker Active State) and LACS (Listener Active State) to determine
when to send data to or receive data from the Controller. The application could also
monitor the DCAS (Device Clear Active State) and DTAS (Device Trigger Active State)
bits to determine if the Controller has sent the device clear (DCL or SDC) or trigger
(GET) messages to the interface board. If the application detects a device clear from the
Controller, it might reset the internal state of message buffers. If it detects a trigger
message from the Controller, the application might begin an operation such as taking a
voltage reading if the application is actually acting as a voltmeter.

Using the Event Queue

Some applications need to know the order in which certain messages are sent by the
Controller. To monitor the ordering of these messages, your application program must
enable the EVENT bit, using ibconfig (option IbcEventQueue). When the

Chapter 6 GPIB Programming Techniques

© National Instruments Corp. 6-5 NI-488.2M UM for Windows NT

EVENT bit is enabled, the DCAS and DTAS bits are no longer activated. Instead, all
DCAS and DTAS messages are stored in a queue, in the order that they are received.
The event queue also stores interface clear (IFC) messages. When the queue contains
some information, the NI-488.2 software sets the EVENT bit in ibsta . When the
application program detects EVENT, it can call the function ibevent to retrieve the
first event that occurred. Retrieving events from the queue ensures that the application
can respond to device clear, device trigger, and interface clear messages in the correct
order.

Requesting Service

Another type of event that might be important in a Talker/Listener application is the
serial poll. A Talker/Listener application can call ibrsv with a serial poll response byte
when it needs to request service from the Controller. If the application needs to know
when the Controller has read the serial poll response byte, it can enable the SPOLL bit in
ibsta using ibconfig , option IbcSPollBit . The NI-488.2 software sets the
SPOLL bit when the Controller serial polls the board.

Serial Polling

You can use serial polling to obtain specific information from GPIB devices when they
request service. When the GPIB SRQ line is asserted, it signals the Controller that a
service request is pending. The Controller must then determine which device asserted the
SRQ line and respond accordingly. The most common method for SRQ detection and
servicing is the serial poll. This section describes how you can set up your application to
detect and respond to service requests from GPIB devices.

Service Requests from IEEE 488 Devices

IEEE 488 devices request service from the GPIB Controller by asserting the GPIB SRQ
line. When the Controller acknowledges the SRQ, it serial polls each open device on the
bus to determine which device requested service. Any device requesting service returns a
status byte with bit 6 set and then unasserts the SRQ line. Devices not requesting service
return a status byte with bit 6 cleared. Manufacturers of IEEE 488 devices use lower
order bits to communicate the reason for the service request or to summarize the state of
the device.

Service Requests from IEEE 488.2 Devices

The IEEE 488.2 standard refined the bit assignments in the status byte. In addition to
setting bit 6 when requesting service, IEEE 488.2 devices also use two other bits to
specify their status. Bit 4, the Message Available bit (MAV), is set when the device is
ready to send previously queried data. Bit 5, the Event Status bit (ESB), is set if one or
more of the enabled IEEE 488.2 events occurs. These events include power-on, user

GPIB Programming Techniques Chapter 6

NI-488.2M UM for Windows NT 6-6 © National Instruments Corp.

request, command error, execution error, device dependent error, query error, request
control, and operation complete. The device can assert SRQ when ESB or MAV are set,
or when a manufacturer-defined condition occurs.

Automatic Serial Polling

You can enable automatic serial polling if you want your application to conduct a serial
poll automatically any time the SRQ line is asserted. The autopolling procedure occurs
as follows:

1. To enable autopolling, use the configuration utility, ibconf, or the configuration
function, ibconfig with option IbcAUTOPOLL . (Autopolling is enabled by
default.)

2. When the SRQ line is asserted, the driver automatically serial polls the open devices.

3. Each positive serial poll response (bit 6 or hex 40 is set) is stored in a queue
associated with the device that sent it. The RQS bit of the device status word,
ibsta , is set.

4. The polling continues until SRQ is unasserted or an error condition is detected.

5. To empty the queue, use the ibrsp function. ibrsp returns the first queued
response. Other responses are read in first-in-first-out (FIFO) fashion. If the RQS
bit of the status word is not set when ibrsp is called, a serial poll is conducted and
returns whatever response is received. You should empty the queue as soon as an
automatic serial poll occurs, because responses might be discarded if the queue is
full.

6. If the RQS bit of the status word is still set after ibrsp is called, the response byte
queue contains at least one more response byte. If this happens, you should continue
to call ibrsp until RQS is cleared.

Stuck SRQ State

If autopolling is enabled and the GPIB interface board detects an SRQ, the driver serial
polls all open devices connected to that board. The serial poll continues until either SRQ
unasserts or all the devices have been polled.

If no device responds positively to the serial poll, or if SRQ remains in effect because of
a faulty instrument or cable, a stuck SRQ state is in effect. If this happens during an
ibwait for RQS, the driver reports the ESRQ error. If the stuck SRQ state happens, no
further polls are attempted until an ibwait for RQS is made. When ibwait is issued,
the stuck SRQ state is terminated and the driver attempts a new set of serial polls.

Chapter 6 GPIB Programming Techniques

© National Instruments Corp. 6-7 NI-488.2M UM for Windows NT

Autopolling and Interrupts

If autopolling and interrupts are both enabled, the NI-488.2M software can perform
autopolling after any device-level NI-488 call as long as no GPIB I/O is currently in
progress. In this case, an automatic serial poll can occur even when your application is
not making any calls to the NI-488.2M software. Autopolling can also occur when a
device-level ibwait for RQS is in progress. Autopolling is not allowed whenever an
application calls a board-level NI-488 function or any NI-488.2 routine, or the stuck SRQ
(ESRQ) condition occurs.

Note: The NI-488.2M software for Windows NT does not function properly if
interrupts are disabled.

SRQ and Serial Polling with NI-488 Device Functions

You can use the device-level NI-488 function ibrsp to conduct a serial poll. ibrsp
conducts a single serial poll and returns the serial poll response byte to the application
program. If automatic serial polling is enabled, the application program can use ibwait
to suspend program execution until RQS appears in the status word, ibsta . The
program can then call ibrsp to obtain the serial poll response byte.

The following example illustrates the use of the ibwait and ibrsp functions in a
typical SRQ servicing situation when automatic serial polling is enabled.

#include "decl.h"

char GetSerialPollResponse (int DeviceHandle)
{

char SerialPollResponse = 0;

ibwait (DeviceHandle, TIMO | RQS);

if (ibsta & RQS) {
printf ("Device asserted SRQ.\n");
/* Use ibrsp to retrieve the serial poll

response. */
ibrsp (DeviceHandle, &SerialPollResponse);

}
return SerialPollResponse;

}

GPIB Programming Techniques Chapter 6

NI-488.2M UM for Windows NT 6-8 © National Instruments Corp.

SRQ and Serial Polling with NI-488.2 Routines

The NI-488.2M software includes a set of NI-488.2 routines that you can use to conduct
SRQ servicing and serial polling. Routines pertinent to SRQ servicing and serial polling
are AllSpoll , FindRQS , ReadStatusByte , TestSRQ , and WaitSRQ .

AllSpoll can serial poll multiple devices with a single call. It places the status bytes
from each polled instrument into a predefined array. Then you must check the RQS bit
of each status byte to determine whether that device requested service.

ReadStatusByte is similar to AllSpoll , except that it only serial polls a single
device. It is also analogous to the device-level NI-488 ibrsp function.

FindRQS serial polls a list of devices until it finds a device that is requesting service or
until it has polled all of the devices on the list. The routine returns the index and status
byte value of the device requesting service.

TestSRQ determines whether the SRQ line is asserted or unasserted, and returns to the
program immediately.

WaitSRQ is similar to TestSRQ , except that WaitSRQ suspends the application
program until either SRQ is asserted or the timeout period is exceeded.

The following examples use NI-488.2 routines to detect SRQ and then determine which
device requested service. In these examples three devices are present on the GPIB at
addresses 3, 4, and 5, and the GPIB interface is designated as bus index 0. The first
example uses FindRQS to determine which device is requesting service and the second
example uses AllSpoll to serial poll all three devices. Both examples use WaitSRQ
to wait for the GPIB SRQ line to be asserted.

Note : Automatic serial polling is not used in these examples because you cannot use
it with NI-488.2 routines .

Chapter 6 GPIB Programming Techniques

© National Instruments Corp. 6-9 NI-488.2M UM for Windows NT

Example 1: Using FindRQS

This example illustrates the use of FindRQS to find the first device that is requesting
service.

void GetASerialPollResponse (char *DevicePad, char *DeviceResponse)
{

char SerialPollResponse = 0;
int WaitResult;
Addr4882_t Addrlist[4] = {3,4,5,NOADDR};

WaitSRQ (0, &WaitResult);

if (WaitResult) {
printf (“SRQ is asserted.\n”);

FindRQS (0, AddrList, &SerialPollResponse);
if (!(ibsta & ERR)) {

printf (“Device at pad %x returned byte %x.\n”,
AddrList[ibcnt],(int) SerialPollResponse);

*DevicePad = AddrList[ibcnt];
*DeviceResponse = SerialPollResponse;

}
}

return;
}

Example 2: Using AllSpoll

This example illustrates the use of AllSpoll to serial poll three devices with a single
call.

void GetAllSerialPollResponses (Addr4882_t AddrList[], short
ResponseList[])

{
int WaitResult;

WaitSRQ (0, &WaitResult);

if (WaitResult) {
printf ("SRQ is asserted.\n");

AllSpoll (0, AddrList, ResponseList);
if (!(ibsta & ERR)) {

for (i = 0; AddrList[i] != NOADDR; i++) {
printf ("Device at pad %x returned byte %x.\n",

AddrList[i], ResponseList[i]);
}

}
}

return;
}

GPIB Programming Techniques Chapter 6

NI-488.2M UM for Windows NT 6-10 © National Instruments Corp.

Parallel Polling

Although parallel polling is not widely used, it is a useful method for obtaining the status
of more than one device at the same time. The advantage of parallel polling is that a
single parallel poll can easily check up to eight individual devices at once. In
comparison, eight separate serial polls would be required to check eight devices for their
serial poll response bytes. The value of the individual status bit (ist) determines the
parallel poll response.

Implementing a Parallel Poll

You can implement parallel polling with either NI-488 functions or NI-488.2 routines. If
you use NI-488.2 routines to execute parallel polls, you do not need extensive knowledge
of the parallel polling messages. However, you should use the NI-488 functions for
parallel polling when the GPIB board is not the Controller and must configure itself for a
parallel poll and set its own individual status bit (ist).

Parallel Polling with NI-488 Functions

Follow these steps to implement parallel polling using NI-488 functions. Each step
contains example code.

1. Configure the device for parallel polling using the ibppc function, unless the device
can configure itself for parallel polling.

ibppc requires an 8-bit value to designate the data line number, the ist sense, and
whether or not the function configures or unconfigures the device for the parallel
poll. The bit pattern is as follows:

0 1 1 E S D2 D1 D0

E is 1 to disable parallel polling and 0 to enable parallel polling for that particular
device.

S is 1 if the device is to assert the assigned data line when ist = 1, and 0 if the
device is to assert the assigned data line when ist = 0.

D2 through D0 determine the number of the assigned data line. The physical line
number is the binary line number plus one. For example, DIO3 has a binary bit
pattern of 010.

The following example code configures a device for parallel polling using NI-488
functions. The device asserts DIO7 if its ist = 0.

Chapter 6 GPIB Programming Techniques

© National Instruments Corp. 6-11 NI-488.2M UM for Windows NT

In this example, the ibdev command is used to open a device that has a primary
address of 3, has no secondary address, has a timeout of 3 s, asserts EOI with the last
byte of a write operation, and has EOS characters disabled.

