NI-488.2M "

User Manual for Windows NT

January 1996 Edition
Part Number 320646B-01

© Copyright 1994, 1996 National I nstruments Cor por ation.
All Rights Reserved.

National Instruments Cor porate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 794-0100
Technical support fax: (800) 328-2203
(512) 794-5678

Branch Offices:

Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521,
Denmark 45 76 26 00, Finland 90 527 2321, France 1 48 14 24 24,
Germany 089 741 31 30, Hong Kong 2645 3186, Italy 02 48301892,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 95 800 010 0793,
Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886,
Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51,
Taiwan 02 377 1200, U.K. 01635 523545

Limited Warranty

The media on which you receive National |nstruments software are warranted not to fail
to execute programming instructions, due to defects in materials and workmanship, for a
period of 90 days from date of shipment, as evidenced by receipts or other
documentation. National Instrumentswill, at its option, repair or replace software media
that do not execute programming instructions if National Instruments receives notice of
such defects during the warranty period. National Instruments does not warrant that the
operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and
clearly marked on the outside of the package before any equipment will be accepted for
warranty work. National Instruments will pay the shipping costs of returning to the
owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The
document has been carefully reviewed for technical accuracy. In the event that technical
or typographical errors exist, National Instruments reserves the right to make changes to
subsequent editions of this document without prior notice to holders of this edition. The
reader should consult National Instruments if errors are suspected. In no event shall
National Instruments be liable for any damages arising out of or related to this document
or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO
WARRANTIES, EXPRESSOR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER'SRIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE
ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT
THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTSWILL NOT BE
LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF
PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF
THE POSSIBILITY THEREOF. Thislimitation of the liability of National Instruments will
apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause
of action accrues. National Instruments shall not be liable for any delay in performance
due to causes beyond its reasonable control. The warranty provided herein does not
cover damages, defects, malfunctions, or service failures caused by owner'sfailure to
follow the National Instruments installation, operation, or maintenance instructions;
owner's modification of the product; owner's abuse, misuse, or negligent acts; and power
failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any
form, electronic or mechanical, including photocopying, recording, storing in an
information retrieval system, or trandating, in whole or in part, without the prior written
consent of National Instruments Corporation.

Trademarks

NI-488®, NI-488.2™ NI-488.2M™ , and TNT4882C™ are trademarks of National
Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective
companies.

Warning Regarding Medical and Clinical Use
of National I nstruments Products

National Instruments products are not designed with components and testing intended to
ensure alevel of reliability suitable for usein treatment and diagnosis of humans.
Applications of National Instruments products involving medical or clinical treatment can
create a potential for accidental injury caused by product failure, or by errors on the part
of the user or application designer. Any use or application of National Instruments
products for or involving medical or clinical treatment must be performed by properly
trained and qualified medical personnel, and al traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent
serious injury or death should aways continue to be used when National Instruments
products are being used. National Instruments products are NOT intended to be a
substitute for any form of established process, procedure, or equipment used to monitor
or safeguard human health and safety in medical or clinical treatment.

Contents

ADOUL TRISM@NUA ... Xi
How to Use ThisManual Set.........ccovvereriereeireeeeesese e Xi
Organization of THISMaNUAcceeiriririnieiee e Xii
Conventions Used in ThiSManUal..........ccooeeiininenenieree e Xiii
Related DOCUMENEALIONoveueeeirieriisieieie et Xiv
Customer COMMUNICEEIONc..eereerereeeerieesiee e te s te e see e e sesseseseem Xiv

Chapter 1

FNEF OAUCTION ..ottt 1-1
GPIB OVEINVIBIW ..ottt sttt st ae et 1-1

Talkers, Listeners, and CONntrollersc.ccooevenecrinienineneineneen 11
Contraller-In-Charge and System Controllercoooeevvivveveieenns 11

GPIB AQArESSING....vviieieeeeeeerese e esaesee e srestesteseeseeeesessesseseessensenm 1-2

Sending Messages ACrosSthe GPIB ... 1-2

(D = Y 1= S 1-2

Handshake Lines.........cocoiiiiiiinene e 1-3

Interface Management LiNeS.........ccoceveerereneneeneeiencnene 1-3

Setting Up and Configuring Your System.........cccceveveveeienieneseesneen 1-4
Controlling More Than One Board..........ccceceevevverenieninnn 1-5

Configuration REQUINEMENESccveirenirinieiees e 1-5

The NI-488.2M Software ElemMents.........ccoeoeererenereeere e 1-6
NI-488.2M Driver and Driver Utilities........cococveievininesiereeen 1-6

DOS and 16-bit Windows Support FIles..........coeveieiinnenicncncen 1-7
CLaNQUAGE FIIES......ceceeeeeeeeee e s 1-7

Sample Application FIlES ... 1-7

How the NI-488.2M Software Works with Windows NTccccceevevvvreneenn 1-8
Unloading and Reloading the NI-488.2M DIiverccoecveinnieceneinnieenes 19

Chapter 2

ApPpPlication EXAMPIES........c.ooiiieieecseise e 21
Example 1: Basic COmMMUNICALIONccccvveveereeerreseseeneeeeese e seeseeseeeesesem 2-2
Example 2: Clearing and Triggering DeVICeS.........ccvvereerrereenieiesieenieen 2-4
Example 3: ASyNChronouS /O ..o e 2-6
Example 4: End-0f-String MOGE...........ccooviiinininiinere e 2-8
Example 5: Service REQUESES.ccciiriierere st 2-10
Example 6: Basic Communication with |EEE 488.2-Compliant Devices 2-14
Example 7: Serial Polls Using NI-488.2 ROULINESccocereereeeneseesenreenenen 2-16
Example 8: Parallel POIIS..........cociriiiirceeneeeee e 2-18
Example 9: Non-Controller EXample.........cooovrirniinenreneeneeecem 2-20

Chapter 3

Developing Your APPLICALION ..., 31
Choosing How to Accessthe NI-488.2M DLLcccceeevvevvvvneeeee e 31

© National Instruments Corp. % NI-488.2M UM for Windows NT

Contents

Choosing Between NI-488 Functions and NI-488.2 Routines..............ccceee.... 31
Using NI-488 Functions: One Device for Each Board 32
NI-488 Device FUNCLIONSovevevereiiireresiieresesesesenenee 3-2
NI-488 Board FUNCLIONScoeirermrrercreineneseerere s 3-2
Using NI1-488.2 Routines: Multiple Boards and/or
MUILIPIE DEVICES ...t 33
Checking Status with Global Variables...........cccooiiiniin e 33
StAUS WOrd — iBSEA ... 33
Error Variable —iDErT ..o 3-5
Count Variables—ibent and ibentloevvvnrnieeernenene 35
Using ibic to Communicate With DEVICESccereerieereeriieree e 36
Writing Your NI-488 APPlICALIONccecerueireineererese e 3-6
[tEMS O INCIUAE ... e 36
NI-488 Program Shell ..o 37
General Program Steps and EXamplescccovveveeeceseveecese e 3-8
Step 1. Open aDEVICE.....ccovvveeeces e 38
Step 2. Clear the DeVICe........oovveevieereenee e 38
Step 3. Configurethe Device.........ocvvveereenneieneeree 39
Step 4. Trigger the DeVICEcoeveiieri e 39
Step 5. Wait for the Measurementccceeevereneicnenen 39
Step 6. Read the Measurement.........ccceveevvevesesieceeeevenen 3-10
Step 7. Processthe Data........ccceeeeveveveesieiereececesese e 3-10
Step 8. Place the Device Offline.......cccoveevveennccncne 3-10
Writing Your NI-488.2 ApPliCaioNccceverieienieinneie e 311
[tEMS O INCIUAE ... e 311
NI-488.2 Program Shell.........cooiiiiiieeceeee e 312
General Program Steps and EXamplescocovveveeeceseveeese e 313
Step 1. Initializationcooeveveeecice e 313
Step 2. Find All LiStENErS ..o 313
Step 3. Identify the Instrument ..o 313
Step 4. Initialize the Instrument ... i 314
Step 5. Configurethe Instrumentcccooeeeenineriiniee 3-15
Step 6. Trigger the Instrumentccceveveveereccieceeeeeeen 3-15
Step 7. Wait for the Measurementc.ccceevvvvvvereeceenenen 3-15
Step 8. Read the Measurementcccoevvervenncceniccnieen 3-16
Step 9. Processthe Data........cccoveeveeerieinieeneesieeseee 3-16
Step 10. Place the Board Offline.........ccooooeereieinciicncnnns 317
Compiling, Linking and Running Y our
GPIB WiIN32 APPIICAION.....cccieieectieese et 317
Microsoft Visual CICH ... 3-17
Direct ENtry With Ccoviiiiiiceeeeee e 3-17
Microsoft Visual CICH+cvvcevieicee e 3-19
Borland C/CH ...t 3-19
Running Existing DOS and Windows GPIB Applications..........c.ccooeeeenennne 3-20

NI-488.2M UM for Windows NT Vi © National Instruments Corp.

Contents

Chapter 4
Debugging Your APPHCALION ..o 41
Running the Software DiagnOStiC TESEc..ccvvrererieerreer e 4-1
Presence TSt Of DIVEN ..o 4-1
Examining NT Devicesto Verify the NI-488.2M
INSEAHELION........eceeieeeiieereee e 4-1
Examining the NT System Log Using the
EVENT VIBWEN ... 4-2
GPIB Cables CONNECLEccerveeerere e seeeenens 4-2
RUNNING GPIBINO.....ciuiiitiiecierceere ettt 4-3
Debugging with the Global Status Variables...........ccocovireirinininieneeeen 4-3
Debugging With TDiC.........coeieiiieeecer e 4-4
GPIB EITOr COUBS ...ttt 4-4
(00101110 W= 0] =g (] £ TR 4-5
TIMING EFTOIS .ttt ettt 4-5
COMMUNICELION EFTOIS....cuiieieeceeeie et see e 45
Repeat AdArESSING......cceiiereeieeeeere e e 45
Termination Method..........ccovirriniree e 4-6
(0041090 g @ 0TS (0] TN 4-6
Chapter 5
ibic-Interface BusInteractive Control Utility ..., 51
OVEIVIBIV ...ttt ettt bbbt ae bbb e se e e e seenesae b e bebe e e e 51
Example Using NI-488 FUNCLIONS.............ccootiireninene e 51
o T oR Y) - RS 54
N[V 0101 S | - S 54
SUNG SYNEBX ..t 55
AdUrESS SYNEBXeveeiiieiireeieiet e 55
ibic Syntax for NI-488 FUNCLIONS..........ccocoveirenieere e 55
ibic Syntax for NI-488.2 ROULINES........ccccceirerinenere e 58
SEAIUS WO ...t 59
Error INfOrMBELioNccovrerireiiresee e 59
L0 o | RSP 5-10
Common NI-488 FUNCHIONScceoieieiiriesie et 5-10
TDFING .t e 5-10
TDAEV .t 5-10
1 o1 TSRS 5-12
TP, e 5-12
Common NI-488.2 RoULtINES N IDIC.........ccoereeeirese e 513
SEEABB.2 ...t 5-13
Send and SENALISEcueveeriririeiriererere et 5-13
RECEIVE ...ttt 5-13
AUXIIary FUNCLIONScveeeeciceeecece st 5-14
Set (UANAME OF 488.2) ...c.eecveieriereeiereereeeeeee st see st see e 514
Help (Display Help INfOrmation)ccccoeerreinneenriecnenecseenes 5-15
I (Repest Previous FUNCLION) ..o 5-15
- (Turn OFF Display) and + (Turn ON Display)ccccceevererierienennn 5-15
n* (Repeat FUNCLION N TIMES) ...oveeiieieieeee e 5-16

© National Instruments Corp. Vi NI-488.2M UM for Windows NT

Contents

$ (Execute INAIreCt FilE)cvviireeerreeeeis e 5-16
Print (Display the ASCIl SENG) .ceeveerereienesie e 5-17
Chapter 6
GPIB Programming TeChNIQUES ... 6-1
Termination Of Data TranSfers.......coovoeeeeeeieriesie e 6-1
High-Speed Data Transfers (HSA88)ooveerererererere e 6-2
Enabling HSABB.........ooiiiiiiee e e 6-2
System Configuration Effectson HS488cccceevevveveceee i, 6-3
Waiting for GPIB CONAitioNSccccoveeerevinierereeeee e 6-3
Device-Level Callsand Bus Management...........coeoeveereenreneenienesenenienen 6-3
Talker/Listener APPlICALIONScoeeriiiriirieeeee et 6-4
Waiting for Messages from the Controller ... ieininecnenn. 6-4
Using the EVent QUEUE..............coeirireiireeicee e 6-4
REQUESLING SEIVICE ..ottt e s 6-5
S = I o T o TR 6-5
Service Requests from |EEE 488 DEVICEScoovverenenereneninieneins 6-5
Service Requests from |EEE 488.2 DeVICES..........ccoveveeerieerieenienn 6-5
Automatic Serial POHINGccoiieiiiiee e 6-6
StUCK SRQ SEAE.......c.eerereeieirerererieie e 6-6
Autopolling and INtErTUPLScvevvereeeeeccee e 6-7
SRQ and Seria Polling with NI-488 Device Functions.................... 6-7
SRQ and Serial Polling with NI-488.2 ROULINES..........cccevrereriecien 6-8
Example 1: Using FINdRQS..........cccooeiniieneereereeieneeiee 6-9
Example 2: Using AHSPOII ..o 6-9
Parall el POIING......c.ciiireieiceirirse e 6-10
Implementing aParallel Poll ..o 6-10
Parallel Polling with NI-488 FUNCLIONSccocvvrvreerercennnn. 6-10
Parallel Polling with NI-488.2 ROULINES.........cccoevrieerienn 6-11
Chapter 7
ibconf-Interface Bus Configuration Utility ..., 7-1
OVEIVIBIW ..ottt n e 7-1
Starting and EXiting ibCONcoovieeeiecesere e 7-1
Board ConfigUIationcccoueereeereerieineseesieereee e 7-2
USEthiSBOAIdceoieieiieeee e 7-3
BUS TIMING ...ttt 7-4
Cable Length for High Speed ... 7-4
OK ettt 7-4
CANCE ..o 7-4
HEID cooreeeeeeeeeeeee ettt en e nneo 7-4
SOfIWEAIE......ee ettt st st 7-4
BaSe/lO AQArESS......ccouiueieiirireeieie ettt 7-4
INEETUPE LEVEL ... 7-5
DMA Chann€lcceoiiiiireseeern e 7-5
Use Demand MOJE DMA ..o 7-5

NI-488.2M UM for Windows NT Vi © National Instruments Corp.

Contents

Expanded Board Configurationc.ccoererereeienenenie e 7-5
GPIB Primary AdaresS......c.ooeeereieneeereseie e 7-6
GPIB Secondary AdAress........coceeevevereeesiesieseereeesesiesesesassseneenens 7-6
Terminate Read 0N EOS..........oooiiiiiriree e 7-6
Set EOI With EOS 0N WILE.......ooeeeeieeee s 7-7
8-Dit EOS COMPAE. ..ottt sttt seere e 7-7
Send EOI and end of WITEcc.ovuiiiiieieeeceeereree e 7-7
EOS BYLE....c.eciieceiieierieesiees sttt 7-7
SYStEM CONIOIIESc.vevieeeeee e e 7-7
/O TIMEOUL ..ottt et 7-7
Parallel POl DUFEHiONocveeieieiesesiereeeeeese e seeeeeee e se e seeeenens 7-7
Enable Auto Serial POllING ..o 7-7
Enable CIC ProtoCOolooeieereiisieniesie e e 7-8
Assert REN WHen SC ...t 7-8
Device Template Configuration..........ccccveeveeerieresesieseseeseeee e eeeese e 7-8
NBIMIE L. et ene e 7-9
F ool Y = o o 7-9
GPIB Primary AdAreSS........ccoeveerrieireeneeiee e 7-9
GPIB Secondary AdAress.........ooeeeereriereeesese e s 7-9
Terminate Read on EOS............ooiiiinie e 7-9
Set EOI With EOS 0N WHIAL....ccvoiiiveeiereeeriee e 7-9
8-hit EOS COMPAIE....ccceeeerieriirieieeeeee st s e seseeesses e s ee e 7-9
Send EOI at end Of WLocvevieeeeee e s 7-9
EOS BYLE......ecvieceeietiiei ettt 7-10
[/O TIMEOUL ...ttt ettt s 7-10
Serial POl TIMEOUL......coiiiieiiecs e e 7-10
Repeat AAAreSSING......cceievieeeieire e s 7-10
Appendix A
StAtUSWOrd CONAItIONS ...t A-1
Appendix B
Error Codesand SOIULIONS...........ccociciciciiceceeee e B-1
Appendix C
Customer COMMUNICALIONccvcueveeieeeieeieeeie e c1
GlOSSAINY ..ottt Glossary-1
TNAEX ..ot Index-1

© National Instruments Corp. iX NI-488.2M UM for Windows NT

Contents

Figures
Figure 1-1. GPIB AdAresS BilS.......ccoceeiririiinienie et e 1-2
Figure 1-2. Linear and Star System Configurationcceceevvvievesesiesesieseseeseeseeeenm 1-4
Figure 1-3. Example of Multiboard System SEtupceevvvvvrierereereeeeeeere e 1-5
Figure 1-4. How the NI-488.2M Software Works with Windows NTc.cccccvnnns 19
Figure 2-1. Program Flowchart for Example 1 ... 2-3
Figure 2-2. Program Flowchart for EXample 2 ... 2-5
Figure 2-3. Program Flowchart for EXample 3ccccviivicicie i 2-7
Figure 2-4. Program Flowchart for EXample 4cccevoeviiievieve e 2-9
Figure 2-5. Program Flowchart for Example5 ... 2-12
Figure 2-6. Program Flowchart for EXample 6 ..o 2-15
Figure 2-7. Program Flowchart for EXample 7 ... 2-17
Figure 2-8. Program Flowchart for Example 8 ... 2-19
Figure 2-9. Program Flowchart for EXample 9........ccceveicivive e 2-21
Figure 3-1. General Program Shell Using NI-488 Device FUNCLioNS............ccoeevervene 37
Figure 3-2. Genera Program Shell Using NI-488.2 ROULINESccoveerieeiriniinenienene 3-12
Figure 7-1. Main Dialog BoOX iNiDCONTccccooiiiiiiiee e 7-2
Figure 7-2. Board Configuration for an AT-GPIB Interface Board...........ccccccveveenennene 7-3
Figure 7-3. Expanded Board Configuration for an AT-GPIB Boardccccveeeenene. 7-6
Figure 7-4. Device Template Configurationcccureverrerreneseiesieiesese e 7-8
Tables
Table 1-1. GPIB Handshake LiNES ..o 1-3
Table 1-2. GPIB Interface Management LiNES........cvovvvverienieseneneneereeeeeseeessesseen 1-3
Table 3-1. Status Word (ibsta) LayOuLcccceveereinieneeereneese e 34
Table4-1. GPIB Error COUES ..ottt 4-4
Table 5-1. Syntax for Device-Level NI-488 Functionsin ibic...........ccccovciinnen 5-6
Table 5-2. Syntax for Board-Level NI1-488 Functionsinibic..........ccocvevvinineicneienn 57
Table 5-3. Syntax for NI1-488.2 RoutineSin ibiC.........cooovereiiininice 58
Table 5-4. Auxiliary FUNCEIONS N IDICcccooiieicieec e 5-14
Table A-1. StAUSWOIA BitS......ccovoiviiiniiiieisieseseeee et s e e e A-1
Table B-1. GPIB ErrOr COUESccceiiiuinierieieisierie e ree et sbe st e e e e e e e B-1

NI-488.2M UM for Windows NT X © National Instruments Corp.

About This Manual

This manual describes the features and functions of the NI-488.2M software for
Windows NT. The NI-488.2M software is meant to be used with the Microsoft
Windows NT operating system version 3.1 or higher, and the Microsoft Windows NT
Advanced Server version 3.1 or higher. This manual assumes that you are already
familiar with Windows NT.

How to Use This M anual Set

Getting Started
Manual

Installation and

Configuration
- Experienced
Users
Novice
Users
NI-488.2M NI-488.2M Functiol
User Manual for Reference Manua|
Windows NT : : for Windows NT
Application Function
Development and Routine
and Examples Descriptions

Use the getting started manual to install and configure your GPIB hardware and
NI -488.2M software for Windows NT.

Usethe NI-488.2M User Manual for Windows NT to learn the basics of GPIB and how to
develop an application program. The user manual also contains debugging information
and detailed examples.

Use the NI-488.2M Function Reference Manual for Windows NT for specific NI -488

function and NI-488.2 routine information, such as format, parameters, and possible
errors.

© National Instruments Corp. X NI-488.2M UM for Windows NT

About This Manual

Organization of ThisManual

This manual is organized as follows:

Chapter 1, Introduction, gives an overview of GPIB and the NI-488.2M software.

Chapter 2, Application Examples, contains nine sample applications designed to
illustrate specific GPIB concepts and techniques that can help you write your own
applications. The description of each example includes the programmer's task, a
program flowchart, and numbered steps which correspond to the numbered blocks on
the flowchart.

Chapter 3, Developing Your Application, explains how to develop a GPIB
application program using NI-488 functions and NI-488.2 routines.

Chapter 4, Debugging Your Application, describes several ways to debug your
application program.

Chapter 5, ibic— nterface Bus Interactive Control Utility, introducesyouto i bi ¢,
the interactive control program that you can use to communicate with GPIB devices
interactively.

Chapter 6, GPIB Programming Techniques, describes techniques for using some
NI -488 functions and NI-488.2 routines in your application program.

Chapter 7, ibconf-I nterface Bus Configuration Utility, contains a description of
i bconf , the software configuration program you can use to configure the
NI-488.2M software.

Appendix A, Satus Word Conditions, gives a detailed description of the conditions
reported in the statusword, i bst a.

Appendix B, Error Codes and Solutions, lists a description of each error, some
conditions under which it might occur, and possible solutions.

Appendix C, Customer Communication, contains forms you can use to request help
from National Instruments or to comment on our products and manuals.

The Glossary contains an alphabetical list and description of terms used in this
manual, including abbreviations, acronyms, metric prefixes, mnemonics, and
symbols.

The Index contains an alphabetical list of key terms and topicsin this manual,
including the page where you can find each one.

NI-488.2M UM for Windows NT Xii © National Instruments Corp.

About This Manual

ConventionsUsed in This M anual

The following conventions are used in this manual.

bold

bold italic

italic

nonospace

bol d nonospace

italic nobnospace

<>

|EEE 488 and
|EEE 488.2

Bold text denotes menu items and dialog box buttons or
options.

Bold italic text denotes a note, caution, or warning.

Italic text denotes emphasis, cross references, field names, or
an introduction to a key concept.

Text in thisfont denotes text or characters that you enter from
the keyboard. Sections of code, programming examples, and
syntax examples also appear in thisfont. Thisfontisaso
used for the proper name of disk drives, paths, directories,
device names, variables, and for statements taken from
program code.

Bold text in this font denotes the messages and responses that
the computer automatically prints to the screen.

Italic text in this font denotes that you must supply the
appropriate words or values in the place of these items.

Angle brackets enclose the name of akey on the keyboard—for
example, <PageDown>.

A hyphen between two or more key names enclosed in angle
brackets denotes that you should simultaneously press the
named keys—for example, <Control-C>.

|EEE 488 and |EEE 488.2 are used throughout this manual
to refer to the ANSI/IEEE Standard 488.1-1987 and the
ANSI/IEEE Standard 488.2-1992, respectively, which define
the GPIB.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and terms are listed in

the Glossary.

© National Instruments Corp. Xii NI-488.2M UM for Windows NT

About This Manual

Related Documentation

The following documents contain information that you may find helpful as you read this
manual:

ANSI/IEEE Standard 488.1-1987, |IEEE Sandard Digital Interface for Programmable
Instrumentation

ANSI/IEEE Standard 488.2-1992, |EEE Sandard Codes, Formats, Protocols, and
Common Commands

Microsoft Windows NT System Guide

Microsoft Win 32 Software Development Kit for Windows NT: Tools

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We
are interested in the applications you develop with our products, and we want to help if
you have problems with them. To make it easy for you to contact us, this manual
contains comment and configuration forms for you to complete. Theseformsarein
Appendix C, Customer Communication, at the end of this manual.

NI-488.2M UM for Windows NT Xiv © National Instruments Corp.

Chapter 1
| ntroduction

This chapter gives an overview of GPIB and the NI-488.2M software.

GPIB Overview

The ANSI/IEEE Standard 488.1-1987, aso known as GPIB (General Purpose Interface
Bus), describes a standard interface for communication between instruments and
controllers from various vendors. It contains information about electrical, mechanical,
and functional specifications. The GPIB isadigital, 8-hit parallel communications
interface with data transfer rates of 1 Mbytes/s and above, using a 3-wire handshake. The
bus supports one System Controller, usually a computer, and up to 14 additional
instruments. The ANSI/IEEE Standard 488.2-1987 extends | EEE 488.1 by defining a bus
communication protocol, a common set of data codes and formats, and a generic set of
common device commands.

Talkers, Listeners, and Controllers

GPIB devices can be Talkers, Listeners, or Controllers. A Talker sends out data
messages. Listenersreceive data messages. The Controller, usually a computer, manages
the flow of information on the bus. 1t defines the communication links and sends GPIB
commands to devices.

Some devices are capable of playing morethan onerole. A digital voltmeter, for
example, can be a Talker and a Listener. If your personal computer has a National
Instruments GPIB interface board and NI1-488.2M software installed, it can function as a
Talker, Listener, and Controller.

Controller-In-Charge and System Controller

Y ou can have multiple Controllers on the GPIB, but only one Controller at atime can be
the active Controller, or Controller-In-Charge (CIC). The CIC can either be active or
inactive (Standby) Controller. Control can pass from the current CIC to anidle
Controller, but only the System Controller, usually a GPIB interface board, can make
itself the CIC.

© National Instruments Corp. 1-1 NI-488.2M UM for Windows NT

Introduction Chapter 1

GPIB Addressing

All GPIB devices and boards must be assigned a unique GPIB address. A GPIB address
is made up of two parts: aprimary address and an optional secondary address.

The primary address is a number in the range 0 to 30. The GPIB Controller usesthis
addressto form atalk or listen address that is sent over the GPIB when communicating
with adevice.

A talk addressisformed by setting bit 6, the TA (Talk Active) bit of the GPIB address.
A listen addressis formed by setting bit 5, the LA (Listen Active) bit of the GPIB
address. For example, if adeviceis at address 1, the Controller sends hex 41 (address 1
with bit 6 set) to make the device a Talker. Because the Controller isusualy at primary
address 0, it sends hex 20 (address O with bit 5 set) to make itself aListener. Figure 1-1
shows the configuration of the GPIB address bits.

Bit
Position 7 6 5 4 3 2 1 0
Meaning 0 TA LA GPIB Primary Address (range 0 to 30)

Figure 1-1. GPIB Address Bits

With some devices, you can use secondary addressing. A secondary address is a number
in the range hex 60 to hex 7E. When secondary addressing isin use, the Controller sends
the primary talk or listen address of the device followed by the secondary address of the
device.

Sending M essages Acrossthe GPIB

Devices on the bus communicate by sending messages. Signals and lines transfer these
messages across the GPIB interface, which consists of 16 signal lines and eight ground
return (shield drain) lines. The 16 signal lines are discussed in the following sections.

DataLines

Eight data lines, DIO1 through DIO8, carry both data and command messages.

NI-488.2M UM for Windows NT 1-2 © National Instruments Corp.

Chapter 1 Introduction

Handshake Lines

Three hardware handshake lines asynchronously control the transfer of message bytes
between devices. This processis athree-wire interlocked handshake, and it guarantees
that devices send and receive message bytes on the data lines without transmission error.
Table 1-1 summarizes the GPIB handshake lines.

Table 1-1. GPIB Handshake Lines

Line Description

NRFD (not ready for data) Listening device is ready/not ready to receive a message
byte. Also used by the Talker to signal high-speed GPIB
transfers.

NDAC (not data accepted) Listening device has/has not accepted a message byte.

DAV (datavalid) Talking device indicates signals on data lines are stable
(valid) data.

I nterface Management Lines

Five GPIB hardware lines manage the flow of information acrossthe bus. Table 1-2
summarizes the GPIB interface management lines.

Table 1-2. GPIB Interface Management Lines

Line Description

ATN (attention) Controller drives ATN true when it sends commands and
false when it sends data messages.

IFC (interface clear) System Controller drivesthe IFC lineto initialize the bus
and makeitself CIC.

REN (remote enable) System Controller drives the REN line to place devices
in remote or local program mode.

SRQ (service request) Any device can drive the SRQ line to asynchronously
request service from the Controller.

EOQI (end or identify) Talker uses the EOI line to mark the end of adata
message. Controller uses the EOI line when it conducts
apardlé poll.

