LabWindows'/CVI

Instrument Driver Developers Guide

July 1996 Edition

Part Number 320684C-01

© Copyright 1994, 1996 National Instruments Corporation.
All rights reserved.

Internet Support

GPIB: gpib.support@natinst.com
DAQ: dag.support@natinst.com

VXI: vxi.support@natinst.com
LabVIEW: Iv.support@natinst.com
LabWindows: lw.support@natinst.com
Lookout: lookout.support@natinst.com
HiQ: hig.support@natinst.com

VISA: visa.support@natinst.com

FTP Site: ftp.natinst.com

Web Address: www.natinst.com

Bulletin Board Support

BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 1 48 65 15 59

J l FaxBack Support

(512) 418-1111

Q‘Z}
Telephone Support (U.S.)

Tel: (512) 795-8248
Fax: (512) 794-5678

PN
International Offices

Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,

Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico 95 800 010 0793,
Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as
evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software
media that do not execute programming instructions if National Instruments receives notice of such defects during
the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted
or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the
outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the
shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREINNATIONAL INSTRUMENTS MAKES NO WARRANTIESEXPRESS OR IMPLIEDAND

SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE

CUSTOMER S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART NARTIONAL

INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMERNATIONAL INSTRUMENTS

WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATAPROFITS USE OF PRODUCTSOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES EVEN IF ADVISED OF THE POSSIBILITY THEREOF This limitation of the liability of

National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The
warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s
failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification

of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of
third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole
or in part, without the prior written consent of National Instruments Corporation.

Trademarks

NI-DAQ®, NI-488.2™ and NI-488.2M™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE
OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on
the part of the user or application designer. Any use or application of National Instruments products for or

involving medical or clinical treatment must be performed by properly trained and qualified medical personnel, and
all traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to
prevent serious injury or death should always continue to be used when National Instruments products are being
used. National Instruments products are NOT intended to be a substitute for any form of established process,
procedure, or equipment used to monitor or safeguard human health and safety in medical or clinical treatment.

Table of Contents

ADOUL ThiS ManUAL.............cocoouiiiiiee e Xiii
Organization of ThiS ManUalcccooiiiiiiiiiir e e e e e Xiii
Conventions Used in ThiS Manual.............uuuiiiiiiiiieeei e Xiv
The LabWindows/CVI Documentation Set............cooiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e XV
Customer COMMUNICALIONiiiiiieeee ettt e e e e e e e e e et e e e bar e a e e e e e e aaaaaas XV

Chapter 1

INStrUMENt DIIVET OVEIVIEWcviviiiiiiiieieeeee ettt 1-1
About the Instrument Library and Instrument DriVersS.............ouuviiiiiiiiiiiiiiiieeeneeeeeennn 1-1
How Users Operate the INStrument DIIVETceuvuviiiiiiiiieeee e 1-2
Purpose and Benefits of INStrument DIVEISuuueiiiiiiiiie e 1-2
Historical Evolution of INStrumMent DIVEIS.......ccouiiiiiiiiiii e 1-3
Instrument Driver ArChItECIUIEoviiiiiiiiieiee e e e e e e eeeaaeeees 1-3

Instrument Driver External Interface Model ..., 1-4
[U] o (o] g F= 1 = To o | PP 1-5
VISA /O INTEITACE ...ttt 1-5
Programmatic Developer INterfacecccceeeeveenieiiiiiiiiieeiiiieee e 1-6
Interactive Developer INterfaceuuvvvevvviiiiiiiiiiiiie e 1-6

Instrument Driver Internal Design Model ..., 1-7
ComponNent FUNCLIONSccoiiiiiiieeiieecees e 1-7
INitialize FUNCLIONoooiiiiiiiiee e 1-8
Configuration FUNCLIONS..........uuuiiiiiiiiei e e e 1-8
ACLION/Status FUNCLIONScceviiiiiiiiiiiie e 1-9
Data FUNCHIONS.ueiiiiiiiiiiiieie et e e e 1-9
ULIIILY FUNCHIONS. ... e 1-9
ClOSE FUNCHION ...ttt e e e e e e e e 1-9

APPICAtioN FUNCLIONScooiiiiiiiiiiiiiie e e e e e e e e eeeeeaees 1-9

Chapter 2

Developing an INStrument DIVETccccoviieiiiiececeee e 2-1
General GUIAEINESuuiiie e e e e e e e eees 2-1
WIItiNg @n INSIrUMENT DIIVETeeeeiiiiiiiiiee e e e e e e e e e e e e e e e e eeeaeneeennnnas 2-1

NaMING the DIIVEI ...t e e e e e e e e e e eeeeeeeennanes 2-2
Defining the INstrument FUNCHIONS........c.ovvviiiiiiiiiiie e 2-2
Structuring Functions In An Instrument Driver............cccovvvvvvvvvinnnnnnn. 2-3
Defining the Hierarchy of FUNCLIONS........cccooviiiiiiiiiiie 2-4
Defining the Function Parameters............ooovviiiiiiiiiiiiiii e 2-4
(D F= 1z B Y 01T T PP 2-4
Predefined Data TYPES ...coceviiiiiiiiiiiaa ettt e e e e e e e e e eeeeeeseennnnes 2-4

©National Instruments Corporation % LabWindows/CVI Instrument Driver Guide

Contents

INtANSIC C Data TYPES. .. i i i i e e ee e e e e 2-5
Meta Data TYPESuieiiieiei et 2-5
NUMEIIC ATTAY ..tttttiieieee e e e e e e e e ee e e e et eeeeettaaasa s s e e e e e e eaaeeeaeeeeenssnnnes 2-6
ANY ATTAY .. 2-6
ANY Ty PO e 2-6
VAI ATGS - 2-7
User-Defined Data TYPES.....coiiiii e e eeee ettt e e e e e e e e e 2-7
Creating a User-Defined Data TYPEcooeviiiiiiiiiiiiiiiiiieeee e 2-7
User-Defined Array Data TYPES......cceeeiieiiiieeieeeeeeeeeeeeeeeeeeeeeeeeaaeeeaanes 2-8
VISA DALA TYPES ...ttt ettt e e ettt e e e e et et e e e e e eat e e e e eeanaa e aeaaeees 2-8
Input and OULPUL Parameters...........oovvvieeiiiiiiiiiiie e e e 2-9
RETUIN VAlUBS ... e e e e e e e e aeeanaees 2-10
Required Instrument Driver FUNCHONS.........uiiiiiiei e 2-10
Building the FUNCHION TIEEuueieiiiiieei et eeeeeaeeees 2-11
Building the FUNCLION PANEIScooiiiiiieeee e 2-11
Writing the FUNCHON COU......uuieiiiiiiiee e eee e 2-11
Operating the DIIVEN..........uuieiiiie e e e 2-11
Testing the INStruMENt DIVETooiiiiiieee s 2-12
Documenting the DIIVENoovvvieeiiceie e e e e e e e e e 2-12
Chapter 3
FUNCLION Tre@ EQITOroviivieeee e 3-1
About the Function Tree and Function Tree Editoruuuveieeiviiiiiiiieiieeeis 3-1
Function Tree EdItor MENU Baroooiiiiiiiiiii e 3-2
1 =TT 3-3
o) USSP 3-3
(O ST 1 [PP 3-4
INSTFUMENT. ... e e 3-4
ClASS i 3-5
Adding a Class to an Empty Tree or ClassS...........ceeeevvvveviininnns 3-5
Inserting a Class into an EXIiSting Tree.........ccccceeeveeiiieeeeeeeeeee, 3-5
Function Panel WiNAOW...coiiiiiiieeeeeeiiiise e 3-5
Adding a Function to an Empty Tree or Class...........cccccceennnn. 3-6
Inserting a Function into an EXisting Tree.......cccceuvvvvvvcinneennn. 3-6
INSTIUMENT. ... e e e e e e e e e e ennna s 3-6
I T Vo F PR UURRPPPPT 3-7
]] 0= To TP PPPPPPPPRPPPPP 3-7
Bt e 3-8
L7711 [1P TTTOPPPPP 3-9
(@] 0] 1 0] o F 3PSO URRPPPPP 3-9
Function Tree EdItOr EXamMPIES........iiiiiiiice e e e e 3-11
Example—Multiple Classes in a FUNCLION Treecooovvvviiiiiiiiiiiiiiieeeeeeeee 3-12
Example—Cutting and Pasting Functions and Panels..............cccccccvvvvvvnnnnnnnn. 3-13
Using Existing Function Panels In a New Driverccccccouvvvviiiinnnnn. 3-14
Example—Editing Items in the FUNCLION Treecccooevveieeeiiieeieeeeee e 3-14

LabWindows/CVI Instrument Driver Guide Vi ©National Instruments Corporation

Chapter 4
FUNCtion Panel EQItOr..........c.coooiiieeceee e 4-1
Invoking the FuNnction Panel EdITOrooeviiiiiiiiiiii e a e 4-1
Invoking from the Function Tree Editorooovviiiiiiiiiiiiiiiee s 4-1
Invoking from a FUNCLION Panel.........cccoooiiiiiiiiiiiieecee e 4-1
The Function Panel EAItOr MENU Baruiiiiiiiiiiiciieceeeeeeiiiinr e 4-2
1 =TT 4-3
o) OSSPSR 4-3
CUL CONMIOIS ..ot 4-4
COPY CONIOIS .. 4-4
PASTE ... s 4-4
CUL PANEL .. 4-4
(©0] o)V == 1 1 IS 4-4
Edit CONLIOL... .o 4-4
Change Control TYPE ...uuuueeeiiiiiie e e e e e e e e 4-5
Edit FUNCHON ..ttt 4-5
1o] 41T | 4-5
Align HOMzontal CeNLErScooii i 4-5
DISHIDULION ...ttt 4-5
Distribute Vertical CeNters.........oouvuiiiiiiiiiiee s 4-5
(@] o110 I = =1 | o 4-6
Function Help or Window Helpouuveiiiiiiiieeeinn 4-6
(O (ST 1[PPI 4-6
Function Panel Window, Function Panel, and Common
CONrol PANEL......ccooiiieeee e 4-6
(O] o1 1 £ I 1N/ 0= TR URPPPPPPP 4-7
[N PUL e ae 4-7
0] T [P PPPRUPPRRRPR 4-8
Adding a Label and Value to the Slide Control List................ 4-10
Dialog Box Command BUttONSccoviiiiiiiiiiiiiieieeeiiiiiiinnn 4-10
BINAIY ..o 4-11
1o PSPPI 4-12
Adding a Label and Value to the Ring Control List 4-14
Dialog Box Command BUttONSccoviiiiiiiiiiiiiieieeeiiiiiiinnn 4-14
NUIMEIIC .ttt ettt et e e e e e e e e e e e e e s e e e e bbb bbb e e e ee e 4-15
(@ 111 o1V PP TUPPRPTTRR 4-17
RELUIMN VAIUE ..o 4-18
Global Variable ... 4-18
Y SIS T PP UPPPRPIN 4-19
BT P PPEPRPRRRRRURR 4-19
INSTIUMENT. ... e r e e e e e e e e e n s 4-19
LAY/ o o PP 4-20
(@] 1 0] 0 4-20
DaAtA TYPES. . e 4-20
TOOIDA ... i 4-21

Contents

©National Instruments Corporation Vi LabWindows/CVI Instrument Driver Guide

Contents

Default Panel SIZeoooooiiiiiiii e 4-21
Panels Movable ... 4-21
TOQgQle SCroll BarS........cccoiiiiiieeeeie e a e e e e e 4-21
Edit FUNCHON TrE. .ot e e e e e e eeeaeneees 4-21
Operate FUNCLON Panelooooeeiiiiiieeeeecres e 4-22
MOVING CONLIOIS ...ttt e e e e e e e e e e e eeeeeeennnnes 4-22
Moving Controls between Function Panelsccccccceeveeeeieiiiieeeiininns 4-22
Selecting Multiple CoNntrolsccoiiiii e 4-22
Function Panel Editor EXamPIES...........vuuiviiiiiiiiiieeee e e e 4-23
Example—Creating a Function WiNndowcocoovviiiiiiiiiiiiinnnnnnnn. 4-23
Example—Changing Control TYPe.......uueeeeiiiiiieeeeeeeeeeeeeeeevv s 4-27
Example—Cutting and Pasting Controlscoeuiiiiiiiiiinneeeeeeee, 4-29
Chapter 5
Adding Help INfOrmMationcoooiiiiiicceeee e 5-1
New Style VS. Old Style Help... ... 5-1
[[T o @ o] (o 1RSSRt 5-2
Editing Help INfOrmation ..o eeeaeeees 5-2
1 =TT 5-3
o) OSSP PP 5-4
WWVINAOW L.ttt et e e e e e e e e e e e e e e e e s st b bbb e s e e e e e 5-4
INSTIUMENT HEIP .. e e e e e e 5-4
FUNCHION ClasS HElP ..o e s 5-4
Function Help (New Style Help ONly).......ooo o 5-5
Function Panel Window Help (Old Style Help ONly)..........uvuiiiiiiiiiieeeeeeeeeeeeeeeiiiias 5-5
(O] a1 (0] I = =1 | o PP PPPPPPPPPPUTRTR 5-6
Help Information EXAMPIESciiiii it e e e e e e e e e 5-6
Example—Adding Help Information in the Function Tree Editor 5-6
Example—Adding Help Information in the Function Panel Editor................. 5-8
Example—Copying and Pasting Help TeXt..........uuuuuiiiiiiiineeeeeeeeiiiiies 5-9
Chapter 6
Programming Guidelines for Instrument Drivers.............cccccooeeveviie e, 6-1
General Programming GUIAEIINESccoiiiiiiiiiiiiiiii e 6-1
The Core INSUMENT DIIVETuuiiiiiiiiiiiiiiee e e e e e e 6-2
MOdiIfyiNg the COrE DIIVENcoii ittt e e e e e e e e e e eeees 6-3
Adding User Callable FUNCLONSoovuiiiiiiiiee e e e e e e e e e e e e eeeeanens 6-4
(O70] o) VK= 1[0 [=] (PP 6-5
Tips for Creating an INStrUMENT DIVETciiiii i e e e e e e e e e eeaanaanees 6-6
Developing Portable INStrument DIVEIS..........uuueeiiiiiieeee e 6-7
INStrument Driver Data TYPES ...ccoce e e e e e e 6-7
Declaring Instrument Driver Functions and Array and Output Parameters.....6-8
Using Scan and FMt FUNCHONSuvvveiiiiiii e e e e e e e 6-9
Error Reporting GUIAEIINESueeeiiieie et 6-10
FUNCHION PANEISo e e e e e e e e e e e 6-12