The following call configures the device to respond to the poll on DIO7 and to assert
the line in the case when its ist is 0. Pass the binary bit pattern, 0110 0110 or hex
66, to ibppc .

#include "decl.h"
char ppr;

dev = ibdev(0,3,0,T3s,1,0);

ibppc(dev, 0x66);

If the GPIB interface board configures itself for a parallel poll, you should still use
the ibppc function. Pass the board index or a board unit descriptor value as the
first argument in ibppc . In addition, if the individual status bit (ist) of the board
needs to be changed, use the ibist function.

In the following example, the GPIB board is to configure itself to participate in a
parallel poll. It asserts DIO5 when ist = 1 if a parallel poll is conducted.

ibppc(0, 0x6C);
ibist(0, 1);

2. Conduct the parallel poll using ibrpp and check the response for a certain value.
The following example code performs the parallel poll and compares the response to
hex 10, which corresponds to DIO5. If that bit is set, the ist of the device is 1.

ibrpp(dev, &ppr);
if (ppr & 0x10) printf("ist = 1\n");

3. Unconfigure the device for parallel polling with ibppc . Notice that any value
having the parallel poll disable bit set (bit 4) in the bit pattern disables the
configuration, so you can use any value between hex 70 and 7E.

ibppc(dev, 0x70);

Parallel Polling with NI-488.2 Routines

Follow these steps to implement parallel polling using NI-488.2 routines. Each step
contains example code.

1. Configure the device for parallel polling using the PPollConfig routine, unless
the device can configure itself for parallel polling. The following example
configures a device at address 3 to assert data line 5 (DIO5) when its ist value is 1.

GPIB Programming Techniques Chapter 6

NI-488.2M UM for Windows NT 6-12 © National Instruments Corp.

#include "decl.h"
char response;
Addr4882_t AddressList[2];

/* The following command clears the GPIB. */

SendIFC(0);

/* The value of sense is compared with the ist bit of the
device and determines whether the data line is asserted. */

PPollConfig(0,3,5,1);

2. Conduct the parallel poll using PPoll , store the response, and check the response
for a certain value. In the following example, because DIO5 is asserted by the
device if ist = 1, the program checks bit 4 (hex 10) in the response to determine
the value of ist .

PPoll(0, &response);

/* If response has bit 4 (hex 10) set, the ist bit of the
device at that time is equal to 1. If it does not appear,
the ist bit is equal to 0. Check the bit in the following
statement. */

if (response & 0x10) {
printf("The ist equals 1.\n");

}
else {

printf("The ist equals 0.\n");
}

3. Unconfigure the device for parallel polling using the PPollUnconfig routine as
shown in the following example. In this example, the NOADDR constant must appear
at the end of the array to signal the end of the address list. If NOADDR is the only
value in the array, all devices receive the parallel poll disable message.

AddressList[0] = 3;
AddressList[1] = NOADDR;
PPollUnconfig(0, AddressList);

© National Instruments Corp. 7-1 NI-488.2M UM for Windows NT

Chapter 7
ibconf–Interface Bus Configuration Utility

This chapter contains a description of ibconf , the NI-488.2M software configuration
utility you can use to configure your software.

Overview

The ibconf utility is a Windows Control Panel application program you can use to
view or modify the configuration of your GPIB interface boards. You can use it to view
or modify the GPIB device templates, which provide compatibility with older
applications.

In most cases, you should use ibconf only to change the hardware configuration of
your GPIB interface boards. To change the GPIB characteristics of your boards and the
configuration of the device templates, use the ibconfig function in your application
program. If your application program uses ibconfig whenever it needs to modify a
configuration option, it is able to run on any computer with the appropriate NI-488.2M
software, regardless of the configuration of that computer.

Because you can use ibconf to modify the configuration of the NI-488.2M kernel
drivers, you must be logged on to Windows NT as the Administrator to make any
changes with ibconf . If you start ibconf without Administrator privileges, it
runs in read-only mode; you can view the settings, but you cannot make changes.

Starting and Exiting ibconf

When you install the NI-488.2M software for Windows NT, the installation program
places ibconf into your Control Panel. To start ibconf simply open your

Windows NT Control Panel and select the icon. The main GPIB Configuration
dialog box appears containing a list of the GPIB boards and device templates as shown in
Figure 7-1.

ibconf–Interface Bus Configuration Utility Chapter 7

NI-488.2M UM for Windows NT 7-2 © National Instruments Corp.

Figure 7-1. Main Dialog Box in ibconf

If at any point you need more help, click on the Help button or press the <F1> key.
Either of these actions brings up the help screen, which gives you more information about
the current dialog box.

After you have finished configuring your GPIB boards and device templates, click on the
OK button to save the changes and exit. Click the Cancel button to exit without saving
any of the changes you made. To save your changes and force the new settings to take
effect immediately, click on the Restart button. ibconf attempts to unload and reload
the NI-488.2M software so that the software uses your new settings. If ibconf cannot
unload the software because it is being used by another application, it instructs you either
to exit all GPIB-related applications and click Restart again, or to shut down and restart
your computer.

If you need to unload the NI-488.2M software and prevent it from reloading when you
restart your computer, click the Unload button. If ibconf cannot unload the
NI-488.2M software, it instructs you either to exit all GPIB-related applications, or to
shut down and restart your computer. If you want to use the software again after
unloading it, click on the Restart button.

Board Configuration

Your modifications will usually be to the GPIB board configurations. To view or modify
the configuration of one of your GPIB boards, select the board name in the main GPIB
Configuration dialog box and click on the Configure button. You could also
double-click on the board name. The board configuration dialog box appears.

Chapter 7 ibconf–Interface Bus Configuration Utility

© National Instruments Corp. 7-3 NI-488.2M UM for Windows NT

The board configuration dialog box contains hardware specific information for your
particular GPIB interface board. Boards like the AT-GPIB require several pieces of
information to be entered into ibconf , while other boards such as the MC-GPIB do not.
With the MC-GPIB, you must use the Micro Channel configuration program that came
with your computer to modify many of the hardware settings for your board. Figure 7-2
shows the board configuration dialog box for the AT-GPIB board.

Figure 7-2. Board Configuration for an AT-GPIB Interface Board

The following configuration items appear on the board configuration dialog box for all
interface boards.

Use this Board Use this item to disable an interface board. If this item is not selected,
the NI-488.2M software ignores the board. By default, gpib0 is
enabled and gpib1 , gpib2 , and gpib3 are disabled.

ibconf–Interface Bus Configuration Utility Chapter 7

NI-488.2M UM for Windows NT 7-4 © National Instruments Corp.

Bus Timing Use this item to specify the source handshake T1 delay of the board.
This delay determines the minimum amount of time, after the data is
placed on the bus, that the board asserts the GPIB DAV line during a
write or command operation. Refer to the ANSI/IEEE Standard 488.1-
1987, Section 5.2 for more information about the factors that might
affect the choice of the T1 delay. For example, if the total length of the
GPIB cable in the system is less than 15 meters, then the value 350 ns
is appropriate. The default for this item, 500 ns, should work in all
systems.

Cable Length This field specifies the number of meters of GPIB cable you have in
for High Speed your system. If you use the HS488 high-speed protocol to

communicate with HS488-compliant devices, you must specify the
total number of meters of GPIB cable in your system. The System
Controller, when it initializes the GPIB, must send this information to
all HS488 devices so high-speed transfers occur without errors.

OK Use this button to keep the configuration as shown and return to the
main dialog box.

Cancel Use this button to discard any configuration changes made to the board
and return to the main dialog box.

Help Use this button or the <F1> key to bring up help for this dialog box.

Software Use this button to expand the board configuration dialog box. You can
then view or modify the GPIB characteristics of the board which you
would normally configure in your application program using the
ibconfig function.

The following configuration items appear only for certain GPIB interface boards such as
the AT-GPIB. Other boards such as the MC-GPIB are configured automatically.

Base I/O Use this item to select the I/O address of the interface board. It must be
Address set to the same value as the base I/O address selected with the switches

on the board. For more information about setting the base I/O address
of your board, refer to the getting started manual that came with your
GPIB interface board.

To assist you in configuring the interface board properly, ibconf
shows a picture of the base I/O address switch of the board. You
should confirm that the switch settings on your interface board match
the picture in ibconf . The switch picture in ibconf is also an
interactive control. You can use your mouse to change the position of
the switches in the picture. When you change the position of the
switches, ibconf updates the number displayed in the Base I/O
Address field. Set the switch in ibconf to look like the switch on
your board.

Chapter 7 ibconf–Interface Bus Configuration Utility

© National Instruments Corp. 7-5 NI-488.2M UM for Windows NT

Interrupt Use this item to select the hardware interrupt level used by your
Level interface board. It must be set to the same value as interrupt level

selected with the jumpers on the board. For more information about
setting the interrupt level of your board, refer to the getting started
manual that came with your GPIB interface board.

DMA Channel Use this item to select the hardware DMA channel used by your
interface board. It must be set to the same value as DMA channel
selected with the jumpers on the board. For more information about
setting the DMA channel of your board, refer to the getting started
manual that came with your GPIB interface board.

Use Demand Use this item to select the DMA transfer mode that the NI-488.2M
Mode DMA software uses. When this item is selected, the NI-488.2M software

uses demand mode for DMA transfers. When this item is unselected,
the NI-488.2M software uses single cycle DMA. Almost all
PC-compatible computers can use demand mode, which is the fastest
DMA mode. But some newer computers cannot use demand mode.
Before changing this item, you should use the ibdiag utility which
tests the DMA controller in your computer and alerts you if demand
mode cannot be used.

Expanded Board Configuration

If you need to modify the GPIB characteristics of an interface board, click on the
Software button of the board configuration dialog box. The expanded dialog box
appears, containing all of the GPIB characteristics of the board as shown in Figure 7-3.

ibconf–Interface Bus Configuration Utility Chapter 7

NI-488.2M UM for Windows NT 7-6 © National Instruments Corp.

Figure 7-3. Expanded Board Configuration for an AT-GPIB board

If possible, you should change these characteristics within your application program
using the ibconfig function. But if you are using an older application that requires
changes to the GPIB characteristics before it can run, you might need to make the
changes in ibconf . The following configuration items appear in the expanded dialog
box.

GPIB Primary All GPIB boards must be assigned a unique primary address. This
Address address, a number in the range 0 to 30 decimal, is used by the

NI-488.2M software to compute the talk and listen addresses of the
board. The default primary address of all interface boards is zero.

GPIB If extended addressing is needed, the GPIB board should be assigned a
Secondary unique secondary address. This number must be in the range 96 to 126
Address decimal. If extended addressing is not required, select None.

Terminate Some devices send an end-of-string byte to signal the end of a GPIB
Read On EOS data transfer. When this field is selected, the NI-488.2M software

terminates a read operation when it receives the EOS byte. By default
this option is not selected.

Chapter 7 ibconf–Interface Bus Configuration Utility

© National Instruments Corp. 7-7 NI-488.2M UM for Windows NT

Set EOI with Some devices expect the GPIB EOI line to be asserted when the EOS
EOS on Write byte is transferred. When this field is selected, the NI-488.2M software

asserts the GPIB EOI line whenever it sends the EOS byte. By default
this option is not selected.

8-bit EOS When the GPIB board is configured to use the EOS byte, it can test
Compare either seven or eight bits of the EOS byte for a match. When this item

is selected, the NI-488.2M software uses all eight bits of the EOS byte
when checking for a match. By default this option is not selected.

Send EOI at Many GPIB devices require the GPIB EOI line to be asserted at the end
end of Write of a data transfer. This signals the device that the transfer has ended.

When this item is selected, the NI-488.2M software will assert the EOI
line at the end of each data transfer. By default this option is selected.

EOS Byte If one or more of the EOS modes are enabled, this value defines the
EOS byte. Use a decimal number in the range 0 to 255. The value is
used by the NI-488.2M software for all selected EOS operations.