© National Instruments Corp. 1-3 NI-488.2M UM for Windows NT

Introduction

Setting Up and Configuring Your System

Chapter 1

Devices are usually connected with a cable assembly consisting of a shielded
24-conductor cable with both a plug and receptacle connector at each end. With this
design, you can link devicesin alinear configuration, a star configuration, or a
combination of the two. Figure 1-2 shows the linear and star configurations.

e —

Device A

:%

Device B

=

Device C

Star
A\ Configuration
I

Linear
Configuration

=

Len

Device A

Device D

)

Device B

Device C

Figure 1-2. Linear and Star System Configuration

NI-488.2M UM for Windows NT

1-4

© National Instruments Corp.

Chapter 1 Introduction

Controlling More Than One Board

The NI-488.2M driver can control up to 10 GPIB boards. Figure 1-3 shows an example
of amultiboard system configuration. gpi b0 isthe access board for the voltmeter, and
gpi bl isthe access board for the plotter and printer. The control functions of the
devices automatically access their respective boards.

One
GPIB

Another
GPIB

Printer

Figure 1-3. Example of Multiboard System Setup

Configuration Requirements

To achieve the high data transfer rate that the GPIB was designed for, you must limit the
physical distance between devices and the number of devices on the bus. The following
restrictions are typical:

* A maximum separation of four meters between any two devices and an average
separation of two meters over the entire bus.

e A maximum total cablelength of 20 m.
* A maximum of 15 devices connected to each bus, with at least two-thirds powered

on.

© National Instruments Corp. 1-5 NI-488.2M UM for Windows NT

Introduction Chapter 1

For high-speed operation, the following restrictions apply:
e All devicesin the system must be powered on.

» Cablelengths as short as possible up to amaximum of 15 m of cable for each
system.

* With at least one equivalent device load per meter of cable.

If you want to exceed these limitations, you can use bus extenders to increase the cable
length or expander to increase the number of device loads. Extenders and expanders are
available from National | nstruments.

The following sections describe the N1-488.2M software, which controls the flow of
communication on the GPIB.

The NI-488.2M Softwar e Elements

The following section highlights important elements of the NI1-488.2M software for
Windows NT and describes the function of each element.

NI-488.2M Driver and Driver Utilities

The distribution disk contains the following driver and utility files:

* readne. t xt isadocumentation file that contains important information about the
NI-488.2M software and a description of any new features. Before you use the
software, read thisfile for the most recent information.

e gpi bcl sd. sys isthe Windows NT kernel driver that implements the NI1-488.2
device-level functions.

* gpi bcl sb. sys isthe Windows NT kernel driver that implements the NI-488.2
board-level functions.

e gpi bxxxx.sys (where xxxx represents a particular type of GPIB hardware—for
example, gpi b- nt. sys for the MC-GPIB board or gpi bat nt . sys for the
AT-GPIB/TNT board) isthe Windows NT kernel driver that implements
hardware-specific features of the NI-488.2M software.

e gpib-32.dll isa32-bit dynamic link library that acts as the interface between all
applications and the kernel mode GPIB driver.

* i bic. exe isaninteractive control program that you use to communicate with the

GPIB devicesinteractively using NI-488.2 functions and routines. It helps you to
learn the NI-488.2 routines and to program your instrument or other GPIB devices.

NI-488.2M UM for Windows NT 1-6 © National Instruments Corp.

Chapter 1 Introduction

* ibconf.cpl isacontrol panel application that you use to modify the software
configuration parameters of the NI-488.2M software.

* ibconf. hl pisaWindows help filethat isused by the i bconf application.
* ibtest.exe istheNI-488.2M software installation diagnostic test.

* gpi bi nf 0. exe isautility you can use to obtain information about your GPIB
hardware and software, such as the version of the NI1-488.2M software and the type
of interface board you are using.

DOS and 16-bit Windows Support Files

e readne. t xt isadocumentation file that contains information about using existing
DOS and 16-bit Windows applications under Windows NT.

e gpi b-vdd. dl | isthevirtual devicedriver that allows existing NI1-488.2 for DOS
and 16-bit Windows applications to access the NI-488.2M software.

e gpi b-nt.comisthe DOS device driver. When you run an existing NI-488.2
application for DOS in the Windows NT environment, this file replaces the
gpi b. comdriver that you used in the DOS environment.

e gpib.dll isthe16-bit Windows dynamic link library. When you run an existing

NI-488.2 application for Windows in the Windows NT environment, thisfile
replaces the GPIB DLL that you used in the Windows (16-bit) environment.

C Language Files

 readne. txt isadocumentation file that contains information about the C
language interface.

e decl - 32. h isa32-bitincludefile. It contains NI-488 function and NI-488.2
routine prototypes and various predefined constants.

e gpi b-32. obj isa32-bit Clanguage interfacefile. An application links with this
filein order to access the 32-bit DLL.

Sample Application Files

The NI-488.2M software includes nine sample applications along with source code for

each language supported by the NI-488.2M software. For a detailed description of the
sample application files, refer to Chapter 2, Application Examples.

© National Instruments Corp. 1-7 NI-488.2M UM for Windows NT

Introduction Chapter 1

How the NI-488.2M Software Workswith Windows NT

The main components of the NI-488.2M software are adynamic link library that runsin
user mode and alayered NT device driver that runsin kernel mode. The layered NT
device driver consists of three drivers: adevice class driver that handles device-level
cals, aboard class driver that handles board-level calls, and a GPIB port driver that uses
the Hardware Abstraction Layer (HAL) to communicate with the GPIB hardware. The
top two layers of the layered NT device driver are accessed from user mode by

gpi b-32.dl I , a32-bit Windows NT dynamic link library.

GPIB applications access the NI-488.2M software through gpi b- 32. dl | asfollows:

* A 32-bit Windows application can either link with the language interface
(gpi b-32. obj) or directly access the functions exported by the DLL.

e If you already have an existing 16-bit Windows applications, use the 16-bit DLL
(gpi b. dI |) to accessthe GPIB virtual devicedriver (gpi b-vdd. dl |).

* If you have an existing DOS application, use the DOS device driver
(gpi b- nt . com) to access the GPIB virtual device driver.

Figure 1-4 shows how you can use the NI -488.2M software with Windows NT and your
GPIB application programs.

NI-488.2M UM for Windows NT 1-8 © National Instruments Corp.

Chapter 1 Introduction
— Winl16 DOS
Application Application
[2]
e
§e]
o
L
=
(e
<
Protected
Subsystem
User Mode
Y Kernel Mode
v / System Services \
3 I/O Manager
%
| gpibclsd.sys
E Kernel gpibclsb.sys
_ gpibxxxx.sys
| Hardware Abstraction Layer (HAL) |
| GPIB Hardware |

Figure 1-4. How the NI-488.2M Software Works with Windows NT

Unloading and Reloading the NI1-488.2M Driver

Y ou can unload and restart the NI-488.2M driver using the i bconf utility. Theicon for
i bconf islocated inthe Control Panel window in the Program Manager .
Double-click on the ibconf icon to start it. The main ibconf window hasan Unload
button and a Restart button. If you click on the Unload button, the NI-488.2M driver is
unloaded. If you click on the Restart button, the NI-488.2M driver is automatically
unloaded and then reloaded. Refer to Chapter 7, ibconf—I nterface Bus Configuration
Utility, for a more complete description.

© National Instruments Corp.

1-9

NI-488.2M UM for Windows NT

Chapter 2
Application Examples

This chapter contains nine sample applications designed to illustrate specific GPIB
concepts and techniques that can help you write your own applications. The description
of each example includes the programmer's task, a program flowchart, and numbered
steps which correspond to the numbered blocks on the flowchart.

Use this chapter along with your NI-488.2M software, which includes the C source code

for each of the nine examples. The programs are listed in order of increasing complexity.
If you are new to GPIB programming, you might want to study the contents and concepts
of the first sample, si npl e. c, before moving on to more complex examples.

The following example programs are included with your NI-488.2 software:

» sinpl e. c isthe source codefile for Example 1. Itillustrates how you can
establish communication between a host computer and a GPIB device.

e clr_trg. c isthesource codefilefor Example 2. It illustrates how you can clear
and trigger GPIB devices.

e asynch. c isthe source codefile for Example 3. It illustrates how you can perform
non-GPIB tasks while datais being transferred over the GPIB.

* eos. c isthe source codefile for Example 4. It illustrates the concept of the
end-of-string (EOS) character.

* rqgs. c isthesource codefilefor Example5. It illustrates how you can
communicate with GPIB devicesthat use the GPIB SRQ line to request service.
This sampleiswritten using NI-488 functions.

* easy4882. c isthe source code file for Example 6. It isan introduction to
NI-488.2 routines.

* r(Qs4882. c isthe source codefile for Example 7. It uses NI1-488.2 routines to
communicate with GPIB devices that use the GPIB SRQ line to request service.

» ppol | . c isthe source code file for Example 8. It uses NI-488.2 routinesto
conduct parallel polls.

* non_ci c. ¢ isthesource codefile for Example 9. It illustrates how you can use
the NI1-488.2M driver in anon-Controller application.

© National Instruments Corp. 2-1 NI-488.2M UM for Windows NT

Application Examples Chapter 2

Example 1: Basic Communication

This example focuses on the basics of establishing communication between a host
computer and a GPIB device.

A technician needs to monitor voltage readings using a GPIB multimeter. His computer
is equipped with an |EEE 488.2 interface board. The NI-488.2M softwareisinstalled,
and a GPIB cable runs from the computer to the GPIB port on the multimeter.

Thetechnician is familiar with the multimeter remote programming command set. This
list of commands is specific to his multimeter and is available from the multimeter
manufacturer.

He sets up the computer to direct the multimeter to take measurements and record each
measurement asit occurs. To do this, he has written an application that uses some simple
high-level GPIB commands. The following steps correspond to the program flowchart in
Figure 2-1.

1. Theapplication initializes the GPIB by bringing the interface board in the computer
online.

2. The application sends the multimeter an instruction, setting it up to take voltage
measurements in autorange mode.

The application sends the multimeter an instruction to take a voltage measurement.

The application tells the multimeter to transmit the data it has acquired to the
computer.

The process of requesting a measurement and reading from the multimeter (Steps 3
and 4) is repeated as long as there are readings to be obtained.

5. Asacleanup step before exiting, the application returns the interface board to its
origina state by taking it offline.

NI-488.2M UM for Windows NT 2-2 © National Instruments Corp.

Chapter 2

Application Examples

No

GPIB Cable
Computer
1 INIT
ibwrt
Set Up Multimeter "“/OLTS DC:AUTO"
2 to Take Voltages OLTS DGAUTO
| .
Ll .
ibwrt
3 Tell Multimeter to @
Take Measurement
ibrd
Read
4 Measurement

from Multimeter

Finished Getting
Measurements?

CLEAN UP

Multimeter

Figure 2-1. Program Flowchart for Example 1

© National Instruments Corp. 2-3

NI-488.2M UM for Windows NT

Application Examples Chapter 2

Example2: Clearing and Triggering Devices

This exampleillustrates how you can clear and trigger GPIB devices.

Two freshman physics lab partners are learning how to use a GPIB digital oscilloscope.
They have successfully loaded the NI-488.2M software on a personal computer and
connected their GPIB board to a GPIB digital oscilloscope. Their current lab assignment
isto write asmall application to practice using the oscilloscope and its command set
using high-level GPIB commands. The following steps correspond to the program
flowchart in Figure 2-2.

1

The application initializes the GPIB by bringing the interface board in the computer
online,

The application sends a GPIB clear command to the oscilloscope. This command
clearstheinternal registers of the oscilloscope, reinitializing it to default values and
settings.

The application sends a command to the oscilloscope telling it to read awaveform
each timeit istriggered. Predefining the task in this way decreases the execution
timerequired. Each trigger of the oscilloscope is now sufficient to get a new run.

The application sends a GPIB trigger command to the oscilloscope which causesit to
acquire data.

The application queries the oscilloscope for the acquired data. The oscilloscope
sends the data.

The application reads the data from the oscilloscope.
The application calls an external graphics routine to display the acquired waveform.

Steps 4, 5, 6, and 7 are repeated until al of the desired data has been acquired by the
oscilloscope and received by the computer.

As a cleanup step before exiting, the applicati on returns the interface board to its
origina state by taking it offline.

NI-488.2M UM for Windows NT 2-4 © National Instruments Corp.

Chapter 2 Application Examples

GPIB Cable
Computer Oscilloscope
1 INIT
| ibclr
2 Clear Clear
Oscilloscope Command
| ibwrt
Define Task to Be Done
3 When Oscilloscope is @
Triggered
| -
Ll N
ibtrg
Trigger -
4 Oscilloscope to Trigger
Get Reading Command
| ibwrt
Request Data
5 from
Oscilloscope
| ibrd
Read Data
6 from
Oscilloscope
7 Display
Waveform
No Finished
Reading?
8 CLEAN UP

Figure 2-2. Program Flowchart for Example 2

© National Instruments Corp. 2-5 NI-488.2M UM for Windows NT

Application Examples Chapter 2

Example 3: Asynchronous|/O

This exampleillustrates how an application conducts data transfers with a GPIB device
and immediately returns to perform other non-GPIB related tasks while GPIB 1/O is
occurring in the background. This asynchronous mode of operation is particularly useful
when the requested GPIB activity may take some time to complete.

In this example, aresearch biologist istrying to obtain accurate CAT scans of a
laboratory animal’sliver. Shewill print out a color copy of each scan asit is acquired.
The entire operation is computer-controlled. The CAT scan machine sends the images it
acquires to a computer that has the NI-488.2M software installed and is connected to a
GPIB color printer. The biologist isfamiliar with the command set of her color printer,
as described in the user manual provided by the manufacturer. She acquires and prints
images with the aid of an application program she wrote using high-level GPIB
commands. The following steps correspond to the program flowchart in Figure 2-3.

1. Theapplication initializes the GPIB by bringing the interface board in the computer
online.

2. Animageisscanned in.

3. The application sends the GPIB printer acommand to print the new image and
immediately returns without waiting for the 1/0O operation to be compl eted.

4. The application saves the image obtained to afile.

5. The application inquires as to whether the printing operation has completed by
issuing a GPIB wait command. If the status reported by the wait command indicates
completion (CMPL isin the status returned) and more scans need to be acquired,
Steps 2 through 5 are repeated until the scans have all been acquired. If the status
reported by the wait command in Step 5 does not indicate that printing is finished,
statistical computations are performed on the scan obtained and Step 5 is repeated.

6. Asacleanup step before exiting, the application returns the interface board to its
original state by taking it offline.

NI-488.2M UM for Windows NT 2-6 © National Instruments Corp.

Chapter 2 Application Examples

GPIB Cable
Computer Color Printer
1 INIT
— |
2 Image
Scan
ibwrta
Print Image :
3 Asynchronously
Non-GPIB
4 Activity: Save
to Disk
l ibwait
gl

Non-GPIB Activity:
Compute Statistics

6 CLEAN UP

Figure 2-3. Program Flowchart for Example 3

© National Instruments Corp. 2-7 NI-488.2M UM for Windows NT

Application Examples Chapter 2

Example 4: End-of-String M ode

This exampleillustrates how to use the end-of-string modes to detect that the GPIB
device has finished sending data.

A journalist isusing a GPIB scanner to scan some pictures into his personal computer for
anews story. A GPIB cable runs between the scanner and the computer. Heisusing an
application written by an intern in the department who has read the scanner's instruction
manual and is familiar with the scanner's programming requirements. The following
steps correspond to the program flowchart in Figure 2-4.

1

The application initializes the GPIB by bringing the interface board in the computer
online,

The application sends a GPIB clear message to the scanner, initializing it to its
power-on defaults.

The scanner needs to detect a delimiter indicating the end of acommand. In this
case, the scanner expects the commands to be terminated with <CR><LF> (carriage
return, \r , and linefeed, \ n). The application setsits end-of-string (EOS) byte to
<LF>. Thelinefeed code indicates to the scanner that no more datais coming, and is
called the end-of-string byte. It flags an end-of-string condition for this particular
GPIB scanner. The same effect could be accomplished by asserting the EQI line
when the command is sent.

With the exception of the scan resolution, all the default settings are appropriate for
the task at hand. The application changes the scan resolution by writing the
appropriate command to the scanner.

The scanner sends back information describing the status of the change resolution
command. Thisisastring of bytes terminated by the end-of-string character to tell
the application it is done changing the resolution.

The application starts the scan by writing the scan command to the scanner.

The application reads the scan data into the computer.

As a cleanup step before exiting, the application returns the interface board to its
original state by taking it offline.

NI-488.2M UM for Windows NT 2-8 © National Instruments Corp.

Chapter 2 Application Examples

GPIB Cable
Computer Scanner
1 INIT
ibclr
Reset
< Clear >)
2 Internal
State Command
| ibeos
3 Set EOS
Mode
| ibwrt
Change
4 Scan "RES:3\r\n"
Resolution
| ibrd
5 |Read Status
ibwrt
6 |start Scan @—>
ibrd
Data Data
8 CLEAN UP

Figure 2-4. Program Flowchart for Example 4

© National Instruments Corp. 2-9 NI-488.2M UM for Windows NT

Application Examples Chapter 2

Example5: Service Requests

This example illustrates how an application communicates with a GPIB device that uses
the GPIB service request (SRQ) lineto indicate that it needs attention.

A graphic arts designer istransferring digital images stored on her computer to aroll of
color film, using a GPIB digital film recorder. A GPIB cable connects the GPIB port on
the film recorder to the IEEE 488.2 interface board installed in her computer. She has
installed the NI1-488.2M software on the host computer and is familiar with the
programming instructions for the film recorder, as described in the user manua provided
by the manufacturer. She places afresh roll of film in the camera and launches a simple
application she has written using high-level GPIB commands. With the aid of the
application, she records afew images on film. The following steps correspond to the
program flowchart in Figure 2-5.

1. Theapplication initializes the GPIB by bringing the interface board in the computer
online.

2. The application brings the film recorder to aready state by issuing adevice clear
instruction. The film recorder is now set up for operation using its default values.
(The graphic arts designer has previously established that the default values for the
film recorder are appropriate for the type of film sheis using).

3. The application advances the new roll of film into position so the first image can be
exposed on the first frame of film. Thisisdone by sending the appropriate
instructions as described in the film recorder programming guide.

4. The application waits for the film recorder to signify that it is done loading the film,
by waiting for RQS (request for service). The film recorder asserts the GPIB SRQ
line when it has finished loading the film.

5. Assoon asthe film recorder asserts the GPIB SRQ line, the application’s wait for the
RQS event completes. The application conducts a seria poll by sending a special
command message to the film recorder that directsit to return aresponsein the form
of aseria poll status byte. This byte contains information indicating what kind of
service the film recorder is requesting or what condition it isflagging. In this
example, it indicates the completion of a command.

6. A color image transfers to the digital film recorder in three consecutive passes-one
pass each for the red, green and blue components of the image. Sub-steps 6a, 6b,
and 6c¢ are repeated for each of the passes:
6a The application sends a command to the film recorder directing it to accept

datato create asingle passimage. The film recorder assertsthe SRQ line as
soon as apassis completed.

6b. Theapplication waits for RQS.

NI-488.2M UM for Windows NT 2-10 © National Instruments Corp.

Chapter 2 Application Examples

6c. When the SRQ lineis asserted, the application serial polls the film recorder to
seeif it requested service, asin Step 5.

7. The application issues a command to the film recorder to advance the film by one
frame. The advance occurs successfully unless the end of film is reached.

8. The application waits for RQS, which completes when the film recorder assertsthe
SRQ lineto signal it is done advancing the film.

9. Assoon asthe application's wait for RQS completes, the application serial pollsthe
film recorder to seeif it requested service, asin Step 5. The returned seria poll
status byte indicates either of two conditions—the film recorder finished advancing
the film as requested or the end of film was reached and it can no longer advance.
Steps 6 through 9 are repeated as long as film isin the camera and more images need
to be recorded.

10. Asacleanup step before exiting, the application returns the interface board to its
original state by taking it offline.

© National Instruments Corp. 2-11 NI-488.2M UM for Windows NT

Application Examples

Chapter 2

v

Exit Application
and Repair
Film Recorder

GPIB Cable

Computer

ibclr

Clear Film Recorder

ibwrt

Advance
Film

ibwait

Wait for the
Film Recorder to
Request Service

Read

the Film
Recorder

Finished
Loading
Film?

Yes

(continues)

Digital Film Recorder

Clear Command

Request
Service

Did You Request
Service ?

| ibrsp

Response from %
he Fil

Figure 2-5. Program Flowchart for Example 5

NI-488.2M UM for Windows NT 2-12

© National Instruments Corp.

Chapter 2 Application Examples

(Continued)
Computer Digital Film Recorder
_________________________________ ,
Yes
ibwrt
Create a
6a Single Pass Data for Red, Green,
Image or Blue Pass
| ibwait

times, once for

Recorder to
6b Request Did You Request gggg color
Service Service?
"

| ibrsp

I
I
I
I
I
I
6 |
| These steps
[Wait for Film Service are repeated 3
I
I
I

|
|
| Read Response
| 6C From Film
| Recorder Response
|
ibwrt
7 Advance Film @
ibwait
Request
.) Service
Wait for Film
8 Recorder to Did You Request
Request Service?
Service -
l ibrsp I

9 | Read Response From
Film Recorder Response

10 CLEAN UP

Figure 2-5. Program Flowchart for Example 5 (Continued)

© National Instruments Corp. 2-13 NI-488.2M UM for Windows NT

Application Examples Chapter 2

Example 6: Basic Communication with
| EEE 488.2-Compliant Devices

This example provides an introduction to communicating with |EEE 488.2-compliant
devices.

A test engineer in ametal factory is using | EEE 488.2-compliant tensile testers to find out
the strength of metal rods as they come out of production. There are several tensile
testers and they are all connected to a central computer equipped with an |EEE 488.2
interface board. These machines are fairly voluminous and it is difficult for the engineer
to reach the address switches of each machine. For the purposes of his future work with
these tensile testers, he needs to determine what GPIB addresses they have been set to.
He can do so with the aid of a simple application he has written. The following steps
correspond to the program flowchart in Figure 2-6.

1. Theapplication initializes the GPIB by bringing the interface board in the computer
online,

2. Theapplication issues a command to detect the presence of listening devices on the
GPIB and compiles alist of the addresses of al such devices.

3. Theapplication sends an identification query (“ * | DN?”) all of the devices detected
onthe GPIB in Step 2.

4. The application reads the identification information returned by each of the devices
asit respondsto the query in Step 3.

5. Asacleanup step before exiting, the application returns the interface board to its
origina state by taking it offline.

NI-488.2M UM for Windows NT 2-14 © National Instruments Corp.

Chapter 2 Application Examples

GPIB Cable GPIB Cable GPIB Cable

Computer Tensile Tester 1 Tensile Tester 2 Tensile Tester 3

1 INIT

| FindLstn Who's
Listening? e

\4

Get a List
2 of Devices Device 1
Present on is Here
GPIB @
is Here -
Device 3

A A

Send

Tell Device 1
3 | to Identify
Itself

[

| Receive

Read
4 Response

from MUTT 10383"
Device 1

j

| Send

Tell Device 2
3 | to Identify “*|DN?"
Itself

| Receive
Read
4 Response | "MUTT 10426"

from
Device 2

0 ¢

| Send

Tell Device 3
3 to Identify "*IDN?"
Itself

| Receive

Read

4 Response
from

Device 3

v

5 CLEAN UP

“MUTT 10528"

0

Figure 2-6. Program Flowchart for Example 6

© National Instruments Corp. 2-15 NI-488.2M UM for Windows NT

Application Examples Chapter 2

Example 7: Serial Polls Using NI-488.2 Routines

This example illustrates how you can take advantage of the NI-488.2 routines to reduce
the complexity of performing serial polls of multiple devices.

A candy manufacturer is using GPIB strain gauges to measure the consistency of the
syrup used to make candy. The plant has four big mixers containing syrup. The syrup
has to reach a certain consistency to make good quality candy. Thisis measured by strain
gauges that monitor the amount of pressure used to move the mixer arms. When a certain
consistency is reached, the mixture is removed and a new batch of syrup is poured in the
mixer. The GPIB strain gauges are connected to a computer with an |EEE 488.2
interface board and the NI1-488.2M software installed. The processis controlled by an
application that uses NI-488.2 routines to communicate with the | EEE 488.2-compliant
strain gauges. The following steps correspond to the program flowchart in Figure 2-7.

1. Theapplication initializes the GPIB by bringing the interface board in the computer
online,

2. The application configures the strain gauges to request service when they have a
significant pressure reading or amechanical failure occurs. They signal their request
for service by asserting the SRQ line.

3. Theapplication waits for one or more of the strain gauges to indicate that they have a
significant pressure reading. Thiswait event ends as soon asthe SRQ lineis
asserted.

4. The application serial polls each of the strain gauges to seeiif it requested service.

5. Once the application has determined which one of the strain gauges requires service,
it takes areading from that strain gauge.

6. If the reading matches the desired consistency, a dialog window appears on the
computer screen and prompts the mixer operator to remove the mixture and start a
new batch. Otherwise, a dialog window prompts the operator to service the mixer in
some other way.

Steps 3 through 6 are repeated as long as the mixers are in operation.

7. After thelast batch of syrup has been processed, the application returns the interface
board to its original state by taking it offline.

NI-488.2M UM for Windows NT 2-16 © National Instruments Corp.

Chapter 2

GPIB Cable
Computer

Application Examples

GPIB Cable

1 INIT

GPIB Cable
Strain

SendList

Configure Strain
Gauges to
Request Service

N

>

WaitSRQ
Wait for 1 or More
3| Strain Gaugesto |[*
Request Service

When They
Have a Reading

Strain Strain
Gauge 1 Gauge 2 Gauge 3

FindRQ

Until One
Requesting

Service is

S
- Did You Request
Serial Poll Each Service?
4 Strain Gauge

Request
Service

Located

id You Request
Service?

D8

Receive

Get a Reading

5 From Strain
Gauge

<

Does the
Gauge Need
Service?

0

(Yes D

Response

(2]

CLEAN UP

A4
% No Provide
Whatever
- - Service is
Mixture is Ready. :
Display "Remove Required
Mixture"
Message

Figure 2-7. Program Flowchart for Example 7

© National Instruments Corp.

2-17

NI-488.2M UM for Windows NT

Application Examples Chapter 2

Example 8: Parallel Polls

This exampleillustrates how you can use NI-488.2 routines to obtain information from
several |EEE 488.2-compliant devices at once using a procedure called parallel polling.

The process of manufacturing a particular alloy involves bringing three different metals
to specific temperatures before mixing them to form the alloy. Three vats are used, each
containing adifferent metal. Each is monitored by a GPIB ore monitoring unit. The
monitoring unit consists of a GPIB temperature transducer and a GPIB power supply.
The temperature transducer is used to probe the temperature of each metal. The power
supply isused to start a motor to pour the metal into the mold when it reaches a
predefined temperature. The three monitoring units are connected to the | EEE 488.2
interface board of a computer that has the NI-488.2M software installed. An application
using NI-488.2 routines operates the three monitoring units. The application will obtain
information from the multiple units by conducting aparallel poll, and will then determine
when to pour the metalsinto the mixture tank. The following steps correspond to the
program flowchart in Figure 2-8.

1. Theapplication initializes the GPIB by bringing the interface board in the computer
online.

2. Theapplication configures the temperature transducer in the first monitoring unit by
choosing which of the eight GPIB data lines the transducer uses to respond when a
parallel poll is conducted. The application also sets the temperature threshold. The
transducer manufacturer has defined the individual status (i st) bit to be true when
the temperature threshold is reached, and the configured status mode of the
transducer is assert the data line. When aparallel poll is conducted, the transducer
assertsits data line if the temperature has exceeded the threshold.

3. The application configures the temperature transducer in the second monitoring unit
for parallel polls.

4. The application configures the temperature transducer in the third monitoring unit for
paralel polls.

5. The application conducts non-GPIB activity while the metals are heated.

6. Theapplication conducts a parallel poll of all three temperature transducers to
determine whether the metals have reached the appropriate temperature. Each
transducer asserts its data line during the configuration step if its temperature
threshold has been reached.

7. If theresponse to the poll indicates that all three metals are at the appropriate
temperature, the application sends a command to each of the three power supplies,
directing them to power on. Then the motors start and the metals pour into the mold.

If only one or two of the metalsis at the appropriate temperature, Steps 5 and 6 are
repeated until the metals can be successfully mixed.

NI-488.2M UM for Windows NT 2-18 © National Instruments Corp.

Chapter 2 Application Examples
8. Theapplication unconfigures al of the transducers so that they no longer participate
in parallel polls.

9. Asacleanup step before exiting, the application returns the interface board to its
original state by taking it offline.