LabWindows/CVI Instrument Driver Guide viii ©National Instruments Corporation

Contents

FUNCHION Tree HIBrarCNYoooovieiiiiiciei e e e e e e e e e s 6-12
Documentation GUIAEINEScoiiiiiiei et 6-13
(@]] 11 T 1= o PSPPI 6-13
THE .dOC Rl e 6-16
Programming Guidelines for RS-232 INStrUMENtS............uuuiiiiiiiiieeeeeeeeeeeeeeeisiinn 6-17
INItIAliZatioN ROULINE......ccoiiii e a e 6-17
ClOSE ROULINE ...ttt e e e e ee s 6-17
ULIIILY ROULINES ...t 6-17
Programming Guidelines for VXI INStrUMENtSuuviveiiiiiiiieeeeeeeeeeeeeeee e 6-18
Instrument Driver CRECKIIST.........oooo i 6-18
Chapter 7
Required Instrument Driver FUNCLONScc.coooiiiiiiececc e 7-1
[= e G L T 7-2
PREFIX _ClOSEcciiiiiieeeeeie ettt e et e e e e e e e e e ear e 7-4
PREFIX _TESEL....eeee et et e e 7-5
PREFIX _SEIf 1ESt. it eeaaaaas 7-6
PREFIX_EITOI _QUETY ...ttt e e e e e e e e ennas 7-7
PREFIX _€ITOI _MESSAQE .. .cuuu i iiiiiiieieiiie ettt ettt e et e e et e e e e e e eaaeaees 7-9
PREFIX _TEVISION ..ttt ettt e e e e e e e eees 7-10
Chapter 8
Instrument Driver EXamPle ..., 8-1
Example—Creating a GPIB INStrument DIVErccouuuiiiiiiiiiiieeee e 8-1
Creating the FUNCLION TreE......ccoiiiiiieeeeece e a e e e 8-2
Creating the Configure Function Panel Windowovvvveiinnnnn. 8-4
Creating the Read Waveform Function Panel............cccccceeivieeeeeeeennn. 8-10
Creating the INStrument Programeeoiiieeeceeeeeeeeeeeeii e 8-15
Modifying CORE_GPB.C Source Filecuviieiiiiieiiieieieeeeeeeeeii, 8-15
Modifying the CORE_GPB.H Include Fileccoooviiiiiiiiiiiie. 8-16
Writing the NeW FUNCLIONSueiiieii et 8-17
Writing the Configure FUNCLIONuvuiiiiiiiiiiieee e 8-17
Writing the Read Waveform FUNCLion ... 8-18
Adding New Include Statements and Variable Declarations..............ccc.c......... 8-20
IR Lo R = T R 8-20
Appendix A
Tektronix 2430A Instrument Driver Code Sample
Tektronix 2430A Instrument Driver Header File............oooiiiiiiiiiiiiiiiieeceeeeee A-1
Tektronix 2430A Instrument Driver SOUrce Fileuuuiiiiiiiiiieiien A-2

Appendix B
CUSLOMETr COMMUNICATION ...ttt et et e e e e et e e e e e e e e B-1

©National Instruments Corporation iX LabWindows/CVI Instrument Driver Guide

Contents

GHIOSSAIY......ceeeeecee ettt ettt ettt ettt b bt re e G-1
100 [ST I-1
Figures

Figure 1-1. Instrument Driver External Interface Modelooovviviiiiiiiiiiiiccieceee e 1-4
Figure 1-2. Instrument Driver Internal Design MOdeoooiiiiiiiiiiiiiiiiiiie e 1-7
FIQUIE 3-1. A FUNCHON TIOE.. ittt e e e et et et ettt s e e e e e e e e e e e aeeeeeesnnnees 3-2
Figure 3-2. The Edit Instrument Dialog BOXoiiiiiiiiieiciiieeieeeetss s e e e e e 3-8
Figure 3-3. A SamMPIe FUNCHON T e 3-13
Figure 4-1. The FUuNCtion Panel EITOr............uuuuiiiiiiiee e eeeeeeaeeees 4-2
FIQUIE 4-2. CONIIOI TYPES .. i eieieeeeeeeeee et ettt e e e e et ettt s e e e e e e e e e e e e aeeeeaaesssannnnnaeeeeas 4-7
Figure 4-3. The Create Input Control Dialog BOXuuuiiiiiiiiiiiiiiiiieeeieeiiiie e 4-7
Figure 4-4. The Create Slide Control Dialog BOXcccoiviiiiiiiiiiiiiiiiiiiee e 4-8
Figure 4-5. The Edit Label/Value Pairs Dialog BOX.........ccoviiiiiiiiiiiiiiiiiiiiiiiii e 4-9
Figure 4-6. The Create Binary Control Dialog BOX..........ccovviiiiiiiiiiiiiiiiiiiie e e eeeeeeeeeeeeeeinnnns 4-11
Figure 4-7. The Edit On/Off Settings Dialog BOXuuuiiiiiiiiiiieiiiiiieeeeiiiii e 4-12
Figure 4-8. The Create Ring Control Dialog BOX..........ueciiiiiiiiiieieeecieeeeeeeeicrrn e e e 4-12
Figure 4-9. The Ring Control Edit Label/Value Pairs Dialog BOX..........cccuvuviiiiiiiiiniieeeeeennn. 4-13
Figure 4-10. The Create Numeric Control Dialog BOX............uuuuiiiiiiiieeeeiiiieeeeeeiiiviiinen e 4-15
Figure 4-11. The Edit Value Set Dialog BOX......ccoouiiiiiiiiiiiiiiiiiiiie e 4-16
Figure 4-12. The Create Output Control Dialog BOX..........cevvuvievuimiiiiiiiiiieeeeeeeceeeeeeviveins 4-17
Figure 4-13. The Create Return Value Control Dialog BOXccooveiiiiiiiiiiiiiiiiiiiine e 4-18
Figure 4-14. The Create Global Variable Control Dialog BOXceeeiiiiiiieeeeieieieeeiiiiiiinnnns 4-18
Figure 4-15. The Edit Data Type List Dialog BOX........coooiiiiiiiiiiiiiiiiiiiieis e 4-20
Figure 4-16. The Channel Create Binary Control Dialog BOXeevveiiiiiiiiiieeeeeeiieieeenannns 4-24
Figure 4-17. The Channel Edit On/Off Settings Dialog BOX...........cuuuuieiiiiiiiiiiiiiiiieiicieeeiiiiens 4-24
Figure 4-18. The Volts/Div Create Input Control Dialog BOXccoovvvvviiiiiiiiiiiiiiiiiieeeeeee, 4-25
Figure 4-19. The Coupling Create Slide Control Dialog BOX........ccoouvieieeiiiiiiiiiiiiiiiiiieennn 4-25
Figure 4-20. The Coupling Edit Label/Value Pairs Dialog BOX............cccvvvvvvieiiiiiiieeieeeeeeeen, 4-26
Figure 4-21. The Invert Create Binary Control Dialog BOXcccooveiiiiiiiiiiiiiiiiiiiiiiceeeeeeen 4-26
Figure 4-22. The Invert Edit On/Off Settings Dialog BOX..........uuuuiiiiiiiiieeeeeieiiieeeeviiiiiien 4-27
Figure 4-23. A FUNCtion Panel WINQOWcoooiiiiiiiiiiiiiieeiiie e 4-27
Figure 4-24. The Change Input Control Type Dialog BOXcuvvvviviiiiiiiieiieeeeeeeeeeeeeiieininnnns 4-28
Figure 4-25. The Volts/Div Edit Label/Value Pairs Dialog BOXueuiiiiiiiiiiiiiiiiiiiiiiiinns 4-28
Figure 5-1. The Help Editor Dialog BOX..........uuuuiiiiiiiiiiiieee ettt eeeeeeeeaeeees 5-3
Figure 5-2. A SAmMPIE FUNCHON TrEE....uu i et e e e e e e e e e e eaees 5-7
Figure 6-1. The Fluke 45 Digital Multimeter FUNCHION Treeceevieiiiieeeeeeeeeeeeeeee 6-12
Figure 6-2. The Fluke 45 Instrument Help........oooo i 6-14
Figure 6-3. The Fluke 45 FUNCtion Class HelPuuuuiiiiiiiiiieee e e e 6-14

LabWindows/CVI Instrument Driver Guide X ©National Instruments Corporation

Contents

Figure 6-4. The Fluke 45 Function Panel Help........cccooi i 6-15
Figure 6-5. The Fluke 45 Function Panel Control Help...........ooooviiiiiiiiieiiiis 6-15
Figure 6-6. The Fluke 45 Function Panel Error Control Helpccoovvvvvviiiiiiiiiiiiee e 6-16
Figure 8-1. The Function Tree for CORE_GPB.FP......cccoooi i, 8-2
Figure 8-2. The New Function Tree for the Tektronix 2430A Instrument Driver.................. 8-4
Figure 8-3. The Edit Binary Control Dialog BOX...........cuuvuiiuuiiiiiiiiieeeeee e 8-5
Figure 8-4. The Channel Edit On/Off Settings Dialog BOX..........ccovuvuiiiiiiiiiiiiieeeeeeeeieeeeeiiiies 8-5
Figure 8-5. The Edit Ring Control Dialog Box for the Volts/Div Ring Control 8-6
Figure 8-6. The Volts/Div Ring Control Edit Label/Value Pairs Dialog BoX........................ 8-7
Figure 8-7. The Edit Ring Control Dialog BOX..........cciiiiiiiiiiiiiiiiiieee e 8-8
Figure 8-8. The Edit Label/Value Pairs Dialog BOX.........cooviiiiiiiiiiiiiiiiiiiiiiiii e 8-8
Figure 8-9. The Complete Configure Function Panel Windowuviiiiiiiiiiieieceeeeee, 8-10
Figure 8-10. The Waveform Array Create Output Control Dialog BOXccoevvvvviviiininnns 8-11
Figure 8-11. The Sample Period Create Output Control Dialog BOX...........cccvvvvvvvvviniiinnnnnnn. 8-12
Figure 8-12. The Trigger Offset Create Output Control Dialog BOX...........ccccevvvviiiiiiinennnnnnn. 8-13
Figure 8-13. The Complete Read Waveform Function Panel Windowccccceeeeeeeennnnn. 8-14
Tables
Table 2-1. VISA DAta TYPES. .. oo ettt e ettt a e e e e e e e e e e e e e eeeeatabsnnn e e as 2-9
Table 5-1. Types of Help INfOrmM@ation.............eiiii e 5-2
Table 6-1. Core InStrument DrVEr FlEScooii e 6-4
TaDIE 6-2. VISA DAta TYPES .. ccciiiiiiieeeeiiiiiitiies e e e e e e e e e e e e et et eee et s s s e e e e e eaaeaeeeeeeesssnsnnnnaaeeas 6-8
Table 6-3. VISA /O LIDrary MaCIOSccuuuiiiiiiiiiiiaaaeee e e e e e e e ettt s s e e e e e e e e e e aeeeeeesesennnnns 6-8
Table 6-4. Suggested ErrOr VAIUES...........uuuiiiiii et e e e e e 6-10
Table 6-5. Instrument Driver Completion and Warning Codes.............ueueeiiiiiiieeeeeieieeiieeeennns 6-11
Table 6-6. Instrument Driver Error COUESoooviiiiiiiiiiiiiiiiiii ettt 6-11

©National Instruments Corporation Xi LabWindows/CVI Instrument Driver Guide

About This Manual

ThelLabWindows/CVI Instrument Driver Developer Guadscribes developing and adding
instrument drivers to the LabWindows/CVI Instrument Library. This guide is for customers who
develop instrument drivers to control programmable instruments such as GPIB, VXI, and
RS-232 instruments. Follow the procedures in this guide when developing instrument drivers for
personal use or for general distribution to other users. The software tools you use to create
instrument drivers are included in the standard LabWindows/CVI package.

TheLabWindows/CVI Instrument Driver Developer Guisléor users familiar with
LabWindows fundamentals. This manual assumes that you are familiar with the material
presented in th&etting Started with LabWindows/Cyllide, thd.abWindows/CVI User
Manual and theLabWindows/CVI Standard Libraries Reference Manaatl that you are
comfortable with the LabWindows/CVI software. Please refer th.afVindows/CVI User
Manualfor specific instructions on operating LabWindows/CVI.

Organization of This Manual

TheLabWindows/CVI Instrument Driver Developer Guislerganized as follows:

» Chapter 1|nstrument Driver Overviewntroduces the LabWindows/CVI Instrument Library
and instrument drivers, and explains how to use them. This chapter also gives a historical
perspective on the instrument driver library and presents the general models for their
structure.

» Chapter 2Developing an Instrument Driveexplains the proper procedure for developing an
instrument driver.

» Chapter 3The Function Tree Editpexplains the function tree and the Function Tree Editor,
and describes the Function Tree Editor menu bar, menus, and commands.