System The System Controller in a GPIB system is the device that maintains
Controller ultimate control over the bus. When the NI-488.2M software is being

used to control a GPIB system, the GPIB interface board should
normally be the System Controller. Some situations, such as a network
of computers, require that the interface board not be the System
Controller. By default this option is selected.

I/O Timeout Use this option to select the timeout value for all GPIB I/O operations.
The timeout value is the approximate length of time that GPIB
functions wait for data to be transferred or commands to be sent. It is
also the length of time that the ibwait function waits for an event
before returning. The default timeout period is 10 s.

Parallel Poll Use this option to select the length of time the NI-488.2M software
Duration waits when conducting a parallel poll. For a normal bus configuration

(the Controller and devices on the same bus) use the default duration of
2 µs. If you are using a GPIB bus extender in transparent parallel poll
mode, you should increase the poll duration to 10 µs or more so the bus
extender can operate transparently to your applications.

Enable Auto Use this option to enable or disable the automatic serial polling of
Serial Polling devices when the GPIB Service Request (SRQ) line is asserted.

Positive poll responses are stored by the NI-488.2M software and can
be retrieved with the ibrsp function. This feature usually does not
conflict with any device that conforms to the IEEE 488.1 standard. If a
conflict exists with a device, do not select this option. By default this
option is selected.

ibconf–Interface Bus Configuration Utility Chapter 7

NI-488.2M UM for Windows NT 7-8 © National Instruments Corp.

Enable CIC If a device-level NI-488 call is made after control has been passed to
Protocol another device, this protocol causes the interface board to assert SRQ

with a serial poll response byte of hex 42 to regain control. If the
current Controller recognizes this request and passes control back to the
board, the device-level call is executed as usual. If control is not
passed back within the timeout period, the ECIC error is returned. If
your board needs to regain control, but this protocol is disabled, ECIC
is returned immediately. By default this option is not selected.

Assert REN When this option is selected and the interface board is the System
When SC Controller, the GPIB Remote Enable (REN) line is automatically

asserted any time a device-level call is made. By default this option is
not selected.

Device Template Configuration

To view or modify the configuration of a GPIB device, select the device name in the
main GPIB Configuration dialog box and click on the Configure button. You can also
double-click on the device name. The device template dialog box appears as shown in
Figure 7-4.

Figure 7-4. Device Template Configuration

Use the device templates if you have an older application that uses the ibfind function
to find a given device by name (for example, ibfind ("dev1")) instead of using the
preferred function ibdev . In some cases, you might need to change the actual name of
the device template.

Chapter 7 ibconf–Interface Bus Configuration Utility

© National Instruments Corp. 7-9 NI-488.2M UM for Windows NT

The device template options are similar to those of the expanded board configuration. If
possible, use the ibconfig function to change the device characteristics in your
application program.

The following is a list of the device template configuration options.

Name This field contains the symbolic name of the device to which this
template refers. This is the name that should be used in the ibfind
call of the application. This name must be eight characters or less and
cannot contain any of the following characters:

. " / \ [] :
| < > + = ; ,

You cannot name a device to the same name as an interface board
(gpib0 , gpib1 , and so on).

Access Board Use this option to select which interface board is used to communicate
with that particular device. This option contains a list of interface
boards to choose from.

GPIB Primary All GPIB devices must be assigned a unique primary address. This
Address address, a number in the range 0 to 30 decimal, is used by the

NI-488.2M software to compute the talk and listen addresses of the
device.

GPIB If extended addressing is needed, the device should be assigned a
Secondary unique secondary address. This number must be in the range 96 to 126
Address decimal. If extended addressing is not required, select None.

Terminate Some devices send an end-of-string byte to signal the end of a GPIB
Read On EOS data transfer. When this field is selected, the NI-488.2M software

terminates a read operation when it receives the EOS byte. By default
this option is not selected.

Set EOI with Some devices expect the GPIB EOI line to be asserted when the EOS
EOS on Write byte is transferred. When this field is selected, the NI-488.2M software

asserts the GPIB EOI line whenever it sends the EOS byte. By default
this option is not selected.

8-bit EOS When the NI-488.2M software is configured to use the EOS byte, it can
Compare test either seven or eight bits of the EOS byte for a match. When this

item is selected, the NI-488.2M software uses all eight bits of the EOS
byte when checking for a match. By default this option is not selected.

Send EOI at Many GPIB devices require the GPIB EOI line to be asserted at the end
end of Write of a data transfer. This signals the device that the transfer has ended.

When this item is selected, the NI-488.2M software asserts the EOI line
at the end of each data transfer. By default this option is selected.

ibconf–Interface Bus Configuration Utility Chapter 7

NI-488.2M UM for Windows NT 7-10 © National Instruments Corp.

EOS Byte If one or more of the EOS modes are enabled, this value defines the
EOS byte. Use a decimal number in the range 0 to 255. The value is
used by the NI-488.2M software for all selected EOS operations.

I/O Timeout Use this option to select the timeout value for all GPIB I/O operations.
The timeout value is the approximate length of time that GPIB
functions wait for data to be transferred or commands to be sent. It is
also the length of time that the ibwait function waits for an event
before returning. The default timeout period is 10 s.

Serial Poll Use this option to select the length of time the NI-488.2M software
Timeout waits for a serial poll response from the device. The IEEE 488

standard does not specify the length of time a Controller should wait
for the response byte. The default value of 1 s works for most devices.
If you have problems with serial polls, try using a longer timeout value.

Repeat If this option is selected, the NI-488.2M software addresses the device
Addressing before every read or write operation. Devices are usually not addressed

each time a read or write operation is performed, but some older
IEEE 488.1 devices require their address to be sent before each
operation. By default this option is not selected.

© National Instruments Corp. A-1 NI-488.2M UM for Windows NT

Appendix A
Status Word Conditions

This appendix gives a detailed description of the conditions reported in the status word,
ibsta .

For information about how to use ibsta in your application program, refer to Chapter 3,
Developing Your Application.

If a function call returns an ENEB or EDVR error, all status word bits except the ERR bit
are cleared, indicating that it is not possible to obtain the status of the GPIB board.

Each bit in ibsta can be set for device calls (dev), board calls (brd), or both (dev, brd).

The following table shows the status word layout.

Table A-1. Status Word Bits

Mnemonic
Bit
Pos.

Hex
Value Type Description

ERR 15 8000 dev, brd GPIB error

TIMO 14 4000 dev, brd Time limit exceeded

END 13 2000 dev, brd END or EOS detected

SRQI 12 1000 brd SRQ interrupt received

RQS 11 800 dev Device requesting service

SPOLL 10 400 brd Board has been serial polled by the
Controller

EVENT 9 200 brd A DCAC, DTAS, or IFC event has
occurred

CMPL 8 100 dev, brd I/O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CIC 5 20 brd Controller-In-Charge

ATN 4 10 brd Attention is asserted

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State

DCAS 0 1 brd Device Clear State

Status Word Conditions Appendix A

NI-488.2M UM for Windows NT A-2 © National Instruments Corp.

ERR (dev, brd)

ERR is set in the status word following any call that results in an error. You can
determine the particular error by examining the error variable iberr . Appendix B,
Error Codes and Solutions, describes error codes that are recorded in iberr along with
possible solutions. ERR is cleared following any call that does not result in an error.

TIMO (dev, brd)

TIMO indicates that the timeout period has been exceeded. TIMO is set in the status
word following an ibwait call if the TIMO bit of the ibwait mask parameter is set
and the time limit expires. TIMO is also set following any synchronous I/O functions
(for example, ibcmd , ibrd , ibwrt , Receive , Send , and SendCmds) if a timeout
occurs during one of these calls. TIMO is cleared in all other circumstances.

END (dev, brd)

END indicates either that the GPIB EOI line has been asserted or that the EOS byte has
been received, if the software is configured to terminate a read on an EOS byte. If the
GPIB board is performing a shadow handshake as a result of the ibgts function, any
other function can return a status word with the END bit set if the END condition occurs
before or during that call. END is cleared when any I/O operation is initiated.

Some applications might need to know the exact I/O read termination mode of a read
operation–EOI by itself, the EOS character by itself, or EOI plus the EOS character. You
can use the ibconfig function (option IbcEndBitIsNormal) to enable a mode in
which the END bit is set only when EOI is asserted. In this mode if the I/O operation
completes because of the EOS character by itself, END is not set. The application should
check the last byte of the received buffer to see if it is the EOS character.

SRQI (brd)

SRQI indicates that a GPIB device is requesting service. SRQI is set whenever the GPIB
board is CIC, the GPIB SRQ line is asserted, and the automatic serial poll capability is
disabled. SRQI is cleared either when the GPIB board ceases to be the CIC or when the
GPIB SRQ line is unasserted.

Appendix A Status Word Conditions

© National Instruments Corp. A-3 NI-488.2M UM for Windows NT

RQS (dev)

RQS appears in the status word only after a device-level call and indicates that the device
is requesting service. RQS is set whenever bit 6 is asserted in the serial poll status byte
of the device. The serial poll that obtains the status byte can be the result of a call to
ibrsp , or the poll might be automatic if automatic serial polling is enabled. Do not
issue an ibwait on RQS for a device that does not respond to serial polls. RQS is
cleared when an ibrsp reads the serial poll status byte that caused the RQS.

SPOLL (brd)

Use SPOLL in Talker/Listener applications to determine when the Controller has serial
polled the GPIB board. The SPOLL bit is disabled by default. Use the ibconfig
function (option IbcSPollBit) to enable it. When this bit is enabled, it is set after the
board has been serial polled. SPOLL is cleared on any call immediately after an
ibwait call, if the SPOLL bit was set in the wait mask, or immediately following a call
to ibrsv.

EVENT (brd)

Use EVENT in Talker/Listener applications (applications in which the GPIB interface is
not the Controller) to monitor the order of GPIB device clear, group execute trigger, and
send interface clear commands. The usual DCAS and DTAS bits of ibsta might be
insufficient.

The EVENT bit is disabled by default. If you want to use this bit, you must use the
ibconfig function (option IbcEventQueue) to enable it. When you enable this bit,
the DCAS and DTAS bits are disabled. When an event occurs, this bit is set and any I/O
in progress is aborted. The application can then call the ibevent function to determine
which event occurred.

CMPL (dev, brd)

CMPL indicates the condition of I/O operations. It is set whenever an I/O operation is
complete. CMPL is cleared while the I/O operation is in progress.

LOK (brd)

LOK indicates whether the board is in a lockout state. While LOK is set, the
EnableLocal routine or ibloc function is inoperative for that board. LOK is set
whenever the GPIB board detects that the Local Lockout (LLO) message has been sent
either by the GPIB board or by another Controller. LOK is cleared when the System
Controller unasserts the Remote Enable (REN) GPIB line.

Status Word Conditions Appendix A

NI-488.2M UM for Windows NT A-4 © National Instruments Corp.

REM (brd)

REM indicates whether or not the board is in the remote state. REM is set whenever the
Remote Enable (REN) GPIB line is asserted and the GPIB board detects that its listen
address has been sent either by the GPIB board or by another Controller. REM is cleared
in the following situations:

• When REN becomes unasserted

• When the GPIB board as a Listener detects that the Go to Local (GTL) command has
been sent either by the GPIB board or by another Controller

• When the ibloc function is called while the LOK bit is cleared in the status word

CIC (brd)

CIC indicates whether the GPIB board is the Controller-In-Charge. CIC is set when the
SendIFC routine or ibsic function is executed either while the GPIB board is System
Controller or when another Controller passes control to the GPIB board. CIC is cleared
either when the GPIB board detects Interface Clear (IFC) from the System Controller or
when the GPIB board passes control to another device.

ATN (brd)

ATN indicates the state of the GPIB Attention (ATN) line. ATN is set whenever the
GPIB ATN line is asserted, and it is cleared when the ATN line is unasserted.