GPIB GPIB GPIB GPIB GPIB
GPIB Cable Cable Cable Cable Cable Cable
/> [TN TN I/

Computer UNIT 1 UNIT 2 UNIT 3

Temp Power Temp Power Temp Power
1 INIT

Transducer | Supply Transducer | Supply Transducer | Supply

PPollConfig
Configure
2 [Transducer 1 for PaéalleglPon
Parallel Polls nave
PPollConfig
Configure
3| Transducer 2 Parallel Poll »
for Parallel Polls Enable
| PPollConfig
4 Configure
Transducer 3 Parallel Poll >
for Parallel Polls Enable
5 Non-GPIB
Activity
Parallel Poll }—9» » >
(7o)

Yes Yes < @—

(

SendList

i " | - | - | -
7 | Start Power _@ gl gl =
Supplies
PPollUnconfig
PPoll
8 Unconfigure Paéilgljlioll > > »

9 CLEAN UP

Figure 2-8. Program Flowchart for Example 8

© National Instruments Corp. 2-19 NI-488.2M UM for Windows NT

Application Examples Chapter 2

Example 9: Non-Controller Example

This exampleillustrates how you can use the NI-488.2M software to emulate a GPIB
devicethat is not the GPIB Controller.

A software engineer has written firmware to emulate a GPIB device for aresearch project
and istesting it using an application that makes ssmple GPIB calls. The following steps
correspond to the program flowchart in Figure 2-9.

1. The application brings the device online.

2. Theapplication waits for any of three eventsto occur: the device to become listen-
addressed, become talk-addressed, or receive a GPIB clear message.

3. Assoon as one of the events occurs, the application takes an action based upon the
event that occurred. If the device was cleared, the application resets the interna state
of the deviceto default values. If the device was talk-addressed, it writes data back
to the Controller. If the device was listen-addressed, it reads in new data from the
Controller.

NI-488.2M UM for Windows NT 2-20 © National Instruments Corp.

Chapter 2

Application Examples

Device

INIT

"D

Reset
3 | Internal
State

\A 4

ibwait

Wait to be Talk
Addressed,
Listen
Addressed, or
Cleared

Yes

Is This the
Clear Event?

Addressed
Event?

ibwrt

ibrd

Write Out @
New Data

Read In @
New Data

Controller

Figure 2-9. Program Flowchart for Example 9

© National Instruments Corp.

2-21

NI-488.2M UM for Windows NT

Chapter 3
Developing Your Application

This chapter explains how to develop a GPIB application program using NI-488
functions and NI-488.2 routines.

Choosing How to Accessthe NI-488.2M DL L

Applications can access the NI-488.2M dynamic link library (gpi b-32. dl |) either by
using an NI-488.2M language interface or with direct access.

If you need to accessthe gpi b- 32. dI | from alanguage other than C, you must
directly accessthe gpi b- 32. dl | . You can directly accessthe DLL from any
programming environment that allows you to request addresses of variables and functions
that aDLL exports. Thegpi b-32. dl | exports pointers to each of the global variables:

e user_ibstaisapointertoi bsta
e user_iberr isapointertoi berr
e user_ibcntl isapointertoi bentl

Thegpi b- 32. dI | aso exports pointersto al of the NI-488 and NI-488.2 calls. For
example, it exports a pointer to the NI-488 i bwrt function. For adetailed example
showing how to use direct access, refer to the sample program dl | dev. ¢ that came
with your NI-488.2M software.

Choosing Between NI-488 Functions and NI-488.2 Routines

Y our distribution disk contains two distinct sets of subroutines to meet your application
needs. Both of these sets, the NI-488 functions and the NI-488.2 routines, are compatible
across computer platforms and operating systems, so you can port programs to other
platforms with little or no source code modification. For most application programs, the
NI-488 functions are sufficient. Y ou should use the NI-488.2 routines if you have a
complex configuration with one or more interface boards and multiple devices.
Regardless of which option you choose, the driver automatically addresses and performs
other bus management operations necessary for device communication.

The following sections discuss some differences between NI-488 functions and NI-488.2
routines.

© National Instruments Corp. 31 NI-488.2M UM for Windows NT

Developing Your Application Chapter 3

Using NI-488 Functions: One Device for Each Board

If your system has only one device attached to each board, the NI -488 functions are
probably sufficient for your programming needs. Some other factors that make the
NI -488 functions more convenient include the following:

» With NI-488 asynchronous I/O functions (i bcnda, i brda,and i bwrt a), you can
initiate an 1/0 sequence while maintaining control over the CPU for non-GPIB tasks.

» NI-488 functions include built-in file transfer functions (i br df andi bwrt).

» With NI-488 functions, you can control the busin non-typical ways or communicate
with non-compliant devices.

The NI -488 functions consist of high-level (or device) functions that hide much of the
GPIB management operations and low-level (or board) functions that offer you more
control over the GPIB than NI-488.2 routines. The following sections describe these
different function types.

NI-488 Device Functions

Device functions are high-level functions that automatically execute commands that
handle bus management operations such as reading from and writing to devices or polling
them for status. If you use device functions, you do not need to understand GPIB
protocol or bus management. For information about device-level calls and how they
manage the GPIB, refer to Device-Level Calls and Bus Management, in Chapter 6, GPIB
Programming Techniques.

NI-488 Board Functions

Board functions are low-level functions that perform rudimentary GPIB operations.
Board functions access the interface board directly and require you to handle the
addressing and bus management protocol. In cases when the high-level device functions
might not meet your needs, low-level board functions give you the flexibility and control
to handle situations such as the following:

» Communicating with non-compliant (non-1EEE 488.2) devices

e Altering various low-level board configurations

* Managing the busin non-typical ways

NI-488.2M UM for Windows NT 32 © National Instruments Corp.

Chapter 3 Developing Your Application

The NI-488 board functions are compatible with, and can be interspersed within,
seguences of NI-488.2 routines. When you use board functions within a sequence of

NI -488.2 routines, you do not need aprior call to i bf i nd to obtain aboard descriptior.
Y ou simply substitute the board index as the first parameter of the board function call.
With this flexibility, you can handle non-standard or unusual situations that you cannot
resolve using NI-488.2M routines only.

Using NI-488.2 Routines: Multiple Boards and/or Multiple Devices

When your system includes a board that must access multiple devices, use the N1-488.2
routines. NI-488.2 routines can perform the following tasks with asingle call:

» Find all of the Listeners on the bus

» Find adevice requesting service

Determine the state of the SRQ line, or wait for SRQ to be asserted

» Address multiple devicesto listen

Checking Statuswith Global Variables

Each NI-488 function and NI-488.2 routine updates four global variables to reflect the
status of the device or board that you are using. The statusword (i bst a), the error
variable (i ber r) and the count variables (i bcnt andi bent |) contain useful
information about the performance of your application program. Y our program should
check these variables frequently. The following sections describe each of these global
variables and how you can use them in your application program.

StatusWord —ibsta

All functions update a global statusword, i bst a, which contains information about the
state of the GPIB and the GPIB hardware. The vaue stored in i bst a isthereturn value
of all of the NI-488 functions except i bf i nd andi bdev. You cantest for the
conditionsreportedini bst a and use that information to make decisions about
continued processing. If you check for possible errors after each call, debugging your
application is much easier.

i bst a isal6-bit value. A bit value of one (1) indicates that a certain condition isin
effect. A bit value of zero (0) indicates that the condition is not in effect. Each bitin

i bst a can be set for NI-488 device calls (dev), NI1-488 board calls (brd) and N1-488.2
calls, or dl (dev, brd).

© National Instruments Corp. 33 NI-488.2M UM for Windows NT

Developing Your Application Chapter 3

Table 3-1 shows the condition that each bit position represents, the bit mnemonics, and
the type of callsfor which the bit can be set. For a detailed explanation of each of the
status conditions, refer to Appendix A, Status Word Conditions.

Table 3-1. Status Word (ibsta) Layout

Bit Hex
Mnemonic | Pos. Value Type Description
ERR 15 8000 dev, brd | GPIB error
TIMO 14 4000 dev, brd | Timelimit exceeded
END 13 2000 dev, brd | END or EOS detected
SRQI 12 1000 brd SRQ interrupt received
RQS 11 800 dev Device requesting service
SPOLL 10 400 brd Board has been serial polled by the
Controller
EVENT 9 200 brd A DCAC, DTAS, or IFC event has
occurred
CMPL 8 100 dev, brd | I/O completed
LOK 7 80 brd Lockout State
REM 6 40 brd Remote State
ciC 5 20 brd Controller-In-Charge
ATN 4 10 brd Attention is asserted
TACS 3 8 brd Taker
LACS 2 4 brd Listener
DTAS 1 2 brd Device Trigger State
DCAS 0 1 brd Device Clear State

NI-488.2M UM for Windows NT 34 © National Instruments Corp.

Chapter 3 Developing Your Application

The language header file included on your distribution disk contains the mnemonic
constantsfor i bst a. You can check abit positionini bst a by using its numeric value
or its mnemonic constant. For example, bit position 15 (hex 8000) detects a GPIB error.
The mnemonic for thisbit is ERR. To check for a GPIB error, use either of the following
statements after each NI -488 function and NI-488.2 routine as shown:

if (ibsta & ERR) gpiberr();
or

if (ibsta & 0x8000) gpiberr();

where gpi berr () isan error-handling routine.

Error Variable —iberr

If the ERR bit is set in the status word (i bst a), aGPIB error has occurred. When an
error occurs, the error type is specified by thevaluein i berr .

Note: Thevalueini berr ismeaningful asan error type only when the ERR bit is
setini bst a, indicating that an error has occurred.

For more information on error codes and solutions refer to Chapter 4, Debugging Your
Application, or Appendix B, Error Codes and Solutions.

Count Variables—ibcnt and ibentl

The count variables are updated after each read, write, or command function. i bcnt

and i bcent | are 32-bit integers. On some systems, like MS-DOS, i bent isa 16-bit
integer, and i bent | isa32-bit integer. For cross-platform compatibility, all
applicationsshould use i bent | . If you are reading data, the count variablesindicate the
number of bytesread. If you are sending data or commands, the count variables reflect
the number of bytes sent.

In your application program, you can use the count variables to null-terminate an ASCI|
string of data received from an instrument. For example, if dataisreceived in an array of
characters, you can usei bent | to null-terminate the array and print the measurement on
the screen as follows:

char rdbuf[512];

ibrd (ud, rdbuf, 20L);

if (!(ibsta & ERR)){
rdbuf[ibentl] = "\0";
printf ("Read: %\n", rdbuf);

el se {
error();

© National Instruments Corp. 35 NI-488.2M UM for Windows NT

Developing Your Application Chapter 3

i bent | isthe number of bytesreceived. Databeginsin the array at index zero (0);
therefore, i bent | isthe position for the null character that marks the end of the string.

Using ibic to Communicate with Devices

Before you begin writing your application program, you might want to use thei bi ¢
utility. With i bi ¢ (Interface Bus Interactive Control), you communicate with your
instruments from the keyboard rather than from an application program. Y ou can use
i bi ¢ tolearn to communicate with your instruments using the NI-488 functions or
NI -488.2 routines. For specific device communication instructions, refer to the user
manual that came with your instrument. For information about using i bi ¢ and for
detailed examples, refer to Chapter 5, ibic—Interface Bus Interactive Control Utility.

Writing Your NI-488 Application

This section discusses items you should include in your application program, general
program steps, and an NI-488 example. In this manual the example code is presented in
C using the standard C language interface. The NI-488.2M software includes the source
code for this example written in C (devsanp. ¢) and the source code for this example
written to use direct entry to accessthegpi b-32.dl | (dl | dev. c).

The NI-488.2M software also includes the source code for nine application examples,
which are described in Chapter 2, Application Examples.
Itemsto Include

* Include the appropriate GPIB header file. Thisfile contains prototypes for the
NI -488 functions and constants that you can use in your application program.

» Check for errors after each NI1-488 function call.

* Declare and define afunction to handle GPIB errors. This function takes the device
offline and closes the application. If the function is declared as:

voi d gpi berr (char * msg); /* function prototype */

then your application invokes it as follows:

if (ibsta & ERR) {
gpi berr("GPIB error");

NI-488.2M UM for Windows NT 36 © National Instruments Corp.

Chapter 3 Developing Your Application

NI-488 Program Shell

Figure 3-1 isaflowchart of the stepsto create your application program using N1-488
functions. The flowchart isfor device-level cals.

w

/ Open Device (ibdev) /

Are All
Devices
Open?

No

Yes

Make a Device-Level Call
* Send Data to Device (ibwrt)

» Receive Data from Device (ibrd)
* Clear Device (ibclr)

« Serial Poll Device (ibrsp)

and so on

Finished GPIB
Programming?

/ Close Device (ibonl) /

Closed All
Devices?

Figure 3-1. General Program Shell Using NI-488 Device Functions

© National Instruments Corp. 37 NI-488.2M UM for Windows NT

Developing Your Application Chapter 3

General Program Steps and Examples

The following steps demonstrate how to use the NI-488 device functionsin your
program. This example configures adigital multimeter, reads 10 voltage measurements,
and computes the average of these measurements.

Step 1. Open aDevice

Your first NI-488 function call should betoi bdev to open adevice.
ud = i bdev(0, 1, 0, T10s, 1, 0);
if (ibsta & ERR) {

gpi berr("i bdev error");

Theinput arguments of the i bdev function are asfollows:

0 - boardindex for GPIBO

(=Y
1

primary GPIB address of the device
0 - nosecondary GPIB address for the device
T10s - I/Otimeout value (10 9)
1 - send END message with the last byte when writing to device

0 - disable EOS detection mode

When you cal i bdev , the driver automatically initializes the GPIB by sending an
Interface Clear (IFC) message and placing the device in remote programming state.

Step 2. Clear the Device

Clear the device before you configure the device for your application. Clearing the
deviceresetsitsinternal functionsto a default state.

i bel r(ud);

if (ibsta & ERR) {
gpi berr("ibclr error");

NI-488.2M UM for Windows NT 38 © National Instruments Corp.

Chapter 3 Developing Your Application

Step 3. Configurethe Device

After you open and clear the device, it isready to receive commands. To configure the
instrument, you send device-specific commands using the i bwr t function. Refer to the
instrument user manual for the command bytes that work with your instrument.

i bwrt(ud, "*RST; VAC, AUTO, TRI GGER 2; *SRE 16", 35L);
if (ibsta & ERR) {
gpi berr("ibwt error");

The programming instruction in this example resets the multimeter (* RST). The meter is
instructed to measure the volts alternating current (VAC) using auto-ranging (AUTO), to
wait for atrigger from the GPIB interface board before starting a measurement

(TRI GGER 2), and to assert the SRQ line when the measurement compl etes and the
multimeter isready to send the result (* SRE 16).

Step 4. Trigger the Device

If you configure the device to wait for atrigger, you must send atrigger command to the
device before reading the measurement value. Then instruct the device to send the next
triggered reading to its GPIB output buffer.

ibtrg(ud);
if (ibsta & ERR) {
gpi berr("ibtrg error");

i bwrt(ud,"VAL1?", 5L);
if (ibsta & ERR) {
gpi berr("ibwt error");

Step 5. Wait for the M easurement

After you trigger the device, the RQS bit is set when the device is ready to send the
measurement. Y ou can detect RQS by using the i bwai t function. The second
parameter indicates what you are waiting for. Noticethat the i bwai t function also
returns when the 1/0 timeout value is exceeded.

printf("Waiting for RQ...\n");
ibwait (ud, TIMJRQS);
if (ibsta & (ERRITIM)) {

gpi berr("ibwait error");

© National Instruments Corp. 39 NI-488.2M UM for Windows NT

Developing Your Application Chapter 3

When SRQ has been detected, serial poll the instrument to determine if the measured data
isvalid or if afault condition exists. For |EEE 488.2 instruments, you can find out by
checking the message available (MAV) bit, bit 4 in the status byte that you receive from
the instrument.
ibrsp (ud, &StatusByte);
if (ibsta & ERR) {

gpi berr("ibrsp error");

if (!(StatusByte & MAVbit)) ({
gpi berr ("I nproper Status Byte");
printf(" Status Byte = Ox%\n", StatusByte);

Step 6. Read the M easurement

If the datais valid, read the measurement from the instrument. (Asci i ToFl oat isa
function that takes a null-terminated string as input and outputs the floating point number
it represents.)

ibrd (ud, rdbuf, 10L);

if (ibsta & ERR) {
gpi berr("ibrd error");
}

rdbuf[ibentl] = "\0";
printf("Read: %\n", rdbuf);
/* Qutput ==> Read: +10.98E-3 */

sum += Asci i ToFl oat (rdbuf);

Step 7. Processthe Data

Repeat Steps 4 through 6 in aloop until 10 measurements have been read. Then print the
average of the readings as shown:

printf("The average of the 10 readings is %\n", sum 10.0);

Step 8. Placethe Device Offline

Asafinal step, take the device offline using the i bonl function.

i bonl (ud, 0);

NI-488.2M UM for Windows NT 310 © National Instruments Corp.

Chapter 3 Developing Your Application

Writing Your NI-488.2 Application

This section discusses items you should include in an application program that uses

NI -488.2 routines, general program steps, and an NI-488.2 example. In thismanual the
example codeis presented in C using the standard C language interface. The NI-488.2M
software includes the source code for this example written in C (sanp4882. ¢) and the
code for this example written to use direct entry to accessthegpi b- 32. dl |
(dl'14882. c).

The NI-488.2M software also includes the source code for nine application examples,
which are described in Chapter 2, Application Examples.

[temsto Include

» Include the appropriate GPIB header file. Thisfile contains prototypes for the
NI-488.2 routines and constants that you can use in your application program.

» Check for errors after each NI-488.2 routine call.

» Declare and define a function to handle GPIB errors. This function takes the device
offline and closes the application. If the function is declared as:

voi d gpi berr (char * msg); /* function prototype */

then your application invokes it as follows:

if (ibsta & ERR) {
gpi berr("GPIB error");

© National Instruments Corp. 311 NI-488.2M UM for Windows NT

Developing Your Application Chapter 3

NI-488.2 Program Shell

Figure 3-2 isaflowchart of the steps to create your application program using NI1-488.2
routines.

Initialize Specified GPIB
Interface (SendIFC)

Are All Boards
Initialized?

Making
High-Level or
Low-Level Call?

Low-Level High-Level

Make a Low-Level Call Make a High-Level Call
« Address Devices to Listen (SendSetup) « Send Data to Device (Send)
« Send Data to Addressed Listener « Receive Data from Device
(SendDataBytes) (Receive)
« Address Device to Talk (ReceiveSetup) « Clear Device (DevClear)
« Receive Data from Addressed Talker « Serial Poll Device
(RcvRespMsg) (ReadStatusByte)
and so on and so on

Finished GPIB No

Programming?

Are All Boards
Closed?

Figure 3-2. General Program Shell Using NI-488.2 Routines

NI-488.2M UM for Windows NT 312 © National Instruments Corp.

Chapter 3 Developing Your Application

General Program Steps and Examples

The following steps demonstrate how to use the NI-488.2 routines in your program. This
example configures a digital multimeter, reads 10 voltage measurements, and computes
the average of these measurements.

Step 1. Initialization

Usethe Sendl FC routine to initialize the bus and the GPIB interface board so that the
GPIB board is Controller-In-Charge (CIC). The only argument of Sendl FC isthe GPIB
interface board number.

Sendl FC(0) ;
if (ibsta & ERR) {
gpi berr (" Sendl FC error");

Step 2. Find All Listeners

Usethe Fi ndLst n routine to create an array of all of the instruments attached to the
GPIB. Thefirst argument is the interface board number, the second argument isthe list
of instruments that was created, the third argument isalist of instrument addresses that
the procedure actually found, and the last argument is the maximum number of devices
that the procedure can find (that is, it must stop if it reaches the limit). The end of thelist
of addresses must be marked with the NQADDR constant, which is defined in the header
file that you included at the beginning of the program.

for (loop = 0; loop <=30; |oop++){
instrunents[l oop] = |oop;

}
instrunents[31] = NOADDR,
printf("Finding all Listeners on the bus...\n");

Fi ndl stn(0, instrunents, result, 30);
if (ibsta & ERR) {
gpi berr ("FindLstn error");

Step 3. ldentify the Instrument

Send an identification query to each device for identification. For this example, assume
that all of the instruments are | EEE 488.2-compatible and can accept the identification
query, *1 DN?. Inaddition, assumethat Fi ndLst n found the GPIB interface board at
primary address O (default) and, therefore, you can skip the first entry inthe r esul t

array.

© National Instruments Corp. 313 NI-488.2M UM for Windows NT

Developing Your Application Chapter 3

for (loop = 1; loop <= numListeners; |oop++) {
Send(0, result[loop], "*IDN?", 5L, NLend);
if (ibsta & ERR) {
gpi berr("Send error");
}

Recei ve(0, result[loop], buffer, 10L, STOPend);
if (ibsta & ERR) {

gpi berr (" Receive error");
}

buffer[ibcentl] ="'\0";
printf("The instrunment at address % is a %\n",
resul t[loop], buffer);
if (strncnp(buffer, "Fluke, 45", 9) == 0) {
fluke = result[l oop];
printf("**** Found the Fluke ****\n");
br eak;

}

if (loop > num Listeners) {
printf("Did not find the Fluke!\n");
i bonl (0,0);
exit(1);

The constant NLend signals that the new line character with EOI is automatically
appended to the data to be sent.

The constant STOPend indicates that the read is stopped when EQI is detected.

Step 4. Initializethe Instrument

After you find the multimeter, use the DevC ear routineto clear it. Thefirst argument
isthe GPIB board number. The second argument is the GPIB address of the multimeter.
Then send the | EEE 488.2 Reset command to the meter.

Devd ear (0, fluke);
if (ibsta & ERR) {
gpi berr("DevC ear error")

Send(0, fluke, "*RST", 4L, NLend);
if (ibsta & ERR) {
gpi berr("Send *RST error");

sum = 0. 0;

for(m=0; nx10; mt+){
/* start of loop for Steps 5 through 8 */

NI-488.2M UM for Windows NT 314 © National Instruments Corp.

Chapter 3 Developing Your Application

Step 5. Configurethe Instrument

After initidization, the instrument is ready to receive instructions. To configure the
multimeter, use the Send routine to send device-specific commands. The first argument
is the number of the access board. The second argument is the GPIB address of the
multimeter. The third argument is a string of bytesto send to the multimeter.

The bytesin this example instruct the meter to measure volts alternating current (VAC)
using auto-ranging (AUTO), to wait for atrigger from the Controller before starting a
measurement (TRI GCER 2), and to assert SRQ when the measurement has been
completed and the meter is ready to send theresult (* SRE 16). The fourth argument
represents the number of bytesto be sent. Thelast argument, NLend, is a constant
defined in the header file which tells Send to append a linefeed character, with EOI
asserted, to the end of the message sent to the multimeter.

Send (0, fluke, "VAC, AUTG TRIGGER 2; *SRE 16", 29L, NLend);
if (ibsta & ERR) {
gpi berr (" Send setup error");

Step 6. Trigger the Instrument

In the previous step, the multimeter was instructed to wait for atrigger before conducting
ameasurement. Now send atrigger command to the multimeter. Y ou could use the

Tri gger routineto accomplish this, but because the Fluke 45 is | EEE 488.2-
compatible, you can just send it the trigger command, * TRG The VAL1? command
instructs the meter to send the next triggered reading to its output buffer.

Send(0, fluke, "*TRG VAL1?", 11L, NLend);
if (ibsta & ERR) {
gpi berr("Send trigger error");

Step 7. Wait for the M easurement

After the meter istriggered, it takes a measurement and displaysit on its front panel and
then asserts SRQ. Y ou can detect the assertion of SRQ using either the Test SRQ or
Wi t SRQ routine. If you have a process that you want to execute while you are waiting
for the measurement, use Test SRQ. For thisexample, you can use the Wai t SRQ
routine. The first argument in Vi t SRQ isthe GPIB board number. The second
argument is aflag returned by Vi t SRQ that indicates whether or not SRQ is asserted.

Wai t SRQ(0, &SRQasserted);

if (!SRQasserted) {
gpi berr("WaitSRQ error");

© National Instruments Corp. 315 NI-488.2M UM for Windows NT

Developing Your Application Chapter 3

After you have detected SRQ, usethe ReadSt at usByt e routine to poll the meter and
determine its status. The first argument isthe GPIB board number, the second argument
isthe GPIB address of the instrument, and the last argument is a variable that

ReadSt at usByt e usesto store the status byte of the instrument.

ReadSt at usByt e(0, fluke, &statusByte);
if (ibsta & ERR) {
gpi berr (" ReadSt at usByte error");

After you have obtained the status byte, you must check to seeif the meter has a message
to send. You can do this by checking the message available (MAV) bit, bit 4, in the
status byte.

if (!(statusByte & MAVbit) {
gpi berr ("I nproper Status Byte");
printf("Status Byte = Ox%\n", statusByte);

Step 8. Read the M easurement

Usethe Recei ve function to read the measurement over the GPIB. The first argument
is the GPIB interface board number, and the second argument is the GPIB address of the
multimeter. The third argument is a string into which the Recei ve function placesthe
data bytes from the multimeter. The fourth argument represents the number of bytesto
be received. The last argument indicates that the Recei ve message terminates upon
receiving a byte accompanied with the END message.

Recei ve(0, fluke, buffer, 10L, STOPend);

if (ibsta & ERR) {
gpi berr (" Receive error");

buffer[ibcntl] = "\0";

printf (Reading : %\n", buffer);

sum += Ascii ToFl oat (buffer);

} /* end of loop started in Step 5 */

Step 9. Processthe Data

Repeat Steps 5 through 8 in aloop until 10 measurements have been read. Then print the
average of the readings as shown:

printf ("The average of thelO readingsis: %\n", sum 10);

NI-488.2M UM for Windows NT 316 © National Instruments Corp.

Chapter 3 Developing Your Application

Step 10. Placethe Board Offline

Before ending your application program, take the board offline using
the i bonl function.

i bonl (0, 0);

Compiling, Linking, and Running Your GPIB Win32
Application

The following sections describe how to compile, link, and run your Win32 GPIB
application.

Microsoft Visual C/C++

Before you compile your Win32 C application, make sure that the following lineis
included at the beginning of your program:

#i ncl ude "decl -32. h"

After you have written your C application program, you must compile the application
program using Microsoft Visual C/C++ (version 2.0 or higher). Next, link the
application with the C language interface, gpi b- 32. obj . To compileand link a
Win32 console application named cpr og in aDOS shell, type the following on the
command line:

cl cprog.c gpib-32. obj

To run your application from the Windows environment, select the Run... option from
the Start menu. Enter the name of the compiled program in the dialog box that appears.
To run your application from a DOS shell, type the name of your compiled program on
the DOS command line.

Direct Entry with C

Before you compile your Win32 C application, make sure that the following lines are
included at the beginning of your application:

#i fdef __cplusplus
extern "C'{
#endi f

#i ncl ude "decl -32. h"

© National Instruments Corp. 317 NI-488.2M UM for Windows NT

Developing Your Application Chapter 3

/* dobal variable for the handle to the | oaded gpib-32.dlIl. */
HI NSTANCE Gpi b32Li b = NULL;

/* Pointers to N -488.2 global status variables */

int *Pibsta;

int *Piberr;

I ong *Pibentl;

#i fdef __cplusplus
}
#endi f

In addition to pointers to the status variables and a handle to the loaded gpi b- 32. dI | ,
you must define the direct entry prototypes for the functions you use in your application.
The prototypes for each function that gpi b- 32. dl | exports can be found in the

NI -488.2M Function Reference Manual for Windows NT. The NI-488.2M direct entry
sample programsiillustrate how to use direct entry to accessgpi b- 32. dl | . Usethe
LoadLi brary and Get Pr ocAddr ess functionsto load the gpi b- 32. dI | and get
pointers to its exported functions. For more information on direct entry, refer to the
Win32 SDK (Software Development Kit) documentation.

In your Win32 application, you first need to load gpi b- 32. dl | . Thefollowing code
fragment demonstrates how to call the LoadLi br ar y function and check for an error:

Gpi b32Li b=LoadLi brary("GPlI B-32. DLL");
if (Gpib32Lib == NULL) {

return FALSE;
}

Next, your Win32 application must use Get Pr ocAddr ess. Thefollowing code
fragment demonstrates how to retrieve the addresses of the pointers to the status variables
and any functions your application needs:

Pi bst a (int *) GetProcAddress(Gi b32Li b, (LPCSTR) "user_ibsta");
Pi berr (int *) GetProcAddress(Goi b32Li b, (LPCSTR)"user _iberr");
Pi bcntl = (long *) GetProcAddress(Gpi b32Li b,

(LPCSTR) "user _i bent™);

Pi bdev = (int (__stdcall *)(int, int, int, int, int, int))

Get Pr ocAddr ess(Gpi b32Li b, (LPCSTR)"i bdev");
(int (__stdcall *)(int, int)) GetProcAddress(Goi b32Li b,
(LPCSTR) "i bonl ") ;

Pi bonl

If Get ProcAddr ess fails, it returnsa NULL pointer. The following code fragment
demonstrates how to verify that none of the callsto Get Pr ocAddr ess failed:

if ((Pibsta == NULL) ||
(Piberr == NULL) ||
(Pibcntl == NULL) ||
(Pibdev == NULL) ||
(Pibonl == NULL)) {

/1 ERRCR!