» Chapter 4The Function Panel Editpdescribes how to create and modify instrument driver
function panels using the Function Panel Editor.

» Chapter 5Adding Help Informationdescribes the types of help information available from
an instrument driver and how you can create help information.

» Chapter 6Programming Guidelines for Instrument Drivegsves you guidelines for creating
instrument drivers and using them with one another. If you write instrument drivers for
general distribution to users, these guidelines ensure portability and proper operation. This
chapter tells you how to create an instrument driver from a LabWindows/CVI core
instrument driver.

© National Instruments Corporation Xiii LabWindows/CVI Instrument Driver Guide

About This Manual

e Chapter 7Required Instrument Driver Functiondescribes the implementation of the
required instrument driver functions of a LabWindows/CVI instrument driver. For each
required instrument driver function, the following information is presented; the C function
prototype, a description of the purpose and operation of the function, a table defining each
parameter, all possible completion and error codes, and any special implementation
requirements.

» Chapter 8|nstrument Driver Exampleshows you how to create a complete GPIB instrument
driver. The example presented in this chapter can serve as a model for your own instrument
driver development.

* Appendix A, Tektronix 2430A Instrument Driver Code Sampt&tains instrument driver
code samples for the Tektronix 2430A.

« Appendix B,Customer Communicatigrontains forms you can use to request help from
National Instruments or to comment on our products and manuals.

» TheGlossarycontains an alphabetical list and description of terms used in this manual.

» Thelndexcontains an alphabetical list of key terms and topics in this manual, including the
page where you can find each one.

Conventions Used in This Manual

The following conventions are used in this manual:

bold Bold text denotes a parameter, menu item, return value, function
panel item, or dialog box button or option.

italic Italic text denotes emphasis, a cross reference, or an introduction to
a key concept.

bold italic Bold italic text denotes a note, caution, or warning.

monospace Text in this font denotes text or characters that you should literally
enter from the keyboard. Sections of code, programming
examples, and syntax examples also appear in this font. This font
also is used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, variables,
filenames, and extensions, and for statements and comments taken
from program code.

italic monospace Italic text in this font denotes that you must supply the appropriate
words or values in the place of these items.

<> Angle brackets enclose the name of a key. A hyphen between two
or more key names enclosed in angle brackets denotes that you

LabWindows/CVI Instrument Driver Guide Xiv © National Instruments Corporation

About This Manual

should simultaneously press the named keys—for example,
<Ctrl-Alt-Delete>.

» The» symbol leads you through nested menu items and dialog
box options to a final action. The sequence
FilexPage Setup»Options»Substitute Fonts
directs you to pull down theile menu, select thBage Setup
item, selecOptions, and finally select th8ubstitute Fonts
option from the last dialog box.

paths Paths in this manual are denoted using backslashes (\) to

separate drive names, directories, and files, as in
drivename\dirlname\dir2Zname\myfile

Acronyms, abbreviations, metric prefixes, mnemonics, and symbols, and terms are listed in the
Glossary

The LabWindows/CVI Documentation Set

For a detailed discussion of the best way to use the LabWindows/CVI documentation set, see the
sectionUsing the LabWindows/CVI Documentation &eChapter 1|ntroduction to
LabWindows/CVbf Getting Started with LabWindows/CVI

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We are
interested in the applications you develop with our products, and we want to help you if you have
problems with them. To make it easy for you to contact us, this manual contains comment and
technical support forms for you to complete. These forms are in Appen@GusBymer
Communicationat the end of this manual.

© National Instruments Corporation XV LabWindows/CVI Instrument Driver Guide

Chapter 1
Instrument Driver Overview

This chapter introduces the LabWindows/CVI Instrument Library and instrument drivers, and
explains how to use them. This chapter also gives an historical perspective on the instrument
driver library and presents the general models for their structure.

About the Instrument Library and Instrument Drivers

The Instrument Library is a special LabWindows/CVI library that contains a collection of
instrument drivers. Instrument drivers free the user from learning the programming protocol of
an instrument. The software routines of an instrument driver control an instrument, and a set of
data structures represent the instrument driver within LabWindows/CVI. The instrument can be
a single physical instrument such as an oscilloscope or a multimeter, a class of instruments that
share common functions, or a hybrid instrument for which no actual physical instrument exists.

In addition to controlling the instrument, an instrument driver formats the data output from the
instrument so the data can be easily presented to the user. For example, the driver may convert a
binary array of two-byte-wide numbers into an ASCII string, or an ASCII string of X-Y

coordinates into two integer arrays suitable for plotting.

An instrument driver consists of four files.
* The instrument driver program, which can héka ,.obj ,.dll , or.c file

* The instrument includel{) file, which contains function declarations, constant definitions,
and external declarations of global variables

* The instrument function panel filégf), which contains information that defines the
function tree, the function panels, and the help text

* An ASCII text file (doc), which contains documentation for the instrument driver

The four filenames consist of the driver name, followed by the appropriate extension. For
example, if the instrument driver name for the Tektronix 2430A digitizing oscilloscope is
tek2430a, its files are nam&ek2430a.c (.obj ,.lib ,or.dll),tek2430a.h
tek2430a.fp , andtek2430a.doc

For more information, refer tdsing Instrument Driversan Chapter 3Project Windowin the
LabWindows/CVI User Manual

© National Instruments Corporation 11 LabWindows/CVI Instrument Driver Guide

Instrument Driver Overview Chapter 1

How Users Operate the Instrument Driver

To the user, an instrument driver represents one or more functions that perform instrument-
specific actions. The instrument drivers collectively make up the Instrument Library.

Within LabWindows/CVI, the user selects an instrument driver frontnsteument menu.
After selecting an instrument, the user selects a function within the instrument driver. A function
panel appears representing the instrument driver function.

A function panel displays symbolic controls that represent parameters to the function. By
manipulating the controls, the user constructs a specific function call that can then be executed or
saved into a program. Thus, the instrument driver function panel gives users two capabilities.

* Interactive control of the instrument

» The ability to generate function calls that can be included in an application program

In summary, the instrument driver includes one or more functions to perform high-level
instrument-related tasks. By including the function calls in an application program, the user can
control an instrument without knowing the programming protocol of the instrument. Most
developers distribute instrument driver programs in bothcthand.obj formats.

Purpose and Benefits of Instrument Drivers

Instrument drivers have always been an important component of instrumentation system
software. They can dramatically increase productivity by reducing test development time and
making test software modular, so that it is easier to reuse and maintain.

Instrument drivers are conceptually one layer above the traditional instrument command sets.
Rather than requiring a user to include individual 1/0 statements throughout an application
program, an instrument driver includes all the communication details of a particular instrument
in high-level software functions that are directly usable by end users as part of their application
programs. The instrument driver architecture defined in this manual accommodates traditional
message-based instruments, both SCPI and non-SCPI, as well as direct control of VXIbus
register-based modules.

All LabWindows/CVI instrument drivers are delivered in source code, whenever possible, and
are fully documented. In addition, the drivers are developed using the standard
LabWindows/CVI environment. Therefore, users can understand the operation of the driver and
modify or enhance the operation of a particular instrument driver to achieve the optimum level of
performance and flexibility for their applications.

LabWindows/CVI Instrument Driver Guide 1-2 © National Instruments Corporation

Chapter 1 Instrument Driver Overview

Historical Evolution of Instrument Drivers

Instrument drivers have become increasingly popular over the last several years, and both users
and vendors have taken advantage of the technology. Increased use of instrument drivers has
fueled a continuous improvement process that has resulted in high-quality instrument drivers.

The VXIplug&play systems alliance was founded to address system-level software issues
beyond the scope of the VXIbus consortium and has actively worked to improve existing
instrument driver standards. The \p¥ig&play instrument driver architecture leveraged
existing popular technology by building on the successful LabWindows/CVI instrument driver
standards.

This manual documents the latest instrument driver technology and specifies rules, guidelines,
and requirements for the development of standard instrument drivers using LabWindows/CVI.
Differences between the new standard for LabWindows/CVI instrument drivers and the old are
minor. The most notable difference between the old and the new LabWindows/CVI instrument
driver styles are as follows.

* VISA defined data types are used to define parameters of all instrument driver functions. For
example, the return value is of type ViStatus (a 32-bit unsigned integer). These data types
promote the portability of instrument drivers to new operating systems and programming
languages.

* Allinstrument I/O is performed with the VISA (Virtual Instrumentation Software
Architecture).

» The initialize function has been made generic to the type of interface (GPIB or VXI) that is
used to control the instrument. All instrument addressing information is passed to the
initialize function via a string parameter.

Instrument Driver Architecture

To define a standard for instrument driver software design and development, it is necessary to
use conceptual models around which the design specifications are written. This manual uses two
architectural models for discussion.

The first model, called the instrument driver external interface model, shows how the instrument
driver interfaces to the other software components in the system. This model gives insight into
key architectural decisions with regard to instrument drivers, and adds context as to how
instrument drivers are used. The second model, called the instrument driver internal design
model, defines how an instrument driver software module is organized internally. This model
shows the consistency of approach to instrument driver design regardless of the type of
instrument.

© National Instruments Corporation 1-3 LabWindows/CVI Instrument Driver Guide

Instrument Driver Overview Chapter 1

Instrument Driver External Interface Model

A VXI plug&play instrument driver consists of software modules that control a specific
instrument. The software modules that make up an instrument driver must interact with other
software in the overall system, both to communicate with the instrument and to communicate
with higher-level software and/or end users who use the instrument driver. The first step in
creating a standard for instrument drivers, therefore, is to define a model to explain how the
instrument driver interacts with the rest of the system.

Figure 1-1 shows a general model for how an instrument interfaces with the rest of the system.

User Program

Interactive Programmatic
Developer Interface Developer Interface

Instrument Driver
(Functional Body)

Subroutine VISA
Interface 1/0O Interface

Figure 1-1. Instrument Driver External Interface Model

This general model contains the instrument driwactional bodywhich is the code of the
instrument driver. Thprogrammatic developer interfa¢e the instrument driver is the
mechanism for calling the driver from a higher-level software program.intdractive

developer interfaces an interactive graphical interface that assists the software developer in
understanding what each particular instrument driver function does and how to use the
programmatic developer interface to call each function. VIBAI/O interfaceis the

mechanism through which the driver communicates with the instrument hardware. The
subroutine interfacés the mechanism through which the driver may call other software modules
it may need to perform its task. These other software modules may include operating system
calls or calls to other unique libraries such as formatting and analysis functions.

LabWindows/CVI Instrument Driver Guide 1-4 © National Instruments Corporation

Chapter 1 Instrument Driver Overview

Functional Body

The functional body of a LabWindows/CVI is a library of C functions for controlling a specific
instrument. Because the functional body is developed with the standard tools provided in the
LabWindows/CVI environment, users can easily view instrument driver source code and
optimize it for their application. The details of the functional body are explained using the
instrument driver internal design model. Chaptd?régramming Guidelines for Instrument
Drivers, describes the guidelines for creating the instrument driver functional body.

VISA I/O Interface

An important consideration for instrument drivers is how they perform 1/O to and from
instruments. In the LabWindows/CVI instrument driver architecture, the 1/O interface is
provided by a separate layer of software that is standard and available on numerous platforms.
The VISA (Virtual Instrument Software Architecture) I/O interface is the National Instruments
next-generation I/O architecture. VISA includes a single interface library for controlling GPIB,
VXI, RS-232, and other types of instruments.

VISA is controller independent and can communicate with instruments via GPIB, MXI,
embedded VXI, and GPIB-VXI controllers.

Subroutine Interface

Because LabWindows/CVI instrument drivers are written in standard ANSI C, the subroutine
interface is simply a function call. Therefore an instrument driver is a software program that can
do anything any other program can do. Some specific instrument drivers may do nothing more
than perform simple message-based and register-based 1/O to and from an instrument, but others
may control multiple instruments or use support libraries to integrate data analysis or other
specialized capabilities inside the driver. This type of approach can be used to build virtual
instruments that combine hardware and software capabilities. Complete high-level tests can be
developed and packaged as instrument drivers that can be used by other test developers.

The concept of virtual instrumentation is very important, and instrument driver tools must allow
users to take advantage of it. The LabWindows/CVI instrument driver standard defined in this
document applies both to instrument drivers that only control a single instrument and to
instrument drivers that combine features of multiple instruments and additional software
processing. For this reason, the LabWindows/CVI instrument driver standard has unlimited
potential as a mechanism for delivering baseline instrument drivers. It also has unlimited
potential as a standard vehicle for delivering much more sophisticated application-specific
capability targeted at highly vertical markets or particular application areas.

The subroutine interface is often used to call instrument driver support functions. The instrument
driver support functions are commonly used routines for a particular instrument driver. These
functions can be either declared and defined within the LabWindows instrument driver source

file or supplied in an external module. The instrument driver support functions are not exported
from the instrument driver and are not intended to be accessed by the end user.

© National Instruments Corporation 1-5 LabWindows/CVI Instrument Driver Guide

Instrument Driver Overview Chapter 1

Programmatic Developer Interface

The programmatic developer interface is the mechanism for using the instrument driver as part of
a test program application. LabWindows/CVI instrument drivers consist of component functions
and one or more application functions to control the instrument. The programmatic developer
interface to these modular software functions is a standard software function call, and the user's
program has a single multi-parameter call for each instrument driver function.

In the LabWindows/CVI instrument driver architecture, the software interface to an instrument
driver is the same as for any other software library module that a user may want to develop or
use. This interface is accomplished through standard software function calls, with no special
instrument-driver-specific requirements.

With a high-level function call interface to instrument drivers, the end user resultant test program
code consists of a few calls to the instrument driver, each call using multiple parameters. A key
benefit of this approach is that the interface to the instrument driver in the user program is
modular and easy to identify, and any interactive developer interface tools (discussed in the next
section) that were used during development of the user code can be recalled during debugging to
understand how the program uses the instrument driver.