TACS (brd)

TACS indicates whether the GPIB board is addressed as a Talker. TACS is set whenever
the GPIB board detects that its talk address (and secondary address, if enabled) has been
sent either by the GPIB board itself or by another Controller. TACS is cleared whenever
the GPIB board detects the Untalk (UNT) command, its own listen address, a talk address
other than its own talk address, or Interface Clear (IFC).

LACS (brd)

LACS indicates whether the GPIB board is addressed as a Listener. LACS is set
whenever the GPIB board detects that its listen address (and secondary address, if
enabled) has been sent either by the GPIB board itself or by another Controller. LACS is
also set whenever the GPIB board shadow handshakes as a result of the ibgts function.
LACS is cleared whenever the GPIB board detects the Unlisten (UNL) command, its own
talk address, Interface Clear (IFC), or that the ibgts function has been called without
shadow handshake.

Appendix A Status Word Conditions

© National Instruments Corp. A-5 NI-488.2M UM for Windows NT

DTAS (brd)

DTAS indicates whether the GPIB board has detected a device trigger command. DTAS
is set whenever the GPIB board, as a Listener, detects that the Group Execute Trigger
(GET) command has been sent by another Controller. DTAS is cleared on any call
immediately following an ibwait call, if the DTAS bit is set in the ibwait mask
parameter.

DCAS (brd)

DCAS indicates whether the GPIB board has detected a device clear command. DCAS is
set whenever the GPIB board detects that the Device Clear (DCL) command has been
sent by another Controller, or whenever the GPIB board as a Listener detects that the
Selected Device Clear (SDC) command has been sent by another Controller. DCAS is
cleared on any call immediately following an ibwait call, if the DCAS bit was set in
the ibwait mask parameter. It also clears on any call immediately following a read or
write.

© National Instruments Corp. B-1 NI-488.2M UM for Windows NT

Appendix B
Error Codes and Solutions

This appendix lists a description of each error, some conditions under which it might
occur, and possible solutions.

The following table lists the GPIB error codes.

Table B-1. GPIB Error Codes

Error
Mnemonic

iberr
Value Meaning

EDVR 0 System error

ECIC 1 Function requires GPIB board to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB board not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB board not System Controller as required

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB board

EOIP 10 Asynchronous I/O in progress

ECAP 11 No capability for operation

EFSO 12 File system error

EBUS 14 GPIB bus error

ESTB 15 Serial poll status byte queue overflow

ESRQ 16 SRQ stuck in ON position

ETAB 20 Table problem

EDVR (0)

EDVR is returned when the board or device name passed to ibfind , or the board index
passed to ibdev , cannot be accessed. The global variable ibcntl contains the system
error code 2, File Not Found. This error occurs when you try to access a board or device
that is not installed or configured properly.

EDVR is also returned if an invalid unit descriptor is passed to any NI-488 function call.

Error Codes and Solutions Appendix B

NI-488.2M UM for Windows NT B-2 © National Instruments Corp.

Solutions

• Use ibdev to open a device without specifying its symbolic name.

• Use only device or board names that are configured in the utility program ibconf
as parameters to the ibfind function.

• Using ibconf , ensure that each board you want to access is configured properly,
that base address, DMA channel, and interrupt level are correct, and that the Use
This Board field is selected.

• If the NI-488.2M driver is installed and configured, but you continue to receive the
error EDVR, use the Windows NT Event Viewer to find a solution. The driver
maintains a log of errors in this utility and posts possible corrections to any problems
that occur while loading. Refer to Chapter 4, Debugging Your Application , for more
information.

• Use the unit descriptor returned from ibdev or ibfind as the first parameter in
subsequent NI-488 functions. Examine the variable before the failing function to
make sure the function has not been corrupted.

ECIC (1)

ECIC is returned when one of the following board functions or routines is called while
the board is not CIC:

• Any device-level NI-488 functions that affect the GPIB

• Any board-level NI-488 functions that issue GPIB command bytes: ibcmd ,
ibcmda , ibln , and ibrpp

• ibcac and ibgts

• Any of the NI-488.2 routines that issue GPIB command bytes: SendCmds , PPoll ,
Send , and Receive

Solutions

• Use ibsic or SendIFC to make the GPIB board become CIC on the GPIB.

• Use ibrsc1 to make sure your GPIB board is configured as System Controller.

• In multiple CIC situations, always be certain that the CIC bit appears in the status
word ibsta before attempting these calls. If it does not appear, you can perform an
ibwait (for CIC) call to delay further processing until control is passed to the
board.

Appendix B Error Codes and Solutions

© National Instruments Corp. B-3 NI-488.2M UM for Windows NT

ENOL (2)

ENOL usually occurs when a write operation is attempted with no Listeners addressed.
For a device write, this error indicates that the GPIB address configured for that device in
the software does not match the GPIB address of any device connected to the bus, that
the GPIB cable is not connected to the device, or that the device is not powered on.

ENOL can occur in situations in which the GPIB board is not the CIC and the Controller
asserts ATN before the write call in progress has ended.

Solutions

• Make sure that the GPIB address of your device matches the GPIB address of the
device to which you want to write data.

• Use the appropriate hex code in ibcmd to address your device.

• Check your cable connections and make sure at least two-thirds of your devices are
powered on.

• Call ibpad (or ibsad , if necessary) to match the configured address to the device
switch settings.

• Reduce the write byte count to that which is expected by the Controller.

EADR (3)

EADR occurs when the GPIB board is CIC and is not properly addressing itself before
read and write functions. This error is usually associated with board-level functions.

EADR is also returned by the function ibgts when the shadow-handshake feature is
requested and the GPIB ATN line is already unasserted. In this case, the shadow
handshake is not possible and the error is returned to notify you of that fact.

Solutions

• Make sure that the GPIB board is addressed correctly before calling ibrd , ibwrt ,
RcvRespMsg , or SendDataBytes .

• Avoid calling ibgts except immediately after an ibcmd call. (ibcmd causes ATN
to be asserted.)

Error Codes and Solutions Appendix B

NI-488.2M UM for Windows NT B-4 © National Instruments Corp.

EARG (4)

EARG results when an invalid argument is passed to a function call. The following are
some examples:

• ibtmo called with a value not in the range 0 through 17.

• ibeos called with meaningless bits set in the high byte of the second parameter.

• ibpad or ibsad called with invalid addresses.

• ibppc called with invalid parallel poll configurations.

• A board-level NI-488 call made with a valid device descriptor, or a device-level
NI-488 call made with a board descriptor.

• An NI-488.2 routine called with an invalid address.

• PPollConfig called with an invalid data line or sense bit.

Solutions

• Make sure that the parameters passed to the NI-488 function or NI-488.2 routine are
valid.

• Do not use a device descriptor in a board function or vice-versa.

ESAC (5)

ESAC results when ibsic , ibsre , SendIFC , or EnableRemote is called when the
GPIB board does not have System Controller capability.

Solutions

Give the GPIB board System Controller capability by calling ibrsc1 or by using
ibconf to configure that capability into the software.

EABO (6)

EABO indicates that an I/O operation has been canceled, usually due to a timeout
condition. Other causes are calling ibstop or receiving the Device Clear message from
the CIC while performing an I/O operation.

Appendix B Error Codes and Solutions

© National Instruments Corp. B-5 NI-488.2M UM for Windows NT

Frequently, the I/O is not progressing (the Listener is not continuing to handshake or the
Talker has stopped talking), or the byte count in the call which timed out was more than
the other device was expecting.

Solutions

• Use the correct byte count in input functions or have the Talker use the END
message to signify the end of the transfer.

• Lengthen the timeout period for the I/O operation using ibtmo .

• Make sure that you have configured your device to send data before you request
data.

ENEB (7)

ENEB occurs when no GPIB board exists at the I/O address specified in the configuration
program. This problem happens when the board is not physically plugged into the
system, the I/O address specified during configuration does not match the actual board
setting, or there is a system conflict with the base I/O address.

Solutions

Make sure there is a GPIB board in your computer that is properly configured both in
hardware and software using a valid base I/O address.

EOIP (10)

EOIP occurs when an asynchronous I/O operation has not finished before some other call
is made. During asynchronous I/O, you can only use ibstop , ibwait , and ibonl or
perform other non-GPIB operations. If any other call is attempted, EOIP is returned.

Once the asynchronous I/O has begun, further GPIB calls other than ibstop , ibwait ,
or ibonl are strictly limited. If a call might interfere with the I/O operation in progress,
the driver returns EOIP.

Solutions

Resynchronize the driver and the application before making any further GPIB calls.
Resynchronization is accomplished by using one of the following three functions:

Error Codes and Solutions Appendix B

NI-488.2M UM for Windows NT B-6 © National Instruments Corp.

• ibwait If the returned ibsta contains CMPL then the driver and application
are resynchronized.

• ibstop The I/O is canceled; the driver and application are resynchronized.

• ibonl The I/O is canceled and the interface is reset; the driver and application
are resynchronized.

ECAP (11)

ECAP results when your GPIB board lacks the ability to carry out an operation or when a
particular capability has been disabled in the software and a call is made that requires the
capability.

Solutions

Check the validity of the call, or make sure your GPIB interface board and the driver both
have the needed capability.

EFSO (12)

EFSO results when an ibrdf or ibwrtf call encounters a problem performing a file
operation. Specifically, this error indicates that the function is unable to open, create,
seek, write, or close the file being accessed. The specific Windows NT error code for
this condition is contained in ibcnt .

Solutions

• Make sure the filename, path, and drive that you specified are correct.

• Make sure that the access mode of the file is correct.

• Make sure there is enough room on the disk to hold the file.

EBUS (14)

EBUS results when certain GPIB bus errors occur during device functions. All device
functions send command bytes to perform addressing and other bus management.
Devices are expected to accept these command bytes within the time limit specified by
the default configuration or the ibtmo function. EBUS results if a timeout occurred
while sending these command bytes.

Appendix B Error Codes and Solutions

© National Instruments Corp. B-7 NI-488.2M UM for Windows NT

Solutions

• Verify that the instrument is operating correctly.

• Check for loose or faulty cabling or several powered-off instruments on the GPIB.

• If the timeout period is too short for the driver to send command bytes, increase the
timeout period.

ESTB (15)

ESTB is reported only by the ibrsp function. ESTB indicates that one or more serial
poll status bytes received from automatic serial polls have been discarded because of a
lack of storage space. Several older status bytes are available; however, the oldest is
being returned by the ibrsp call.

Solutions

• Call ibrsp more frequently to empty the queue.

• Disable autopolling with the ibconfig function or the ibconf utility.

ESRQ (16)

ESRQ occurs only during the ibwait function or the WaitSRQ routine. ESRQ
indicates that a wait for RQS is not possible because the GPIB SRQ line is stuck on. This
situation can be caused by the following events:

• Usually, a device unknown to the software is asserting SRQ. Because the software
does not know of this device, it can never serial poll the device and unassert SRQ.

• A GPIB bus tester or similar equipment might be forcing the SRQ line to be asserted.

• A cable problem might exist involving the SRQ line.

Although the occurrence of ESRQ warns you of a definite GPIB problem, it does not
affect GPIB operations, except that you cannot depend on the RQS bit while the
condition lasts.

Solutions

Check to see if other devices not used by your application are asserting SRQ. Disconnect
them from the GPIB if necessary.

Error Codes and Solutions Appendix B

NI-488.2M UM for Windows NT B-8 © National Instruments Corp.

ETAB (20)

ETAB occurs only during the FindLstn , FindRQS , and ibevent functions. ETAB
indicates that there was some problem with a table used by these functions.

• In the case of FindLstn , ETAB means that the given table did not have enough
room to hold all the addresses of the Listeners found.

• In the case of FindRQS , ETAB means that none of the devices in the given table
were requesting service.

• In the case of ibevent , ETAB means the event queue overflowed and event
information was lost.