NI-488.2M UM for Windows NT 318 © National Instruments Corp.

Chapter 3 Developing Your Application

}

Y our Win32 application dereferences the pointer to access either the status variables or
function. The following code demonstrates how to call afunction and access the status
variable from within your application:

dvm = (*Pi bdev) (0, 1, 0, T10s, 1, 0);
if (*Pibsta & ERR) {
printf("Call failed");

Before exiting your application, you must free gpi b- 32. dl | with the following
command:

FreeLi brary(Gpi b32Li b);

For more information on direct entry, refer to the Win32 SDK (Software
Development Kit) documentation.

Microsoft Visual C/C++

After you have written your Win32 application, you must compile the application using
Microsoft Visual C/C++ (version 2.0 or higher). To compile and link a Win32 console
application named cpr og in a DOS shell, type the following on the command line:

cl cprog.c

To run your application from the Windows environment, select the Run... option from
the Start menu. Enter the path and name of the compiled program in the dialog box that
appears. To run your application from a DOS shell, type the name of your compiled
program on the DOS command line.

Borland C/C++

After you have written your Win32 Borland C/C++ (version 4.0 or higher) application,
compileit using the - w32 option to create a console application. From the command
linein aDOS shell, type the following command to compile and link a Win32 application
named cpr og:

bcc32 -w32 cprog.c

To run your application from the Windows environment, select the Run... option from
the Start menu. Enter the name of the compiled program in the dialog box that appears.
To run your application from a DOS shell, type the name of your compiled program on
the DOS command line.

© National Instruments Corp. 319 NI-488.2M UM for Windows NT

Developing Your Application Chapter 3

Running Existing DOS and Windows GPIB Applications

Y ou can run existing DOS and Windows GPIB applications under Windows NT by using
the GPIB Virtual Device Driver, gpi b- vdd. dl | , which isincluded with your
NI -488.2M software.

To run DOS GPIB applications, load the specia GPIB device driver gpi b-nt. com
instead of gpi b. com, which you normally use with DOS. When you install the

NI -488.2M software, gpi b- nt . comis copied into a new subdirectory called

doswi n16. Touse gpi b- nt. com, you must modify your conf i g. nt filetoload
gpi b- nt . comwhenever aDOS application is executed. Theconfi g. nt fileis
located in your <wi nnt >\ syst enB2 directory, where <wi nnt > isyour Windows NT
directory, for example c: \ wi ndows . Toload gpi b- nt. com, add the following line
toyour confi g. nt file

devi ce=<pat h>\ doswi n16\ gpi b-nt. com

where <pat h> isthe directory where you installed the GPIB software (the default
installation directory is c: \ gpi b-nt).

To run 16-bit Windows GPIB applications, the system uses the special GPIB dynamic
link library, gpi b. dl | . When you install the NI-488.2M software, gpi b. dl | is
copied into the <wf nnt >\ syst enB2 directory, where <wi nnt > isyour Windows NT
directory, for example c: \ wi ndows). Aslongas gpi b. dl | isinthat directory, itis
automatically accessed whenever you launch a 16-bit Windows GPIB application.

NI-488.2M UM for Windows NT 320 © National Instruments Corp.

Chapter 4
Debugging Your Application

This chapter describes several ways to debug your application program.

Running the Softwar e Diagnostic Test

Before you run your application program, you should run the software diagnostic test,

i bt est , that wasinstalled with your NI1-488.2M software. Thei bt est programisan
NI-488.2M application that makes callsto the driver. If i bt est passes, your GPIB
hardware and NI-488.2M software are interacting correctly. The following paragraphs
describe the messages you might receive while running i bt est , and how to resolve
each problem.

Presence Test of Driver

Thei bt est program tests for the presence of the NI-488.2M driver. i bt est displays
the following message if it detects a problem:

<<< | BTEST was unable to access the N -488.2M driver. Please be
sure that the installation conpleted successfully, the hardware is
installed correctly without conflicts, and the software is
configured correctly. See your Getting Started manual for nore
information. >>>

There are several reasonswhy i bt est might be unable to access the NI-488.2M driver.
If the software is not properly installed or if there is a conflict between the GPIB
hardware and the other hardware in the system, the NI1-488.2M driver failsto start. Two
Windows NT utilities are useful in determining the source of the problem: the Devices
applet in the Control Panel inthe Main group, and the Event Viewer inthe
Administrative Tools group. The information available through each utility is described
in the following sections.

Examining NT Devicesto Verify the NI-488.2M I nstallation

To verify whether the NI1-488.2M devices areinstalled correctly (that is, that the devices
are started), run the Devices applet in the Control Panel window in the Program
Manager . This utility listsall of the devices known to Windows NT. Each device hasa
status associated with it. If the NI-488.2M driver isinstalled correctly, the following
lines appear in thelist of NT devices:

Devi ce St at us Started
GPI B Board C ass Driver Started Aut omati c
GPI B Device C ass Driver Started Aut omati c

© National Instruments Corp. 41 NI-488.2M UM for Windows NT

Debugging Your Application Chapter 4

Y ou should also see one or more lines similar to the following:

Devi ce St at us Started
GPIB Port Driver (AT-GPIB) **** System
GPIB Port Driver (MC-GPIB) **** System

TheGPI B Board Cl ass Driver andthe GPl B Device C ass Driver
should both have astatus of St art ed. If not, refer to the next section, Examining the
NT System Log Using the Event Viewer .

At least one of the GPIB Port Driverslisted by the Devices applet should have a status of
St arted. If not, refer to the next section, Examining the NT System Log Using the
Event Viewer .

If the GPIB Class Driver lines are not present or at least one GPIB Port Driver lineis not
present, the NI1-488.2M softwareis not installed properly. You must reinstall the
NI -488.2M software.

Examining the NT System L og Using the Event Viewer

Windows NT maintains asystem log. If the NI-488.2M driver is unable to start, it
records entries in the system log explaining why it failed to start. Y ou can examine the
system log by running the Event Viewer utility in the Administrative Tools window of
the Program Manager . Events that might appear in the system log include the
following:

* Thesystem isunableto locate the devicefile f or one or more of the devices that
make up the NI-488.2M driver and an event islogged that The syst em cannot
find the file specified. Inthiscase the NI-488.2M softwareis
incorrectly installed. You should reinstall the software.

» A conflict exists between the GPIB hardware and the other hardware in the system.
If thisisthe case, an event islogged that indicates the nature of the resource conflict.
To correct this conflict, reconfigure the GPIB hardware and NI1-488.2M software.
Refer to the getting started manual that came with your GPIB board.

GPIB Cables Connected

The following error messages appear if a GPIB cable is connected to the board when you
runi bt est .

Call (25) '"ibcnd " "' failed, ibsta (0x134) not what was expected
(0x8130)

Call(25) '"ibcnd " "' failed, expected ibsta (0x100) to have the
ERR bit set.

Disconnect all GPIB cables before trying the test again.

NI-488.2M UM for Windows NT 4-2 © National Instruments Corp.

Chapter 4 Debugging Your Application

Running GPIBInfo

The GPI Bl nf o utility program is a simple diagnostic tool you can use to obtain
information about the N1-488.2M software you are using and any GPIB interface boards
in your system. Thisinformation helps you determine the capabilities of your NI-488.2M
software and is also helpful if you need to call National Instruments for technical support.

Run GPI Bl nf o with no parameters. The program displays software information such as
the name and version of your GPIB software, the type of GPIB interface board and
functions that you can use with the software, and whether or not you can use the HS488
high-speed protocol. GPI Bl nf o also displays information about each GPIB interface
board installed in your system, including the name of the board, the type of Controller
chip it uses, the hardware settings, the type of functions that the board can use, and
whether or not the board can use the HS488 high-speed communication protocol. The
typical GPI Bl nf o output is asfollows:

GPIBInfo (Sep 29 1993)
Copyright 1993 National Instrunents Corp. Al rights reserved.

Sof tware | nfornation:
The NI -488.2M Software for Wndows NT is | oaded.
You are running Version 1.0 for the AT-GPlI B/ TNT board.
It supports both the NI -488 functions and the N -488.2 routines.
It supports the HS488 hi gh-speed protocol .

Har dwar e | nformation:
GPl BO: an AT- GPI B/ TNT board using the TNT4882C chi p.

It supports both the NI -488 functions and NI -488.2
routines.
It supports the HS488 hi gh-speed protocol.
It uses base 1/0O address 0x2CO.
It uses interrupt |level 11.
It uses DVA channel 5.

Debugging with the Global Status Variables

After each function call to your NI1-488.2M driver, i bsta,i berr ,i bcnt , and

i bent | are updated before the call returns to your application. Y ou should check for an
error after each GPIB call. Refer to Chapter 3, Developing Your Application, for more
information about how to use these variables within your program to automatically check
for errors.

After you determine which GPIB call isfailing and note the corresponding values of the

global variables, refer to Appendix A, Status Word Conditions, and Appendix B, Error
Codes and Solutions. These appendixes can help you interpret the state of the driver.

© National Instruments Corp. 4-3 NI-488.2M UM for Windows NT

Debugging Your Application Chapter 4

Debugging with ibic

If your application does not automatically check for and display errors, you can locate an
error by using i bi ¢. Simply issue the same functions or routines, one at atime as they
appear in your application program. Becausei bi ¢ returns the status values and error
codes after each call, you should be able to determine which GPIB call isfailing. For
more information about i bi ¢, refer to Chapter 5, ibic—Interface Bus Interactive Control
Utility.

After you determine which GPIB call isfailing and note the corresponding values of the

global variables, refer to Appendix A, Status Word Conditions, and Appendix B, Error
Codes and Solutions. These appendixes can help you interpret the state of the driver.

GPIB Error Codes

Table 4-1 liststhe GPIB error codes. Remember that the error variable is meaningful
only when the ERR bit in the status variableis set. For adetailed description of each
error and possible solutions, refer to Appendix B, Error Codes and Solutions.

Table 4-1. GPIB Error Codes

Error iberr
Mnemonic Value Meaning
EDVR 0 System error
ECIC 1 Function requires GPIB board to be CIC
ENOL 2 No Listeners on the GPIB
EADR 3 GPIB board not addressed correctly
EARG 4 Invalid argument to function call
ESAC 5 GPIB board not System Controller as required
EABO 6 1/O operation aborted (timeout)
ENEB 7 Nonexistent GPIB board
EOQIP 10 Asynchronous I/O in progress
ECAP 11 No capability for operation
EFSO 12 File system error
EBUS 14 GPIB bus error
ESTB 15 Serial poll status byte queue overflow
ESRQ 16 SRQ stuck in ON position
ETAB 20 Table problem

NI-488.2M UM for Windows NT 4-4 © National Instruments Corp.

Chapter 4 Debugging Your Application

Configuration Errors

Severa applications require customized configuration of the GPIB driver. For example,
you might want to terminate reads on a special end-of-string character, or you might
require secondary addressing. In these cases, you can use either the i bconf utility to
permanently reconfigure the driver, or you can use the dynamic configuration function
cal i bconfi g to modify the driver while your application is running.

i bconfi g doesnot change the state of the driver permanently. Using dynamic
configuration automatically configures the driver as necessary.

Note: To change settings other than base 1/O address, interrupt level, or DMA
channel, National I nstruments recommends usingi bconf i g instead of
running the i bconf utility.

If your program uses dynamic configuration, it will always work regardless of the
previous configuration of the driver. Refer to the description of i bconfi g inthe
NI-488.2M Function Reference Manual for Windows NT for more information.

To test the configuration of your hardware, you can usethei bdi ag program as
described in your getting started manual.

Timing Errors

If your application fails, but the same callsissued in i bi ¢ are successful, your program
might be issuing the NI-488.2 calls too quickly for your device to process and respond to
them. This problem can also result in corrupted or incompl ete data.

A well behaved |EEE 488 device should hold off handshaking and set the appropriate
transfer rate. If your deviceis not well behaved, you can test for and resolve the timing
error by single-stepping through your program and inserting finite delays between each
GPIB call. Oneway to do thisisto have your device communicate its status whenever
possible. Although this method is not possible with many devices, it is usually the best
option. Your delayswill be controlled by the device and your application can adjust
itself and work independently on any platform. Other delay mechanisms will probably
cause varying delay times on different platforms.

Communication Errors
Repeat Addressing

Some devices require GPIB addressing before any GPIB activity. Devices adhering to
the IEEE 488.2 standard should remain in their current state until specific commands are
sent across the GPIB to change their state. Y ou might need to configure your NI1-488.2M
driver to perform repeat addressing if your device does not remain in its currently

© National Instruments Corp. 45 NI-488.2M UM for Windows NT

Debugging Your Application Chapter 4

addressed state. Refer to Chapter 7, ibconf- nterface Bus Configuration Utility, or to the
description of i bconfi g (option | bc READDR) in the NI-488.2M Function Reference
Manual for Windows NT for more information about reconfiguring your software.

Termination M ethod

Y ou should be aware of the data termination method that your device uses. By defaullt,
your NI-488.2M software is configured to send EOI on writes and terminate reads on

EQI or aspecific byte count. 1f you send acommand string to your device and it does not
respond, it might be because it does not recognize the end of the command. Y ou might
need to send a termination message such as <CR> <L F> after awrite command as
follows:

i bwrt (dev,” COMMAND\ xOA\ xOD", 9) ;

Common Questions

What do| doif i bt est failswith an error?

Refer to the Running the Software Diagnostic Test section of this manual or the section
about i bdi ag in the getting started manual for specific information about what might
cause these tests to fail.

How do | communicate with my instrument over the GPIB?

Refer to the documentation that came from the instrument manufacturer. The command
seguences you use are totally dependent on the specific instrument. The documentation
for each instrument should include the GPIB commands you need to communicate with
it. In most cases, NI-488 device-level calls are sufficient for communicating with
instruments. Refer to Chapter 3, Developing Your Application, for more information.

Can | usethe NI-488 and NI1-488.2 callstogether in the same application?

Y es, you can mix NI-488 functions and NI-488.2 routines.

Can | usethe same namefor my application and a GPIB devicelisted in i bconf ?

No. Devices share the same name space that file and directory names use. Windows NT
might not operate properly if you have afile or adirectory name that conflicts with one
of the GPIB device names. By default, the names used by the DOS driver are gpi b0,
gpi bl, gpi b2, gpi b3, and devl, dev2, dev3, and so on through dev32.

NI-488.2M UM for Windows NT 4-6 © National Instruments Corp.

Chapter 4 Debugging Your Application

What can | doto check for errorsin my GPIB application?

Examine the value of ibsta after each NI-488 or NI-488.2 call. If acall fails, the ERR bit
of i bst a isset and an error codeis stored in i bent | . For more information about
global status variables, refer to Chapter 3, Developing Your Application.

Howdol usei bic?

Youcanusei bi ¢ to practice communication with your instrument, troubleshoot
problems, and develop your application program. For instructions, refer to Chapter 5,
ibic nterface Bus Interactive Control Utility.

How can | determinewhich type of GPIB board | haveinstalled?

Runthe GPI Bl nf o utility. It returnsinformation about the GPIB boards currently
configured for use in your system.

How can | determine which version of the NI-488.2M software | haveinstalled?
Runthe GPI Bl nf o utility. It providesinformation about the version of the NI1-488.2M
software currently installed.

What information should | have beforel call National Instruments?

When you call National Instruments, you should have the results of the diagnostic tests
i bdi ag andi bt est aong with the output from the GPI BI nf o utility. Also, make

sure you have filled out the technical support form in Appendix C, Customer
Communication.

© National Instruments Corp. 4-7 NI-488.2M UM for Windows NT

Chapter 5
ibic— nterface Bus I nter active Control Utility

This chapter introducesyoutoi bi ¢, theinteractive control program that you can useto
communicate with GPIB devicesinteractively.

Overview

With the Interface Bus Interactive Control (i bi ¢) program, you communicate with the
GPIB devices through functions you enter at the keyboard. For specific information
about how to communicate with your particular device, refer to the manual that came
with the device. You canuse i bi ¢ to practice communication with the instrument,
troubleshoot problems, and develop your application program.

Oneway i bi ¢ helpsyou to learn about your instrument and to troubleshoot problemsis
by displaying the following information on your screen whenever you enter acommand:

* Theresults of the statusword (i bst a) in hexadecimal notation
* The mnemonic constant of each bit setini bst a

e Themnemonic value of the error variable (i ber r) if an error exists (the ERR bit is
setini bsta)

* The count value for each read, write, or command function

» Thedatareceived from your instrument

Example Using NI-488 Functions

This section shows how you might usei bi ¢ to test a sequence of NI-488 device
function calls. Y ou do not need to remember the parameters that each function takes. If
you enter the function name only, i bi ¢ prompts you for the necessary parameters.

© National Instruments Corp. 51 NI-488.2M UM for Windows NT

ibic-Interface Bus Interactive Control Utility Chapter 5

1. Toruni bi c, changeto the appropriate drive and directory (c: \ gpi b-nt inthis
example). Then enter the command i bi ¢. Your screen should appear as follows:

National |nstrunents

| EEE 488 Interface Bus Interactive Control Program (IBIC
Copyright 1993 National Instrunents Corp. Version 3.0 (Wn32)
Version Date: May 28 1993 Version Tinme: 09:42:25

Al rights reserved

Type ‘help’ for help or ‘q to quit

2. Usei bdev to find the device name which is assigned to your device in the i bconf
program. The following example shows how you could usei bdev to open a
device, assign it to access board gpi b0, choose a primary address of 6 with no
secondary address, set atimeout of 10 s, enable the END message, and disable the
EOS mode:

i bdev

enter board index: O

enter prinmary address: 6

enter secondary address: O

enter timeout: 13

enter 'EQ on last byte' flag: 1

enter end-of-string node/byte: O
id = 32256

udo:

You could also input all the same information with thei bdev command as follows:

cibdev 0 6 0 1310
id = 32256

udo:

3. Clear the device asfollows:

ud0: ibclr
[0100] (cnpl)

NI-488.2M UM for Windows NT 52 © National Instruments Corp.

Chapter 5 ibic-1nterface Bus Interactive Control Utility

4. Write the function, range, and trigger source instructions to your device. Refer to the
instrument user manual for the command bytes that work with your instrument.

ud0: i bwrt

enter string: "F3R7T3"
[0100] (cnpl)
count: 6

or
udO: ibwt "F3R7T3"

[0100] (crpl)
count: 6

5. Trigger the device asfollows:

udo: ibtrg
[0100] (cnpl)

6. Wait for atimeout or for your device to request service. If the current timeout limit
istoo short, usei bt no to changeit. Usethei bwai t command as follows:
ud0: i bwait
enter wait nmask: TIMO RQS
[0900] (rgs cnpl)
or

ud0: i bwait TIMO RQS
[0900] (rgs cnpl)

7. Read the seria poll status byte. This serial poll status byte varies depending on the
device used.

ud0: ibrsp

[0100] (cnpl)
Pol | : 0x40 (decinmal : 64)

© National Instruments Corp. 53 NI-488.2M UM for Windows NT

ibic-Interface Bus Interactive Control Utility Chapter 5

8. Usetheread command to display the data on the screen both in hex values and their
ASCII equivalents.

udO: ibrd

enter byte count: 18
[0100] (cnpl)
count: 18
4e 44 43 56 20 30 30 30 N
2e 30 30 34 37 45 2b 30
Oa Oa

© 0o
o0
<
+ o
oo

or

udO: ibrd 18

[0100] (crpl)

count: 18

4e 44 43 56 20 30 30 30 N
2e 30 30 34 37 45 2b 30

Oa Oa

© 0o
°0
<
+ O
oo

9. Placethe device offline asfollows:

udO: i bon
enter value: 0
[0100] (cnpl)

or

ud0: ibonl O
[0100] (crpl)

10. Terminatethe i bi ¢ program by entering q at the prompt.

ibic Syntax

When you enter commandsini bi ¢, you can either include the parameters, or the
program prompts you for values. Some commands require numbers as input values.
Others might require you to input a string.

Number Syntax

Y ou can enter numbers as hexadecimal, octal, or decimal integer.

Hexadecimal numbers—Y ou must precede hex numbers by zero and x (for example, OxD).

Octal numbers-Y ou must precede octal numbers by zero only (for example, 015).

Decimal numbers—Enter the number only.

NI-488.2M UM for Windows NT 54 © National Instruments Corp.

Chapter 5 ibic-1nterface Bus Interactive Control Utility

String Syntax

Y ou can enter strings as an ASCII character sequence, octal bytes, hex bytes, or special
symbols.

ASCII character sequence—Y ou must enclose the entire sequence in quotation marks.

Octal bytes-Y ou must use a backslash character followed by the octal value. For
example, octal 40 isrepresented by \ 40.

Hex bytes-Y ou must use a backslash character and an x followed by the hex value. For
example, hex 40 is represented by \ x40.

Foecial Symbols-Some instruments require special termination or end-of-string (EOS)
characters that indicate to the device that atransmission has ended. The two most
common EOS charactersare \r and\ n. \r represents a carriage return character and
\'n represents alinefeed character. Y ou can use these special charactersto insert the
carriage return and linefeed charactersinto astring, asin " F3R5T1\ r\ n" .

Address Syntax

Many of the NI-488.2 routines have an address or address list parameter. An addressisa
16-bit representation of the GPIB address of adevice. The primary addressis stored in
the low byte and the secondary address, if any, is stored in the high byte. For example, a
device at primary address 6 and secondary address 0x67 has an address of 0x6706. A
NULL addressis represented as Oxffff.

ibic Syntax for NI-488 Functions

Table 5-1 and Table 5-2 summarize the syntax of NI-488 functionsini bi c. v
represents a number that you input. st ri ng represents a string that you input. For more
information about the function parameters, usethei bi ¢ help feature or refer to the

NI -488.2M Function Reference Manual for Windows NT.

© National Instruments Corp. 55 NI-488.2M UM for Windows NT

ibic-Interface Bus Interactive Control Utility

Chapter 5

Table5-1. Syntax for Device-Level NI1-488 Functionsin ibic

Syntax

Description

i bask m

Return configuration information where nm isamnemonic for a
configuration parameter or equivalent integer value

i bbna brdnane

Change access board of device where br dnane is symbolic
name of new board

ibclr

Clear specified device

ibconfig m v

Alter configurable parameters where rm is mnemonic for a
configuration parameter or equivalent integer value

ibdev vvvvvyv

Open an unused device
i bdev parametersare board id, pad, sad,t no, eos, eot

i beos v Change/disable EOS message

i beot v Enable/disable END message

iblnvyv Check for presence of device on the GPIB at pad, sad
i bl oc Goto local

i bonl v Place device online or offline

i bpad v Change primary address

i bpct Pass control

i bppc v Parallel poll configure

ibrd v Read datawhere v isthe bytesto read

ibrda v

Read data asynchronously wherev isthe bytesto read

i brdf flname

Read datato filewheref | nane is pathname of fileto read

i brpp Conduct a parallel poll

i brsp Return serial poll byte

i bsad v Change secondary address

i bstop Abort asynchronous operation
ibtmo v Change/disable time limit
ibtrg Trigger selected device

i bwait mask

Wait for selected event where mask isahex, octal, or decimal
integer or amask bit mnemonic

ibwt string

Write data

ibwta string

Write data asynchronously

ibwtf flnanme

Write data from afilewhere f | nane is pathname of file to write

NI-488.2M UM for Windows NT 56

© National Instruments Corp.

Chapter 5

ibic-1nterface Bus Interactive Control Utility

Table 5-2. Syntax for Board-Level NI-488 Functionsin ibic

Syntax Description

i bask m Return configuration information where rm is amnemonic for a
configuration parameter or equivalent integer value

i bcac v Become active Controller

ibcmd string Send commands

ibcnda string [Send commands asynchronously

ibconfig m v

Alter configurable parameters where nm is mnemonic for a
configuration parameter or equivalent integer value

i bdma v Enable/disable DMA
i beos v Change/disable EOS message
i beot v Enable/disable END message

i bfi nd udnane

Return unit descriptor where udnane isthe symbolic name of
board (for example, gpi b0)

ibgts v Go from Active Controller to standby

i bist v Set/clear i st

i blines Read the state of all GPIB control lines

iblnvyv Check for presence of device on the GPIB at pad, sad

i bl oc Gotolocal

i bonl v Place device online or offline

i bpad v Change primary address

i bppc v Parallel poll configure

ibrd v Read datawhere v isthe bytes to read

i brda v Read data asynchronously where v isthe bytesto read

i brdf flname Read datato filewheref | nane is pathname of file to read

i brpp Conduct a parallel poll

ibrsc v Request/rel ease system control

ibrsv v Request service

i bsad v Change secondary address

i bsic Send interface clear

ibsre v Set/clear remote enable line

i bstop Abort asynchronous operation

ibtmo v Change/disable time limit

i bwait mask Wait for selected event where mask isahex, octal, or decimal
integer or amask bit mnemonic

ibwt string Write data

ibwta string | Writedataasynchronously

ibwtf flnanme

Write data from afilewhere f | nane is pathname of file to write

© National Instruments Corp. 57

NI-488.2M UM for Windows NT

ibic-Interface Bus Interactive Control Utility

ibic Syntax for NI1-488.2 Routines

Table 5-3 summarizes the syntax of NI1-488.2 routinesini bi c¢. v represents a number
that you input and st ri ng representsastring. addr ess represents an address, and
addr i st representsalist of addresses separated by commas. For more information
about the routine parameters, use the i bi ¢ help feature or refer to the NI-488.2M
Function Reference Manual for Windows NT.

Table 5-3. Syntax for NI1-488.2 Routinesin ibic

Routine Syntax

Description

Al'l Spol | addrli st

Serial poll multiple devices

DevC ear address

Clear adevice

DevC ear Li st addrli st

Clear multiple devices

Enabl eLocal addrli st

Enable local control

Enabl eRenpt e addrli st

Enable remote control

Fi ndLstn addrlist v

Find al Listeners

Fi ndRQS addrl i st

Find device asserting SRQ

PassControl address

Pass control to adevice

PPol |

Parallel poll devices

PPol | Config address v v

Configure device for parallel poll

PPol | Unconfi g address

Unconfigure device for paralel poll

RcvRespMsg address stringv

Receive response message

ReadSt at usByt e addr ess

Serial poll adevice

Recei ve address string v

Receive datafrom adevice

Recei veSet up address Receive setup

Reset Sys addrl i st Reset multiple devices
Send address string v Send datato adevice
SendCmds string Send command bytes
SendDat aByt es addrlist stringv | Send databytes

Sendl FC

Send interface clear

SendLi st addrlist string v

Send data to multiple devices

SendLLO

Put devicesin local lockout

NI-488.2M UM for Windows NT

(continues)

58 © National Instruments Corp.

Chapter 5

Chapter 5 ibic-1nterface Bus Interactive Control Utility

Table 5-3. Syntax for N1-488.2 Routines in ibic (Continued)

Routine Syntax Description
SendSet up addrli st Send setup
Set RALS addr | i st Put devicesin remote with lockout state
Test Sys addrli st Cause multiple devices to perform self-tests
Test SRQ Test for service request
Trigger address Trigger adevice
TriggerlList addrlist Trigger multiple devices
Wi t SRQ Wait for service request
StatusWord

Ini bi ¢, all NI-488 functions (except i bf i nd andi bdev) and NI-488.2 routines
return the statusword i bst a intwo forms. ahex value in square brackets and alist of
mnemonicsin parentheses. In the following example, the status word is on the second
line. It shows that the device function write operation completed successfully:

udO: ibwt "f2t3x"

[0100] (crpl)
count: 5
udo:

For more information about the status word, refer to Chapter 3, Developing Your
Application.

Error Information

If an NI-488 function or NI-488.2 routine completes with an error, i bi ¢ displaysthe
relevant error mnemonic. In the following example, an error condition EBUS has
occurred during a data transfer.

ud0: i bwt "f2t3x"
[8100] (err cnpl)

error: EBUS
count: 1
udo:

In this example, the addressing command bytes could not be transmitted to the device.
Thisindicatesthat either dev1 is powered off, or the GPIB cable is disconnected.

© National Instruments Corp. 59 NI-488.2M UM for Windows NT

ibic-Interface Bus Interactive Control Utility Chapter 5

For adetailed list of the error codes and their meanings, refer to Chapter 4, Debugging
Your Application.

Count

When an |/O function completes, i bi ¢ displays the actual number of bytes sent or
received, regardless of the existence of an error condition.

If one of the addresses in an address list of an NI1-488.2 routine isinvalid, then the error is
EARG and i bi ¢ displaysthe index of theinvalid address as the count.

The count has a different meaning depending on which NI-488 function or NI -488.2

routineis called. Refer to the function descriptionsin the NI-488.2M Function Reference
Manual for Windows NT for the correct interpretation of the count return.