Interactive Developer Interface

When a LabWindows/CVI instrument driver is used as an integral part of a higher-level
application software development environment, the programmatic developer interface to the
instrument driver can be enhanced with graphical function panels. Function panels, referred to as
theinteractive developer interfacare designed to assist the programmer by making it easier to
understand how to use the instrument driver. The function panel interface allows the
programmer to operate the particular instrument driver function interactively to understand the
function and automatically generate the instrument control statements that are used in an
application program.

LabWindows/CVI Instrument Driver Guide 1-6 © National Instruments Corporation

Chapter 1 Instrument Driver Overview

Instrument Driver Internal Design Model

The instrument driver internal design model, shown in Figure 1-2, defines the internal
organization of the functional body of the driver.

User Program

INTERACTIVE PROGRAMMATIC
DEVELOPER INTERFACE DEVELOPER INTERFACE

FUNCTIONAL BODY

INITIALIZE ’APPLICATION FUNCTIONS CLOSE
function function

CONFIGURE ([ACTION/ DATA |[UTILITY
functions STATUS | [functions | [functions
functions

COMPONENT FUNCTIONS

SUBROUTINE I I
INTERFACE VISA I/O INTERFACE

Figure 1-2. Instrument Driver Internal Design Mode

The functional body of a LabWindows/CVI instrument driver consists of two main categories.
The first category is a collection of component functions, which are software modules that each
control a specific area of the instrument's functionality. The second category is a collection of
application functions, that show how to use the component functions together to perform
complete test and measurement operations.

The modularity of LabWindows/CVI instrument drivers builds on proven technology. With a
modular approach, a user has the granularity needed to control instruments properly in their
software application. The user can, for example, initialize all instruments once at the start,
configure multiple instruments, and then trigger several instruments simultaneously. As another
example, a user can initialize and configure an instrument once, and then trigger and read from
the instrument several times.

Component Functions

LabWindows/CVI instrument drivers have component functions, which are divided into six
categories: initialize, configuration, action/status, data, utility, and close. Each of these
categories, with the exception of the initialize and close functions, will consist of several modular
software routines. Much of the critical work in developing an instrument driver lies in the
up-front design and organization of the instrument driver component functions. The specific
routines in each category are further categorized as editpaired functionor

developer-specified functions

© National Instruments Corporation 1-7 LabWindows/CVI Instrument Driver Guide

Instrument Driver Overview Chapter 1

The required functions are instrument driver functions that are common to the majority of
instruments. These functions perform the following instrument operations.

* Initialize
* Close

* Reset

» Self-Test

e Error Query
* Error Message

* Revision Query

The remainder of instrument driver functions are known as developer-specified functions, and
the actual operations performed by those routines are left up to the instrument driver developer.
All instruments will have configuration functions, for example, but different instruments may
have different numbers of configuration functions depending on the differences in how the
instruments can be configured. General guidelines in Section 6, Programming Guidelines for
Instrument Drivers, define, organize, and structure the functions within each category. By
following these guidelines, similar instruments will have similar sets of functions.

The LabWindows/CVI instrument driver specifications recommend that an instrument driver
provide full function control of the instrument. However, it does not attempt to mandate the
required functionality of all instrument types such as DMMs, counter/timers, and so on. Rather,
the focus is on the architectural guidelines of all drivers. In this way, all driver developers have
the flexibility to implement functionality unique to a particular instrument, yet all drivers are
organized, packaged, and used in the same way.

Initialize Function

The initialize function initializes the software connection to the instrument. The initialize
function can optionally perform an instrument identification query and reset operations. In
addition, it may perform any necessary actions to place the instrument in its default power-on
state or other specific state.

Configuration Functions

The configuration functions are a collection of software routines that configure the instrument to
perform the desired operation. There may be numerous configuration functions, depending on
the particular instrument.

LabWindows/CVI Instrument Driver Guide 1-8 © National Instruments Corporation

Chapter 1 Instrument Driver Overview

Action/Status Functions

The action/status category contains two types of functions. Action functions cause the
instrument to initiate or terminate test and measurement operations. Status functions obtain the
current status of the instrument or the status of pending operations. The specific routines in this
category and the actual operations performed by those routines are left up to the instrument
driver developer.

Data Functions

The data functions include functions to transfer data to or from the instrument. Examples include
functions for reading a measured value or waveform from a measurement instrument, functions
for downloading waveforms or digital patterns to a source instrument, and so on. The specific
routines in this category and the actual operations performed by those routines are left up to the
instrument driver developer.

Utility Functions

The utility functions can perform a variety of operations. Some utility functions are required,
such as reset, self-test, error query, error message, and revision query, and some are defined by
the developer.

Reset The reset function places the instrument in a default state.

Error Query The error query function queries the instrument and returns the instrument-
specific error information.

Error Message The error message function translates the error return value from a
LabWindows/CVI instrument driver function to a user readable string.

Revision Query The revision query function returns the revision of the instrument driver
and the firmware revision of the instrument being used.

Close Function

All LabWindows/CVI instrument drivers have a Close function that terminates the software

connection to the instrument and deallocates system resources

Application Functions

The application functions are high-level test and measurement oriented routines that are also
provided in source code. These examples are instrument driver functions that can be called via
their own program interface when a user wants a single, test and measurement oriented, and

© National Instruments Corporation 1-9 LabWindows/CVI Instrument Driver Guide

Instrument Driver Overview Chapter 1

high-level function interface to the driver. In most cases, these examples are single functions
that configure, start, and read the instrument, all in a single operation.

The application functions are required not only because they provide a valuable example of how
to use the component functions, but also because they are useful when users want a
single-function, test and measurement oriented interface to the driver rather than using the
individual component functions.

Note: LabWindows/CVI instrument driver application functions do not call the
PREFIX_init or PREFIX close functions.

LabWindows/CVI Instrument Driver Guide 1-10 © National Instruments Corporation

Chapter 2
Developing an Instrument Driver

This chapter explains the proper procedure for developing an instrument driver.

General Guidelines

The following general guidelines help you develop an instrument driver. Follow these guidelines
whether you are developing instrument drivers for personal use or for general distribution to
other users:

» Before creating your instrument driver, define the structure of the driver. A useful instrument
driver is more than a group of functions; it is a tool to help users develop application
programs. Therefore, design an instrument driver with the user in mind.

* Always base your instrument on one of the core instrument drivers or an existing instrument
driver developed from one of the core instrument drivers.

* Follow the specific steps in this chapter to write your instrument driver. Each step directs you
to subsequent chapters for more detailed information and further guidelines. Read all
chapters referenced within each step before you perform the tasks outlined in the step.

Writing an Instrument Driver

You can develop the pieces of an instrument driver in several different sequences. More detailed
information about how to perform the individual steps in the procedure appears in this chapter
and subsequent chapters. To write the driver for your specific instrument, we recommend the
following procedure.

1. Name the instrument driver.
2. Define the instrument functions and function classes.

3. Create a function tree for the instrument driver, adding help information to the top level of
the tree.
4. For each function in the driver:

a. Define the parameters to the function, including variable types and limits, and error
codes.

© National Instruments Corporation 2-1 LabWindows/CVI Instrument Driver Guide

Developing an Instrument Driver Chapter 2

b. Create the function panel for the function, including help information for the panel and
for each control.

c. Write the code to perform the function.
d. Test the source code.

5. Create the include file for the final instrument source code, including function declarations
and constant definitions.

6. Operate the completed driver using function panels without loading the source code.

7. Document the driver.

Naming the Driver

When you create instrument drivers, you add routines to the LabWindows/CVI Instrument
Library. Give unique and meaningful names to the driver and its routines to avoid conflicts with
the other instrument drivers and routines. You accomplish this with an instrument prefix that you
assign when you create the instrument driver. Insert this prefix before each function name in the
driver and use the prefix to name the component fies . , fp , and so on) of the driver.

For example, suppose you write an instrument driver for the Fluke 8840A digital multimeter. If
you choose the instrument prefi®840a |, the files that comprise the instrument driver would
befl8840a.c ,fl8840a.h ,fl8840a.fp . andfl8840a.doc . Furthermore, the driver
function names each have the préf®840a added to them, for example,

fl8840a_trigger

Note: The instrument prefix must have eight characters or less. LabWindows/CVI adds an
underscore (_) separator to the eight-character prefix before appending the function
name to it.

Defining the Instrument Functions

An instrument driver can feature one or more functions you can use to program the instrument.
For a simple instrument, you can use two or three functions through which you can program the
instrument. For a more complex instrument, you can use function classes, each of which contains
functions specific to that class. In addition, you can break down complex instruments
conceptually into independent instrument drivers, where each driver represents one major
application of the complex instrument.

LabWindows/CVI Instrument Driver Guide 2-2 © National Instruments Corporation

Chapter 2 Developing an Instrument Driver

Structuring Functions In An Instrument Driver

The three implementations of a single instrument driver in this section show you some options
for structuring functions. In this example, the designer includes seven functions with which to
program the instrument.

The first implementation gives the user a simple linear list of all available functions.

instrumentA(1)
functionl
function2
function3
function4
function5
function6
function7

The second implementation breaks the functions into two function classes.

instrumentA(2)
function_classl
function1.1
function1.2
function1.3
function1.4
function_class2
function2.5
function2.6
function2.7

The third implementation treats the two function classes as two distinct instruments.

instrumentA(3.1)
functionl
function2
function3
function4

instrumentA(3.2)
function5
function6
function7

To successfully structure the functions for your instrument, you must determine who will use the
instrument driver and how they will use the instrument. Define functions that stand alone to
perform a useful action. For example, it may at first seem logical to use the functions
SET_DMM_RANGIOISET_DMM_FUNCTIONor setting the range and function of a

multimeter. However, a more useful function mayodéM _CONFIGor setting up multiple
parameters.

© National Instruments Corporation 2-3 LabWindows/CVI Instrument Driver Guide

Developing an Instrument Driver Chapter 2

Defining the Hierarchy of Functions

If the instrument has numerous functions that logically fall into classes, you can group them into
function classes or treat the groups of functions as independent instruments. The user can
identify the functions required by the desired action without the burden of choosing from a long
list of unrelated functions.

The concept of function classes is only apparent to the user from within LabWindows/CVI. From
the application program, functions within an instrument driver are all called the same way,
regardless of which function class they are in. Functions that are divided between separate
instrument drivers, however, are treated as functions of two distinct instruments.

Defining the Function Parameters
To design the code for an instrument driver function, you must first establish its parameters.

Function parameters give input information to the function and variables where the function can
store its results, or output. Output parameters can contain values that were read from the
instrument and formatted for the user.

Data Types

You must define a data type for each parameter in an instrument driver. All data types used by
the instrument driver must be defined for the file. You specify the data type of a parameter
when you create its corresponding control on a function panel. This data type must also be
consistent with the prototypes in the instrument driver header file.

With this information, LabWindows/CVI gives appropriate variable declaration and run-time
checking capabilities when users operate a function panel. When you declare a variable from a
function panel, LabWindows/CVI presents options based on the data type definedpn the

file. When you run a function from a function panel, LabWindows/CVI verifies that the data type
of the control matches the prototype of the function.

Data types are broken into three claspesdefined data types, user-defined data tygreb/ISA
data types.
Predefined Data Types

Predefined data typeare available by default in the LabWindows/CVI environment. The
predefined data types consistimifrinsic C data typeandmeta data typedefined by
LabWindows/CVI1.

LabWindows/CVI Instrument Driver Guide 2-4 © National Instruments Corporation

Chapter 2 Developing an Instrument Driver

Intrinsic C Data Types
Theintrinsic C data typegredefined by LabWindows/CVI are listed below.

int

long

short

char

unsigned int
unsigned long
unsigned short
unsigned char
int []

long []

short []

char []
unsigned int []
unsigned long []
unsigned short []
unsigned char []
double

float

double]

float []

char *

char *[]

void *

When you create a control to represent an array of data, make the data type an intrinsic C data
type that ends with the open and close bracKetsPo not select a data type that ends with an
asterisk, *". The brackets tell LabWindows/CVI that the control represents an array of data, not
a pointer. LabWindows/CVI will then perform the appropriate variable declaration and runtime
checking capabilities when the user operates the function panel.

When you define d&p control with an intrinsic C data type, variables you declare infihat
control using théeclare Variablecommandappear with that data type in the dialog box. You
must define the parameter as that data type in the instrument driver function prototype.

Meta Data Types

Themeta data typesombine intrinsic C data types and user-defined data types. The meta data
types ardNumeric Array , Any Array , Any Type , andVar Args . These data types

define sets of allowable data types for a parameter. When the user execDeddhe Variable
command on a control defined with a meta data type, the user can select from a list of allowable
data types.