Solutions

In the case of FindLstn , increase the size of result arrays. In the case of FindRQS ,
check to see if other devices not used by your application are asserting SRQ. Disconnect
them from the GPIB if necessary. In the case of ETAB returned from ibevent , call
ibevent more often to empty the queue.

© National Instruments Corp. C-1 NI-488.2M UM for Windows NT

Appendix C
Customer Communication

For your convenience, this appendix contains forms to help you gather the information
necessary to help us solve technical problems you might have as well as a form you can
use to comment on the product documentation. Filling out a copy of the Technical
Support Form before contacting National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In
the U.S. and Canada, applications engineers are available Monday through Friday from
8:00 a.m. to 6:00 p.m. (central time). In other countries, contact the nearest branch
office. You may fax questions to us at any time.

Corporate Headquarters
(512) 795-8248
Technical support fax: (800) 328-2203

(512) 794-5678

Branch Offices Phone Number Fax Number
Australia 03 9 879 9422 03 9 879 9179
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 519 622 9310 519 622 9311
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 71 11
Finland 90 527 2321 90 502 2930
France 1 48 14 24 24 1 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Italy 02 48301892 02 48301915
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Technical Support Form

Photocopy this form and update it each time you make changes to your software or
hardware, and use the completed copy of this form as a reference for your current
configuration. Completing this form accurately before contacting National
Instruments for technical support helps our applications engineers answer your
questions more efficiently.

If you are using any National Instruments hardware or software products related to this
problem, include the configuration forms from their user manuals. Include additional
pages if necessary.

Name

Company

Address

Fax () Phone ()

Computer brand

Model Processor

Operating system

Speed MHz RAM MB

Display adapter

Mouse yes no

Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model

Revision

Configuration

(continues)

National Instruments software product

Version

Configuration

The problem is

List any error messages

The following steps will reproduce the problem

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with
our products. This information helps us provide quality products to meet your needs.

Title: NI-488.2M™ User Manual for Windows NT

Edition Date: January 1996

Part Number: 320646B-01

Please comment on the completeness, clarity, and organization of the manual.

(continues)

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications
National Instruments Corporation
6504 Bridge Point Parkway
Austin, TX 78730-5039

Fax to: Technical Publications
National Instruments Corporation
(512) 794-5678

© National Instruments Corp. Glossary-1 NI-488.2M UM for Windows NT

Glossary

Prefix Meaning Value

n-
µ-
m-
k-
M-

nano-
micro-
milli-
kilo-
mega-

10-9

10-6

10-3

103

106

A

acceptor handshake Listeners use this GPIB interface function to receive data, and
all devices use it to receive commands. See source handshake
and handshake .

access board The GPIB board that controls and communicates with the
devices on the bus that are attached to it.

ANSI American National Standards Institute.

ASCII American Standard Code for Information Interchange.

asynchronous An action or event that occurs at an unpredictable time with
respect to the execution of a program.

automatic serial polling A feature of the NI-488.2M software in which serial polls
(autopolling) are executed automatically by the driver whenever a device

asserts the GPIB SRQ line.

B

base I/O address See I/O address .

BIOS Basic Input/Output System.

board-level function A rudimentary function that performs a single operation.

Glossary

NI-488.2M UM for Windows NT Glossary-2 © National Instruments Corp.

C

CFE The GPIB command which precedes CFGn and is used to
(Configuration Enable) place devices into their configuration mode.

CFGn These GPIB commands (CFG1 through CFG15) follow CFE
and are used to configure all devices for the number of meters
of cable in the system so that HS488 transfers occur without
errors.

CIC The device that manages the GPIB by sending interface
(Controller-In-Charge) messages to other devices.

CPU Central processing unit.

D

DAV (Data Valid) One of the three GPIB handshake lines. See handshake .

DCL The GPIB command used to reset the device or internal
(Device Clear) functions of all devices. See SDC .

device-level function A function that combines several rudimentary board
operations into one function so that the user does not have to
be concerned with bus management or other GPIB protocol
matters.

DIO1 through DIO8 The GPIB lines that are used to transmit command or data
bytes from one device to another.

DLL Dynamic link library.

DMA High-speed data transfer between the GPIB board and
memory

(direct memory access) that is not handled directly by the CPU. Not available on
some systems. See programmed I/O.

driver Device driver software installed within the operating system.

E

END or END Message A message that signals the end of a data string. END is sent
by asserting the GPIB End or Identify (EOI) line with the last
data byte.

Glossary

© National Instruments Corp. Glossary-3 NI-488.2M UM for Windows NT

EOI A GPIB line that is used to signal either the last byte of a data
message (END) or the parallel poll Identify (IDY) message.

EOS or EOS Byte A 7- or 8-bit end-of-string character that is sent as the last byte
of a data message.

EOT End of transmission

ESB The Event Status bit is part of the IEEE 488.2-defined status
byte which is received from a device responding to a serial
poll.

G

GET Group Execute Trigger is the GPIB command used to trigger a
(Group Execute device or internal function of an addressed Listener.
Trigger)

GPIB General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE
Standard 488.1-1987 and ANSI/IEEE Standard 488.2-1987.

GPIB address The address of a device on the GPIB, composed of a primary
address (MLA and MTA) and perhaps a secondary address
(MSA). The GPIB board has both a GPIB address and an I/O
address.

GPIB board Refers to the National Instruments family of GPIB interface
boards.

GTL Go To Local is the GPIB command used to place an addressed
(Go To Local) Listener in local (front panel) control mode.

H

handshake The mechanism used to transfer bytes from the Source
Handshake function of one device to the Acceptor Handshake
function of another device. The three GPIB lines DAV,
NRFD, and NDAC are used in an interlocked fashion to signal
the phases of the transfer, so that bytes can be sent
asynchronously (for example, without a clock) at the speed of
the slowest device.

For more information about handshaking, refer to the
ANSI/IEEE Standard 488.1-1987.

Glossary

NI-488.2M UM for Windows NT Glossary-4 © National Instruments Corp.

hex Hexadecimal; a number represented in base 16. For example,
decimal 16 = hex 10.

high-level function See device-level function.

Hz Hertz.

I

ibcnt After each NI-488 I/O function, this global variable contains
the actual number of bytes transmitted.

ibconf The NI-488.2M driver configuration program.

iberr A global variable that contains the specific error code
associated with a function call that failed.

ibic The Interface Bus Interactive Control program is used to
communicate with GPIB devices, troubleshoot problems, and
develop your application.

ibsta At the end of each function call, this global variable (status
word) contains status information.

IEEE Institute of Electrical and Electronic Engineers.

interface message A broadcast message sent from the Controller to all devices
and used to manage the GPIB.

I/O (Input/Output) In the context of this manual, the transmission of commands
or messages between the computer via the GPIB board and
other devices on the GPIB.

I/O address The address of the GPIB board from the point of view of the
CPU, as opposed to the GPIB address of the GPIB board.
Also called port address or board address.

ist An Individual Status bit of the status byte used in the Parallel
Poll Configure function.

K

KB Kilobytes.

Glossary

© National Instruments Corp. Glossary-5 NI-488.2M UM for Windows NT

L

LAD (listen address) See MLA .

language interface Code that enables an application program that uses NI-488
functions or NI-488.2 routines to access the driver.

Listener A GPIB device that receives data messages from a Talker.

LLO The GPIB command used to tell all devices that they may or
(Local Lockout) should ignore remote (GPIB) data messages or local (front

panel) controls, depending on whether the device is in local or
remote program mode.

low-level function A rudimentary board or device function that performs a single
operation.

M

m Meters.

MAV The Message Available bit is part of the IEEE 488.2-defined
status byte which is received from a device responding to a
serial poll.

MB Megabytes of memory.

memory-resident Resident in RAM.

MLA A GPIB command used to address a device to be
(My Listen Address) a Listener. It can be any one of the 31 primary addresses.

MSA The GPIB command used to address a device to be a Listener
(My Secondary or a Talker when extended (two byte) addressing is used. The
Address) complete address is a MLA or MTA address followed by an

MSA address. There are 31 secondary addresses for a total of
961 distinct listen or talk addresses for devices.

MTA A GPIB command used to address a device to be a Talker. It
(My Talk Address) can be any one of the 31 primary addresses.

multitasking The concurrent processing of more than one program or task.

Glossary

NI-488.2M UM for Windows NT Glossary-6 © National Instruments Corp.

N

NDAC One of the three GPIB handshake lines. See handshake .
(Not Data Accepted)

NRFD One of the three GPIB handshake lines. See handshake .
(Not Ready For Data)

P

parallel poll The process of polling all configured devices at once and
reading a composite poll response. See serial poll .

PIO See programmed I/O.

PPC Parallel Poll Configure is the GPIB command
(Parallel Poll Configure) used to configure an addressed Listener to participate in polls.

PPD Parallel Poll Disable is the GPIB command used
(Parallel Poll Disable) to disable a configured device from participating in polls.

There are 16 PPD commands.

PPE Parallel Poll Enable is the GPIB command used
(Parallel Poll Enable) to enable a configured device to participate in polls and to

assign a DIO response line. There are 16 PPE commands.

PPU Parallel Poll Unconfigure is the GPIB command
(Parallel Poll used to disable any device from participating in
Unconfigure) polls.

programmed I/O Low-speed data transfer between the GPIB board and memory
in which the CPU moves each data byte according to program
instructions. See DMA .

R

RAM Random-access memory.

resynchronize The NI-488.2M software and the user application must
resynchronize after asynchronous I/O operations have
completed.

RQS Request Service.

Glossary

© National Instruments Corp. Glossary-7 NI-488.2M UM for Windows NT

S

s Seconds.

SDC The GPIB command used to reset internal or device functions
(Selected Device Clear) of an addressed Listener. See DCL.

serial poll The process of polling and reading the status byte of one
device at a time. See parallel poll .

service request See SRQ.

source handshake The GPIB interface function that transmits data and
commands. Talkers use this function to send data, and the
Controller uses it to send commands. See acceptor handshake
and handshake .

SPD The GPIB command used to cancel an SPE command.
(Serial Poll Disable)

SPE The GPIB command used to enable a specific device to be
(Serial Poll Enable) polled. That device must also be addressed to talk. See SPD.

SRQ (Service Request) The GPIB line that a device asserts to notify the CIC that the
device needs servicing.

status byte The IEEE 488.2-defined data byte sent by a device when it is
serially polled.

status word See ibsta.

synchronous Refers to the relationship between the NI-488.2M driver
functions and a process when executing driver functions is
predictable; the process is blocked until the driver completes
the function.

System Controller The single designated Controller that can assert control
(become CIC of the GPIB) by sending the Interface Clear
(IFC) message. Other devices can become CIC only by
having control passed to them.

Glossary

NI-488.2M UM for Windows NT Glossary-8 © National Instruments Corp.

T

TAD (Talk Address) See MTA .

Talker A GPIB device that sends data messages to Listeners.

TCT The GPIB command used to pass control of the bus from the
(Take Control) current Controller to an addressed Talker.

timeout A feature of the NI-488.2M driver that prevents I/O functions
from hanging indefinitely when there is a problem on the
GPIB.

TLC An integrated circuit that implements most of the GPIB
Talker, Listener, and Controller functions in hardware.

U

ud (unit descriptor) A variable name and first argument of each function call that
contains the unit descriptor of the GPIB interface board or
other GPIB device that is the object of the function.

UNL (Unlisten) The GPIB command used to unaddress any active Listeners.

UNT (Untalk) The GPIB command used to unaddress an active Talker.