Common NI-488 Functions
ibfind
Usethe i bf i nd function to open aboard. The following example opens gpi bO.

2i bfind gpi b0
id = 32000

gpi bO:

i d isthe unit descriptor of the board. The prompt gpi b0 indicates that the board is
open.

Any name you use with thei bf i nd function must be avalid symbolic name in the
driver. gpi b0 isthe default name found in the driver. For more information about valid
names, refer to Chapter 7, ibconf— nterface Bus Configuration Utility.

ibdev

Thei bdev command initializes a device descriptor with the input information.

Withi bdev, you specify the following values:

* Access Board for the Device

* Primary Address

* Secondary Address

NI-488.2M UM for Windows NT 510 © National Instruments Corp.

Chapter 5 ibic-1nterface Bus Interactive Control Utility

» Timeout Setting
e EOT mode
e EOSmode

The following example showsi bdev opening an available device and assigning it to
accessgpi b0 (boar d = 0) with aprimary address of 6 (pad = 6), a secondary address
of hex 67 (sad = 0x67), atimeout of 10 s. (t o =13), the END message enabled

(eot =1), and the EOS mode disabled (eos = 0).

ibdev 0 6 0x67 13 1 0
id = 32256

udo:

If youuse i bdev without specifying parameters, i bi ¢ promptsyou for the input
parameters as shown in the following example:

i bdev
enter board index: O
enter prinmary address: 6
enter secondary address: 0x67
enter tineout: 13
enter ‘EQ on last byte’ flag: 1
enter end-of-string node/byte: O
id = 32256

udo:
Three distinct errors can occur with the i bdev call:

« EDVR-No deviceisavailable, the board index entered refers to a nonexistent board
(thatis, not O, 1, 2, or 3), or the board has no driver installed. The following
exampleillustrates an EDVR error.

cibdev 4 6 0x67 7 1 0
id=-1

[8000] (err)

error: EDVR (2)

» ENEB-The board index entered refers to a known board (such as 0), but the driver
cannot find the board. Inthiscase, run i bconf to verify that the base address of
the board is set correctly and that the Use This GPIB I nterface fieldisset
toyes.

© National Instruments Corp. 511 NI-488.2M UM for Windows NT

ibic-Interface Bus Interactive Control Utility Chapter 5

» EARG-Oneof thelast five parametersisaninvalid value. Thei bdev cal returns
with anew prompt and the EARG error (invalid function argument). If the i bdev
call returns with an EARG error, you must identify which parameter isincorrect and
use the appropriate command to correct it. In the following example, the pad has an
invalid value. You can correct it with ani bpad call as shown:

ibdev 0 66 0x67 7 1 0
id = 32256

[8100] (err cnpl)
error:. EARG

udO: ibpad 6
previ ous val ue: 16

ibwrt

Thei bwt command sends datafrom one GPIB device to another. For example, to
send the six character data string F3R5T1 from the computer to a device called devl
you enter the following string at the dev1 prompt as shown in the following example:

udO: ibwt "F3R5T1"

[0100] (crpl)
count: 6

The returned status word contains the cnpl bit, which indicates a successful 1/0
completion. The byte count 6 indicates that all six characters were sent from the
computer and received by the device.

ibrd

Thei br d command causes a GPIB device to receive data from another GPIB device.
The following example acquires data from the device and displays it on the screen in hex
format and in its ASCI| equivalent, along with the status word and byte count.

udO: ibrd 20

[2100] (end cnpl)

count: 18

4e 44 43 56 28 30 30 30 NDCV9O0O0O
2e 30 30 34 37 45 2b 30 0047E+0O0
0d Oa .

NI-488.2M UM for Windows NT 512 © National Instruments Corp.

Chapter 5 ibic-1nterface Bus Interactive Control Utility

Common NI-488.2 Routinesin ibic

Set 488.2

You must usetheset command before you can use NI-488.2 routinesini bi ¢c. The
syntax for thisform of the set command is as follows:

set 488.2 n

where n represents aboard number (for example, n=0for gpi b0).

Send and SendList

The Send routine sends datato asingle GPIB device. You can usethe SendLi st
command to send data to multiple GPIB devices. For example, suppose you want to send
the five character string * | DN? followed by the new line character with EOI. Y ou want
to send the message from the computer to the devices at primary address 2 and 17. To do
this, enter the SendLi st command at the 488. 2 (0) prompt as shown in the
following example:

488.2 (0): SendList 2, 17 “*IDN?” NLend
[0128] (cnpl cic tacs)
count: 6

The returned status word contains the cnpl bit, which indicates a successful 1/0
completion. The byte count 6 indicates that all six characters, including the added new
line, were sent from the computer and received by both devices.

Receive

The Recei ve routine causes the GPIB board to receive data from another GPIB device.
The following example acquires 10 data bytes from the device at primary address 5. It
stops receiving data when 10 characters have been received or when the END messageis
received. The acquired data is then displayed in hex format along with its ASCI|
equivalent. Thei bi ¢ program also displays the status word and the count of transferred
bytes.

488.2 (0): Receive 5 10 STOPend
[2124] (end cnpl cic |acs)
count: 5

48 65 6¢ 6¢C 6f Hell o

© National Instruments Corp. 513 NI-488.2M UM for Windows NT

ibic-Interface Bus Interactive Control Utility Chapter 5

Auxiliary Functions

Table 5-4 summarizes the auxiliary functions that you can useini bi c.

Table 5-4. Auxiliary Functionsinibic

Function Description

set udnane Select active device or board where udnane isthe symbolic
name of the new device or board (for example, dev1 or gpi b0).
Cdll i bf i nd ori bdev initially to open each device or board.

Set 488.2 v | Enter 488.2 mode for board v

hel p [option] | Display help information where opt i on isany NI-488 or
NI -488.2 call. If you do not enter an opt i on, amenu of options
appears.

Repeat previous function.

- Turn OFF display.

+ Turn ON display.

n* function | Executefunction n timeswhere f unct i on representsthe
correcti bi ¢ function syntax.

n* ! Execute previous function n times.

$ filename | Executeindirect filewherefi | enane isthe pathname of afile
that containsi bi ¢ functionsto be executed.

print string | Display string on screen wherest ri ng isan ASCII character
sequence, octal bytes, hex bytes, or special symbals.

e Exit or quit.
q Exit or quit.

Set (udname or 488.2)

You can usethe set command to select 488.2 mode or to communicate with a different
device or board.

The following example shows how to enter 488.2 mode. The 488. 2 (0) prompt
indicates that you arein NI-488.2 mode on board O .

set 488.2 0

488.2 (0):

NI-488.2M UM for Windows NT 514 © National Instruments Corp.

Chapter 5 ibic-1nterface Bus Interactive Control Utility

The next example switches communication from using NI-488.2 routines for gpi b0 to
using aunit descriptor (udO) previously acquired by an i bdev call.

488.2 (0): set udO

udoO:

Help (Display Help Information)

The help feature displays a menu of topicsto choose from. Each topic lists relevant
functions and other information. 'Y ou can access help for a specific NI1-488 function or
NI-488.2 routine by typing hel p followed by the call name (for example, hel p

i bwrt). Help describes the function syntax for al NI-488 functions and N1-488.2
routines.

I (Repeat Previous Function)

The! function repeats the most recent function executed. The following example issues
an i bsi ¢ command and then repeats that same command:

gpi b0: ibsic
[0130] (crnpl cic atn)

gpi bO: !
[0130] (cnpl cic atn)
- (Turn Display Off) and + (Turn Display On)

The- function turns off all screen output except for the prompt. This function is useful
when you want to repeat any 1/0 function quickly without waiting for screen output to be

displayed.
The + function turns the screen output on.

In the following example 24 consecutive letters of the alphabet are read from a device
using three i brd cals.

udO: ibrd 8
[2100] (end cnpl)
count: 8

61 62 63 64 65 66 67 68 abcdef gh
udo: -

udO: ibrd 8

© National Instruments Corp. 515 NI-488.2M UM for Windows NT

ibic-Interface Bus Interactive Control Utility Chapter 5

udo: +

udO: ibrd 8
[2100] (end cnpl)
count: 8

71 72 73 74 75 76 77 78 gr st uvwx

n* (Repeat Function n Times)

Then* function repeats the execution of the specified function n times, wheren isan
integer. In the following example, the message Hel | o is sent five timesto the device
described by udoO.

ud0: 5*ibwt "Hello"

In the following example, the word Hel | 0 issent 5 times, 20 times, and then 10 more
times.
ud0: 5*ibwt "Hell o"

udo: 20* !
udo: 10* !

Notice that the multiplier (*) does not become part of the function name; that is, i bwr t
"Hel | 0" isrepeated 20times, not 5* i bwt "Hel | o".

$ (Execute Indirect File)

The$ function reads a specified file and executesthe i bi ¢ functionslisted in that file,
in sequence, asif they were entered in that order from the keyboard. The following
example executesthei bi ¢ functionslisted inthefileuserfile.

gpi b0: $ userfile

The following example repeats the operation three times.

gpi b0: 3*$ userfile

The display mode that isin effect before this function was executed can be changed by
functionsin the indirect file.

NI-488.2M UM for Windows NT 516 © National Instruments Corp.

Chapter 5 ibic-1nterface Bus Interactive Control Utility

Print (Display the ASCII String)

You can usethe pri nt function to echo astring to the screen. The following example
shows how you can use ASCII or hex with the print command.

devl: print "hello"
hel | o

devl: print "and\r\n\x67\x6f\x6f\x64\x62\ x79\ x65"

and
goodbye

You canalsouse print todisplay comments from indirect files. The print string
appears even if the display is suppressed with the - function.

© National Instruments Corp. 517 NI-488.2M UM for Windows NT

Chapter 6
GPIB Programming Techniques

This chapter describes techniques for using some NI-488 functions and NI -488.2 routines
in your application program.

For more detailed information about each function or routine, refer to the NI-488.2
Function Reference Manual for Windows NT.

Termination of Data Transfers

GPIB datatransfers are terminated either when the GPIB EOI lineis asserted with the
last byte of atransfer or when a preconfigured end-of-string (EOS) character is
transmitted. By default, the NI-488.2M driver asserts EOI with the last byte of writes and
the EOS modes are disabled.

You can usethe i beot function to enable or disable the end of transmission (EOT)
mode. If EOT mode is enabled, the NI-488.2M driver asserts the GPIB EOI line when
the last byte of awriteis sent out on the GPIB. If it isdisabled, the EOI lineis not
asserted with the last byte of awrite.

You can usethe i beos function to enable, disable, or configure the EOS modes. EOS
mode configuration includes the following information:

e A 7-bit or 8-bit EOS byte

* EOS comparison method—This indicates whether the EOS byte has seven or eight
significant bits. For a7-bit EOS byte, the eighth bit of the EOS byte is ignored.

» EOSwrite method-If thisis enabled, the NI-488.2M driver automatically asserts the
GPIB EOQI line when the EOS byte is written to the GPIB. If the buffer passed into
ani bwt call contains five occurrences of the EOS byte, the EOI lineis asserted as
each of the five EOS bytes are written to the GPIB. If ani bwrt buffer does not
contain an occurrence of the EOS byte, the EQI lineis not asserted (unless the EOT
mode is enabled, in which case the EQI line is asserted with the last byte of the
write).

» EOSread method-If thisis enabled, the NI-488.2M driver terminatesi brd, i br da,
and i br df callswhen the EOS byte is detected on the GPIB or when the GPIB EOI
lineis asserted or when the specified count is reached. If the EOS read method is
disabled,i brd,i brda,andi brdf calsterminate only whenthe GPIB EQI lineis
asserted or the specified count has been read.

© National Instruments Corp. 6-1 NI-488.2M UM for Windows NT

GPIB Programming Techniques Chapter 6

You can usethe i bconf i g function to configure the software to inform you whether or
not the GPIB EOI line was asserted when the EOS byte wasread in. Usethe

| bcEndBi t | s Normal option to configure the software to report only the END bit in

i bst a when the GPIB EQI lineis asserted. By default, the NI-488.2M driver reports
END ini bst a when either the EOS byte isread in or the EQI lineis asserted during a
read.

High-Speed Data Transfers (HS488)

National Instruments has designed a high-speed data transfer protocol for IEEE 438
called H488. This protocol increases performance for GPIB reads and writes up to
8 Mbytes/s, depending on your system.

H$A488 is a superset of the |EEE 488 standard; thus, you can mix |EEE 488.1,

|EEE 488.2, and H$488 devices in the same system. |If HS488 is enabled, the
TNT4882C hardware implements high-speed transfers automatically when
communicating with H$488 instruments. To determine whether your GPIB interface
board has the TNT4882C hardware, use the GPI Bl nf o utility. If you attempt to enable
H$488 on a GPIB board that does not have the TNT4882C hardware, the error ECAPis
returned.

Enabling H3488

To enable HS488 for your GPIB board, usethei bconf i g function (option

| bcHSCabl eLengt h). Thevauepassedtoi bconf i g should specify the number of
meters of cablein your GPIB configuration. If you specify acable length that is much
smaller than what you actually use, the transferred data could become corrupted. If you
specify a cable length longer than what you actually use, the datais transferred
successfully, but more slowly than if you specified the correct cable length.

In additionto using i bconfi g to configure your GPIB board for HS488, the
Controller-In-Charge must send out GPIB command bytes (interface messages) to
configure other devices for H$488 transfers.

If you are using device-level calls, the NI-488.2M software automatically sends the
H$S488 configuration message to devices. If you enabled the HS488 protocol in

wi bconf , the NI-488.2M software sends out the HS488 configuration message when
you usei bdev to bring adeviceonline. If you call i bconfi g to changethe GPIB
cable length, the N1-488.2M software sends out the HS488 message again the next time
you call adevice-level function.

If you are using board-level functions or NI-488.2 routines and you want to configure
devices for high-speed, you must send the HS488 configuration messages using i bcnd
or SendCnds . The HS488 configuration message is made up of two GPIB command
bytes. Thefirst byte, the Configure Enable (CFE) message (hex 1F), places all HS488
devicesinto their configuration mode. Non-HS488 devices should ignore this message.

NI-488.2M UM for Windows NT 6-2 © National Instruments Corp.

Chapter 6 GPIB Programming Techniques

The second byteis a GPIB secondary command that indicates the number of meters of
cable in your system. It is called the Configure (CFGn) message. Because HS488 can
operate only with cable lengths of 1 to 15 meters, only CFGn values of 1 through 15

(hex 61 through 6F) are valid. If the cable length was configured properly in wi bconf ,
you can determine how many meters of cable arein your system by caling i bask
(option | baHSCabl eLengt h) in your application program. For CFE and CFGn
messages, refer to Appendix A, Multiline Interface Messages, in the NI-488.2M Function
Reference Manual for Windows NT.

System Configuration Effects on HS488

Maximum data transfer rates can be limited by your host computer and GPIB system
setup. For example, even though the theoretical maximum transfer rate with HS488 is
8 Mbytes/s, the maximum transfer rate obtainable on PC -compatible computers with an
ISA busis 2 Mbytes/s. The same |IEEE 488 cabling constraints for a350 ns T1 delay
apply to H$488. Asyou increase the amount of cable in your GPIB configuration, the
maximum data transfer rate using HS488 decreases. For example, two HS488 devices
connected by two meters of cable can transfer data faster than three HS488 devices
connected by four meters of cable.

Waiting for GPIB Conditions

You can usethe i bwai t function to obtain the current i bst a value or to suspend your
application until a specified condition occurs on the GPIB. If youusei bwai t witha
parameter of zero, it immediately updatesi bst a and returns. |f you want to use

i bwai t towait for one or more eventsto occur, then pass await mask to the function.
The wait mask should always include the TIMO event; otherwise, your applicationis
suspended indefinitely until one of the wait mask events occurs.

Device-Level Callsand Bus M anagement

The NI-488 device-level calls are designed to perform all of the GPIB management for
your application program. However, the NI1-488.2M driver can handle bus management
only when the GPIB interface board is CIC (Controller-In-Charge). Only the CIC isable
to send command bytes to the devices on the bus to perform device addressing or other
bus management activities. Use one of the following methods to make your GPIB board
the CIC:

» |If your GPIB board is configured as the System Controller (default), it automatically
makes itself the CIC by asserting the IFC line the first time you make a device-level
cal.

» If your setup includes more than one Controller, or if your GPIB interface board is
not configured as the System Controller, use the CIC Protocol method. To use the
protocol, issuethe i bconf i g function (option | bcCl CPROT) or use thei bconf
configuration utility to activate the CIC protocol. If the interface board isnot CIC,

© National Instruments Corp. 6-3 NI-488.2M UM for Windows NT

GPIB Programming Techniques Chapter 6

and you make a device-level call with the CIC Protocol enabled, the following
sequence OCcurs:

1. The GPIB interface board asserts the SRQ line.
2. Thecurrent CIC serial pollsthe board.
3. Theinterface board returns aresponse byte of hex 42.

4. The current CIC passes control to the GPIB board.

If the current CIC does not pass control, the NI1-488.2M driver returns the ECIC error
codeto your application. This error can occur if the current CIC does not understand
the CIC Protocol. If this happens, you could send a device-specific command
requesting control for the GPIB board. Then use aboard-level i bwai t command to
wait for CIC.

Talker/Listener Applications

Although designed for Controller-In-Charge applications, you can also use the

NI -488.2M software in most non-Controller situations. These situations are known as
Talker/Listener applications because the interface board is not the GPIB Controller. A
typical Talker/Listener application waits for events from the Controller and responds as
appropriate. The following paragraphs describe some programming techniques for
Talker/Listener applications.

Waiting for M essages from the Controller

A Talker/Listener application typically uses i bwai t with amask of 0 to monitor the
status of the interface board. Then, based on the status bitsset in i bst a, the application
takes whatever action is appropriate. For example, the application could monitor the
status bits TACS (Talker Active State) and LACS (Listener Active State) to determine
when to send datato or receive data from the Controller. The application could also
monitor the DCAS (Device Clear Active State) and DTAS (Device Trigger Active State)
bitsto determine if the Controller has sent the device clear (DCL or SDC) or trigger
(GET) messages to the interface board. If the application detects a device clear from the
Controller, it might reset the internal state of message buffers. If it detects atrigger
message from the Controller, the application might begin an operation such astaking a
voltage reading if the application is actually acting as a voltmeter.

Using the Event Queue

Some applications need to know the order in which certain messages are sent by the
Controller. To monitor the ordering of these messages, your application program must
enablethe EVENT hit, usingi bconf i g (option | bcEvent Queue). When the

NI-488.2M UM for Windows NT 6-4 © National Instruments Corp.

Chapter 6 GPIB Programming Techniques

EVENT bit isenabled, the DCAS and DTAS bits are no longer activated. Instead, all
DCAS and DTAS messages are stored in a queue, in the order that they are received.
The event queue also stores interface clear (IFC) messages. When the queue contains
some information, the NI-488.2 software setsthe EVENT bitini bst a. When the
application program detects EVENT, it can call the functioni bevent to retrieve the
first event that occurred. Retrieving events from the queue ensures that the application
can respond to device clear, device trigger, and interface clear messages in the correct
order.

Requesting Service

Another type of event that might be important in a Talker/Listener application isthe
serial poll. A Talker/Listener application can call i br sv with aseria poll response byte
when it needs to request service from the Controller. If the application needs to know
when the Controller has read the serial poll response byte, it can enable the SPOLL bit in
i bsta usingi bconfi g, optionl bcSPol | Bi t . The NI-488.2 software sets the
SPOLL hit when the Controller seria polls the board.

Serial Polling

You can use serial polling to obtain specific information from GPIB devices when they
request service. When the GPIB SRQ lineis asserted, it signals the Controller that a
service request is pending. The Controller must then determine which device asserted the
SRQ line and respond accordingly. The most common method for SRQ detection and
servicing isthe serial poll. This section describes how you can set up your application to
detect and respond to service requests from GPIB devices.

Service Requests from | EEE 488 Devices

| EEE 488 devices request service from the GPIB Controller by asserting the GPIB SRQ
line. When the Controller acknowledges the SRQ, it seria polls each open device on the
bus to determine which device requested service. Any device requesting service returns a
status byte with bit 6 set and then unasserts the SRQ line. Devices not requesting service
return a status byte with bit 6 cleared. Manufacturers of IEEE 488 devices use lower
order bits to communicate the reason for the service request or to summarize the state of
the device.

Service Requests from | EEE 488.2 Devices

The |EEE 488.2 standard refined the bit assignments in the status byte. In addition to
setting bit 6 when requesting service, | EEE 488.2 devices also use two other bitsto
specify their status. Bit 4, the Message Available bit (MAV), is set when the deviceis
ready to send previously queried data. Bit 5, the Event Status bit (ESB), is set if one or
more of the enabled |EEE 488.2 events occurs. These events include power-on, user

© National Instruments Corp. 6-5 NI-488.2M UM for Windows NT

GPIB Programming Techniques Chapter 6

request, command error, execution error, device dependent error, query error, request
control, and operation complete. The device can assert SRQ when ESB or MAV are s&t,
or when a manufacturer-defined condition occurs.

Automatic Serial Polling

Y ou can enable automatic serial polling if you want your application to conduct a serial
poll automatically any time the SRQ lineis asserted. The autopolling procedure occurs
asfollows:

1. Toenableautopolling, use the configuration utility, ibconf, or the configuration
function, i bconf i g with option | bcAUTOPCLL . (Autopolling is enabled by
default.)

2. When the SRQ lineis asserted, the driver automatically serial polls the open devices.

3. Each positive seria poll response (bit 6 or hex 40 is set) is stored in a queue
associated with the device that sent it. The RQS bit of the device status word,
i bsta,isset.

4. The polling continues until SRQ is unasserted or an error condition is detected.

5. Toempty the queue, usethei br sp function. i br sp returnsthefirst queued
response. Other responses are read in first-in-first-out (FIFO) fashion. If the RQS
bit of the status word is not set wheni br sp iscalled, aseria poll is conducted and
returns whatever responseisreceived. Y ou should empty the queue as soon as an
automatic serial poll occurs, because responses might be discarded if the queueis
full.

6. If the RQS bit of the statusword is still set after i br sp iscalled, the response byte
gueue contains at least one more response byte. If this happens, you should continue
tocal i br sp until RQSis cleared.

Stuck SRQ State

If autopolling is enabled and the GPIB interface board detects an SRQ, the driver seria
polls all open devices connected to that board. The serial poll continues until either SRQ
unasserts or al the devices have been polled.

If no device responds positively to the serial poll, or if SRQ remainsin effect because of
afaulty instrument or cable, a stuck SRQ stateisin effect. |f this happens during an

i bwai t for RQS, the driver reportsthe ESRQ error. If the stuck SRQ state happens, no
further polls are attempted until ani bwai t for RQSismade. Wheni bwai t isissued,
the stuck SRQ state is terminated and the driver attempts a new set of serial polls.

NI-488.2M UM for Windows NT 6-6 © National Instruments Corp.

Chapter 6 GPIB Programming Techniques

Autopolling and Interrupts

If autopolling and interrupts are both enabled, the NI1-488.2M software can perform
autopolling after any device-level NI-488 call aslong asno GPIB /O is currently in
progress. In this case, an automatic serial poll can occur even when your application is
not making any calls to the NI1-488.2M software. Autopolling can also occur when a
device-level i bwai t for RQSisin progress. Autopolling is not allowed whenever an
application calls aboard-level NI-488 function or any NI-488.2 routine, or the stuck SRQ
(ESRQ) condition occurs.

Note: The NI-488.2M software for Windows NT does not function properly if
interrupts are disabled.

SRQ and Serial Polling with NI-488 Device Functions

Y ou can use the device-level NI-488 functioni br sp to conduct aserial poll. i br sp
conducts asingle serial poll and returns the seria poll response byte to the application
program. If automatic seria polling is enabled, the application program can use i bwai t
to suspend program execution until RQS appearsin the statusword, i bst a. The
program can then cal i br sp to obtain the serial poll response byte.

The following exampleillustrates the use of thei bwai t andi br sp functionsina
typical SRQ servicing situation when automatic serial polling is enabled.

#i ncl ude "decl . h"

char GCet Seri al Pol | Response (int DeviceHandl e)

{
char Seri al Pol | Response = 0;
ibwait (DeviceHandle, TIMOD| RQS);
if (ibsta & RS) {
printf ("Device asserted SRQ\n");
/* Use ibrsp to retrieve the serial poll
response. */
ibrsp (DeviceHandl e, &Serial Pol | Response);
}
return Seri al Pol | Response;
}

© National Instruments Corp. 6-7 NI-488.2M UM for Windows NT

GPIB Programming Techniques Chapter 6

SRQ and Serial Polling with NI-488.2 Routines

The NI-488.2M software includes a set of NI-488.2 routines that you can use to conduct
SRQ servicing and serial polling. Routines pertinent to SRQ servicing and seria polling
are Al | Spol | , Fi ndRQS, ReadSt at usByt e, Test SRQ, and Wi t SRQ.

Al | Spol | can seria poll multiple deviceswith asingle call. It placesthe status bytes
from each polled instrument into a predefined array. Then you must check the RQS bit
of each status byte to determine whether that device requested service.

ReadSt at usByt e issimilarto Al | Spol | , except that it only seria pollsasingle
device. Itisaso analogous to the device-level NI-488 i br sp function.

Fi ndRQS serial pollsalist of devices until it finds a device that is requesting service or
until it has polled all of the devices on the list. The routine returns the index and status
byte value of the device requesting service.

Test SRQ determines whether the SRQ line is asserted or unasserted, and returns to the
program immediately.

Wi t SRQissimilar to Test SRQ, except that Vi t SRQ suspends the application
program until either SRQ is asserted or the timeout period is exceeded.

The following examples use NI-488.2 routines to detect SRQ and then determine which
device requested service. In these examples three devices are present on the GPIB at
addresses 3, 4, and 5, and the GPIB interface is designated as busindex 0. The first
example uses Fi ndRQS to determine which device is requesting service and the second
exampleuses Al | Spol | to serial poll al three devices. Both examples use Wi t SRQ
to wait for the GPIB SRQ line to be asserted.

Note: Automatic serial polling is not used in these examples because you cannot use
it with NI-488.2 routines.

NI-488.2M UM for Windows NT 6-8 © National Instruments Corp.

Chapter 6 GPIB Programming Techniques

Example 1: Using FindRQS

This example illustrates the use of Fi ndRQS to find the first device that is requesting
service.

voi d Get ASeri al Pol | Response (char *Devi cePad, char *Devi ceResponse)
{

char Seri al Pol | Response = 0;
int Wait Resul t;
Addr 4882_t Addrlist[4] = {3,4,5, NOADDR} ;

Wai t SRQ (0, &WMitResult);

if (WitResult) {
printf (“SRQis asserted.\n");

Fi ndR@S (0, AddrlList, &Serial Poll Response);

if (!(ibsta & ERR)) {
printf (“Device at pad % returned byte %.\n",

Addr List[ibcnt], (int) Serial Poll Response);

*Devi cePad = AddrList[ibcnt];
*Devi ceResponse = Seri al Pol | Response;

}

}

return;

Example 2: Using AllSpoll

Thisexample illustratesthe use of Al | Spol | to serial poll three devices with asingle
cal.

void GetAll Seri al Pol | Responses (Addr4882_t AddrList[], short
ResponselList[])

{
int Wai t Resul t;
Wai t SRQ (0, &WitResult);
if (WaitResult) {
printf ("SRQis asserted.\n");
Al'l Spoll (O, AddrlList, ResponseList);
if (!(ibsta & ERR)) {
for (i = 0; AddrList[i] !'= NOADDR, i++) {
printf ("Device at pad % returned byte %.\n",
AddrList[i], ResponselList[i]);
}
}
}
return;
}

© National Instruments Corp. 6-9 NI-488.2M UM for Windows NT

GPIB Programming Techniques Chapter 6

Parallel Polling

Although parallel polling is not widely used, it is auseful method for obtaining the status
of more than one device at the sametime. The advantage of parallel polling isthat a
single parallel poll can easily check up to eight individual devices at once. In
comparison, eight separate serial pollswould be required to check eight devices for their
serial poll response bytes. The value of the individual status bit (i st) determinesthe
parallel poll response.

Implementing a Parallel Poll

Y ou can implement parallel polling with either NI-488 functions or NI-488.2 routines. If
you use NI -488.2 routines to execute parallel polls, you do not need extensive knowledge
of the paralléel polling messages. However, you should use the NI -488 functions for
parallel polling when the GPIB board is not the Controller and must configure itself for a
parallel poll and set its own individual status bit (i st).

Parallel Polling with NI-488 Functions

Follow these steps to implement parallel polling using NI-488 functions. Each step
contains example code.

1. Configurethe device for parallel polling using the i bppc function, unless the device
can configure itself for parallel polling.

i bppc requires an 8-bit value to designate the data line number, the i st sense, and
whether or not the function configures or unconfigures the device for the parallel
poll. The bit pattern is as follows:

011ESD2D1D0

E is1to disable parallel polling and O to enable parallel polling for that particular
device.