© National Instruments Corporation 2-5 LabWindows/CVI Instrument Driver Guide

Developing an Instrument Driver Chapter 2

Numeric Array

Numeric Arrayspecifies a parameter that may be any of the intrinsic C numeric array data types.
You must define the parametenasd * in the function prototype. An example of a Numeric
Array data type is in thBlotX function of the User Interface library. TRéotX function plots

the values of any intrinsic C numeric array data type to a graph control on a user interface panel.
On the function panel, the X Array control is of tydemeric Array and is defined as

void * in the function prototype shown below.

int PlotX(int panel, int control, void *xArray, int numPoints,
int xDType, int plotStyle, int pointStyle, int lineStyle,
int pointFreq, int color);

Any Array

Any Arrayspecifies a parameter that may be any of the intrinsic C or user-defined array data
types. You must define the parametevaisl * in the function prototype. An example of an
Any Array data type is in thmmemcpyfunction of the ANSI C library. This function copies a
specified number of bytes from a target buffer of any type to a source buffer. In the function
panel the first parameter is the Target Buffer which is of AipeType and is defined as a

void * in the function prototype shown below.

void *memcpy(void *, const void *, size_t);

Any Type

Any Typespecifies a parameter that may be any of the intrinsic C or user-defined data types. If
the parameter is an output parameter, you must defined@id% in the function prototype. If

the parameter is an input parameter, you must define it a8 ‘in the function prototype, and it
must be the last parameter in the function. Yalkeie output parameter of the

GetCitrlAttribute function in the User Interface Library is an example ofAhg Type

data type. The function obtains the value of a control attribute from the selected panel and
control. Although attribute values may be of different data types, the parameter is passed by
reference and is therefore a pointer. Consequently, the attribute value parameter is of type
Any Type and is defined agid * in the function prototype shown below.

int GetCtrlAttribute(int panel,int control, int attribute, void *value);

TheValue parameter of th8etCtrlAttribute function also applies to attributes of

different data types, but it is an input rather than an output parameter. It is passed by value rather
than by reference and thus can have different sizes. For example, it mighhbe @na

double . Consequently, the attribute value parameter is ofAypeType and is defined as

“... "in the function prototype shown below.

int SetCtrlAttribute (int panel, int control, int attribute, ...);

LabWindows/CVI Instrument Driver Guide 2-6 © National Instruments Corporation

Chapter 2 Developing an Instrument Driver

Var Args

Var Argsspecifies a variable number of parameters that may be any of the intrinsic C or user-
defined data types. You must define the parameters.as’in the function prototype. The

printt andscanf functions in the ANSI C library is an example of e Args data type.
Following the format string parameter in each function, you can specify one or more parameters
of different data types to match the type specifiers in the format stringrinth , the

parameters are passed by valuesdanf , they are passed by reference and thus are really
pointers. For both functions, oNar Arg function panel control is used, and. “” appears in

the function prototypes shown below.

int printf (const char *, ...);
int scanf (const char *, ...);

User-Defined Data Types

LabWindows/CVI also lets you define data types and use them in function panels. You must
declare user-defined data types in the function panel file of an instrument driver and you must
define the data type in the header file of the driver. Declare user-defined data types étathe
Typescommand box in the Function Panel Editor.

For example, you can define a data twaveform_var for an instrument driver to represent
waveform data. Thiwaveform_var data type could be a structure that contains an array of
doubles to represent the individual points in the waveforiiipat for the time of the first
point, and dloat for the time between points.

Creating a User-Defined Data Type
Create a user-defined data type for use in a function panel as follows:

1. Define the data type withtgpedef statement in the instrument driver header file.

2. Add the data type to the instrument driver function panel file usingateTypescommand
in theOptions menu in the Function Panel Editor.

Step one for thevaveform_var data type presented previously is to include the following
code in the header file of the instrument driver.

typedef struct {
double waveform_arr [500];
floatt zero;
float t_delta;

} waveform_var;

© National Instruments Corporation 2-7 LabWindows/CVI Instrument Driver Guide

Developing an Instrument Driver Chapter 2

Step two is to make th@aveform_var data type available in the function panel file. Select
Data Typesfrom theOptions menu of the Function Panel Editor and enter

waveform_var

in theType box of the Edit Data Type List dialog box. Then sefaid.

Now you can select the@aveform_var data type when you create function panel controls for
this instrument driver. Also, users can interactively declare a variablevaform_var data
type from any function panel control that was definedageform_var

See Chapter & he Function Panel Editpfor a discussion of the Edit Data Type ldsdlog
box.

User-Defined Array Data Types

Use care when you declare user-defined data types that will be used as arrays. If you want to
define a user-defined array data type, bradfetmust appear at the end of the type in the Edit
Data Type List dialog box. The brackets enable the interactive variable declaration and other
capabilities of LabWindows/CVI function panels. For example, to declare an array of
waveform_var type from the example presented above, add

waveform_var [] (This example is correct because it includes brackets.)

to theType box of the Edit Data Type Lislialog box, and include in the instrument driver
header file théypedef declaration fowaveform.var that was presented in the previous
example.

Examples of incorrect ways to define array user-defined data types are shown below.
Assume the following data type definitions are in an instrument driver header file.

typedef waveform_var * waveform_arrl;
typedef waveform_var waveform_arr2[100];

Then the following data type declarations in the Edit Data Type List dialog box are incorrect:
waveform_var * (This example is incorrect because it lacks brackets.)

waveform_arrl (This example is incorrect because it lacks brackets.)
waveform_arr2 (This example is incorrect because it lacks brackets.)

VISA Data Types

A special set of data types are defined by the VISA I/O library. The data types strictly define the
type and size of the parameters and therefore promote the portability of the functions to new
operating systems and programming languages.

LabWindows/CVI Instrument Driver Guide 2-8 © National Instruments Corporation

Chapter 2 Developing an Instrument Driver

A subset of the VISA data types has been defined for use in the development of
LabWindows/CVI instrument drivers and are accessible as user-defined data types. These special
data types used for instrument drivers are as follows.

Table 2-1. VISA Data Types.

VISA Type Name Definition

Vilnt16 Signed 16-bit integer

Vilnt32 Signed 32-bit integer

ViReal64 64-bit floating point number

Vilnt16[] An array ofVilntl6 values

Vilnt32[] An array ofVilnt32 values

ViReal64][] An array ofViReal64 values

ViChar[] A string

ViRsrc An Instrument Driver resource descriptetring)
ViSession An Instrument Driver session handle
ViStatus An Instrument Driver return status type
ViBoolean Boolean value

ViBoolean(] An array ofViBoolean values

To use these special user-defined data types in an instrument driver, do the following:

1. Add the VISA data types to the function panel file by usindéia Type command in the
function panel editor. Then selestid VISA Types from theEdit Data Type List dialog.

2. Include the filevpptype.h in the instrument driver header file.

See Chapter 4 he Function Panel Editpfor a discussion of thedit Data Type List dialog
box.

Input and Output Parameters

Because instrument drivers generally reflect a physical instrument, the input and output function
parameters correspond to one or more of the controls on the face of the instrument.

Define output parameters as follows.

1. Review the purpose of the function to determine the inputs and outputs.

© National Instruments Corporation 2-9 LabWindows/CVI Instrument Driver Guide

Developing an Instrument Driver Chapter 2

2. Choose the data type of each parameter. The data type should be one that the application
program can easily use.

a. If a parameter is an array data type, select a data type with bfaclegtthe end of the
data type name.

b. For output parameters, select the data type of the value that will be passed, not a pointer
to that type. When users operate function panels interactively, LabWindows/CVI knows
to pass a variable by reference because the control is defined as an output.

For example, in a functioexamp_func that had an outp@xamp_out as an integer
parameter, you prototype the function in the instrument driver header file as

examp_func (int *examp_out);

When you create a function panel for this function, you need to create an output control for
examp_out and specify its data type B , not asnt* . When a user declares variables
interactively from the function panel, LabWindows/CVI will create a variable of the type
specified and automatically put an "&" in front of the variable name to pass it by reference.

3. Assign a meaningful name to each parameter.

Return Values

Instrument driver functions may also haveeturn value Instrument drivers supplied by

National Instruments use function return values to implement an error-handling mechanism. All
instrument driver functions have a return value of tyf#gtatus (32-bit unsigned integer) that
returns error and status information about the function call.

Required Instrument Driver Functions

If your instrument driver is for a GPIB, VXI, or RS-232 instrument, you are required to define
several functions. These functions are as follows.

* Initialize
* Close

* Reset

» Self-Test

e Error Query
* Error Message

* Revision Query

LabWindows/CVI Instrument Driver Guide 2-10 © National Instruments Corporation

Chapter 2 Developing an Instrument Driver

Chapter 7Required Instrument Driver Functiondescribes the implementation guidelines for
the required instrument driver operations.

Building the Function Tree

When users access an instrument driver fronminsieument menu, they can select instrument
functions from one or more dialog boxes. The function tree shows the organization of the
functions in dialog boxes. You use the Function Tree Editor to create the function tree.
Chapter 3TheFunction Tree Editgrdescribes the use of the Function Tree Editor.

In addition to specifying the appearance, the function tree also contains help information that the
user can access from the dialog boxes. Add this help information as you create the tree.
Chapter 5Adding Help Informationexplains how to add help information to the function tree.

Building the Function Panels

Users operate the function panels to execute instrument driver functions and to generate code for
an application program. Each primary function requires a function panel. A secondary function
can appear on one or more function panels. A function panel can also consist entirely of
secondary functions. The Function Panel Editor lets you build function panels by placing

controls on a blank panel in the position and order that you want them to appear.

Chapter 3The Function Panel Editpdescribes the use of the Function Panel Editor.

The Function Panel Editor also lets you add online help information for each control on a panel.
Add this help information as you create each panel. Chaptetding Help Information
explains how to add help information to a function panel.

Writing the Function Code

After you name the function and define its parameter list, you write the code to implement the
function. TheLabWindows/CVI User Manualescribes the development tools available in
LabWindows/CVI for testing and debugging your code. The instrument driver you create uses
full C language source code.

To develop the instrument driver source code, follow the guidelines in Chapiegsamming
Guidelines for Instrument Drivers
Operating the Driver

After you have created the (.obj ,.lib ,or.dll),.h,and.fp files, you can operate the
instrument driver. Load the driver using thead command in thénstrument menu and
operate every function panel that you have created. Then, use the panels to generate a sample

© National Instruments Corporation 2-11 LabWindows/CVI Instrument Driver Guide

Developing an Instrument Driver Chapter 2

program to verify operation of the driver. ChaptefBe Project Windowgf the
LabWindows/CVI User Manugiells more about operating instrument drivers.

Testing the Instrument Driver

Before you distribute an instrument driver, you should fully test it. Test it from within the
LabWindows/CVI interactive program and as a standalone application. A suggested testing
sequence for instrument drivers is outlined here.

Caution: Be sure to save copies of the original instrument source files in a separate
directory.

1. Load the instrument driver and execute all functions from the function panels.
2. Verify correct operation of all functions.

3. Create and run a sample application program that exercises all of the functions in the driver
within LabWindows/CVI.

4. Verify correct operation of the application program.

5. Create and run a sample application that exercises all of the functions in the driver within a
standalone application.

6. Verify correct operation of the application program.

Documenting the Driver

The final step in creating an instrument driver is to document the driverdddefile describes

the purpose of the driver, the function tree, and function panels, and contains a function reference
list explaining the syntax of each function in the driver. Chapterdagramming Guidelines for
Instrument Driverscontains guidelines and suggestions for documenting your instrument driver.

LabWindows/CVI Instrument Driver Guide 2-12 © National Instruments Corporation

Chapter 3
Function Tree Editor

This chapter explains the function tree and the Function Tree Editor, and describes the Function
Tree Editor menu bar, menus, and commands.

About the Function Tree and Function Tree Editor

Thefunction treedefines the way functions are grouped in the dialog boxes. Users access the
function panels of an instrument driver through the Select Function Panel dialog box which they
select from thénstrument menu. You use thieunction Tree Editoto create and modify the
function tree for an instrument driver.

To invoke the Function Tree Editor, select Buaction Tree (*.fp) option from either th&lew
or Open commands in thEile menu.

When you invoke the Function Tree Editor, a new Function Tree Editor window appears. If you
selecteddpento edit an existing function tree, the function tree for the file you selected appears
in the window. To edit the function panel of an instrument driver that is loaded in the
Instrument menu, selededit from thelnstrument menu. Then highlight the name of the
instrument in the selection list of the Edit Instrument dialog box and preEslitieunction

Tree button. A function tree appears in Figure 3-1.

© National Instruments Corporation 3-1 LabWindows/CVI Instrument Driver Guide

Function Tree Editor Chapter 3

=] E s 1 v ||
-filt: Edit Create Instrument Window Options Help
Faktraniys S Dngreald Osegdloscones +

Initialize

T L e A0 AT]

Sl L L L
Yertical
Horizontal
A Trigger
B Trigger
Auto Setup
Acqui=ition Setting=s
Save Settings
Mas=rranan é Fumcrons
Setup Heasurement
Fead Heaszurement
Sursor FuncEons
Set Cursor
Read Cur=sor
Famafary Funcfions
Fead Waveform
Save to Reference
Clo=e

3210 | Tektronix Z24xx Digital O=cilloscopes

Figure 3-1. A Function Tree

If you selectedNew to create a new function tree, you see a blank Function Tree Editor window.

Function Tree Editor Menu Bar

You can edit an existing tree or create a new tree with the Function Tree Editor. You have the
following options on the Function Tree Editor menu bar:

» File lets you create a new function tree, edit an existing function tree, save function panel
information into afp file on disk, or add function panels to a project.

» Edit lets you modify the entries on the function tree or add help information.

» Create lets you create a new function tree, or add new functions and classes to an existing
function tree.

* Instrument lets you load instrument drivers, unload them, or select which function panel to
edit.

* Window lets you select which window to make active.

» Options lets you select the help style, generate function prototypes, genatate dile,
create a DLL project, and select whether to enablepWigi&play style.

LabWindows/CVI Instrument Driver Guide 3-2 © National Instruments Corporation

Chapter 3 Function Tree Editor

File

TheFile menu lets you create a new function tree, edit an existing function tree, save function
panel information into &p file on disk, or add function panels to a project. Fihe menu
operates like th&ile menu of the Project window. The@bWindows/CVI User Manual

Chapter 4The Project Windowtells more about thEile menu.

Edit

TheEdit menu lets you edit the entries in the function tree. You have the following options in
the Edit menu.

Cut deletes the highlighted function or class from the tree and copies it to the Clipboard.
Copy copies the highlighted function or class from the tree to the Clipboard.