© National Instruments Corp. Index-1 NI-488.2M UM for Windows NT

Index

Symbols

! (repeat previous function) function, ibic, 5-15
$ (execute indirect file) function, ibic, 5-16
+ (turn display on) function, ibic, 5-15
- (turn display off) function, ibic, 5-15

A

active Controller. See Controller-in-Charge (CIC).
addresses. See GPIB addresses .
AllSpoll routine, 6-8, 6-9
application development. See also debugging.

accessing NI-488.2M DLL, 3-1
application examples

asynchronous I/O, 2-6 to 2-7
basic communication, 2-2 to 2-3
basic communication with IEEE 488.2-compliant devices, 2-14 to 2-15
clearing and triggering devices, 2-4 to 2-5
end-of-string mode, 2-8 to 2-9
non-controller example, 2-20 to 2-21
parallel polls, 2-18 to 2-19
serial polls using NI-488.2 routines, 2-16 to 2-17
service requests, 2-10 to 2-13
source code files, 2-1

choosing between NI-488 functions and NI-488.2 routines, 3-1 to 3-3
compiling, linking, and running applications, 3-17 to 3-20
global variables for checking status, 3-3 to 3-5

count variables - ibcnt and ibcntl, 3-5 to 3-6
error variable - iberr, 3-5
status word - ibsta, 3-3 to 3-5

ibic for communicating with devices, 3-6
NI-488 applications

clearing devices, 3-8
configuring devices, 3-9
flowchart of programming with device-level functions, 3-7
general steps and examples, 3-8 to 3-10
items to include, 3-6
opening devices, 3-8
placing device offline, 3-10
processing of data, 3-10
program shell (illustration), 3-7
reading measurement, 3-10

Index

NI-488.2M UM for Windows NT Index-2 © National Instruments Corp.

triggering devices, 3-9
waiting for measurement, 3-9 to 3-10

NI-488 functions, 3-2 to 3-3
advantages, 3-2
board functions, 3-2 to 3-3
choosing between NI-488 functions and NI-488.2 routines, 3-1 to 3-3
device functions, 3-2
one device per board, 3-2 to 3-3

NI-488.2 applications
configuring instruments, 3-15
finding all Listeners, 3-13
flowchart of programming with routines, 3-12
general steps and examples, 3-13 to 3-17
identifying instruments, 3-13 to 3-14
initialization, 3-13
initializing instruments, 3-14
items to include, 3-11
placing board offline, 3-17
processing of data, 3-16
program shell (illustration), 3-12
reading measurements, 3-16
triggering instruments, 3-15
waiting for measurements, 3-15 to 3-16

NI-488.2 routines
choosing between NI-488 functions and NI-488.2 routines, 3-1 to 3-3
using with multiple boards or devices, 3-3

running applications, 3-17 to 3-20
asynchronous I/O application example, 2-6 to 2-7
ATN (attention) line (table), 1-3
ATN status word condition

bit position, hex value, and type (table), 3-4
description, A-4

automatic serial polling. See serial polling .
auxiliary functions, ibic

! (repeat previous function), 5-15
$ (execute indirect file), 5-16
+ (turn display on), 5-15 to 5-16
- (turn display off), 5-15 to 5-16
Help (display help information), 5-15
n* (repeat function n times), 5-16
print (display the ASCII string), 5-16
Set (udname or 488.2), 5-14 to 5-15
table of functions, 5-14

Index

© National Instruments Corp. Index-3 NI-488.2M UM for Windows NT

B

Base I/O Address option, ibconf utility, 7-4
board configuration. See ibconf utility .
board functions. See NI-488 functions.
Borland C++, See C Language.
Bus Timing option, ibconf utility, 7-4

C

C language
compiling, linking, and running applications, 3-17 to 3-19
direct entry, 3-17 to 3-19
files available with NI-488.2M software, 1-7

cables
checking with ibtest, 4-2
setting cable length for high-speed data transfers, 7-4

CIC. See Controller-in-Charge (CIC).
CIC protocol

enabling in ibconf utility, 7-8
making GPIB board Controller-in-Charge, 6-3 to 6-4

CIC status word condition
bit position, hex value, and type (table), 3-4
description, A-4

clearing and triggering devices, example, 2-4 to 2-5
CMPL status word condition

bit position, hex value, and type (table), 3-4
description, A-3

communication application examples
basic communication, 2-2 to 2-3

with IEEE 488.2-compliant devices, 2-14 to 2-15
communication errors, 4-5 to 4-6

repeat addressing, 4-5 to 4-6
termination method, 4-6

configuration, 1-4 to 1-6. See also ibconf utility .
controlling more than one board, 1-5
linear and star system configuration (illustration), 1-4
requirements, 1-5 to 1-6
system configuration effects on HS488, 6-3

configuration errors, 4-5
Configure (CFGn) message, 6-3
Configure Enable (CFE) message, 6-2
Controller-in-Charge (CIC)

active Controller as CIC, 1-1
CIC protocol

enabling in ibconf utility, 7-8
making GPIB board CIC, 6-3 to 6-4

Index

NI-488.2M UM for Windows NT Index-4 © National Instruments Corp.

System Controller as, 1-1
Controllers

definition, 1-1
emulation of non-controller GPIB (example), 2-20 to 2-21
idle Controller, 1-1
monitoring by Talker/Listener applications, 6-4
System Controller, 1-1
System Controller option, ibconf utility, 7-7

count, in ibic, 5-10
count variables - ibcnt and ibcntl, 3-5 to 3-6
customer communication, xiv , C-1

D

data lines, 1-2
data transfers

high-speed (HS488), 6-2 to 6-3
enabling, 6-2 to 6-3
system configuration effects, 6-3

terminating, 6-1 to 6-2
DAV (data valid) line (table), 1-3
DCAS status word condition

bit position, hex value, and type (table), 3-4
description, A-5
using event queue, 6-4 to 6-5
waiting for messages from Controller, 6-4

debugging
common questions, 4-6 to 4-7
communication errors, 4-5 to 4-6

repeat addressing, 4-5 to 4-6
termination method, 4-6

configuration errors, 4-5
examining NT devices to verify NI-488.2M installation, 4-1 to 4-2
global status variables, 4-3
GPIB error codes (table), 4-4, B-1
GPIBInfo utility, 4-3
ibic utility, 4-4
ibtest diagnostics

cable connections, 4-2
presence of driver, 4-1 to 4-2

timing errors, 4-5
viewing NT system log, 4-2

decl-32.h file, 1-7
DevClear routine, 3-14
device configuration. See ibconf utility
device functions. See NI-488 functions
device-level calls and bus management, 6-3 to 6-4

Index

© National Instruments Corp. Index-5 NI-488.2M UM for Windows NT

device template configuration, 7-8 to 7-10
8-bit EOS Compare option, 7-9
Access Board option, 7-9
EOS Byte option, 7-10
GPIB Primary Address option, 7-9
GPIB Secondary Address option, 7-9
I/O Timeout option, 7-10
Name field, 7-9
Repeat Addressing option, 7-10
Serial Poll Timeout option, 7-10
Set EOI at end of Write option, 7-9
Set EOI with EOS on Write option, 7-9
Terminate Read on EOS option, 7-9

devices, checking for NI-488.2M installation, 4-1 to 4-2
devices, writing applications for. See NI-488 applications, programming.
Devices applet, Windows NT, 4-1
direct access to NI-488.2 dynamic link library

compiling, linking, and running applications, 3-17 to 3-19
requirements, 3-1

DMA, configuring with ibconf utility
DMA Channel option, 7-5
Use Demand Mode DMA option, 7-5

documentation
conventions used in manual, xiii
how to use manual set, xi
organization of manual, xii
related documentation, xiv

DOS GPIB applications, 3-20
DOS support files, 1-7
drivers

configuring, 4-5
driver and driver utilities for NI-488.2M software, 1-6 to 1-7
testing with ibtest, 4-1 to 4-2

DTAS status word condition
bit position, hex value, and type (table), 3-4
description, A-5
using event queue, 6-4 to 6-5
waiting for messages from Controller, 6-4

dynamic link library, GPIB. See NI-488.2M DLL .

Index

NI-488.2M UM for Windows NT Index-6 © National Instruments Corp.

E

EABO error code
definition (table), 4-4
description, B-4 to B-5

EADR error code
definition (table), 4-4
description, B-3

EARG error code
definition (table), 4-4
description, B-4
ibic example, 5-10

EBUS error code
definition (table), 4-4
description, B-6 to B-7

ECAP error code
definition (table), 4-4
description, B-6

ECIC error code
definition (table), 4-4
description, B-2

EDVR error code
definition (table), 4-4
description, B-1 to B-2
ibic example, 5-11

EFSO error code
definition (table), 4-4
description, B-6

end-of-string character. See EOS.
END status word condition

bit position, hex value, and type (table), 3-4
description, A-2

ENEB error code
definition (table), 4-4
description, B-5
ibic example, 5-11

ENOL error code
definition (table), 4-4
description, B-3

EOI (end or identify) line
configuring in ibconf

Send EOI at end of Write option, 7-7, 7-9
Set EOI with EOS on Write option, 7-7, 7-9

purpose (table), 1-3
termination of data transfers, 6-1 to 6-2

EOIP error code
definition (table), 4-4
description, B-5 to B-6

Index

© National Instruments Corp. Index-7 NI-488.2M UM for Windows NT

EOS
configuring EOS mode, 6-1
configuring in ibconf utility

8-bit EOS Compare option, 7-7, 7-9
EOS Byte option, 7-7, 7-10
Set EOI with EOS on Write option, 7-7, 7-9
Terminate Read on EOS option, 7-9

end-of-string mode application example, 2-8 to 2-9
EOS comparison method, 6-1
EOS read method, 6-1
EOS write method, 6-1

ERR status word condition
bit position, hex value, and type (table), 3-4
description, A-2

error codes and solutions
EABO, B-4 to B-5
EADR, B-3
EARG, 5-12, B-4
EBUS, B-6 to B-7
ECAP, B-6
ECIC, B-2
EDVR, 5-11, B-2
EFSO, B-6
ENEB, 5-10, B-5
ENOL, B-3
EOIP, B-5 to B-6
ESAC, B-4
ESRQ, B-7
ESTB, B-7
ETAB, B-8
GPIB error codes (table), 4-4, B-1

error conditions
communication errors, 4-5 to 4-6

repeat addressing, 4-5 to 4-6
termination method, 4-6

configuration errors, 4-5
ibic error information, 5-9 to 5-10
timing errors, 4-5

error variable - iberr, 3-5
ESAC error code

definition (table), 4-4
description, B-4

ESRQ error code
definition (table), 4-4
description, B-7

ESTB error code
definition (table), 4-4
description, B-7

Index

NI-488.2M UM for Windows NT Index-8 © National Instruments Corp.

ETAB error code
definition (table), 4-4
description, B-8

EVENT bit, enabling, 6-4 to 6-5
event queue, 6-4 to 6-5
Event Status bit (ESB), 6-5 to 6-6
EVENT status word condition

bit position, hex value, and type (table), 3-4
description, A-3

Event Viewer utility, 4-2
execute indirect file ($) function, ibic, 5-15

F

fax technical support, C-1
FindLstn routine, 3-13
FindRQS routine, 6-8, 6-9
functions. See auxiliary functions, ibic; NI-488 functions .