Sis1if thedeviceisto assert the assigned datalinewhen i st =1, and Oif the
deviceisto assert the assigned datalinewhen i st =0.

D2 through DO determine the number of the assigned dataline. The physical line
number is the binary line number plus one. For example, DIO3 has a binary bit
pattern of 010.

The following example code configures a device for parallel polling using NI-488
functions. The device asserts DIO7 if itsi st =0.

NI-488.2M UM for Windows NT 6-10 © National Instruments Corp.

Chapter 6 GPIB Programming Techniques

In thisexample, thei bdev command is used to open a device that has a primary
address of 3, has no secondary address, has atimeout of 3 s, asserts EOI with the last
byte of awrite operation, and has EOS characters disabled.

The following call configures the device to respond to the poll on DIO7 and to assert
thelinein the casewhenitsi st is0. Passthe binary bit pattern, 0110 0110 or hex
66,toi bppc.

#i ncl ude "decl . h"
char ppr;

dev = ibdev(0, 3,0, T3s,1,0);
i bppc(dev, 0x66);

If the GPIB interface board configuresitself for a parallel poll, you should still use
the i bppc function. Passthe board index or a board unit descriptor value as the
first argument ini bppc . Inaddition, if theindividual status bit (i st) of the board
needs to be changed, usethei bi st function.

In the following example, the GPIB board isto configure itself to participate in a
parallel poll. It asserts DIO5 when i st = 1if aparalle poll is conducted.

i bppc(0, 0x60Q);
ibist(0, 1);

2. Conduct the paralel poll using i br pp and check the response for a certain value.
The following example code performs the parallel poll and compares the response to
hex 10, which corresponds to DIO5. |f that bit is set, theist of the deviceis 1.

i brpp(dev, &ppr);
if (ppr & 0x10) printf("ist = 1\n");

3. Unconfigure the device for parallel polling withi bppc . Notice that any value
having the parallel poll disable bit set (bit 4) in the bit pattern disables the
configuration, so you can use any value between hex 70 and 7E.

i bppc(dev, 0x70);

Parallel Polling with NI-488.2 Routines

Follow these steps to implement parallel polling using NI-488.2 routines. Each step
contains example code.

1. Configurethe device for parallel polling using the PPol | Conf i g routine, unless

the device can configure itself for parallel polling. The following example
configures adevice at address 3 to assert dataline 5 (DIO5) wheniitsi st valueis 1.

© National Instruments Corp. 6-11 NI-488.2M UM for Windows NT

GPIB Programming Techniques Chapter 6

#i ncl ude "decl . h"
char response;
Addr 4882_t AddresslList[2];

/* The follow ng conmand cl ears the GPIB. */
Sendl FC(0) ;

/* The value of sense is conpared with the ist bit of the
devi ce and deterni nes whether the data line is asserted. */

PPol | Config(0,3,5,1);

2. Conduct the parald poll using PPol | , store the response, and check the response
for acertain value. In the following example, because DIO5S is asserted by the
deviceif i st =1, the program checks bit 4 (hex 10) in the response to determine
thevalueof i st .

PPol | (0, &response);

/* 1f response has bit 4 (hex 10) set, the ist bit of the
device at that tine is equal to 1. |If it does not appear,
the ist bit is equal to 0. Check the bit in the follow ng
statement. */

if (response & 0x10) {
printf("The ist equals 1.\n");

el se {
printf("The ist equals 0.\n");

3. Unconfigure the device for parallel polling using the PPol | Unconf i g routine as
shown in the following example. In this example, the NOADDR constant must appear
at the end of the array to signal the end of the addresslist. If NOADDR isthe only
value in the array, all devicesreceive the parallel poll disable message.

Addr essLi st [0] 3;
Addr essLi st[1] NOADDR;
PPol | Unconfi g(0, AddressList);

NI-488.2M UM for Windows NT 6-12 © National Instruments Corp.

Chapter 7
Ibconf—I nterface Bus Configuration Utility

This chapter contains adescription of i bconf , the NI-488.2M software configuration
utility you can use to configure your software.

Overview

Thei bconf utility isaWindows Control Panel application program you can use to
view or modify the configuration of your GPIB interface boards. Y ou can useit to view
or modify the GPIB device templates, which provide compatibility with older
applications.

In most cases, you should usei bconf only to change the hardware configuration of
your GPIB interface boards. To change the GPIB characteristics of your boards and the
configuration of the device templates, usethei bconf i g function in your application
program. If your application program usesi bconf i g whenever it needsto modify a
configuration option, it is able to run on any computer with the appropriate NI1-488.2M
software, regardless of the configuration of that computer.

Because you can use i bconf to modify the configuration of the NI-488.2M kernel
drivers, you must be logged on to Windows NT asthe Admi ni strat or to makeany
changeswith i bconf . If you start i bconf without Admi ni st rat or privileges, it
runs in read-only mode; you can view the settings, but you cannot make changes.

Starting and Exiting ibconf

When you install the NI-488.2M software for Windows NT, the installation program
placesi bconf into your Control Panel. To starti bconf simply open your

N

Windows NT Control Panel and select the ’ icon. Themain GPIB Configuration
diaog box appears containing alist of the GPIB boards and device templates as shown in
Figure 7-1.

© National Instruments Corp. 7-1 NI-488.2M UM for Windows NT

ibconf-I nterface Bus Configuration Utility Chapter 7

= GPIB Configuration

GPIB Board w Device Template

- DEV1 +
Configure DEV2

DEY3
] DEV4
Help DEVS +

| (1] 4 I | Cancel Hestart Unload

Figure 7-1. Main Dialog Box in ibconf

If at any point you need more help, click on the Help button or press the <F1> key.
Either of these actions brings up the help screen, which gives you more information about
the current dialog box.

After you have finished configuring your GPIB boards and device templates, click on the
OK button to save the changes and exit. Click the Cancel button to exit without saving
any of the changes you made. To save your changes and force the new settings to take
effect immediately, click on the Restart button. i bconf attemptsto unload and reload
the NI-488.2M software so that the software uses your new settings. If i bconf cannot
unload the software because it is being used by another application, it instructs you either
to exit al GPIB-related applications and click Restart again, or to shut down and restart
your computer.

If you need to unload the NI-488.2M software and prevent it from reloading when you
restart your computer, click the Unload button. If i bconf cannot unload the
NI-488.2M software, it instructs you either to exit all GPIB-related applications, or to
shut down and restart your computer. If you want to use the software again after
unloading it, click on the Restart button.

Board Configuration

Y our modifications will usualy be to the GPIB board configurations. To view or modify
the configuration of one of your GPIB boards, select the board name in the main GPIB
Configuration dialog box and click on the Configure button. Y ou could also
double-click on the board name. The board configuration dialog box appears.

NI-488.2M UM for Windows NT 7-2 © National Instruments Corp.

Chapter 7 ibconf-I nterface Bus Configuration Utility

The board configuration dialog box contains hardware specific information for your
particular GPIB interface board. Boards like the AT-GPIB require several pieces of
information to be entered into i bconf , while other boards such as the MC-GPIB do not.
With the MC-GPIB, you must use the Micro Channel configuration program that came
with your computer to modify many of the hardware settings for your board. Figure 7-2
shows the board configuration dialog box for the AT-GPIB board.

GPIBO

 Hardware Settings

ADDRERS

1 w0

Basze 1/0 Address

]

Interrupt Level

—_
[Ig]

Ln

DMA Channel

(<] Use Demand Mode DMA The dark side
should be

500nsec | *| Bus Timing pressed down
on your board.

Dizabled |#*] Cable Length for High-5peed

(1] .4 | LCancel Help Software »>3» I

Figure 7-2. Board Configuration for an AT-GPIB Interface Board

The following configuration items appear on the board configuration dialog box for all
interface boards.

UsethisBoard Usethisitem to disable aninterface board. If thisitem is not selected,

the NI-488.2M software ignores the board. By default, gpi b0 is
enabled and gpi b1, gpi b2, and gpi b3 are disabled.

© National Instruments Corp. 7-3 NI-488.2M UM for Windows NT

ibconf-I nterface Bus Configuration Utility Chapter 7

BusTiming

CableLength
for High Speed

OK

Cancdl

Help

Software

Use this item to specify the source handshake T1 delay of the board.
This delay determines the minimum amount of time, after the datais
placed on the bus, that the board asserts the GPIB DAYV line during a
write or command operation. Refer to the ANSI/IEEE Standard 488.1-
1987, Section 5.2 for more information about the factors that might
affect the choice of the T1 delay. For example, if the total length of the
GPIB cable in the system isless than 15 meters, then the value 350 ns
isappropriate. The default for thisitem, 500 ns, should work in all
systems.

Thisfield specifies the number of meters of GPIB cable you havein
your system. |f you use the HS488 high-speed protocol to
communicate with HS488-compliant devices, you must specify the
total number of meters of GPIB cable in your system. The System
Controller, when it initializes the GPIB, must send this information to
all H$488 devices so high-speed transfers occur without errors.

Use this button to keep the configuration as shown and return to the
main dialog box.

Use this button to discard any configuration changes made to the board
and return to the main dialog box.

Use this button or the <F1> key to bring up help for this dialog box.

Use this button to expand the board configuration dialog box. You can
then view or modify the GPIB characteristics of the board which you
would normally configure in your application program using the

i bconfi g function.

The following configuration items appear only for certain GPIB interface boards such as
the AT-GPIB. Other boards such as the MC-GPIB are configured automatically.

Base /O
Address

Use thisitem to select the 1/O address of the interface board. It must be
set to the same value as the base 1/0 address selected with the switches
on the board. For more information about setting the base 1/0 address
of your board, refer to the getting started manual that came with your
GPIB interface board.

To assist you in configuring the interface board properly, i bconf
shows a picture of the base I/O address switch of the board. You
should confirm that the switch settings on your interface board match
thepictureini bconf . The switch picturein i bconf isasoan
interactive control. Y ou can use your mouse to change the position of
the switches in the picture. When you change the position of the
switches, i bconf updates the number displayed in the Base 1/0O
Addressfield. Set the switchin i bconf to look like the switch on
your board.

NI-488.2M UM for Windows NT 7-4 © National Instruments Corp.

Chapter 7 ibconf-I nterface Bus Configuration Utility

Interrupt Use thisitem to select the hardware interrupt level used by your

Level interface board. It must be set to the same value as interrupt level
selected with the jumpers on the board. For more information about
setting the interrupt level of your board, refer to the getting started
manual that came with your GPIB interface board.

DMA Channd Usethisitem to select the hardware DMA channel used by your
interface board. It must be set to the same value as DMA channel
selected with the jumpers on the board. For more information about
setting the DMA channel of your board, refer to the getting started
manual that came with your GPIB interface board.

Use Demand Use thisitem to select the DMA transfer mode that the NI -488.2M

Mode DMA software uses. When thisitem is selected, the NI-488.2M software
uses demand mode for DMA transfers. When thisitem is unsel ected,
the NI-488.2M software uses single cycle DMA. Almost all
PC-compatible computers can use demand mode, which is the fastest
DMA mode. But some newer computers cannot use demand mode.
Before changing thisitem, you should use the i bdi ag utility which
teststhe DMA controller in your computer and alerts you if demand
mode cannot be used.

Expanded Board Configuration

If you need to modify the GPIB characteristics of an interface board, click on the
Softwar e button of the board configuration dialog box. The expanded dialog box
appears, containing all of the GPIB characteristics of the board as shown in Figure 7-3.

© National Instruments Corp. 7-5 NI-488.2M UM for Windows NT

ibconf-I nterface Bus Configuration Utility Chapter 7

= GPIBO
" Hardware Settings

[Usze thiz Board

I GPIB Address

Prnmary Secondary

" Termination
[l Terminate Read on EDS
] Set EOI with EDS on Wiite

ADDRESS

OxZcl Basze 1/0 Address

E Interrupt Level

L

MA Channel

[Use Demand Mode DMA The dark side

E shﬂulddhg [] 8-bit EDS Compare
B00nsec B Timi Presse own
[500nsec | #] Bus Timing on your board. J Send EDI at end of Write

Disabled E Cable Length For High-5peed EI EODS Byte

| oK I | LCancel I | Help I | Software »> I

Advanced ltems
| System Controller E4 Enable Auto Senal Polling

170 Timeout [] Enable CIC Protocol
[Assert REN When 5C

Parallel Poll Duration

Figure 7-3. Expanded Board Configuration for an AT-GPIB board

If possible, you should change these characteristics within your application program
using the i bconf i g function. But if you are using an older application that requires
changes to the GPIB characteristics before it can run, you might need to make the
changesin i bconf . Thefollowing configuration items appear in the expanded dialog
box.

GPIB Primary All GPIB boards must be assigned a unique primary address. This

Address address, a number in the range 0 to 30 decimal, is used by the
NI-488.2M software to compute the talk and listen addresses of the
board. The default primary address of all interface boards is zero.

GPIB If extended addressing is needed, the GPIB board should be assigned a
Secondary unique secondary address. This number must be in the range 96 to 126
Address decimal. If extended addressing is not required, select None.
Terminate Some devices send an end-of-string byte to signal the end of a GPIB

Read On EOS datatransfer. When thisfield is selected, the NI-488.2M software
terminates a read operation when it receives the EOS byte. By default
this option is not selected.

NI-488.2M UM for Windows NT 7-6 © National Instruments Corp.

Chapter 7

Set EOI with
EOSon Write

8-bit EOS
Compare

Send EOI at
end of Write

EOSByte

System
Controller

/0 Timeout

Parallel Poll
Duration

Enable Auto
Serial Palling

© National Instruments Corp.

ibconf-I nterface Bus Configuration Utility

Some devices expect the GPIB EOI line to be asserted when the EOS
byteistransferred. When thisfield is selected, the NI-488.2M software
asserts the GPIB EOI line whenever it sends the EOS byte. By default
this option is not selected.

When the GPIB board is configured to use the EOS byte, it can test
either seven or eight bits of the EOS byte for amatch. When thisitem
is selected, the NI-488.2M software uses all eight bits of the EOS byte
when checking for amatch. By default this option is not selected.

Many GPIB devices require the GPIB EQI lineto be asserted at the end
of adatatransfer. Thissignalsthe device that the transfer has ended.
When thisitem is selected, the NI1-488.2M software will assert the EOI
line at the end of each datatransfer. By default this option is selected.

If one or more of the EOS modes are enabled, this value defines the
EOS byte. Use adecimal number in therange 0 to 255. Thevalueis
used by the NI-488.2M software for all selected EOS operations.

The System Controller in a GPIB system is the device that maintains
ultimate control over the bus. When the NI1-488.2M software is being
used to control a GPIB system, the GPIB interface board should
normally be the System Controller. Some situations, such as a network
of computers, require that the interface board not be the System
Controller. By default this option is selected.

Use this option to select the timeout value for all GPIB 1/0 operations.
The timeout value is the approximate length of time that GPIB
functions wait for datato be transferred or commands to be sent. Itis
also the length of time that thei bwai t function waits for an event
before returning. The default timeout periodis10 s.

Use this option to select the length of time the NI-488.2M software
waits when conducting a parallel poll. For anormal bus configuration
(the Controller and devices on the same bus) use the default duration of
2 ps. If you are using a GPIB bus extender in transparent parallel poll
mode, you should increase the poll duration to 10 ps or more so the bus
extender can operate transparently to your applications.

Use this option to enable or disable the automatic serial polling of
devices when the GPIB Service Request (SRQ) lineis asserted.
Positive poll responses are stored by the NI-488.2M software and can
be retrieved with the i br sp function. Thisfeature usually does not
conflict with any device that conformsto the IEEE 488.1 standard. If a
conflict exists with adevice, do not select this option. By default this
option is selected.

7-7 NI-488.2M UM for Windows NT

ibconf-I nterface Bus Configuration Utility Chapter 7

Enable CIC If adevice-level NI-488 call is made after control has been passed to

Protocol another device, this protocol causes the interface board to assert SRQ
with a serial poll response byte of hex 42 to regain control. If the
current Controller recognizes this request and passes control back to the
board, the device-level call is executed asusual. If control isnot
passed back within the timeout period, the ECIC error isreturned. |If
your board needs to regain control, but this protocol is disabled, ECIC
isreturned immediately. By default this option is not selected.

Assert REN When this option is selected and the interface board is the System

When SC Controller, the GPIB Remote Enable (REN) line is automatically
asserted any time a device-level call ismade. By default thisoption is
not selected.

Device Template Configuration

To view or modify the configuration of a GPIB device, select the device name in the
main GPIB Configuration dialog box and click on the Configur e button. Y ou can aso
double-click on the device name. The device template dialog box appears as shown in
Figure 7-4.

= DEV1 Settings
Mame: |DEV1 GPIB Address— |

Primary Secondary
Access Board:

™ T ermination

] Terminate Read on EOS E 10 Timeout
[] Set EOI with EDS on Write Serial Poll Timeout

[] 8-bit EOS Compare
[<] Send EOI at end of Write

EI EDS Byte | (114 | | Cancel | | Help

[l Repeat Addressing

Figure 7-4. Device Template Configuration

Use the device templates if you have an older application that usesthei bf i nd function
to find a given device by name (for example, i bf i nd (" dev1")) instead of using the
preferred function i bdev . In some cases, you might need to change the actual name of
the device template.

NI-488.2M UM for Windows NT 7-8 © National Instruments Corp.

Chapter 7

ibconf-I nterface Bus Configuration Utility

The device template options are similar to those of the expanded board configuration. 1f
possible, usethei bconf i g function to change the device characteristics in your
application program.

Thefollowing isalist of the device template configuration options.

Name

Access Board

GPIB Primary
Address

GPIB
Secondary
Address

Terminate
Read On EOS

Set EOI with
EOSon Write

8-bit EOS
Compare

Send EOI at
end of Write

This field contains the symbolic name of the device to which this
template refers. Thisisthe name that should be used inthe i bf i nd
call of the application. This name must be eight characters or less and
cannot contain any of the following characters:

. " / \

| < > + [:] ,
Y ou cannot name a device to the same name as an interface board
(gpi bO, gpi b1, and so on).

Use this option to select which interface board is used to communicate
with that particular device. Thisoption contains alist of interface
boards to choose from.

All GPIB devices must be assigned a unique primary address. This
address, a number in the range 0 to 30 decimal, is used by the
NI-488.2M software to compute the talk and listen addresses of the
device.

If extended addressing is needed, the device should be assigned a
unique secondary address. This number must be in the range 96 to 126
decimal. If extended addressing is not required, select None.

Some devices send an end-of-string byte to signal the end of a GPIB
datatransfer. When thisfield is selected, the NI-488.2M software
terminates a read operation when it receives the EOS byte. By default
this option is not selected.

Some devices expect the GPIB EOI line to be asserted when the EOS
byteistransferred. When thisfield is selected, the NI-488.2M software
asserts the GPIB EOI line whenever it sends the EOS byte. By default
this option is not selected.

When the N1-488.2M software is configured to use the EOS byte, it can
test either seven or eight bits of the EOS byte for amatch. When this
item is selected, the NI1-488.2M software uses all eight bits of the EOS
byte when checking for amatch. By default this option is not selected.

Many GPIB devices require the GPIB EQI line to be asserted at the end
of adatatransfer. Thissignalsthe device that the transfer has ended.
When thisitem is selected, the NI1-488.2M software asserts the EOI line
at the end of each datatransfer. By default this option is selected.

© National Instruments Corp. 7-9 NI-488.2M UM for Windows NT

ibconf-I nterface Bus Configuration Utility Chapter 7

EOSByte

I/O Timeout

Serial Pall
Timeout

Repeat
Addressing

If one or more of the EOS modes are enabled, this value defines the
EOS byte. Use adecimal number in therange 0 to 255. Thevalueis
used by the NI-488.2M software for all selected EOS operations.

Use this option to select the timeout value for al GPIB 1/0 operations.
The timeout value is the approximate length of time that GPIB
functions wait for datato be transferred or commands to be sent. Itis
also the length of time that thei bwai t function waits for an event
before returning. The default timeout periodis 10 s.

Usethis option to select the length of time the NI-488.2M software
walits for aserial poll response from the device. The IEEE 488
standard does not specify the length of time a Controller should wait
for the response byte. The default value of 1 sworks for most devices.
If you have problems with seria palls, try using alonger timeout value.

If this option is selected, the NI-488.2M software addresses the device
before every read or write operation. Devices are usually not addressed
each time aread or write operation is performed, but some older

|EEE 488.1 devices require their address to be sent before each
operation. By default this option is not selected.

NI-488.2M UM for Windows NT 7-10 © National Instruments Corp.

Appendix A
Status Word Conditions

This appendix gives a detailed description of the conditions reported in the status word,
i bsta.

For information about how to use i bst a in your application program, refer to Chapter 3,
Developing Your Application.

If afunction call returns an ENEB or EDVR error, al status word bits except the ERR bit
are cleared, indicating that it is not possible to obtain the status of the GPIB board.

Each bitin i bst a can be set for device calls (dev), board calls (brd), or both (dev, brd).

The following table shows the status word layout.

Table A-1. Status Word Bits

Bit Hex
Mnemonic | Pos. Value Type Description
ERR 15 8000 dev,brd | GPIB error
TIMO 14 4000 dev, brd | Timelimit exceeded
END 13 2000 dev, brd | END or EOS detected
SRQI 12 1000 brd SRQ interrupt received
RQS 11 800 dev Device requesting service
SPOLL 10 400 brd Board has been serial polled by the
Controller
EVENT 9 200 brd A DCAC, DTAS, or IFC event has
occurred
CMPL 8 100 dev, brd | I/O completed
LOK 7 80 brd Lockout State
REM 6 40 brd Remote State
cic 5 20 brd Controller-In-Charge
ATN 4 10 brd Attention is asserted
TACS 3 8 brd Taker
LACS 2 4 brd Listener
DTAS 1 2 brd Device Trigger State
DCAS 0 1 brd Device Clear State

© National Instruments Corp. Al NI-488.2M UM for Windows NT

Satus Word Conditions Appendix A

ERR (dev, brd)

ERR is set in the status word following any call that resultsin an error. You can
determine the particular error by examining the error variablei ber r . Appendix B,
Error Codes and Solutions, describes error codes that arerecorded ini ber r aong with
possible solutions. ERR is cleared following any call that does not result in an error.

TIMO (dev, brd)

TIMO indicates that the timeout period has been exceeded. TIMO is set in the status
word following ani bwai t call if the TIMO bit of thei bwai t mask parameter is set
and the time limit expires. TIMO is also set following any synchronous I/O functions
(for example, i bend, i brd,i bwt ,Recei ve, Send, and SendCnds) if atimeout
occurs during one of these calls. TIMO iscleared in all other circumstances.

END (dev, brd)

END indicates either that the GPIB EQI line has been asserted or that the EOS byte has
been received, if the software is configured to terminate aread on an EOS byte. If the
GPIB board is performing a shadow handshake as aresult of the i bgt s function, any
other function can return a status word with the END bit set if the END condition occurs
before or during that call. END is cleared when any 1/0O operation isinitiated.

Some applications might need to know the exact /0O read termination mode of aread
operation—EOI by itself, the EOS character by itself, or EOI plusthe EOS character. You
canusethe i bconfi g function (option | bcEndBi t | sNor mal) to enableamodein
which the END hit is set only when EOI is asserted. In thismode if the 1/0O operation
completes because of the EOS character by itself, END isnot set. The application should
check the last byte of the received buffer to see if it isthe EOS character.

SRQI (brd)

SRQI indicates that a GPIB deviceis requesting service. SRQI is set whenever the GPIB
board is CIC, the GPIB SRQ line is asserted, and the automatic serial poll capability is
disabled. SRQI iscleared either when the GPIB board ceases to be the CIC or when the
GPIB SRQ lineis unasserted.

NI-488.2M UM for Windows NT A2 © National Instruments Corp.

Appendix A Satus Word Conditions

RQS (dev)

RQS appearsin the status word only after adevice-level call and indicates that the device
isrequesting service. RQS s set whenever bit 6 is asserted in the seria poll status byte
of the device. The seria poll that obtains the status byte can be the result of acall to

i brsp, or the poll might be automatic if automatic serial polling is enabled. Do not
issueani bwai t on RQS for adevice that does not respond to seria polls. RQSis
cleared when ani br sp readsthe seria poll status byte that caused the RQS.

SPOLL (brd)

Use SPOLL in Taker/Listener applications to determine when the Controller has serial
polled the GPIB board. The SPOLL hit isdisabled by default. Usethei bconfi g
function (option | bcSPol | Bi t) to enableit. When thisbit isenabled, it is set after the
board has been serial polled. SPOLL iscleared on any call immediately after an

i bwai t call, if the SPOLL bit was set in the wait mask, or immediately following a call
toi brsv.

EVENT (brd)

Use EVENT in Talker/Listener applications (applications in which the GPIB interfaceis
not the Controller) to monitor the order of GPIB device clear, group execute trigger, and
send interface clear commands. The usual DCAS and DTASbitsof i bst a might be
insufficient.

The EVENT bit is disabled by default. |f you want to use this bit, you must use the

i bconfi g function (option | bcEvent Queue) to enableit. When you enable this bit,
the DCAS and DTAS hits are disabled. When an event occurs, this bit is set and any 1/O
in progressis aborted. The application can then call thei bevent function to determine
which event occurred.

CMPL (dev, brd)

CMPL indicates the condition of 1/0O operations. It is set whenever an I/O operation is
complete. CMPL is cleared while the 1/O operation isin progress.

LOK (brd)

LOK indicates whether the board isin alockout state. While LOK is set, the

Enabl eLocal routineori bl oc functionisinoperative for that board. LOK isset
whenever the GPIB board detects that the Local Lockout (LLO) message has been sent
either by the GPIB board or by another Controller. LOK is cleared when the System
Controller unasserts the Remote Enable (REN) GPIB line.

© National Instruments Corp. A3 NI-488.2M UM for Windows NT

Satus Word Conditions Appendix A

REM (brd)

REM indicates whether or not the board isin the remote state. REM is set whenever the
Remote Enable (REN) GPIB line is asserted and the GPIB board detects that its listen
address has been sent either by the GPIB board or by another Controller. REM is cleared
in the following situations:

* When REN becomes unasserted

e Whenthe GPIB board as a Listener detects that the Go to Local (GTL) command has
been sent either by the GPIB board or by ancther Controller

« Whenthei bl oc functioniscaled whilethe LOK bit is cleared in the status word

CIC (brd)

CIC indicates whether the GPIB board is the Controller-In-Charge. CIC is set when the

Sendl FC routineor i bsi ¢ function is executed either while the GPIB board is System
Controller or when another Controller passes control to the GPIB board. CICiscleared

either when the GPIB board detects Interface Clear (IFC) from the System Controller or
when the GPIB board passes control to another device.

ATN (brd)

ATN indicates the state of the GPIB Attention (ATN) line. ATN is set whenever the
GPIB ATN lineis asserted, and it is cleared when the ATN line is unasserted.

TACS (brd)

TACS indicates whether the GPIB board is addressed asa Talker. TACS is set whenever
the GPIB board detects that its talk address (and secondary address, if enabled) has been
sent either by the GPIB board itself or by another Controller. TACS s cleared whenever
the GPIB board detects the Untalk (UNT) command, its own listen address, atalk address
other than its own talk address, or Interface Clear (IFC).

LACS (brd)

LACS indicates whether the GPIB board is addressed asa Listener. LACSis set
whenever the GPIB board detects that its listen address (and secondary address, if
enabled) has been sent either by the GPIB board itself or by another Controller. LACSis
also set whenever the GPIB board shadow handshakes as aresult of thei bgt s function.
LACSis cleared whenever the GPIB board detects the Unlisten (UNL) command, its own
talk address, Interface Clear (IFC), or that the i bgt s function has been called without
shadow handshake.

NI-488.2M UM for Windows NT A4 © National Instruments Corp.

Appendix A Satus Word Conditions

DTAS (brd)

DTAS indicates whether the GPIB board has detected a device trigger command. DTAS
is set whenever the GPIB board, as a Listener, detects that the Group Execute Trigger
(GET) command has been sent by another Controller. DTAS s cleared on any call
immediately following an i bwai t call, if the DTASbitissetinthe i bwai t mask
parameter.

DCAS (brd)

DCAS indicates whether the GPIB board has detected a device clear command. DCASIis
set whenever the GPIB board detects that the Device Clear (DCL) command has been
sent by another Controller, or whenever the GPIB board as a Listener detects that the
Selected Device Clear (SDC) command has been sent by another Controller. DCAS s
cleared on any call immediately following an i bwai t cal, if the DCASbit was set in
the i bwai t mask parameter. It also clears on any call immediately following aread or
write.

© National Instruments Corp. A5 NI-488.2M UM for Windows NT

Appendix B
Error Codes and Solutions

This appendix lists a description of each error, some conditions under which it might
occur, and possible solutions.

The following table lists the GPIB error codes.