Paste Aboveinserts the contents of the Clipboard into the tree above the highlighted line.
Paste Belowinserts the contents of the Clipboard into the tree below the highlighted line.

When you cut or copy a class to the Function Tree Editor Clipboard, all of its subclasses and
functions are cut or copied as well. Similarly, when you paste the class, all of its subclasses
and functions are also pasted.

Edit Node...lets you edit the instrument, function, or class name on the highlighted line.

Edit Help lets you add context-sensitive help information to the function tree. See Chapter 5,
Adding Help Informationto learn how to add help information.

Edit Function Panel Window lets you edit the highlighted function in the function tree
editor and display it in the Function Tree Editor. Chaptéuhction Panel Editorgives you
information on using the Function Panel Editor.

FP Auto-Load List allows you to specify other instrument drivers on which the instrument
driver you are currently developing is dependent. These instrument drivers are loaded when
the current instrument driver is loaded

— viatheLoad command in thénstrument menu
— in the process of loading a project file in which the curfent file is listed.

The.FP Auto-Load List command brings up a dialog in which you can list sinfple file
names. Do not include drive or directory names. When you load the current instrument
driver, LabWindows/CV!I tries also to load the instrument drivers identified by tfpeséle
names.

CVI looks for thesefp files in the following sequence.

1. It first looks in the directory of the referencirig file.

© National Instruments Corporation 3-3 LabWindows/CVI Instrument Driver Guide

Function Tree Editor Chapter 3

2. It then looks for them in the “instrument directories list” which is edited using the
Instrument Directories command in th€©ptions menu of theProject window.

3. Finally, it looks for them in thefistr " directory under the directory where
LabWindows/CVI is installed.

If a.fp file cannot be found, the user is given a chance to look for it using a file dialog. If
the user finds thdp file, the user is prompted to add the directory to the instrument
directories list. The user is also given the option to add the file to the project.

If an auto-loadedp file has no classes or function panels, then it is not listed in the
Instrument menu. This is useful for support modules that contain no user-callable functions.

When the user selects tmload command from thénstrument menu, all auto-loadedp
files are listed in the dialog. Auto-loaded instruments are not unloaded automatically when
the dependent instrument is unloaded.

Create

TheCreate menu lets you create a new instrument tree or add functions and classes to an
existing tree.

You have the following options in tl&reate menu.
* Instrument... lets you create a new function tree.
» Class...lets you add a new class to the function tree.

* Function Panel Window...lets you add a new function to the function tree.

Instrument...

Thelnstrument command lets you create a new function tree. When you $estatment, a
dialog box appears. Enter the following information in the Create Instrument Node dialog box:

* The name of the instrument (up to 40 characters)

* The prefix that you want LabWindows/CVI to add to the beginning of each function name
within the instrument driver code. The prefix cannot exceed eight characters. Do not include
the underscore (_) separator in your prefix. LabWindows/CVI adds an underscore ()
separator to the prefix before appending the function name to it.

The instrument name you enter in the Create Instrument Node dialog box appears at the bottom
of the Function Tree Editor window. The li@eeate Class or Function Panel

Window appears beneath the instrument name. Add functions and classes to the function tree
using the Function and Class commands.

LabWindows/CVI Instrument Driver Guide 3-4 © National Instruments Corporation

Chapter 3 Function Tree Editor

Class
Use theClasscommand to add a new class to a function tree.
When you select th€Elasscommand, a dialog box appears. Enter the name that you want to

appear in the Select Function Panel dialog box which users choose fromtthment menu.

Adding a Class to an Empty Tree or Class

Add a class to an empty tree as follows.

1. Highlight the line containin@reate Class or Function Panel Window

2. SelectClassfrom theCreate menu. TheCreate Class Node dialog box appears.

3. Complete the Create Class Node dialog box. The class appears in the function tree window.
The new class name takes the place ofQleate Class or Function Panel

Window message on the highlighted line.

Inserting a Class into an Existing Tree

In the function panel hierarchy, you can insert up to eight levels of classes. To insert a class into
a function tree, follow these steps.

1. Highlight an existing function or class at the level you want to place the new class.
2. SeleciClassfrom theCreate menu. The Create Class Node dialog box appears.

3. Complete the Create Class Node dialog box. The new class is inserted on the line below the
existing function or class. The class exists at the same level in the tree as the function or class
that originally occupied the line.

Note: A function tree can contain a combination of up to 32000 functions and classes.

Function Panel Window...

TheFunction Panel Windowcommand of th€reate menu lets you add a new function to a
function tree.

When you select theunction Panel Windowcommand, a dialog box appears. Enter the
following information in the Create Function Panel Window Node dialog box.

1. Enter in the Name text box the name that you want to appear in the Function Panel Selection
dialog box when the instrument is chosen fromitis¢rument menu.

© National Instruments Corporation 3-5 LabWindows/CVI Instrument Driver Guide

Function Tree Editor Chapter 3

2. Enter in the Function Name text box the actual code name used in the instrument driver for
the function being added. This function name must be valid for the current language.

Note: The name of every function in an instrument driver begins with a common prefix. Do
not enter the prefix of the function name. LabWindows/CVI automatically adds the
prefix to each function name. The prefix was specified when the function tree was
created from the Instrument command in the Create menu.

Adding a Function to an Empty Tree or Class

Add a function to an empty tree or class as follows:
1. Highlight the line containing Create Class or Function Panel Window.

2. Selectrunction Panel Windowfrom theCreate menu. The Create Function Panel Window
Node dialog box appears.

3. Complete the Create FunctiBanel Window Node dialog box. The new function name
appears in place of the Create Class or Function Panel Window message on the highlighted
line.

Inserting a Function into an Existing Tree

Insert a function at any level in an existing function tree as follows:
1. Highlight an existing function or class at the level you want to place the new function.

2. Selectrunction Panel Windowfrom theCreate menu. The Create Function Panel Window
Node dialog box appears.

3. Complete the Create Function Panel Window Niid®g box.

The new function is inserted on the line below the existing function or class. The function exists
at the same level in the tree as the function or class that originally occupied the line.

Instrument

Use thenstrument menu to load and edit an instrument driver, and to edit a function in the
loaded instrument driver. THestrument menu operates like thastrument menu on the main
LabWindows/CVI menu bar, except that the instrument function tree you select appears in a
Function Tree Editor window.

Thelnstrument menu lists the loaded instrument drivers. Triisgrument menu presents the
following standard options.

LabWindows/CVI Instrument Driver Guide 3-6 © National Instruments Corporation

Chapter 3 Function Tree Editor

* Load...lets you add an instrument driver to thetrument menu.
* Unload...lets you remove one or all instrument drivers fromltisérument menu.

» Edit... lets you invoke the Function Panel Editor or modify the relationship between the
function panel file and its associated program file.

Load...

ThelLoad command of thénstrument menu lets you add a new instrument driver to the
Instrument menu. Thd.oad command operates like tpen command in th&ile menu.
When you select theoad command, the Load Instrument dialog box appears. Enter the
appropriate information to select an existing function panel file.

Unload...

* TheUnload command removes one or all instrument drivers fromrtsgument menu.
When you select thenload command, the Unload Instrument dialog box appears. In this
dialog box, you have the following options.

» Use the mouse or the cursor keys and space bar to individually select which instrument
drivers to unload.

» Select all instrument drivers by pressing @teeck All button.
* Deselect all instrument drivers by pressing@meck Nonebutton.
* Press th®©K button to unload the selected instrument drivers.

* Press th&€ancelbutton to return without unloading any instrument drivers.

© National Instruments Corporation 3-7 LabWindows/CVI Instrument Driver Guide

Function Tree Editor Chapter 3

Edit...

TheEdit command lets you invoke the Function Panel Editor or modify the relationship between
the function panel file and its associated program file. When you &alédrom the
Instrument menu, the dialog box shown in Figure 3-2 appears.

Tektronix 24xx Digital Oscilloscopes Show Info.__

Attach and Edit Source

Detach Program

Reattach Program

Edit Function Tree

Done

Figure 3-2. The Edit Instrument Dialog Box

The Edit Instrument dialog box presents the following options.

Show Info...lets you display the names of the current function panel file and the attached
program file. It also shows whether these files are in the current project and if the program
file is compiled. The attached program file contains the functions that are called when users
operate the function panel.

Attach and Edit Sourcesearches the directory that contains the function panel file for a
filename that has the same prefix as the function panel file anceatension. If the file is

found, a new source window opens with the file displayed in it and the source file is attached
to the function panel. If the file is not found, you are prompted to create a new source file and
a blank source window appears.

Detach Programdetaches the program file from the function panel.

Reattach Programattaches a program file to a function panel. It searches the directory that
contains the function panel file for a filename that has the same prefix as the function panel
file and alib ,.obj ,.dll ,or.c extension. If a file is found, the program attaches it to
the function panel.

Edit Function Tree invokes the Function Tree Editor.

Doneexits the Edit Instrument dialog box without modifying the function panel.

LabWindows/CVI Instrument Driver Guide 3-8 © National Instruments Corporation

Chapter 3 Function Tree Editor

Window

TheWindow menu lets you select which window to make active. Wiedow menu operates
like theWindow menu of the Project window. ChapteimBe Project Windown the
LabWindows/CVI User Manugatells more about thé/indow menu.

Options

The Options menu lets you operate the function tree or select the help styl@piloans menu
presents the following options.

» Help Stylelets you choose the help stilew (Recommendedpr Old (LabWindows
DOS)when you are editing context-sensitive help information of the function tree.

The new and old help styles differ significantly. The Old help style maintains compatibility
with function panels created in LabWindows version 2.3 or less. This help style uses the
DOS/IBM character set so that it can display special extended ASCII characters that many
older instrument drivers use. Also, the old style gives help information for the entire function
panel window, not the individual function panels within a function panel window.

The New help style uses the standard Windows character set and gives help information for
each individual function panel. In addition, the new help style automatically generates control
name and data type information when displaying control help, and automatically generates a
function prototype when displaying function help. Also, the help text editor for the new style
help uses word-wrap mode.

Changing the help style only changes how the program interprets help information. If you use
special extended ASCII characters in your help information, and then chang&iemthe
style, you will have to change the help text to a Windows-compatible character set.

» Transfer Window Help to Function Help helps you convert your function panel from old
to new style. For each function panel window, the window help text is transferred to the first
function, unless the function already has help text.

» Generate Function Prototypescreates an untitleth window containing prototypes for the
functions in the function tree.

» Generate Documentationcreates a window containingaoc file for the function panel
file.

» Generate Windows Helpcreates a project filehpj) and 2 source filesr(f and.whh)
that can be used with Microsoft Windows Help Compiler to create a Windows help file. You
are prompted to choose the output language as either C or Visual Basic.

* Generate DLL Make Files(Windows 3.1 only) creates.aak and adef file to compile
your instrument driver C source code into a 16-bit DLL. You are prompted to specify the
target compiler, Microsoft Visual C++ or Borland C++.

© National Instruments Corporation 3-9 LabWindows/CVI Instrument Driver Guide

Function Tree Editor Chapter 3

* Generate ODL Filecreates an Object Description Languagél() file for the instrument
driver. The.odl file can be input to thBlkTypeLib program that comes with the
Microsoft OLE 2 SDK. This is useful when you create a DLL version of the instrument
driver. TheMkTypeLib program creates a “type library” which describes the function entry
points in the DLL. For information on using type libraries seeXhE 2 Programmers
Reference, Volume #om Microsoft Press.

» TheCreate DLL Project (Windows 95 and Windows NT) command creates a
LabWindows/CVI project.prj) file that can be used to create a dynamic link library
(.dll) from the program file associated with the function pasfel { file. When you
execute this command, you are prompted to enter a pathname for the project file. After the
file is written, you are asked if you want to load the project immediately. If you do, your
current project is unloaded. For more information on creating DLLs, sé&éparing
Source Code for Use in a Dldection in Chapter abWindows/CVI Programmer
Reference Manuah this document.

* VXlplug&play Style (Windows 95/NT) affects the contents of the DLL project that you
create using th€reate DLL Project command. If th&/XIplug&play Style command is
enabledCreate DLL Project adds project settings that allow the DLL, import libraries, and
distribution kit you create to conform to various aspects o¥¥Xiplug&play specification.

You can modify all of these settings using command8thiel menu of the Project window.
The following list describes the default settings.

— Thelnstrument Driver Support Only command is enabled.
— In the Create Dynamic Link Library dialog box,

“ 32" is appended to the base filename of the DLL, but not to the base filename of
the import libraries.

- Inthe Import Library Choices dialog box, tBenerate import library for all
compilers option is enabled

- Inthe Type Library dialog box,
— TheAdd type library resource to DLL option is enabled.
— Thelnclude links to help file option is enabled.

— Function panel fileis set to the full pathname of ttfp file of the current
Function Tree Editor Window.

In the Change dialog box in tl&ports section.

— TheExport What option is set tdnclude File Symbols

LabWindows/CVI Instrument Driver Guide 3-10 © National Instruments Corporation

Chapter 3 Function Tree Editor

— TheWhich Project Include Fileslist contains the name of the include file
associated with thép file of the current Function Tree Editor Window

— In the Create Distribution Kit dialog box,

- Thelnstall Run-Time Engine option is disabled. The instrument driver support
DLL is included in the file groups instead. If you need the LabWindows/CVI
Run-time Engine for the soft front panel executable, you must enable this option
manually.

File groups are created containing all of the files that are requiredXiipdug&play
instrument driver installation. For example, only the import libraries for Visual
C/C++ and Borland C/C++ are included, and their directory named @andBC.

Files that you must create independently are also named in the file groups, even if
they do not currently exist. These files are the following.