G

General Purpose Interface Bus. See GPIB .
global variables, 3-3 to 3-6

count variables - ibcnt and ibcntl, 3-5 to 3-6
debugging applications, 4-3
error variable - iberr, 3-5
status word - ibsta, 3-3 to 3-5

GPIB
configuration, 1-4 to 1-6. See also ibconf utility .

controlling more than one board, 1-5
linear and star system configuration (illustration), 1-4
requirements, 1-5 to 1-6

definition, 1-1
overview, 1-1
sending messages across, 1-2 to 1-3

data lines, 1-2
handshake lines, 1-3
interface management lines, 1-3

Talkers, Listeners, and Controllers, 1-1
gpib-32.dll file, 1-6
gpib-32.obj file, 1-7

Index

© National Instruments Corp. Index-9 NI-488.2M UM for Windows NT

GPIB addresses
address bit configuration (table), 1-2
configuring in ibconf

Base I/O Address option, 7-4
GPIB Primary Address option, 7-6, 7-9
GPIB Secondary Address option, 7-6, 7-9
Repeat Addressing option, 7-10

listen address, 1-2
primary, 1-2
purpose, 1-2
repeat addressing, 4-5 to 4-6
secondary, 1-2
syntax in ibic, 5-5
talk address, 1-2

gpib-nt.com file, 1-7
GPIB programming techniques

device-level calls and bus management, 6-3 to 6-4
high-speed data transfers, 6-2 to 6-3

enabling HS488, 6-2 to 6-3
system configuration effects, 6-3

parallel polling, 6-10 to 6-12
implementing, 6-10 to 6-12
using NI-488 functions, 6-10 to 6-11
using NI-488.2 routines, 6-11 to 6-12

serial polling, 6-5 to 6-9
automatic serial polling, 6-6 to 6-7

autopolling and interrupts, 6-7
stuck SRQ state, 6-6

service requests
from IEEE 488 devices, 6-5
from IEEE 488.2 devices, 6-5 to 6-6

SRQ and serial polling
with NI-488 device functions, 6-7
with NI-488.2 routines, 6-8 to 6-9

Talker/Listener applications, 6-4 to 6-5
event queue, 6-4 to 6-5
requesting service, 6-5
waiting for messages from Controller, 6-4

termination of data transfers, 6-1 to 6-2
waiting for GPIB conditions, 6-3

gpib-vdd.dll file, 1-7
gpibclsd.sys file, 1-6
gpib.dll file, 1-7. See also NI-488.2M DLL .
GPIBInfo utility, 1-7, 4-3
gpibxxxx.sys file, 1-6

Index

NI-488.2M UM for Windows NT Index-10 © National Instruments Corp.

H

handshake lines, 1-3
Help (display help information) function, 5-15
high-speed data transfers (HS488), 6-2 to 6-3

enabling HS488, 6-2 to 6-3
setting cable length, 7-4
system configuration effects, 6-3

HS488. See high-speed data transfers (HS488).
HS488 configuration message, 6-2

I

ibask function, 6-3
ibclr function

clearing devices, 3-8
using in ibic (example), 5-2

ibcmd function, 6-2
ibcnt and ibcntl variables, 3-5 to 3-6
ibconf utility

8-bit EOS Compare option, 7-7, 7-9
Access Board option, 7-9
Assert REN When SC option, 7-8
Base I/O Address option, 7-4
board configuration dialog box (illustration), 7-3
Bus Timing option, 7-4
Cable Length for High Speed option, 7-4
Cancel button, 7-4
device template configuration, 7-8 to 7-10
device template dialog box (illustration), 7-8
DMA Channel option, 7-5
Enable Auto Serial Polling option, 7-7
Enable CIC Protocol option, 7-8
EOS Byte option, 7-7, 7-10
exiting, 7-2
expanded board configuration, 7-5 to 7-8
expanded dialog box (illustration), 7-6
GPIB Primary Address option, 7-6, 7-9
GPIB Secondary Address option, 7-6, 7-9
Help button, 7-4
I/O Timeout option, 7-7, 7-10
Interrupt Level option, 7-5
main dialog box (illustration), 7-2
Name option, 7-9
OK button, 7-4
options for all boards, 7-3 to 7-4
overview, 7-1

Index

© National Instruments Corp. Index-11 NI-488.2M UM for Windows NT

Parallel Poll Duration option, 7-7
reconfiguring GPIB driver, 4-5
Repeat Addressing option, 7-10
Send EOI at end of Write option, 7-7, 7-9
Serial Poll Timeout option, 7-10
Set EOI with EOS on Write option, 7-7, 7-9
Software button, 7-4
starting, 7-1 to 7-2
System Controller option, 7-7
Terminate Read On EOS option, 7-6, 7-9
unloading and restarting NI-488.2M driver, 1-9, 7-2
Use Demand Mode DMA option, 7-5
Use this Board option, 7-3

ibconf.cpl file, 1-7
ibconf.hlp file, 1-7
ibconfig function

configuring GPIB board as CIC, 6-3 to 6-4
configuring GPIB driver, 4-5
determining assertion of EOI line, 6-2
enabling autopolling, 6-6
enabling EVENT bit, 6-4 to 6-5
enabling high-speed data transfers, 6-2 to 6-3

ibdev function
conducting parallel polls, 6-11
opening devices, 3-8
using in ibic, 5-10 to 5-11

example, 5-2
ibeos function, 6-1
ibeot function, 6-1
iberr error variable, 3-5
ibevent function, 6-5
ibfind function, 5-10
ibic utility

auxiliary functions
! (repeat previous function), 5-15
$ (execute indirect file), 5-16
+ (turn display on), 5-15
- (turn display off), 5-15
Help (display help information), 5-15
n* (repeat function n times), 5-16
print (display the ASCII string), 5-17
Set (udname or 488.2), 5-14 to 5-15
table of functions, 5-14

checking for display errors, 4-4
communicating with devices, 3-6
count, 5-10
debugging applications, 4-4
definition, 1-6
error information, 5-9 to 5-10

Index

NI-488.2M UM for Windows NT Index-12 © National Instruments Corp.

NI-488 functions
examples, 5-1 to 5-3
ibdev, 5-10 to 5-12
ibfind, 5-10
ibrd, 5-12
ibwrt, 5-12

NI-488.2 routines
issuing set command before using, 5-13
Receive, 5-13
Send, 5-13
SendList, 5-13

overview, 5-1
programming considerations, 3-6
status word, 5-8
syntax, 5-4 to 5-9

addresses, 5-5
board-level functions (table), 5-7
device-level functions (table), 5-6
NI-488 functions, 5-5 to 5-7
NI-488.2 routines, 5-8 to 5-9
numbers, 5-4
strings, 5-5

ibonl function
placing board offline, 3-17
placing device offline, 3-10
using in ibic (example), 5-4

ibppc function
conducting parallel polls, 6-11
unconfiguring device for parallel polling, 6-12

ibrd function, using in ibic, 5-12, 3-10
example, 5-4

ibrpp function, 6-11
ibrsp function

conducting serial polls, 6-6, 6-7
using in ibic (example), 5-3

ibrsv function, 6-5
ibsta. See status word - ibsta.
ibtest utility, 1-7

cable connections, 4-2
NT devices, examining, 4-1 to 4-2
presence of driver, 4-1 to 4-2

ibtrg function
triggering devices, 3-9
using in ibic (example), 5-3

Index

© National Instruments Corp. Index-13 NI-488.2M UM for Windows NT

ibwait function
conducting serial polls, 6-7
Talker/Listener applications, 6-4
terminating stuck SRQ state, 6-6
using in ibic (example), 5-3
waiting for GPIB conditions, 6-3
waiting for measurements, 3-9 to 3-10

ibwrt function
configuring devices, 3-9
using in ibic, 5-12

example, 5-3
*IDN? query, 3-13 to 3-14
IFC (interface clear) line, 1-3
Interface Bus Interactive Control utility. See ibic utility .
interface management lines, 1-3
Interrupt Level option, ibconf utility, 7-5
interrupts and autopolling, 6-7

L

LACS status word condition
bit position, hex value, and type (table), 3-4
description, A-4
waiting for message from Controller, 6-4

linking applications, 3-17 to 3-19
listen address, setting, 1-2
Listeners, 1-1. See also Talker/Listener applications .
LOK status word condition

bit position, hex value, and type (table), 3-4
description, A-3

M

manual. See documentation.
Message Available (MAV) bit, 6-5 to 6-6
messages, sending across GPIB, 1-2 to 1-3

data lines, 1-2
handshake lines, 1-3
interface management lines, 1-3

Microsoft Visual C++, See C Language.

Index

NI-488.2M UM for Windows NT Index-14 © National Instruments Corp.

N

n* (repeat function n times) function, ibic, 5-16
NDAC (not data accepted) line (table), 1-3
NI-488 applications, programming. See also application development .

clearing devices, 3-8
configuring devices, 3-9
flowchart of programming with device-level functions, 3-7
general steps and examples, 3-8 to 3-10
items to include, 3-6
opening devices, 3-8
placing device offline, 3-10
processing of data, 3-10
program shell (illustration), 3-7
reading measurement, 3-10
triggering devices, 3-9
waiting for measurement, 3-9 to 3-10

NI-488 functions. See also auxiliary functions, ibic.
parallel polling, 6-10 to 6-11
programming considerations

advantages of using, 3-2
board functions, 3-2 to 3-3
choosing between functions and routines, 3-1 to 3-3
device functions, 3-2
when to use functions, 3-2

serial polling, 6-7
using in ibic

examples, 5-1 to 5-4
ibdev, 5-10 to 5-12
ibfind, 5-10
ibrd, 5-12
ibwrt, 5-12
syntax, 5-5 to 5-7

NI-488.2 applications, programming
configuring instruments, 3-15
finding all Listeners, 3-13
flowchart of programming with routines, 3-12
general steps and examples, 3-13 to 3-17
identifying instruments, 3-13 to 3-14
initialization, 3-13
initializing instruments, 3-14
items to include, 3-11
placing board offline, 3-17
processing of data, 3-16
program shell (illustration), 3-12
reading measurement, 3-16
triggering instruments, 3-15
waiting for measurement, 3-15 to 3-16

Index

© National Instruments Corp. Index-15 NI-488.2M UM for Windows NT

NI-488.2 routines
ibic syntax, 5-8 to 5-9
parallel polling, 6-11 to 6-12
programming considerations

choosing between functions and routines, 3-1 to 3-3
using with multiple boards or devices, 3-3

serial polling, 6-8 to 6-9
serial polling examples

AllSpoll, 6-9
FindRQS, 6-9

using in ibic
issuing set command before using, 5-13
Receive, 5-13
Send, 5-13
SendList, 5-13

NI-488.2M DLL
choosing how to access, 3-1
requirements for direct access, 3-1

NI-488.2M software, 1-6 to 1-9. See also application development; NI-488 functions;
NI-488.2 routines.

C language files, 1-7
DOS and 16-bit Windows support files, 1-7
driver and driver utility files, 1-6 to 1-7
interaction with Windows NT, 1-8
reloading NI-488.2M driver, 1-9
unloading NI-488.2M driver, 1-9, 7-2

NRFD (not ready for data) line (table), 1-3
number syntax in ibic, 5-4

P

parallel polling, 6-10 to 6-12
application example, 2-18 to 2-19
implementing, 6-10 to 6-12
setting duration with ibconf utility, 7-7
using NI-488 functions, 6-10 to 6-11
using NI-488.2 routines, 6-11 to 6-12

PPoll routine, 6-12
PPollConfig routine, 6-12
PPollUnconfig routine, 6-12
primary GPIB address

definition, 1-2
setting in ibconf utility, 7-6, 7-9

print (display the ASCII string) function, ibic, 5-17
problem solving. See debugging.
programming. See application development; debugging; GPIB programming techniques.

Index

NI-488.2M UM for Windows NT Index-16 © National Instruments Corp.