Table B-1. GPIB Error Codes

Error iberr

Mnemonic Value Meaning
EDVR 0 System error
ECIC 1 Function requires GPIB board to be CIC
ENOL 2 No Listeners on the GPIB
EADR 3 GPIB board not addressed correctly
EARG 4 Invalid argument to function call
ESAC 5 GPIB board not System Controller as required
EABO 6 1/O operation aborted (timeout)
ENEB 7 Nonexistent GPIB board
EQIP 10 Asynchronous I/O in progress
ECAP 11 No capability for operation
EFSO 12 File system error
EBUS 14 GPIB bus error
ESTB 15 Serial poll status byte queue overflow
ESRQ 16 SRQ stuck in ON position
ETAB 20 Table problem

EDVR (0)

EDVR is returned when the board or device name passed to i bf i nd, or the board index
passed toi bdev, cannot be accessed. The global variable i bcnt | contains the system
error code 2, File Not Found. This error occurs when you try to access a board or device
that is not installed or configured properly.

EDVR isalso returned if an invalid unit descriptor is passed to any NI-488 function call.

© National Instruments Corp. B-1 NI-488.2M UM for Windows NT

Error Codes and Solutions Appendix B

Solutions
* Usei bdev to open adevice without specifying its symbolic name.

e Useonly device or board names that are configured in the utility program i bconf
as parametersto thei bf i nd function.

* Usingi bconf , ensure that each board you want to access is configured properly,
that base address, DMA channel, and interrupt level are correct, and that the Use
Thi s Board field is selected.

» |f the NI-488.2M driver isinstalled and configured, but you continue to receive the
error EDVR, use the Windows NT Event Viewer to find asolution. The driver
maintains alog of errorsin this utility and posts possible corrections to any problems
that occur whileloading. Refer to Chapter 4, Debugging Your Application, for more
information.

» Usetheunit descriptor returned fromi bdev ori bf i nd asthefirst parameter in

subsequent NI-488 functions. Examine the variable before the failing function to
make sure the function has not been corrupted.

ECIC (1)

ECIC isreturned when one of the following board functions or routinesis called while
the board is not CIC:

» Any device-level NI-488 functions that affect the GPIB

* Any board-level NI-488 functions that issue GPIB command bytes: i bcnd,
i bcnda,i bl n,andi brpp

e ibcac andibgts

* Any of the NI-488.2 routines that issue GPIB command bytes. SendCnds, PPol | ,
Send, and Recei ve

Solutions

* Usei bsi ¢ or Sendl FC to make the GPIB board become CIC on the GPIB.

* Usei brscl to make sure your GPIB board is configured as System Controller.

* Inmultiple CIC situations, always be certain that the CIC bit appears in the status
word i bst a before attempting these calls. If it does not appear, you can perform an

i bwai t (for CIC) call to delay further processing until control is passed to the
board.

NI-488.2M UM for Windows NT B-2 © National Instruments Corp.

Appendix B Error Codes and Solutions

ENOL (2)

ENOL usually occurs when awrite operation is attempted with no Listeners addressed.
For adevice write, this error indicates that the GPIB address configured for that devicein
the software does not match the GPIB address of any device connected to the bus, that
the GPIB cable is not connected to the device, or that the device is not powered on.

ENOL can occur in situations in which the GPIB board is not the CIC and the Controller
asserts ATN before the write call in progress has ended.
Solutions

* Make surethat the GPIB address of your device matches the GPIB address of the
device to which you want to write data.

» Usethe appropriate hex codeini bcnd to address your device.

e Check your cable connections and make sure at least two-thirds of your devices are
powered on.

e Cdlibpad (ori bsad, if necessary) to match the configured address to the device
switch settings.

» Reduce the write byte count to that which is expected by the Controller.

EADR (3)

EADR occurs when the GPIB board is CIC and is not properly addressing itself before
read and write functions. This error is usually associated with board-level functions.

EADR isalso returned by the functioni bgt s when the shadow-handshake featureis

requested and the GPIB ATN lineis already unasserted. In this case, the shadow
handshake is not possible and the error is returned to notify you of that fact.

Solutions

» Make surethat the GPIB board is addressed correctly before calingi brd,i bwt ,
RcvRespMsg, or SendDat aByt es.

* Avoidcalingi bgt s except immediately after ani bend call. (i bcnd causesATN
to be asserted.)

© National Instruments Corp. B-3 NI-488.2M UM for Windows NT

Error Codes and Solutions Appendix B

EARG (4)

EARG results when an invalid argument is passed to afunction call. The following are
some examples:

e i btno caledwith avauenotintherange 0 through 17.

* ibeos caled with meaningless bits set in the high byte of the second parameter.
e ibpad ori bsad caled with invalid addresses.

* ibppc caledwithinvalid parallel poll configurations.

e A board-level NI-488 call made with avalid device descriptor, or adevice-level
NI-488 call made with a board descriptor.

 AnNI-488.2 routine caled with an invalid address.

» PPol | Confi g caledwith aninvalid dataline or sense hit.

Solutions

* Make sure that the parameters passed to the NI-488 function or NI-488.2 routine are
vaid.

» Do not use adevice descriptor in aboard function or vice-versa.

ESAC (5)

ESAC resultswhen i bsi ¢, i bsr e, Sendl FC, or Enabl eRenpt e iscalled when the
GPIB board does not have System Controller capability.

Solutions

Give the GPIB board System Controller capability by calling i br sc1 or by using
i bconf to configure that capability into the software.

EABO (6)

EABO indicates that an 1/O operation has been canceled, usually due to atimeout
condition. Other causesare calling i bst op or receiving the Device Clear message from
the CIC while performing an 1/0O operation.

NI-488.2M UM for Windows NT B-4 © National Instruments Corp.

Appendix B Error Codes and Solutions

Frequently, the 1/O is not progressing (the Listener is not continuing to handshake or the
Talker has stopped talking), or the byte count in the call which timed out was more than
the other device was expecting.

Solutions

» Usethe correct byte count in input functions or have the Talker use the END
message to signify the end of the transfer.

e Lengthen the timeout period for the I/O operation using i bt no.

» Make surethat you have configured your device to send data before you request
data.

ENEB (7)

ENEB occurs when no GPIB board exists at the 1/0O address specified in the configuration
program. This problem happens when the board is not physically plugged into the
system, the 1/0O address specified during configuration does not match the actual board
setting, or there is a system conflict with the base 1/O address.

Solutions

Make sure there is a GPIB board in your computer that is properly configured both in
hardware and software using avalid base I/O address.

EOIP (10)

EOIP occurs when an asynchronous 1/0 operation has not finished before some other call
ismade. During asynchronous I/O, you can only use i bst op,i bwai t ,and i bonl or
perform other non-GPIB operations. If any other call is attempted, EOIP is returned.

Once the asynchronous I/O has begun, further GPIB calls other thani bst op,i bwai t ,
or i bonl arestrictly limited. If acall might interfere with the 1/O operation in progress,
the driver returns EQIP.

Solutions

Resynchronize the driver and the application before making any further GPIB calls.
Resynchronization is accomplished by using one of the following three functions:

© National Instruments Corp. B-5 NI-488.2M UM for Windows NT

Error Codes and Solutions Appendix B

* i bwait If thereturned i bst a contains CMPL then the driver and application
are resynchronized.

* i bstop The /O is canceled; the driver and application are resynchronized.

* i bonl The /O is canceled and the interface is reset; the driver and application
are resynchronized.

ECAP (11)

ECAP results when your GPIB board lacks the ability to carry out an operation or when a
particular capability has been disabled in the software and acall is made that requires the

capability.
Solutions

Check the validity of the call, or make sure your GPIB interface board and the driver both
have the needed capability.

EFSO (12)

EFSO resultswhenan i br df ori bwrtf call encountersa problem performing afile
operation. Specifically, this error indicates that the function is unable to open, create,
seek, write, or close the file being accessed. The specific Windows NT error code for
this condition is contained ini bcnt .

Solutions
» Make sure the filename, path, and drive that you specified are correct.
» Make sure that the access mode of thefileis correct.

» Make surethereis enough room on the disk to hold thefile.

EBUS (14)

EBUS results when certain GPIB bus errors occur during device functions. All device
functions send command bytes to perform addressing and other bus management.
Devices are expected to accept these command bytes within the time limit specified by
the default configuration or the i bt no function. EBUS resultsif atimeout occurred
while sending these command bytes.

NI-488.2M UM for Windows NT B-6 © National Instruments Corp.

Appendix B Error Codes and Solutions

Solutions
» Verify that the instrument is operating correctly.
e Check for loose or faulty cabling or several powered-off instruments on the GPIB.

» If thetimeout period istoo short for the driver to send command bytes, increase the
timeout period.

ESTB (15)

ESTB isreported only by thei br sp function. ESTB indicates that one or more serial
poll status bytes received from automatic serial polls have been discarded because of a
lack of storage space. Severa older status bytes are available; however, the oldest is
being returned by the i br sp call.

Solutions

e Cdli br sp morefrequently to empty the queue.

e Disable autopolling with thei bconf i g function or the i bconf utility.

ESRQ (16)

ESRQ occursonly during thei bwai t function or the Vi t SRQ routine. ESRQ
indicates that await for RQS is not possible because the GPIB SRQ lineis stuck on. This
situation can be caused by the following events:

» Usualy, adevice unknown to the software is asserting SRQ. Because the software
does not know of this device, it can never seria poll the device and unassert SRQ.

* A GPIB bustester or similar equipment might be forcing the SRQ line to be asserted.
e A cable problem might exist involving the SRQ line.

Although the occurrence of ESRQ warns you of a definite GPIB problem, it does not
affect GPIB operations, except that you cannot depend on the RQS bit while the
condition lasts.

Solutions

Check to seeif other devices not used by your application are asserting SRQ. Disconnect
them from the GPIB if necessary.

© National Instruments Corp. B-7 NI-488.2M UM for Windows NT

Error Codes and Solutions Appendix B

ETAB (20)

ETAB occurs only during the Fi ndLst n, Fi ndRQ@S, and i bevent functions. ETAB
indicates that there was some problem with atable used by these functions.

* Inthecaseof Fi ndLst n, ETAB means that the given table did not have enough
room to hold all the addresses of the Listeners found.

* Inthecaseof Fi ndRQS, ETAB means that none of the devicesin the given table
were reguesting service.

* Inthecaseof i bevent , ETAB means the event queue overflowed and event
information was lost.

Solutions

In the case of Fi ndLst n, increase the size of result arrays. In the case of Fi ndRQS,
check to seeif other devices not used by your application are asserting SRQ. Disconnect
them from the GPIB if necessary. In the case of ETAB returned from i bevent , cal

i bevent more often to empty the queue.

NI-488.2M UM for Windows NT B-8 © National Instruments Corp.

Appendix C
Customer Communication

For your convenience, this appendix contains forms to help you gather the information
necessary to help us solve technical problems you might have as well as aform you can
use to comment on the product documentation. Filling out a copy of the Technical
Support Form before contacting National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In
the U.S. and Canada, applications engineers are available Monday through Friday from
8:00 am. to 6:00 p.m. (central time). In other countries, contact the nearest branch
office. You may fax questionsto us at any time.

Corporate Headquarters
(512) 795-8248
Technical support fax: (800) 328-2203

(512) 794-5678

Branch Offices Phone Number Fax Number
Austraia 039879 9422 0398799179
Austria 06624579900 0662 45 7990 19
Belgium 02 75700 20 027570311
Canada (Ontario) 519 622 9310 519 622 9311
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 4576 26 00 45767111
Finland 90 527 2321 90 502 2930
France 148142424 148142414
Germany 0897413130 089 714 60 35
Hong Kong 2645 3186 2686 8505
Italy 02 48301892 02 48301915
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5520 3282
Netherlands 0348 433466 0348 430673
Norway 32848400 3284 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 087304970 087304370
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

© National Instruments Corp.

C1

NI-488.2M UM for Windows NT

Technical Support Form

Photocopy this form and update it each time you make changes to your software or
hardware, and use the completed copy of thisform as areference for your current
configuration. Completing thisform accurately before contacting National
Instruments for technical support helps our applications engineers answer your
questions more efficiently.

If you are using any National Instruments hardware or software products related to this

problem, include the configuration forms from their user manuals. Include additional
pages if necessary.

Name

Company
Address

Fax (___) Phone (___)

Computer brand

Model Processor

Operating system

Speed MHz RAM MB
Display adapter

Mouse yes no
Other adaptersinstalled

Hard disk capacity MB Brand

Instruments used

Nationa Instruments hardware product model

Revision

Configuration

(continues)

National Instruments software product

Version

Configuration

The problemis

List any error messages

The following steps will reproduce the problem

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with
our products. Thisinformation helps us provide quality productsto meet your needs.

Titlee NI-488.2M™ User Manual for Windows NT
Edition Date: January 1996
Part Number: 320646B-01

Please comment on the compl eteness, clarity, and organization of the manual.

(continues)

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications
National Instruments Corporation
6504 Bridge Point Parkway
Austin, TX 78730-5039

Fax to: Technical Publications
National Instruments Corporation
(512) 794-5678

Glossary

Prefix Meaning Value
n nano- 109
- micro- 106
m- milli- 10-3
k- kilo- 103
M- mega- 100
A
acceptor handshake Listeners use this GPIB interface function to receive data, and
all devicesuseit to receive commands. See source handshake
and handshake.
access board The GPIB board that controls and communi cates with the
devices on the bus that are attached to it.
ANSI American National Standards Institute.
ASCII American Standard Code for Information Interchange.
asynchronous An action or event that occurs at an unpredictable time with

respect to the execution of a program.

automatic serial polling A feature of the NI-488.2M software in which serial polls
(autopolling) are executed automatically by the driver whenever adevice
asserts the GPIB SRQ line.

B

base I/0O address See /O address.

BIOS Basic Input/Output System.

board-level function A rudimentary function that performs a single operation.

© National Instruments Corp. Glossary-1 NI-488.2M UM for Windows NT

Glossary

C

CFE
(Configuration Enable)

CFGn

CIC
(Controller-In-Charge)

CPU

D

DAV (DataValid)

DCL
(Device Clear)

device-level function

DIO1 through DIO8

DLL
DMA

(direct memory access)

driver

E

END or END Message

NI-488.2M UM for Windows NT

The GPIB command which precedes CFGn and is used to
place devices into their configuration mode.

These GPIB commands (CFG1 through CFG15) follow CFE
and are used to configure all devices for the number of meters
of cablein the system so that HS488 transfers occur without
errors.

The device that manages the GPIB by sending interface
messages to other devices.

Central processing unit.

One of the three GPIB handshake lines. See handshake.

The GPIB command used to reset the device or interna
functions of al devices. See DC.

A function that combines several rudimentary board
operations into one function so that the user does not have to
be concerned with bus management or other GPIB protocol
matters.

The GPIB lines that are used to transmit command or data
bytes from one device to ancther.

Dynamic link library.

High-speed data transfer between the GPIB board and
memory

that is not handled directly by the CPU. Not available on
some systems. See programmed |/O.

Device driver software installed within the operating system.

A message that signals the end of adatastring. END is sent
by asserting the GPIB End or Identify (EOI) line with the last
data byte.

Glossary-2 © National Instruments Corp.

EQI

EOS or EOS Byte

EQOT

ESB

G

GET
(Group Execute
Trigger)

GPIB

GPIB address

GPIB board

GTL
(Go To Local)

H

handshake

© National Instruments Corp.

Glossary

A GPIB linethat isused to signa either the last byte of adata
message (END) or the parallel poll Identify (IDY) message.

A 7- or 8-bit end-of-string character that is sent as the last byte
of a data message.

End of transmission

The Event Status bit is part of the |EEE 488.2-defined status
byte which is received from a device responding to a serial
poll.

Group Execute Trigger isthe GPIB command used to trigger a
device or internal function of an addressed Listener.

General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE
Standard 488.1-1987 and ANSI/IEEE Standard 488.2-1987.

The address of a device on the GPIB, composed of a primary
address (MLA and MTA) and perhaps a secondary address
(MSA). The GPIB board has both a GPIB address and an |/O
address.

Refers to the National Instruments family of GPIB interface
boards.

Go To Loca isthe GPIB command used to place an addressed
Listener in loca (front panel) control mode.

The mechanism used to transfer bytes from the Source
Handshake function of one device to the Acceptor Handshake
function of another device. Thethree GPIB lines DAV,
NRFD, and NDAC are used in an interlocked fashion to signal
the phases of the transfer, so that bytes can be sent
asynchronously (for example, without a clock) at the speed of
the slowest device.

For more information about handshaking, refer to the
ANSI/IEEE Standard 488.1-1987.

Glossary-3 NI-488.2M UM for Windows NT

Glossary

hex

high-level function

Hz

i bent

i bconf

i berr

i bic

i bsta

|EEE

interface message

1/O (Input/Output)

1/O address

i st

KB

NI-488.2M UM for Windows NT

Hexadecimal; a number represented in base 16. For example,
decimal 16 = hex 10.

See device-level function.

Hertz.

After each NI-488 1/0 function, this global variable contains
the actual number of bytes transmitted.

The NI-488.2M driver configuration program.

A global variable that contains the specific error code
associated with afunction call that failed.

The Interface Bus Interactive Control program is used to
communicate with GPIB devices, troubleshoot problems, and
develop your application.

At the end of each function call, this global variable (status
word) contains status information.

Ingtitute of Electrical and Electronic Engineers.

A broadcast message sent from the Controller to al devices
and used to manage the GPIB.

In the context of this manual, the transmission of commands
or messages between the computer via the GPIB board and
other devices on the GPIB.

The address of the GPIB board from the point of view of the
CPU, as opposed to the GPIB address of the GPIB board.
Also called port address or board address.

An Individua Status bit of the status byte used in the Parallel
Poll Configure function.

Kilobytes.

Glossary-4 © National Instruments Corp.

L

LAD (listen address)

language interface

Listener

LLO
(Local Lockout)

low-level function

M

m

MAV

MB
memory-resident

MLA
(My Listen Address)

MSA

(My Secondary
Address)

MTA
(My Talk Address)

multitasking

© National Instruments Corp.

Glossary

See MLA.

Code that enables an application program that uses NI-488
functions or NI-488.2 routines to access the driver.

A GPIB device that receives data messages from a Talker.

The GPIB command used to tell all devicesthat they may or
should ignore remote (GPIB) data messages or local (front
panel) controls, depending on whether the deviceisin local or
remote program mode.

A rudimentary board or device function that performs asingle
operation.

Meters.

The Message Available hit is part of the |EEE 488.2-defined
status byte which is received from a device responding to a
serial poll.

M egabytes of memory.
Resident in RAM.

A GPIB command used to address a device to be
alListener. It can be any one of the 31 primary addresses.

The GPIB command used to address a device to be a Listener
or a Talker when extended (two byte) addressingisused. The
complete addressisaMLA or MTA address followed by an
MSA address. There are 31 secondary addresses for atotal of
961 distinct listen or talk addresses for devices.

A GPIB command used to address adeviceto bea Taker. It
can be any one of the 31 primary addresses.

The concurrent processing of more than one program or task.

Glossary-5 NI-488.2M UM for Windows NT

Glossary

N

NDAC
(Not Data Accepted)

NRFD
(Not Ready For Data)

P

parallel poll

PIO

PPC
(Parallel Pall Configure)

PPD
(Parallel Poll Disable)

PPE
(Pardllel Poll Enable)

PPU
(Parallel Poll
Unconfigure)

programmed /O

R

RAM

resynchronize

RQS

One of the three GPIB handshake lines. See handshake.

One of the three GPIB handshake lines. See handshake.

The process of polling al configured devices at once and
reading a composite poll response. See serial poll.

See programmed 1/0.

Parallel Poll Configure isthe GPIB command
used to configure an addressed Listener to participate in palls.

Parallel Poll Disable isthe GPIB command used
to disable a configured device from participating in polls.
There are 16 PPD commands.

Parallel Poll Enableisthe GPIB command used
to enable a configured device to participate in polls and to
assign aDIO response line. There are 16 PPE commands.

Parallel Poll Unconfigure isthe GPIB command
used to disable any device from participating in
polls.

L ow-speed data transfer between the GPIB board and memory

in which the CPU moves each data byte according to program
instructions. See DMA.

Random-access memory.

The NI-488.2M software and the user application must
resynchronize after asynchronous 1/O operations have
compl eted.

Request Service.

NI-488.2M UM for Windows NT Glossary-6 © National Instruments Corp.

S

S

SbC
(Selected Device Clear)

seria poll

service request

source handshake

SPD
(Serial Poll Disable)

SPE
(Serial Poll Enable)
SRQ (Service Request)

status byte

status word

synchronous

System Controller

© National Instruments Corp.

Glossary

Seconds.

The GPIB command used to reset internal or device functions
of an addressed Listener. See DCL.

The process of polling and reading the status byte of one
device at atime. Seeparallel poll.

See SRQ.

The GPIB interface function that transmits data and
commands. Talkers use this function to send data, and the
Controller usesit to send commands. See acceptor handshake
and handshake.

The GPIB command used to cancel an SPE command.

The GPIB command used to enable a specific deviceto be
polled. That device must also be addressed to talk. See SPD.

The GPIB line that a device asserts to notify the CIC that the
device needs servicing.

The | EEE 488.2-defined data byte sent by adevicewhenitis
serially polled.

See ibsta.

Refers to the relationship between the NI1-488.2M driver
functions and a process when executing driver functionsis
predictable; the processis blocked until the driver completes
the function.

The single designated Controller that can assert control
(become CIC of the GPIB) by sending the Interface Clear
(IFC) message. Other devices can become CIC only by
having control passed to them.

Glossary-7 NI-488.2M UM for Windows NT

Glossary

T

TAD (Talk Address)
Talker

TCT
(Take Control)

timeout

TLC

U

ud (unit descriptor)

UNL (Unlisten)

UNT (Untalk)

See MTA.
A GPIB device that sends data messages to Listeners.

The GPIB command used to pass control of the bus from the
current Controller to an addressed Talker.

A feature of the NI-488.2M driver that prevents I/O functions
from hanging indefinitely when there is a problem on the
GPIB.

An integrated circuit that implements most of the GPIB
Taker, Listener, and Controller functions in hardware.

A variable name and first argument of each function call that
contains the unit descriptor of the GPIB interface board or
other GPIB devicethat is the object of the function.

The GPIB command used to unaddress any active Listeners.

The GPIB command used to unaddress an active Talker.

NI-488.2M UM for Windows NT Glossary-8 © National Instruments Corp.

| ndex

Symbols

I (repeat previous function) function, ibic, 5-15
$ (execute indirect file) function, ibic, 5-16

+ (turn display on) function, ibic, 5-15

- (turn display off) function, ibic, 5-15

A

active Controller. See Controller-in-Charge (CIC).
addresses. See GPIB addresses.
AllSpoll routine, 6-8, 6-9
application development. See also debugging.
accessing NI1-488.2M DLL, 3-1
application examples
asynchronous 1/0O, 2-6 to 2-7
basic communication, 2-2 to 2-3
basic communication with |EEE 488.2-compliant devices, 2-14 to 2-15
clearing and triggering devices, 2-4to 2-5
end-of-string mode, 2-8 to 2-9
non-controller example, 2-20 to 2-21
paralel polls, 2-18 to 2-19
serial polls using NI-488.2 routines, 2-16 to 2-17
service requests, 2-10to 2-13
source codefiles, 2-1
choosing between NI-488 functions and NI-488.2 routines, 3-1 to 3-3
compiling, linking, and running applications, 3-17 to 3-20
global variables for checking status, 3-3to 3-5
count variables - ibcnt and ibentl, 3-5t0 3-6
error variable - iberr, 3-5
status word - ibsta, 3-3to0 3-5
ibic for communicating with devices, 3-6
NI-488 applications
clearing devices, 3-8
configuring devices, 3-9
flowchart of programming with device-level functions, 3-7
genera steps and examples, 3-8 to 3-10
itemsto include, 3-6
opening devices, 3-8
placing device offline, 3-10
processing of data, 3-10
program shell (illustration), 3-7
reading measurement, 3-10

© National Instruments Corp. Index-1 NI-488.2M UM for Windows NT

Index

triggering devices, 3-9
waiting for measurement, 3-9 to 3-10
NI-488 functions, 3-2 to 3-3
advantages, 3-2
board functions, 3-2 to 3-3
choosing between NI-488 functions and NI-488.2 routines, 3-1 to 3-3
device functions, 3-2
one device per board, 3-2 to 3-3
NI-488.2 applications
configuring instruments, 3-15
finding all Listeners, 3-13
flowchart of programming with routines, 3-12
general steps and examples, 3-13to 3-17
identifying instruments, 3-13 to 3-14
initidization, 3-13
initializing instruments, 3-14
itemsto include, 3-11
placing board offline, 3-17
processing of data, 3-16
program shell (illustration), 3-12
reading measurements, 3-16
triggering instruments, 3-15
waiting for measurements, 3-15 to 3-16
NI-488.2 routines
choosing between NI-488 functions and NI-488.2 routines, 3-1 to 3-3
using with multiple boards or devices, 3-3
running applications, 3-17 to 3-20
asynchronous 1/O application example, 2-6 to 2-7
ATN (attention) line (table), 1-3
ATN status word condition
bit position, hex value, and type (table), 3-4
description, A-4
automatic serial polling. See serial polling.
auxiliary functions, ibic
I (repeat previous function), 5-15
$ (execute indirect file), 5-16
+ (turn display on), 5-15to 5-16
- (turn display off), 5-15to 5-16
Help (display help information), 5-15
n* (repeat function n times), 5-16
print (display the ASCII string), 5-16
Set (udname or 488.2), 5-14 to 5-15
table of functions, 5-14

NI-488.2M UM for Windows NT Index-2 © National Instruments Corp.

Index

B

Base I/0O Address option, ibconf utility, 7-4
board configuration. See ibconf utility.
board functions. See NI-488 functions.
Borland C++, See C Language.

Bus Timing option, ibconf utility, 7-4

C

C language
compiling, linking, and running applications, 3-17 to 3-19
direct entry, 3-17 to 3-19
files available with NI1-488.2M software, 1-7
cables
checking with ibtest, 4-2
setting cable length for high-speed data transfers, 7-4
CIC. See Controller-in-Charge (CIC).
CIC protocol
enabling in ibconf utility, 7-8
making GPIB board Controller-in-Charge, 6-3 to 6-4
CIC status word condition
bit position, hex value, and type (table), 3-4
description, A-4
clearing and triggering devices, example, 2-4 to 2-5
CMPL status word condition
bit position, hex value, and type (table), 3-4
description, A-3
communication application examples
basic communication, 2-2 to 2-3
with |EEE 488.2-compliant devices, 2-14 to 2-15
communication errors, 4-5 to 4-6
repeat addressing, 4-5 to 4-6
termination method, 4-6
configuration, 1-4 to 1-6. See also ibconf utility.
controlling more than one board, 1-5
linear and star system configuration (illustration), 1-4
requirements, 1-5to 1-6
system configuration effects on H$488, 6-3
configuration errors, 4-5
Configure (CFGn) message, 6-3
Configure Enable (CFE) message, 6-2
Controller-in-Charge (CIC)
active Controller as CIC, 1-1
CIC protocol
enabling in ibconf utility, 7-8
making GPIB board CIC, 6-3 to 6-4

© National Instruments Corp. Index-3 NI-488.2M UM for Windows NT

Index

System Controller as, 1-1
Controllers
definition, 1-1
emulation of non-controller GPIB (example), 2-20 to 2-21
idle Controller, 1-1
monitoring by Talker/Listener applications, 6-4
System Controller, 1-1
System Controller option, ibconf utility, 7-7
count, inibic, 5-10
count variables - ibcnt and ibentl, 3-5t0 3-6
customer communication, xiv, C-1

D

datalines, 1-2
datatransfers
high-speed (H$488), 6-2 to 6-3
enabling, 6-2 to 6-3
system configuration effects, 6-3
terminating, 6-1 to 6-2
DAV (datavalid) line (table), 1-3
DCAS status word condition
bit position, hex value, and type (table), 3-4
description, A-5
using event queue, 6-4 to 6-5
waiting for messages from Controller, 6-4
debugging
common questions, 4-6 to 4-7
communication errors, 4-5 to 4-6
repeat addressing, 4-5 to 4-6
termination method, 4-6
configuration errors, 4-5
examining NT devicesto verify NI1-488.2M instalation, 4-1 to 4-2
global status variables, 4-3
GPIB error codes (table), 4-4, B-1
GPIBInfo utility, 4-3
ibic utility, 4-4
ibtest diagnostics
cable connections, 4-2
presence of driver, 4-1 to 4-2
timing errors, 4-5
viewing NT system log, 4-2
decl-32.hfile, 1-7
DevClear routine, 3-14
device configuration. See ibconf utility
device functions. See NI-488 functions
device-level calls and bus management, 6-3 to 6-4

NI-488.2M UM for Windows NT Index-4 © National Instruments Corp.