— A \Visual Basic include file, which you can create usingGeaerate Visual
Basic Incudecommand in th®ptions menu of the Source window

— A documentation file, which you can create usingGeaerate Documentation
command in this menu

— A help file, which you can create using thenerate Windows Helpcommand
in this menu and the Windows help compiler

— A knowledge base file as definedviXIplug&play specification
— Files for a soft front panel executable (an empty file group is created for this)
— In the Advanced dialog box,
TheUse Custom Scriptoption is enabled.
- Script Filenameis set tacvi\bin\vxipnp.inf

Executable Filenameis left empty. After you create a soft front panel executable
and add it to the soft front panel file group, click on$leéectbutton to specify the
soft front panel executable as tBeecutable Filename

- Thelnstallation Title names are set tanstrument prefix> Instrument
Driver

Function Tree Editor Examples

These examples teach you about creating and editing function trees, specifically the following.
* Creating a function tree with multiple classes
» Cutting and pasting functions and classes in a function tree

» Cutting and pasting functions and classes between the function trees of different drivers

© National Instruments Corporation 3-11 LabWindows/CVI Instrument Driver Guide

Function Tree Editor Chapter 3

In this example, you create function trees and panels without writing any code.

Example—Multiple Classes in a Function Tree

In this example you create a function tree with several nested classes. Before beginning, invoke
the Function Tree Editor by selectiNgw, Function Tree (*.fp) from theFile menu.

Create a new instrument and function tree as follows.
1. Selectinstrument from theCreate menu.

2. Enter the namEBunction Tree Examples as the Name artdee as the Prefix. Click
onOK.

3. Selectrunction Panel Windowfrom theCreate menu.

4. Enter the namBunction 1 as the Name arfdnl as the Function Name. Click @K .
5. SelectClassfrom theCreate menu.

6. Enter the nam€lass 1 as the Name. Click 00OK.

7. Position the highlight on the line beneath the n@tass 1

8. Selectrunction Panel Windowfrom theCreate menu.

9. Enter the namEunction 2 as the Name arfdn2 as the Function Name. Click @K .

10. SelecSave .FP File Adrom theFile menu and save the file adtcls

LabWindows/CVI Instrument Driver Guide 3-12 © National Instruments Corporation

Chapter 3 Function Tree Editor

The new function tree is shown in Figure 3-3.

= 1 - || -

-file Edit Create Instrument Window Options Help

Fupceion fres faaples +
Function 1
Cddms d

unction 2

4.4 | Function Tree Examples |

Figure 3-3. A Sample Function Tree

To view the structure of the function tree as it is seen by the user of the driver, select the
instrument name from tHastrument menu.

Example—Cutting and Pasting Functions and Panels

Frequently, you want to copy a function in a function tree and its associated function panel to a
new position within the function tree.

Cut and paste a function within a function tree as follows.
1. Position the highlight on the narRanction 1

2. SelectCut from theEdit menu. The function disappears from the tree and is stored on the
Clipboard.

3. Position the highlight on the narRanction 2
4. SelectPaste Abovefrom theEdit menu. The function now appears un@éass 1

Suppose that instead of moving the function, you want to replicate it. Because the function is still
in the Function Tree Editor Clipboard, you can move the highlight to the GEase 1 and

© National Instruments Corporation 3-13 LabWindows/CVI Instrument Driver Guide

Function Tree Editor Chapter 3

selectPaste Abovefrom theEdit menu. The namBunction 1 reappears at the top of the

tree.

Note: Pasting functions and classes within the Function Tree Editor copies all items
associated with the function or class, including controls and function panel help.

Using Existing Function Panels In a New Driver

Suppose now you want to copy some of the function panels from this driver to a new driver.
Perform the following steps:

1. SelectNew, Function Tree (*.fp) from theFile menu. A new blank function tree window
appears on the screen.

2. Selectinstrument from theCreate menu.

3. Name the instrumeintew Instrument and typenew in the prefix box. Click oiOK.
4. Selectrunction Tree from theWindow menu and select the file calledtcls

5. Position the highlight on the ite@lass 1

6. SeleciCopy from theEdit menu.

7. Return to thé&ew Instrument file through theNindow menu.

8. Position the highlight on the line beneath the name of the instrument.

9. Selectaste Belowfrom theEdit menu.Class 1 and its associated functions appear in the
new tree.

When you paste a class into a new tree, all information associated with the class and the
functions of the class are retained.
Example—Editing Items in the Function Tree

In this example you edit the names displayed in the function tree. You edit all the function tree
items using the commartetit Node found in theEdit menu.

Change the name of the instrument driver and its prefix as follows:
1. HighlightNew Instrument

2. SeleciEdit Node from theEdit menu. The Edit Instrument Node dialog box originally used
to create the instrument appears.

LabWindows/CVI Instrument Driver Guide 3-14 © National Instruments Corporation

Chapter 3 Function Tree Editor

3. Change the name of the instrumenttee #2 and the prefix taree2 . Click onOK.
The changes in the instrument driver name will appear at the top of the Function Tree in the

Function Tree Editor as well as the bottom of the window. The changes to the prefix will be
reflected in the Generated Code Window in each function panel.

© National Instruments Corporation 3-15 LabWindows/CVI Instrument Driver Guide

Chapter 4
Function Panel Editor

This chapter describes how to create and modify instrument driver function panels using the
Function Panel Editor.

Invoking the Function Panel Editor

You can invoke the Function Panel Editor in two ways.
* From the Function Tree Editor

* From a function panel

The following paragraphs describe the two ways to invoke the Function Panel Editor.

Invoking from the Function Tree Editor
To invoke the Function Panel Editor from the Function Tree Editor:
1. Highlight the function corresponding to the function panel you want to edit.

2. Selectdit Function Panel Window from theEdit menu on the Function Tree Editor menu
bar.

You can also invoke the Function Panel Editor with the shortcutH&\gr by double-clicking
on the function name.
Invoking from a Function Panel

To edit a function panel that you are currently operating, setitFunction Panel Window
from theOptions menu in the Function Panel menu bar. If the current function panel is a
LabWindows/CVI library function panel, you cannot useHad& Panel command.

© National Instruments Corporation 4-1 LabWindows/CVI Instrument Driver Guide

Function Panel Editor Chapter 4

The Function Panel Editor Menu Bar

When you invoke the Function Panel Editor to create a new function panel, a screen similar to
Figure 4-1 appears.

|t Sample - function_name 5 |
File Edit Create View Instrument Window Options Help

7] 7 7] 2] L] i

i G e L]
_ LA L bdnd @ |
prefix_function_name

vold prefix function name () D

Figure 4-1. The Function Panel Editor

The following items appear on the function panel.

The Function Panel Editonenu bar appears at the top of the screen above the function
panel.

The Instrument NamandFunction Nameppear in the title bar of the function panel
window.

The Function Code Name appears in the title bar of the function panel.

The Function Code Name appears with an empty argument list in the Generated Code
window, below the Function Panel Editor window.

You have the following options in the Function Panel Editor menu bar.

File lets you create a new function tree, edit an existing function tree, save function panel
information into afp file on disk, or add function panels to a project.

Edit lets you modify controls, panels, and functions, add context-sensitive help information,
or align and distribute objects.

LabWindows/CVI Instrument Driver Guide 4-2 © National Instruments Corporation

Chapter 4 Function Panel Editor

» Createlets you add controls, function panels, or a common control panel to the function
panel window.

* View lets you select another panel in the current instrument or from the panel list.
* Instrument lets you select a panel that you want to edit from a different instrument driver.
* Window lets you select which window to make active.

» Options lets you invoke the Function Tree Editor, operate the function panel, or toggle the
scroll bars.

File

TheFile menu lets you create a new function tree, edit an existing function tree, save function
panel information into &p file on disk, or add function panels to a project. e menu
operates like th&ile menu of the Project window. ChaptefMBge Project Windowof the
LabWindows/CVI User Manuagives more information about tkéde menu.

Edit

TheEdit menu lets you edit the objects on a function panel window. You have the following
options in theEdit menu.

» Cut Controls deletes the highlighted controls and copies them to the Clipboard.

» Copy Controls copies the highlighted controls to the Clipboard.

» Pasteinserts the contents of the Clipboard into the highlighted function panel.

» Cut Paneldeletes the highlighted panel from the function panel window and copies it to the
Clipboard.

» Copy Panelcopies the highlighted panel to the Clipboard.

» Edit Control... lets you edit attributes of a control.

» Change Control Type...lets you change the type of an existing control.

» Edit Function... lets you edit a function.

» Alignment lets you align controls on a function panel.

» Align Horizontal Centers repeats your previous alignment operation.

» Distribution lets you distribute controls on a function panel.

» Distribute Vertical Centers repeats your previous distribution operation.

» Control Help lets you create or modify help information for a specific control.

* Function Help or Window Help lets you create or modify help information for the function.

© National Instruments Corporation 4-3 LabWindows/CVI Instrument Driver Guide

Function Panel Editor Chapter 4

Cut Controls

The Cut Controls command removes the selected controls from the function panel and places
the controls and their associated help information on the Clipboard.

Note: The contents of the Clipboard stay in place when you change panels.

Copy Controls

The Copy Controls command copies the selected controls and their associated help information
to the Clipboard.

Note: The contents of the Clipboard stay in place when you change panels.

Paste

ThePastecommand copies objects from the Clipboard and places them on a function panel
window. You can paste the same object as many times as you need to.

You cannot paste a return value control on a function panel that already contains one. A function
panel can contain only one return value control.
Cut Panel

The Cut Panelcommand removes the selected panel from the function panel window and places
the panel, its controls, and all of the associated help information on the Clipboard.

Note: The contents of the Clipboard stay in place when you change function panel windows.

Copy Panel

The Copy Panelcommand copies the selected panel, its controls, and all of the associated help
information to the Clipboard.

Note: The contents of the Clipboard stay in place when you change function panel windows.

Edit Control...

You can modify an existing control witedit Control When you seledidit Control, you see
the same series of dialog boxes used to create the controCr@akesection later in this
chapter discusses the proper use of these dialog boxes.

LabWindows/CVI Instrument Driver Guide 4-4 © National Instruments Corporation

Chapter 4 Function Panel Editor

Change Control Type...

You can change the type of a control withange Control Type When you seled€hange
Control Type, a dialog box appears listing the available control types.

Select the desired control type from the dialog box. When you select a new control type, you see
the same series of dialog boxes that you used to create the contr@rebiesection later in
this chapter gives more information about using these dialog boxes.

If you change a control type from slide to ring, or vice versa, the new control type retains the
option list associated with the old control.

Edit Function...

You can modify an existing function panel wildit Function When you seledEdit Function,
you see the same series of dialog boxes you used to create the par@tedibsection later in
this chapter discusses the proper use of these dialog boxes.

Alignment

Alignment lets you align a set of highlighted controls. Hlignment command operates like
the Alignment command in the User Interface Editor. Chaptéysgr Interface Editor
Referencepf theLabWindows/CVI User Interface Reference Mangales more information
about theAlignment command.

Align Horizontal Centers

Align Horizontal Centers repeats your previous alignment operation. Algn Horizontal
Centerscommand operates like tiAdign Horizontal Centers command in the User Interface
Editor. Chapter 2Jser Interface Editor Referencef theLabWindows/CVI User Interface
Reference Manuadgives more information about tiAdign Horizontal Centers command.

Distribution

Distribution lets you distribute a set of highlighted controls. Diribution command
operates identically to tHaistribution command in the User Interface Editor. Refer to
Chapter 2User Interface Editor Referencef, theLabWindows/CVI User Interface Reference
Manual for information about thBistribution command.

Distribute Vertical Centers

Distribute Vertical Centersrepeats the previous distribution. Thistribute Vertical Centers
command operates like timastribute Vertical Centers command in the User Interface Editor.

© National Instruments Corporation 4-5 LabWindows/CVI Instrument Driver Guide

Function Panel Editor Chapter 4

Chapter 2User Interface Editor Referencef, theLabWindows/CVI User Interface Reference
Manual gives more information about tBestribute Vertical Centers command.

Control Help

You can add or modify context-sensitive help information for a particular controGeitlrol
Help. Chapter 5Adding Help Informationgives more information about adding help to a
function panel.

Function Help or Window Help

You can add or modify context-sensitive help information for the entire function panel with
Function Help or Window Help. Function Help corresponds to New style help aintihndow
Help corresponds to Old style help. See Chapt&hd,Function Tree Editofor more
information on how to set the help style of the instrument driver. See Chafttisg Help
Information for more information about adding help to a function panel.

Create

TheCreate menu lets you add controls to a function panel. There are nine control types in the
Create menu: input, slide, binary, ring, numeric, output, return value, global variable, and
message.

Function Panel Window, Function Panel, and Common Control Panel

Thefunction panel windows a collection of panels that represent all functions that users can
interactively call from that window. Two types of panels are associated with a function panel
window: function panels and common control panels. You can create controls on either type of
panel.

Function panelgraphically represent a single function in the function panel window. Function
panels may contain any of the nine different control types. A function panel may only have one
return value control. The function panel window may contain more than one function panel.

A common control pane&lontains controls that are common to all functions represented by
function panels in the function panel window. Controls on the common control panel appear as
the first parameter of every function associated with a function panel window. A function panel
window can contain only one common control panel. You could use a common control with an
instrument driver that allows multiple instruments of the same model type to exist on a GPIB
board. In this case, the common control panel can contain a control which is an index to specify
which instrument is addressed.

Note: In general, we recommend that you have only one function panel per window and no
common control panels.

LabWindows/CVI Instrument Driver Guide 4-6 © National Instruments Corporation

Chapter 4 Function Panel Editor

Control Types

Use theCreate menu to create the following control types for your function panels, as shown in
Figure 4-2.

Erﬂﬂtﬂ Yiew Instrument Window Options Help |
Input...
Slide...
Binary...
Ring...
Numeric...

Output...
Return Yalue...
Global Yariable...