R

readme.txt file, 1-6, 1-7
ReadStatusByte routine, 6-8
Receive routine

reading measurements, 3-16
using in ibic, 5-12

reloading NI-488.2M driver, 1-9, 7-2
REM status word condition

bit position, hex value, and type (table), 3-4
description, A-4

REN (remote enable) line
Assert REN When SC option, ibconf utility, 7-8
purpose (table), 1-3

repeat addressing
communication errors, 4-5 to 4-6
enabling in ibconf utility, 7-10

repeat function n times (n*) function, ibic, 5-16
repeat previous function (!) function, ibic, 5-15
requesting service. See service requests.
routines. See NI-488.2 routines.
RQS status word condition

bit position, hex value, and type (table), 3-4
description, A-3

running applications, 3-17 to 3-20

S

secondary GPIB address
definition, 1-2
setting in ibconf utility, 7-6, 7-9

Send routine
configuring instruments, 3-15
using in ibic, 5-13

SendCmds function, 6-2
SendIFC routine, 3-13
SendList routine, 5-13
serial polling, 6-5 to 6-9

application example using NI-488.2 routines, 2-16 to 2-17
automatic serial polling, 6-6 to 6-7

autopolling and interrupts, 6-7
enabling in ibconf utility, 7-7
stuck SRQ state, 6-6

Index

© National Instruments Corp. Index-17 NI-488.2M UM for Windows NT

service requests
from IEEE 488 devices, 6-5
from IEEE 488.2 devices, 6-5 to 6-6

setting timeout value in ibconf utility, 7-10
SRQ and serial polling

with NI-488 device functions, 6-7
with NI-488.2 routines, 6-8 to 6-9

service requests
application examples, 2-10 to 2-13
serial polling

IEEE 488 devices, 6-5
IEEE 488.2 devices, 6-5 to 6-6

stuck SRQ state, 6-6
Talker/Listener applications, 6-5

set 488.2 command, 5-13
Set (udname or 488.2) function, 5-14 to 5-15
setting up your system. See configuration.
software. See NI-488.2M software.
SPOLL bit, 6-5
SPOLL status word condition

bit position, hex value, and type (table), 3-4
description, A-3

SRQ (service request) line
application examples, 2-10 to 2-13
purpose (table), 1-3
serial polling

automatic serial polling, 6-6
using NI-488 device functions, 6-7
using NI-488.2 routines, 6-8 to 6-9

stuck SRQ state, 6-6
SRQI status word condition

bit position, hex value, and type (table), 3-4
description, A-2

status word - ibsta, 3-3 to 3-5
ATN, A-4
CIC, A-4
CMPL, A-3
DCAS, 6-4 to 6-5, A-5
DTAS, 6-4 to 6-5, A-5
END, A-2
ERR, A-2
EVENT, A-3
ibic example, 5-9
LACS, 6-4, A-4
LOK, A-3
programming considerations, 3-3 to 3-5
REM, A-4
RQS, A-3
SPOLL, A-3

Index

NI-488.2M UM for Windows NT Index-18 © National Instruments Corp.

SRQI, A-2
status word layout (table), 3-4, A-1
TACS, 6-4, A-4
TIMO, A-2

string syntax in ibic, 5-5
stuck SRQ state, 6-6
System Controller

as Controller-in-Charge, 1-1
configuring in ibconf utility, 7-7

system log, viewing, 4-2

T

TACS status word condition
bit position, hex value, and type (table), 3-4
description, A-4
waiting for message from Controller, 6-4

talk address, setting, 1-2
Talker/Listener applications, 6-4 to 6-5

event queue, 6-4 to 6-5
requesting service, 6-5
waiting for messages from Controller, 6-4

Talkers, 1-1
technical support, C-1
Terminate read on EOS option, ibconf utility, 7-9
termination methods, errors caused by, 4-6
termination of data transfers, 6-1 to 6-2
TestSRQ routine, 6-8
timeout value, setting in ibconf utility

I/O Timeout option, 7-7, 7-10
Serial Poll Timeout option, 7-10

timing errors, 4-5
TIMO status word condition

bit position, hex value, and type (table), 3-4
description, A-2

TNT4882C hardware, 6-2
*TRG command, 3-15
triggering devices, example, 2-4 to 2-5
troubleshooting. See debugging; ibic utility
turn display off (-) function, ibic, 5-15
turn display on (+) function, ibic, 5-15

U

unloading NI-488.2M driver, 1-9, 7-2

Index

© National Instruments Corp. Index-19 NI-488.2M UM for Windows NT

W

wait function. See ibwait function.
WaitSRQ routine

conducting serial polls, 6-8
waiting for measurement, 3-15 to 3-16

Windows (16-bit) GPIB applications, 3-20
Windows 16-bit support files, 1-7
Windows NT

examining NT devices to verify NI-488.2M installation, 4-1 to 4-2
interaction with NI-488.2M software, 1-8
viewing NT system log, 4-2

	NI-488.2M ™User Manual for Windows NT
	Limited Warranty
	Copyright
	Trademarks
	Warning Regarding Medical and Clinical Use of National Instruments Products

	Contents
	About This Manual
	How to Use This Manual Set
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	GPIB Overview
	Talkers, Listeners, and Controllers
	Controller-In-Charge and System Controller
	GPIB Addressing
	Sending Messages Across the GPIB
	Data Lines
	Handshake Lines
	Interface Management Lines
	Setting Up and Configuring Your System
	Controlling More Than One Board
	Configuration Requirements
	The NI-488.2M Software Elements
	NI-488.2M Driver and Driver Utilities
	DOS and 16-bit Windows Support Files
	C Language Files
	Sample Application Files
	How the NI-488.2M Software Works with Windows NT
	Unloading and Reloading the NI-488.2M Driver

	Chapter 2 Application Examples
	Example 1: Basic Communication
	Example 2: Clearing and Triggering Devices
	Example 3: Asynchronous I/O
	Example 4: End-of-String Mode
	Example 5: Service Requests
	Example 6: Basic Communication with IEEE 488.2-Compliant Devices
	Example 7: Serial Polls Using NI-488.2 Routines
	Example 8: Parallel Polls
	Example 9: Non-Controller Example

	Chapter 3 Developing Your Application
	Choosing How to Access the NI-488.2M DLL
	Choosing Between NI-488 Functions and NI-488.2 Routines
	Using NI-488 Functions: One Device for Each Board
	NI-488 Device Functions
	NI-488 Board Functions
	Using NI-488.2 Routines: Multiple Boards and/or Multiple Devices
	Checking Status with Global Variables
	Status Word – ibsta
	Error Variable – iberr
	Count Variables – ibcnt and ibcntl
	Using ibic to Communicate with Devices
	Writing Your NI-488 Application
	Items to Include
	NI-488 Program Shell
	General Program Steps and Examples
	Step 1. Open a Device
	Step 2. Clear the Device
	Step 3. Configure the Device
	Step 4. Trigger the Device
	Step 5. Wait for the Measurement
	Step 6. Read the Measurement
	Step 7. Process the Data
	Step 8. Place the Device Offline
	Writing Your NI-488.2 Application
	Items to Include
	NI-488.2 Program Shell
	General Program Steps and Examples
	Step 1. Initialization
	Step 2. Find All Listeners
	Step 3. Identify the Instrument
	Step 4. Initialize the Instrument
	Step 5. Configure the Instrument
	Step 6. Trigger the Instrument
	Step 7. Wait for the Measurement
	Step 8. Read the Measurement
	Step 9. Process the Data
	Step 10. Place the Board Offline
	Compiling, Linking, and Running Your GPIB Win32 Application
	Microsoft Visual C/C++
	Direct Entry with C
	Microsoft Visual C/C++
	Borland C/C++
	Running Existing DOS and Windows GPIB Applications

	Chapter 4 Debugging Your Application
	Running the Software Diagnostic Test
	Presence Test of Driver
	Examining NT Devices to Verify the NI-488.2M Installation
	Examining the NT System Log Using the Event Viewer
	GPIB Cables Connected
	Running GPIBInfo
	Debugging with the Global Status Variables
	Debugging with ibic
	GPIB Error Codes
	Configuration Errors
	Timing Errors
	Communication Errors
	Repeat Addressing
	Termination Method
	Common Questions

	Chapter 5 ibic–Interface Bus Interactive Control Utility
	Overview
	Example Using NI-488 Functions
	ibic Syntax
	Number Syntax
	String Syntax
	Address Syntax
	ibic Syntax for NI-488 Functions
	ibic Syntax for NI-488.2 Routines
	Status Word
	Error Information
	Count
	Common NI-488 Functions
	ibfind
	ibdev
	ibwrt
	ibrd
	Common NI-488.2 Routines in ibic
	Set 488.2
	Send and SendList
	Receive
	Auxiliary Functions
	Set (udname or 488.2)
	Help (Display Help Information)
	! (Repeat Previous Function)
	- (Turn Display Off) and + (Turn Display On)
	n* (Repeat Function n Times)
	$ (Execute Indirect File)
	Print (Display the ASCII String)

	Chapter 6 GPIB Programming Techniques
	Termination of Data Transfers
	High-Speed Data Transfers (HS488)
	Enabling HS488
	System Configuration Effects on HS488
	Waiting for GPIB Conditions
	Device-Level Calls and Bus Management
	Talker/Listener Applications
	Waiting for Messages from the Controller
	Using the Event Queue
	Requesting Service
	Serial Polling
	Service Requests from IEEE 488 Devices
	Service Requests from IEEE 488.2 Devices
	Automatic Serial Polling
	Stuck SRQ State
	Autopolling and Interrupts
	SRQ and Serial Polling with NI-488 Device Functions
	SRQ and Serial Polling with NI-488.2 Routines
	Example 1: Using FindRQS
	Example 2: Using AllSpoll
	Parallel Polling
	Implementing a Parallel Poll
	Parallel Polling with NI-488 Functions
	Parallel Polling with NI-488.2 Routines

	Chapter 7 ibconf–Interface Bus Configuration Utility
	Overview
	Starting and Exiting ibconf
	Board Configuration
	Use this Board
	Bus Timing
	Cable Length for High Speed
	OK
	Cancel
	Help
	Software
	Base I/O Address
	Interrupt Level
	DMA Channel
	Use Demand Mode DMA
	Expanded Board Configuration
	GPIB Primary Address
	GPIB Secondary Address
	Terminate Read on EOS
	Set EOI with EOS on Write
	8-bit EOS Compare
	Send EOI at end of Write
	EOS Byte
	System Controller
	I/O Timeout
	Parallel Poll Duration
	Enable Auto Serial Polling
	Enable CIC Protocol
	Assert REN When SC
	Device Template Configuration
	Name
	Access Board
	GPIB Primary Address
	GPIB Secondary Address
	Terminate Read on EOS
	Set EOI with EOS on Write
	8-bit EOS Compare
	Send EOI at end of Write
	EOS Byte
	I/O Timeout
	Serial Poll Timeout
	Repeat Addressing

	Appendix A Status Word Conditions
	Appendix B Error Codes and Solutions
	Appendix C Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1. GPIB Address Bits
	Figure 1-2. Linear and Star System Configuration
	Figure 1-3. Example of Multiboard System Setup
	Figure 1-4. How the NI-488.2M Software Works with Windows NT
	Figure 2-1. Program Flowchart for Example 1
	Figure 2-2. Program Flowchart for Example 2
	Figure 2-3. Program Flowchart for Example 3
	Figure 2-4. Program Flowchart for Example 4
	Figure 2-5. Program Flowchart for Example 5
	Figure 2-6. Program Flowchart for Example 6
	Figure 2-7. Program Flowchart for Example 7
	Figure 2-8. Program Flowchart for Example 8
	Figure 2-9. Program Flowchart for Example 9
	Figure 3-1. General Program Shell Using NI-488 Device Functions
	Figure 3-2. General Program Shell Using NI-488.2 Routines
	Figure 7-1. Main Dialog Box in ibconf
	Figure 7-2. Board Configuration for an AT-GPIB Interface Board
	Figure 7-3. Expanded Board Configuration for an AT-GPIB board
	Figure 7-4. Device Template Configuration

	Tables
	Table 1-1. GPIB Handshake Lines
	Table 1-2. GPIB Interface Management Lines
	Table 3-1. Status Word (ibsta) Layout
	Table 4-1. GPIB Error Codes
	Table 5-1. Syntax for Device-Level NI-488 Functions in ibic
	Table 5-2. Syntax for Board-Level NI-488 Functions in ibic
	Table 5-3. Syntax for NI-488.2 Routines in ibic
	Table 5-4. Auxiliary Functions in ibic
	Table A-1. Status Word Bits
	Table B-1. GPIB Error Codes