Index

device template configuration, 7-8 to 7-10
8-bit EOS Compare option, 7-9
Access Board option, 7-9
EOS Byte option, 7-10
GPIB Primary Address option, 7-9
GPIB Secondary Address option, 7-9
[/O Timeout option, 7-10
Name field, 7-9
Repeat Addressing option, 7-10
Serial Poll Timeout option, 7-10
Set EOI at end of Write option, 7-9
Set EOI with EOS on Write option, 7-9
Terminate Read on EOS option, 7-9
devices, checking for NI1-488.2M installation, 4-1 to 4-2
devices, writing applicationsfor. See NI-488 applications, programming.
Devices applet, Windows NT, 4-1
direct access to NI-488.2 dynamic link library
compiling, linking, and running applications, 3-17 to 3-19
requirements, 3-1
DMA, configuring with ibconf utility
DMA Channel option, 7-5
Use Demand Mode DMA option, 7-5
documentation
conventions used in manual, Xiii
how to use manual set, xi
organization of manual, i
related documentation, xiv
DOS GPIB applications, 3-20
DOS support files, 1-7
drivers
configuring, 4-5
driver and driver utilities for NI-488.2M software, 1-6 to 1-7
testing with ibtest, 4-1to 4-2
DTAS status word condition
bit position, hex value, and type (table), 3-4
description, A-5
using event queue, 6-4 to 6-5
waiting for messages from Controller, 6-4
dynamic link library, GPIB. See NI-488.2M DLL.

© National Instruments Corp. Index-5 NI-488.2M UM for Windows NT

Index

E

EABO error code
definition (table), 4-4
description, B-4 to B-5
EADR error code
definition (table), 4-4
description, B-3
EARG error code
definition (table), 4-4
description, B-4
ibic example, 5-10
EBUS error code
definition (table), 4-4
description, B-6 to B-7
ECAP error code
definition (table), 4-4
description, B-6
ECIC error code
definition (table), 4-4
description, B-2
EDVR error code
definition (table), 4-4
description, B-1to B-2
ibic example, 5-11
EFSO error code
definition (table), 4-4
description, B-6
end-of-string character. See EOS
END status word condition
bit position, hex value, and type (table), 3-4
description, A-2
ENEB error code
definition (table), 4-4
description, B-5
ibic example, 5-11
ENOL error code
definition (table), 4-4
description, B-3
EQI (end or identify) line
configuring in ibconf
Send EQI at end of Write option, 7-7, 7-9
Set EOI with EOS on Write option, 7-7, 7-9
purpose (table), 1-3
termination of datatransfers, 6-1to 6-2
EOIP error code
definition (table), 4-4
description, B-5 to B-6

NI-488.2M UM for Windows NT Index-6 © National Instruments Corp.

Index

ECS
configuring EOS mode, 6-1
configuring in ibconf utility
8-hit EOS Compare option, 7-7, 7-9
EOS Byte option, 7-7, 7-10
Set EOI with EOS on Write option, 7-7, 7-9
Terminate Read on EOS option, 7-9
end-of-string mode application example, 2-8 to 2-9
EOS comparison method, 6-1
EOS read method, 6-1
EOS write method, 6-1
ERR status word condition
bit position, hex value, and type (table), 3-4
description, A-2
error codes and solutions
EABO, B-4to B-5
EADR, B-3
EARG, 5-12, B-4
EBUS, B-6 to B-7
ECAP, B-6
ECIC, B-2
EDVR, 5-11, B-2
EFSO, B-6
ENEB, 5-10, B-5
ENOL, B-3
EOIP, B-5t0 B-6
ESAC, B-4
ESRQ, B-7
ESTB, B-7
ETAB, B-8
GPIB error codes (table), 4-4, B-1
error conditions
communication errors, 4-5 to 4-6
repeat addressing, 4-5 to 4-6
termination method, 4-6
configuration errors, 4-5
ibic error information, 5-9 to 5-10
timing errors, 4-5
error variable - iberr, 3-5
ESAC error code
definition (table), 4-4
description, B-4
ESRQ error code
definition (table), 4-4
description, B-7
ESTB error code
definition (table), 4-4
description, B-7

© National Instruments Corp. Index-7 NI-488.2M UM for Windows NT

Index

ETAB error code
definition (table), 4-4
description, B-8
EVENT hit, enabling, 6-4 to 6-5
event queue, 6-4 to 6-5
Event Status bit (ESB), 6-5 to 6-6
EVENT status word condition
bit position, hex value, and type (table), 3-4
description, A-3
Event Viewer utility, 4-2
execute indirect file ($) function, ibic, 5-15

F

fax technical support, C-1

FindLstn routine, 3-13

FindRQS routine, 6-8, 6-9

functions. See auxiliary functions, ibic; NI-488 functions.

G

General Purpose Interface Bus. See GPIB.
global variables, 3-3to 3-6
count variables - ibcnt and ibentl, 3-5t0 3-6
debugging applications, 4-3
error variable - iberr, 3-5
status word - ibsta, 3-3t0 3-5
GPIB
configuration, 1-4 to 1-6. See also ibconf utility.
controlling more than one board, 1-5
linear and star system configuration (illustration), 1-4
requirements, 1-5to 1-6
definition, 1-1
overview, 1-1
sending messages across, 1-2 to 1-3
datalines, 1-2
handshake lines, 1-3
interface management lines, 1-3
Talkers, Listeners, and Controllers, 1-1
gpib-32.dll file, 1-6
gpib-32.0bj file, 1-7

NI-488.2M UM for Windows NT Index-8 © National Instruments Corp.

Index

GPIB addresses
address bit configuration (table), 1-2
configuring in ibconf
Base /O Address option, 7-4
GPIB Primary Address option, 7-6, 7-9
GPIB Secondary Address option, 7-6, 7-9
Repeat Addressing option, 7-10
listen address, 1-2
primary, 1-2
purpose, 1-2
repeat addressing, 4-5 to 4-6
secondary, 1-2
syntax inibic, 5-5
talk address, 1-2
gpib-nt.com file, 1-7
GPIB programming techniques
device-level calls and bus management, 6-3 to 6-4
high-speed data transfers, 6-2 to 6-3
enabling H$488, 6-2 to 6-3
system configuration effects, 6-3
parallel polling, 6-10 to 6-12
implementing, 6-10 to 6-12
using NI-488 functions, 6-10 to 6-11
using NI-488.2 routines, 6-11 to 6-12
serial polling, 6-5to 6-9
automatic serial polling, 6-6 to 6-7
autopolling and interrupts, 6-7
stuck SRQ state, 6-6
service requests
from |EEE 488 devices, 6-5
from |EEE 488.2 devices, 6-5 to 6-6
SRQ and serial polling
with NI-488 device functions, 6-7
with NI-488.2 routines, 6-8 to 6-9
Talker/Listener applications, 6-4 to 6-5
event queue, 6-4 to 6-5
requesting service, 6-5
waiting for messages from Controller, 6-4
termination of datatransfers, 6-1to 6-2
waiting for GPIB conditions, 6-3
gpib-vdd.dll file, 1-7
gpibclsd.sysfile, 1-6
gpib.dll file, 1-7. Seealso NI-488.2M DLL.
GPIBInfo utility, 1-7, 4-3
gpibxxxx.sysfile, 1-6

© National Instruments Corp. Index-9 NI-488.2M UM for Windows NT

Index

H

handshake lines, 1-3
Help (display help information) function, 5-15
high-speed data transfers (H$488), 6-2 to 6-3
enabling H$488, 6-2 to 6-3
setting cable length, 7-4
system configuration effects, 6-3
H$488. See high-speed data transfers (H$488).
H$488 configuration message, 6-2

ibask function, 6-3

ibclr function
clearing devices, 3-8
using in ibic (example), 5-2

ibcmd function, 6-2

ibent and ibentl variables, 3-5 to 3-6

ibconf utility
8-bit EOS Compare option, 7-7, 7-9
Access Board option, 7-9
Assert REN When SC option, 7-8
Base /O Address option, 7-4
board configuration dialog box (illustration), 7-3
Bus Timing option, 7-4
Cable Length for High Speed option, 7-4
Cancel button, 7-4
device template configuration, 7-8 to 7-10
device template dialog box (illustration), 7-8
DMA Channel option, 7-5
Enable Auto Seria Polling option, 7-7
Enable CIC Protocol option, 7-8
EOS Byte option, 7-7, 7-10
exiting, 7-2
expanded board configuration, 7-5 to 7-8
expanded dialog box (illustration), 7-6
GPIB Primary Address option, 7-6, 7-9
GPIB Secondary Address option, 7-6, 7-9
Help button, 7-4
I/O Timeout option, 7-7, 7-10
Interrupt Level option, 7-5
main dialog box (illustration), 7-2
Name option, 7-9
OK button, 7-4
optionsfor all boards, 7-3to 7-4
overview, 7-1

NI-488.2M UM for Windows NT Index- 10

© National Instruments Corp.

Index

Parallel Poll Duration option, 7-7
reconfiguring GPIB driver, 4-5

Repeat Addressing option, 7-10

Send EQI at end of Write option, 7-7, 7-9
Seria Poll Timeout option, 7-10

Set EOI with EOS on Write option, 7-7, 7-9
Software button, 7-4

starting, 7-1to 7-2

System Controller option, 7-7

Terminate Read On EOS option, 7-6, 7-9
unloading and restarting N1-488.2M driver, 1-9, 7-2
Use Demand Mode DMA option, 7-5

Use this Board option, 7-3

ibconf.cpl file, 1-7
ibconf.hlpfile, 1-7
ibconfig function

configuring GPIB board as CIC, 6-3 to 6-4
configuring GPIB driver, 4-5

determining assertion of EQI line, 6-2
enabling autopolling, 6-6

enabling EVENT bit, 6-4 to 6-5

enabling high-speed datatransfers, 6-2 to 6-3

ibdev function

conducting parallel polls, 6-11

opening devices, 3-8

using inibic, 5-10to 5-11
example, 5-2

ibeos function, 6-1
ibeot function, 6-1
iberr error variable, 3-5
ibevent function, 6-5
ibfind function, 5-10
ibic utility

auxiliary functions
I (repeat previous function), 5-15
$ (execute indirect file), 5-16
+ (turn display on), 5-15
- (turn display off), 5-15
Help (display help information), 5-15
n* (repeat function n times), 5-16
print (display the ASCII string), 5-17
Set (udname or 488.2), 5-14 to 5-15
table of functions, 5-14
checking for display errors, 4-4
communicating with devices, 3-6
count, 5-10
debugging applications, 4-4
definition, 1-6
error information, 5-9 to 5-10

© National Instruments Corp. Index-11 NI-488.2M UM for Windows NT

Index

NI-488 functions
examples, 5-1to 5-3
ibdev, 5-10to 5-12
ibfind, 5-10
ibrd, 5-12
ibwrt, 5-12
NI-488.2 routines
issuing set command before using, 5-13
Recelve, 5-13
Send, 5-13
SendList, 5-13
overview, 5-1
programming considerations, 3-6
status word, 5-8
syntax, 5-4 t0 5-9
addresses, 5-5
board-level functions (table), 5-7
device-level functions (table), 5-6
NI-488 functions, 5-5 to 5-7
NI-488.2 routines, 5-8 to 5-9
numbers, 5-4
strings, 5-5
ibonl function
placing board offline, 3-17
placing device offline, 3-10
using in ibic (example), 5-4
ibppc function
conducting parallel polls, 6-11
unconfiguring device for parallel polling, 6-12
ibrd function, using in ibic, 5-12, 3-10
example, 5-4
ibrpp function, 6-11
ibrsp function
conducting seria polls, 6-6, 6-7
using in ibic (example), 5-3
ibrsv function, 6-5
ibsta. See statusword - ibsta.
ibtest utility, 1-7
cable connections, 4-2
NT devices, examining, 4-1to 4-2
presence of driver, 4-1to 4-2
ibtrg function
triggering devices, 3-9
using in ibic (example), 5-3

NI-488.2M UM for Windows NT Index-12

© National Instruments Corp.

Index

ibwait function
conducting seria polls, 6-7
Talker/Listener applications, 6-4
terminating stuck SRQ state, 6-6
using in ibic (example), 5-3
waiting for GPIB conditions, 6-3
waiting for measurements, 3-9 to 3-10
ibwrt function
configuring devices, 3-9
using inibic, 5-12
example, 5-3
*IDN? query, 3-13 to 3-14
IFC (interface clear) ling, 1-3
Interface Bus Interactive Control utility. See ibic utility.
interface management lines, 1-3
Interrupt Level option, ibconf utility, 7-5
interrupts and autopolling, 6-7

L

LACS status word condition
bit position, hex value, and type (table), 3-4
description, A-4
waiting for message from Controller, 6-4
linking applications, 3-17 to 3-19
listen address, setting, 1-2
Listeners, 1-1. Seealso Talker/Listener applications.
LOK status word condition
bit position, hex value, and type (table), 3-4
description, A-3

M

manud. See documentation.
Message Available (MAV) hit, 6-5 to 6-6
messages, sending across GPIB, 1-2to 1-3
datalines, 1-2
handshake lines, 1-3
interface management lines, 1-3
Microsoft Visual C++, See C Language.

© National Instruments Corp. Index-13 NI-488.2M UM for Windows NT

Index

N

n* (repeat function n times) function, ibic, 5-16
NDAC (not data accepted) line (table), 1-3
NI-488 applications, programming. See also application development.
clearing devices, 3-8
configuring devices, 3-9
flowchart of programming with device-level functions, 3-7
genera steps and examples, 3-8 to 3-10
itemsto include, 3-6
opening devices, 3-8
placing device offline, 3-10
processing of data, 3-10
program shell (illustration), 3-7
reading measurement, 3-10
triggering devices, 3-9
waiting for measurement, 3-9 to 3-10
NI-488 functions. See also auxiliary functions, ibic.
parallel polling, 6-10to 6-11
programming considerations
advantages of using, 3-2
board functions, 3-2 to 3-3
choosing between functions and routines, 3-1 to 3-3
device functions, 3-2
when to use functions, 3-2
serial polling, 6-7
usinginibic
examples, 5-1to 5-4
ibdev, 5-10to 5-12
ibfind, 5-10
ibrd, 5-12
ibwrt, 5-12
syntax, 5-5t0 5-7
NI-488.2 applications, programming
configuring instruments, 3-15
finding all Listeners, 3-13
flowchart of programming with routines, 3-12
general steps and examples, 3-13to 3-17
identifying instruments, 3-13 to 3-14
initialization, 3-13
initializing instruments, 3-14
itemstoinclude, 3-11
placing board offline, 3-17
processing of data, 3-16
program shell (illustration), 3-12
reading measurement, 3-16
triggering instruments, 3-15
waiting for measurement, 3-15 to 3-16

NI-488.2M UM for Windows NT Index- 14 © National Instruments Corp.

Index

NI-488.2 routines
ibic syntax, 5-8 to 5-9
parallel polling, 6-11 to 6-12
programming considerations
choosing between functions and routines, 3-1 to 3-3
using with multiple boards or devices, 3-3
serial polling, 6-8 to 6-9
serial polling examples
AllSpoll, 6-9
FindRQS, 6-9
usinginibic
issuing set command before using, 5-13
Receive, 5-13
Send, 5-13
SendList, 5-13
NI-488.2M DLL
choosing how to access, 3-1
requirements for direct access, 3-1
NI-488.2M software, 1-6 to 1-9. See also application development; NI-488 functions;
NI-488.2 routines.
C language files, 1-7
DOS and 16-bit Windows support files, 1-7
driver and driver utility files, 1-6 to 1-7
interaction with Windows NT, 1-8
reloading NI1-488.2M driver, 1-9
unloading NI-488.2M driver, 1-9, 7-2
NRFD (not ready for data) line (table), 1-3
number syntax inibic, 5-4

P

parallel polling, 6-10 to 6-12
application example, 2-18 to 2-19
implementing, 6-10 to 6-12
setting duration with ibconf utility, 7-7
using NI-488 functions, 6-10 to 6-11
using NI-488.2 routines, 6-11 to 6-12
PPoll routine, 6-12
PPollConfig routine, 6-12
PPollUnconfig routine, 6-12
primary GPIB address
definition, 1-2
setting in ibconf utility, 7-6, 7-9
print (display the ASCII string) function, ibic, 5-17
problem solving. See debugging.
programming. See application development; debugging; GPIB programming techniques.

© National Instruments Corp. Index- 15 NI-488.2M UM for Windows NT

Index

R

readme.txt file, 1-6, 1-7
ReadStatusByte routine, 6-8
Receive routine
reading measurements, 3-16
using inibic, 5-12
reloading NI1-488.2M driver, 1-9, 7-2
REM status word condition
bit position, hex value, and type (table), 3-4
description, A-4
REN (remote enable) line
Assert REN When SC option, ibconf utility, 7-8
purpose (table), 1-3
repeat addressing
communication errors, 4-5 to 4-6
enabling in ibconf utility, 7-10
repeat function n times (n*) function, ibic, 5-16
repeat previous function (!) function, ibic, 5-15
requesting service. See service requests.
routines. See NI-488.2 routines.
RQS status word condition
bit position, hex value, and type (table), 3-4
description, A-3
running applications, 3-17 to 3-20

S

secondary GPIB address
definition, 1-2
setting in ibconf utility, 7-6, 7-9
Send routine
configuring instruments, 3-15
using inibic, 5-13
SendCmds function, 6-2
SendIFC routine, 3-13
SendList routine, 5-13
serial polling, 6-5to 6-9
application example using NI-488.2 routines, 2-16 to 2-17
automatic serial polling, 6-6 to 6-7
autopolling and interrupts, 6-7
enabling in ibconf utility, 7-7
stuck SRQ state, 6-6

NI-488.2M UM for Windows NT Index- 16 © National Instruments Corp.

service requests
from | EEE 488 devices, 6-5
from |EEE 488.2 devices, 6-5 to 6-6
setting timeout value in ibconf utility, 7-10
SRQ and serid polling
with NI-488 device functions, 6-7
with NI-488.2 routines, 6-8 to 6-9
service requests
application examples, 2-10 to 2-13
serial polling
|EEE 488 devices, 6-5
|EEE 488.2 devices, 6-5to 6-6
stuck SRQ state, 6-6
Talker/Listener applications, 6-5
set 488.2 command, 5-13
Set (udname or 488.2) function, 5-14 to 5-15
setting up your system. See configuration.
software. See NI-488.2M software.
SPOLL hit, 6-5
SPOLL status word condition
bit position, hex value, and type (table), 3-4
description, A-3
SRQ (service request) line
application examples, 2-10 to 2-13
purpose (table), 1-3
serial polling
automatic serial polling, 6-6
using NI-488 device functions, 6-7
using NI-488.2 routines, 6-8 to 6-9
stuck SRQ state, 6-6
SRQI status word condition
bit position, hex value, and type (table), 3-4
description, A-2
status word - ibsta, 3-3t0 3-5
ATN, A-4
CIC, A-4
CMPL, A-3
DCAS, 6-4t0 6-5, A-5
DTAS, 6-4t0 6-5, A-5
END, A-2
ERR, A-2
EVENT, A-3
ibic example, 5-9
LACS, 6-4, A-4
LOK, A-3
programming considerations, 3-3 to 3-5
REM, A-4
RQS, A-3
SPOLL, A-3

© National Instruments Corp. Index-17

Index

NI-488.2M UM for Windows NT

Index

SRQI, A-2
status word layout (table), 3-4, A-1
TACS, 6-4, A-4
TIMO, A-2
string syntax inibic, 5-5
stuck SRQ state, 6-6
System Controller
as Controller-in-Charge, 1-1
configuring in ibconf utility, 7-7
system log, viewing, 4-2

T

TACS status word condition
bit position, hex value, and type (table), 3-4
description, A-4
waiting for message from Controller, 6-4
talk address, setting, 1-2
Talker/Listener applications, 6-4 to 6-5
event queue, 6-4 to 6-5
requesting service, 6-5
waiting for messages from Controller, 6-4
Talkers, 1-1
technical support, C-1
Terminate read on EOS option, ibconf utility, 7-9
termination methods, errors caused by, 4-6
termination of data transfers, 6-1to 6-2
TestSRQ routine, 6-8
timeout value, setting in ibconf utility
I/0O Timeout option, 7-7, 7-10
Serial Poll Timeout option, 7-10
timing errors, 4-5
TIMO status word condition
bit position, hex value, and type (table), 3-4
description, A-2
TNT4882C hardware, 6-2
*TRG command, 3-15
triggering devices, example, 2-4 to 2-5
troubleshooting. See debugging; ibic utility
turn display off (-) function, ibic, 5-15
turn display on (+) function, ibic, 5-15

U

unloading NI-488.2M driver, 1-9, 7-2

NI-488.2M UM for Windows NT Index- 18

© National Instruments Corp.

Index

W

wait function. See ibwait function.
WaitSRQ routine
conducting seria polls, 6-8
waiting for measurement, 3-15 to 3-16
Windows (16-bit) GPIB applications, 3-20
Windows 16-hit support files, 1-7
Windows NT
examining NT devicesto verify NI-488.2M instalation, 4-1 to 4-2
interaction with NI-488.2M software, 1-8
viewing NT system log, 4-2

© National Instruments Corp. Index-19 NI-488.2M UM for Windows NT

	NI-488.2M ™User Manual for Windows NT
	Limited Warranty
	Copyright
	Trademarks
	Warning Regarding Medical and Clinical Use of National Instruments Products

	Contents
	About This Manual
	How to Use This Manual Set
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	GPIB Overview
	Talkers, Listeners, and Controllers
	Controller-In-Charge and System Controller
	GPIB Addressing
	Sending Messages Across the GPIB
	Data Lines
	Handshake Lines
	Interface Management Lines
	Setting Up and Configuring Your System
	Controlling More Than One Board
	Configuration Requirements
	The NI-488.2M Software Elements
	NI-488.2M Driver and Driver Utilities
	DOS and 16-bit Windows Support Files
	C Language Files
	Sample Application Files
	How the NI-488.2M Software Works with Windows NT
	Unloading and Reloading the NI-488.2M Driver

	Chapter 2 Application Examples
	Example 1: Basic Communication
	Example 2: Clearing and Triggering Devices
	Example 3: Asynchronous I/O
	Example 4: End-of-String Mode
	Example 5: Service Requests
	Example 6: Basic Communication with IEEE 488.2-Compliant Devices
	Example 7: Serial Polls Using NI-488.2 Routines
	Example 8: Parallel Polls
	Example 9: Non-Controller Example

	Chapter 3 Developing Your Application
	Choosing How to Access the NI-488.2M DLL
	Choosing Between NI-488 Functions and NI-488.2 Routines
	Using NI-488 Functions: One Device for Each Board
	NI-488 Device Functions
	NI-488 Board Functions
	Using NI-488.2 Routines: Multiple Boards and/or Multiple Devices
	Checking Status with Global Variables
	Status Word – ibsta
	Error Variable – iberr
	Count Variables – ibcnt and ibcntl
	Using ibic to Communicate with Devices
	Writing Your NI-488 Application
	Items to Include
	NI-488 Program Shell
	General Program Steps and Examples
	Step 1. Open a Device
	Step 2. Clear the Device
	Step 3. Configure the Device
	Step 4. Trigger the Device
	Step 5. Wait for the Measurement
	Step 6. Read the Measurement
	Step 7. Process the Data
	Step 8. Place the Device Offline
	Writing Your NI-488.2 Application
	Items to Include
	NI-488.2 Program Shell
	General Program Steps and Examples
	Step 1. Initialization
	Step 2. Find All Listeners
	Step 3. Identify the Instrument
	Step 4. Initialize the Instrument
	Step 5. Configure the Instrument
	Step 6. Trigger the Instrument
	Step 7. Wait for the Measurement
	Step 8. Read the Measurement
	Step 9. Process the Data
	Step 10. Place the Board Offline
	Compiling, Linking, and Running Your GPIB Win32 Application
	Microsoft Visual C/C++
	Direct Entry with C
	Microsoft Visual C/C++
	Borland C/C++
	Running Existing DOS and Windows GPIB Applications

	Chapter 4 Debugging Your Application
	Running the Software Diagnostic Test
	Presence Test of Driver
	Examining NT Devices to Verify the NI-488.2M Installation
	Examining the NT System Log Using the Event Viewer
	GPIB Cables Connected
	Running GPIBInfo
	Debugging with the Global Status Variables
	Debugging with ibic
	GPIB Error Codes
	Configuration Errors
	Timing Errors
	Communication Errors
	Repeat Addressing
	Termination Method
	Common Questions

	Chapter 5 ibic–Interface Bus Interactive Control Utility
	Overview
	Example Using NI-488 Functions
	ibic Syntax
	Number Syntax
	String Syntax
	Address Syntax
	ibic Syntax for NI-488 Functions
	ibic Syntax for NI-488.2 Routines
	Status Word
	Error Information
	Count
	Common NI-488 Functions
	ibfind
	ibdev
	ibwrt
	ibrd
	Common NI-488.2 Routines in ibic
	Set 488.2
	Send and SendList
	Receive
	Auxiliary Functions
	Set (udname or 488.2)
	Help (Display Help Information)
	! (Repeat Previous Function)
	- (Turn Display Off) and + (Turn Display On)
	n* (Repeat Function n Times)
	$ (Execute Indirect File)
	Print (Display the ASCII String)

	Chapter 6 GPIB Programming Techniques
	Termination of Data Transfers
	High-Speed Data Transfers (HS488)
	Enabling HS488
	System Configuration Effects on HS488
	Waiting for GPIB Conditions
	Device-Level Calls and Bus Management
	Talker/Listener Applications
	Waiting for Messages from the Controller
	Using the Event Queue
	Requesting Service
	Serial Polling
	Service Requests from IEEE 488 Devices
	Service Requests from IEEE 488.2 Devices
	Automatic Serial Polling
	Stuck SRQ State
	Autopolling and Interrupts
	SRQ and Serial Polling with NI-488 Device Functions
	SRQ and Serial Polling with NI-488.2 Routines
	Example 1: Using FindRQS
	Example 2: Using AllSpoll
	Parallel Polling
	Implementing a Parallel Poll
	Parallel Polling with NI-488 Functions
	Parallel Polling with NI-488.2 Routines

	Chapter 7 ibconf–Interface Bus Configuration Utility
	Overview
	Starting and Exiting ibconf
	Board Configuration
	Use this Board
	Bus Timing
	Cable Length for High Speed
	OK
	Cancel
	Help
	Software
	Base I/O Address
	Interrupt Level
	DMA Channel
	Use Demand Mode DMA
	Expanded Board Configuration
	GPIB Primary Address
	GPIB Secondary Address
	Terminate Read on EOS
	Set EOI with EOS on Write
	8-bit EOS Compare
	Send EOI at end of Write
	EOS Byte
	System Controller
	I/O Timeout
	Parallel Poll Duration
	Enable Auto Serial Polling
	Enable CIC Protocol
	Assert REN When SC
	Device Template Configuration
	Name
	Access Board
	GPIB Primary Address
	GPIB Secondary Address
	Terminate Read on EOS
	Set EOI with EOS on Write
	8-bit EOS Compare
	Send EOI at end of Write
	EOS Byte
	I/O Timeout
	Serial Poll Timeout
	Repeat Addressing

	Appendix A Status Word Conditions
	Appendix B Error Codes and Solutions
	Appendix C Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1. GPIB Address Bits
	Figure 1-2. Linear and Star System Configuration
	Figure 1-3. Example of Multiboard System Setup
	Figure 1-4. How the NI-488.2M Software Works with Windows NT
	Figure 2-1. Program Flowchart for Example 1
	Figure 2-2. Program Flowchart for Example 2
	Figure 2-3. Program Flowchart for Example 3
	Figure 2-4. Program Flowchart for Example 4
	Figure 2-5. Program Flowchart for Example 5
	Figure 2-6. Program Flowchart for Example 6
	Figure 2-7. Program Flowchart for Example 7
	Figure 2-8. Program Flowchart for Example 8
	Figure 2-9. Program Flowchart for Example 9
	Figure 3-1. General Program Shell Using NI-488 Device Functions
	Figure 3-2. General Program Shell Using NI-488.2 Routines
	Figure 7-1. Main Dialog Box in ibconf
	Figure 7-2. Board Configuration for an AT-GPIB Interface Board
	Figure 7-3. Expanded Board Configuration for an AT-GPIB board
	Figure 7-4. Device Template Configuration

	Tables
	Table 1-1. GPIB Handshake Lines
	Table 1-2. GPIB Interface Management Lines
	Table 3-1. Status Word (ibsta) Layout
	Table 4-1. GPIB Error Codes
	Table 5-1. Syntax for Device-Level NI-488 Functions in ibic
	Table 5-2. Syntax for Board-Level NI-488 Functions in ibic
	Table 5-3. Syntax for NI-488.2 Routines in ibic
	Table 5-4. Auxiliary Functions in ibic
	Table A-1. Status Word Bits
	Table B-1. GPIB Error Codes