Message...

Function Panel...
Common Control Panel

Figure 4-2. Control Types

Input...

An input controlaccepts a variable name or value entered from the keyboard. When you select
Input from theCreate menu, the dialog box shown in Figure 4-3 appears.

= Create Input Control

Control Label:

|
Parameter Pozition: : 1
Data Type: : int
Default ¥alue: 0
Control Width: v 96

Figure 4-3. The Create Input Control Dialog Box

You see the following items in the dialog box.

» Control Label specifies the label that appears above the control on the panel.

© National Instruments Corporation 4-7 LabWindows/CVI Instrument Driver Guide

Function Panel Editor Chapter 4

Parameter Positionlets you select the location of the control value in the function parameter
list. For a control in a common control panel, Parameter Position specifies the control value
in the parameter lists of all function panels in a function panel window. The first position is
one (1).

For a control on a function panel, Parameter Position specifies the control value in the
parameter list after the controls in the common control panel. The first position after the
controls in the common control panel is one (1). If there is no common control panel, the
first position is one (1).

Data Type lets you select the data type of the item entered in the input control. The data
type can be one of any of the data types listed iDtdta Typesection in Chapter 2,
Developing an Instrument Driver

Default Value specifies the default for the input control, which should be a valid value, a
constant name, or any other valid C expression.

Control Width lets you the specify the width of the control in pixels. The minimum allowed
is 24. The maximum allowed is 2048.

Slide...

A slide controllooks like a mechanical slide switch. A slide control specifies a parameter value
depending upon the position of the cross-bar of the slide control. When youS$ielefitom
the Create menu, the dialog box shown in Figure 4-4 appears.

= Create Slide Control

Control Label:

P o
Parameter Position: = |

Data Type: : int
Default ¥alue: :

Labelf¥alue Pairs._. |

Cancel

Figure 4-4. The Create Slide Control Dialog Box

You see the following items in the dialog box.

Control Label specifies the label that appears above the control on the function panel.

Parameter Positionlets you select the location of the control value in the function parameter
list. For a control in a common control panel, Parameter Position specifies the control value

LabWindows/CVI Instrument Driver Guide 4-8 © National Instruments Corporation

Chapter 4 Function Panel Editor

in the parameter lists of all function panels in a function panel window. The first position is
one (1).

For a control on a function panel, Parameter Position specifies the control value in the
parameter list after the controls in the common control panel. The first position after the
controls in the common control panel is one (1). If there is no common control panel, the
first position is one (1).

» Data Type lets you select the data type of the values in the slide control. The data type can
be one of any of the data types listed inEia¢a Typesection in Chapter Developing an
Instrument Driver

» Default Value lets you select the default for the slide control, which must be one of the
labels specified in the Edit Label/Value Pairs dialog box.

When you press thieabel/Value Pairs button, the Edit Label/Value Pailgalog box shown in
Figure 4-5 appears.

= Edit Labelf¥alue Pairs

Label:
Yalue:

Inzert New ltem:

Below | |

Figure 4-5. The Edit Label/Value Pairs Dialog Box

Use this dialog box to specify the label and value associated with each cross-bar position on the
slide control. A slide control can have up to 32 labels and associated values.

You see the following items in this dialog box.
» Label specifies a label that appears on the slide control.

» Value specifies the value, constant name, or expression associated with the label entered in
the Label text box.

© National Instruments Corporation 4-9 LabWindows/CVI Instrument Driver Guide

Function Panel Editor Chapter 4

» Thelist boxbelow the Label and Value text boxes displays the labels and the values of items
that appear on the slide control.

Adding a Label and Value to the Slide Control List

Add a label to the slide control list as follows.

1. Type the label in the Label text box, and press <Enter>. The highlight moves to the Value
text box.

2. Type the value in the Value text box. You may use a constant name or any other valid C
expression.

3. Press <Enter> to add the label and value to the slide control list.
The program adds the label and value after the label and value line that is highlighted in the list

box.

Dialog Box Command Buttons

You perform all operations on the items in the list box by entering information into the Label and
Value text boxes and selecting one of the command buttons above or to the right of the list box in
the dialog box. You can select the following command buttons.

* Belowinserts a blank line below the highlighted line in the list box.

* Aboveinserts a blank line above the highlighted line in the list box.

» Cut removes the highlighted line from the list and places it in the Clipboard.
» Copy copies the highlighted line to the Clipboard.

» Pasteinserts the label and value line contained in the Clipboard below the highlighted line in
the list box.

» OK accepts the entries in the list box, then removes the dialog box.

» Cancelcommand cancels changes, removes the current dialog box from the screen, and
returns you to the Create Slide Conti@log box.

LabWindows/CVI Instrument Driver Guide 4-10 © National Instruments Corporation

Chapter 4 Function Panel Editor

Binary...

A binary controloperates like a mechanical on/off switch. A binary control gives a parameter
value one of two predefined values, depending upon whether the control is in the up or down
position. When you seleBinary from theCreate menu, the dialog box shown in Figure 4-6
appears.

= Create Binary Control

Control Label:

Parameter Position: : 1

Data Type: : int

o

Default ¥alue: - OFF
On/Off Settings... |

Cancel

Figure 4-6. The Create Binary Control Dialog Box

You see the following items in the Create Binary Control dialog box.

Control Label specifies the label that appears above the control on the panel.

Parameter Positionlets you select the location of the control value in the function parameter
list. For a control in a common control panel, Parameter Position specifies the control value
in the parameter lists of all function panels in a function panel window. The first position is
one (1).

For a control on a function panel, Parameter Position specifies the control value in the
parameter list after the controls in the common control panel. The first position after the
controls in the common control panel is one (1). If there is no common control panel, the
first position is one (1).

Data Typelets you select the data type of the values in the binary control. The data type
can be one of any of the data types listed irCthta Typesection in Chapter Developing
an Instrument Driver

Default Value lets you select the default for the binary control, which must be either the On
or Off label.

© National Instruments Corporation 4-11 LabWindows/CVI Instrument Driver Guide

Function Panel Editor Chapter 4

When you select th@n/Off Settings button the Edit On/Off Settings dialog box shown in
Figure 4-7 appears.

= Edit OnfOff Settings

OM Text: O n|
OFF Text: Off
OM Yalue: 1
OFF ¥Yalue: 0

Figure 4-7. The Edit On/Off Settings Dialog Box

* ON Text specifies the label that appears next to the upper (on) position of the binary control.

* OFF Text specifies the label that appears next to the lower (off) position of the binary
control.

» ON Value specifies the value, constant name, or expression associated with the On label.

» OFF Value specifies the value, constant name, or expression associated with the Off label.

Ring...

A ring control shows the user an option list. A ring control displays only one item at a time from
its list of options. When you seleRing from theCreate menu, the dialog box shown in
Figure 4-8 appears.

= Create Ring Control

Control Label:

Parameter Pozition:

. —

Data Type:

Ak Ak Ak
=
=
ol

Default ¥alue:

Control Width: 128
| LabelYalue Pairs. .. |

Figure 4-8. The Create Ring Control Dialog Box

You see the following items in the Create Ring Control dialog box.

LabWindows/CVI Instrument Driver Guide 4-12 © National Instruments Corporation

Chapter 4 Function Panel Editor

» Control Label specifies the label that appears above the control on the function panel.

» Parameter Positionlets you select the location of the control value in the function parameter
list. For a control in a common control panel, Parameter Position specifies the control value
in the parameter lists of all function panels in a function panel window. The first position is
one (1).

For a control on a function panel, Parameter Position specifies the control value in the parameter
list after the controls in the common control panel. The first position after the controls in the
common control panel is one (1). If there is no common control panel, the first position is
one (1).

» Data Type lets you select the data type of the values in the ring control. The data type can
be one of any of the data types listed inEia¢a Typesection in Chapter Developing an
Instrument Driver.

» Default Value lets you select the default for the ring control, which must be one of the labels
specified in the Edit Label/Value Pairs dialog box.

» Control Width lets you specify the width of the control in pixels. The minimum allowed is
24. The maximum allowed is 2048.

When you press thieabel/Value Pairs button the Edit Label/Value Pairs dialog box shown in
Figure 4-9 appears.

= Edit Label/¥alue Pairs

Label:

Yalue:

Inzert New ltem:

Below | |

Figure 4-9. The Ring Control Edit Label/Value Pairs Dialog Box

Use this dialog box to specify the label and value associated with each entry in the ring control.
A ring control can have up to 32000 labels and associated values.

© National Instruments Corporation 4-13 LabWindows/CVI Instrument Driver Guide

Function Panel Editor Chapter 4

You see the following items in this dialog box.
» Label specifies a label that appears on the ring control.

» Value specifies the value, constant name, or expression associated with the label entered in
the Label text box.

» Thelist boxbelow the Label and Value text boxes displays the labels and the values of items
that appear on the ring control.

Adding a Label and Value to the Ring Control List

Add a label to the ring control list as follows.

1. Type the label in the Label text box, and press <Enter>. The highlight moves to the Value
text box.

2. Type the value in the Value text box. You may use a constant name or any other valid C
expression.

3. Press <Enter> to add the label and value to the ring control list.
The program adds the label and value after the label and value line that is highlighted in the list

box.

Dialog Box Command Buttons

You perform all operations on the items in the list box by entering information into the Label and
Value text boxes and selecting one of the command buttons above or to the right side of the list
box. You can select the following command buttons.

* Belowinserts a blank line below the highlighted line in the list box.

» Aboveinserts a blank line above the highlighted line in the list box.

» Cut removes the highlighted line from the list and places it in the Clipboard.
» Copy copies the highlighted line to the Clipboard.

» Pasteinserts the label and value line contained in the Clipboard below the highlighted line in
the list box.

* OK accepts the entries in the list box, then removes the dialog box.

» Cancelcommand cancels changes, removes the current dialog box from the screen, and
returns you to the Create Ring Contlalog box.

LabWindows/CVI Instrument Driver Guide 4-14 © National Instruments Corporation

Chapter 4 Function Panel Editor

Numeric...

A numeric controls an input control that lets you increment a control using the up and down
arrows. When you seleBtumeric from theCreate menu, the dialog box shown in Figure 4-10
appears.

= Create Numeric Control

Control Label:
Parameter Pozition: : 1
Data Type: : int

FY

Default Yalue: - 0

Dizplay Format: : Decimal

Yalue Set___

Cancel

Figure 4-10. The Create Numeric Control Dialog Box

You see the following items in the Create Numeric Control dialog box.

Control Label specifies the label that appears above the control on the function panel.

Parameter Positionlets you select the location of the control value in the function parameter
list. For a control in a common control panel, Parameter Position specifies the control value
in the parameter lists of all function panels in a function panel window. The first position is
one (1).

For a control on a function panel, Parameter Position specifies the control value in the
parameter list after the controls in the common control panel. The first position after the
controls in the common control panel is one (1). If there is no common control panel, the
first position is one (1).

Data Type lets you select the data type of the values in the numeric control. You can choose
from the following data types,

int

short

char

unsigned int
unsigned short
unsigned char
double

float

or choose a user-defined data type for which you have specified an intrinsic type.

© National Instruments Corporation 4-15 LabWindows/CVI Instrument Driver Guide

Function Panel Editor Chapter 4

Default Value lets you select the default for the numeric control, which must be a valid
member of the value set.

Display Format lets you select the output format. For integer types, the options are
Decimal, Hexadecimal, Octal, or ASCII. For double types, the options are Scientific and
Floating Point.

When you press théalue Setbutton the Edit Value Selialog box shown in Figure 4-11
appears.

= Edit Value Set

Minimum: - EIFLEDL
Maximum: o 2147483647

o
Inc Yalue: /1

Cancel

Figure 4-11. The Edit Value Set Dialog Box

You see the following items in the Edit Value 8&tlog box.

Minimum lets you select the minimum value the numeric control accepts.
Maximum lets you select the maximum value the numeric control accepts.

Inc Value lets you select the amount the numeric control value increments or decrements
when the user presses the up or down arrows. The value in Inc Value must divide evenly into
the range of the numeric control.

LabWindows/CVI Instrument Driver Guide 4-16 © National Instruments Corporation

Chapter 4 Function Panel Editor

Output...

An output controldisplays the results of a function call. When you sélettput from the
Create menu, the dialog box shown in Figure 4-12 appears.

= Create Output Control

Control Label:

Parameter Pozition: : 1

Data Type: : int
Dizplay Format: : Decimal

o

Control whdth: - 36

Cancel

Figure 4-12. The Create Output Control Dialog Box

You see the following items in the Create Output Control dialog box.

Control Label specifies the label that appears above the control on the panel.

Parameter Positionlets you select the location of the control value in the function parameter
list. For a control in a common control panel, Parameter Position specifies the control value
in the parameter lists of all function panels in a function panel window. The first position is
one (1).

For a control on a function panel, Parameter Position specifies the control value in the
parameter list after the controls in the common control panel. The first position after the
controls in the common control panel is one (1). If there is no common control panel, the
first position is one (1).

Data Type lets you select the data type of the variable or value displayed in the output
control. The data type can be one of any of the data types listedDattadypesection in
Chapter 2Developing an Instrument Driver

Display Format lets you select the format in which values in the output control are
displayed. You can display integers, longs, shorts, and chars in decimal, hexadecimal, octal
or ASCII. You can display doubles and floats in either scientific or floating-point notation.

If the data type ishar * ,void * , a meta data type, or an array, the display format

control is not valid.

Control Width lets you specify the width of the control in pixels. The minimum allowed is
24. The maximum allowed is 2084.

© National Instruments Corporation 4-17 LabWindows/CVI Instrument Driver Guide

Function Panel Editor Chapter 4

Return Value...

A return value controtlisplays a value returned from a function. You can use a return value
control only if the function has a non-void data type. When you de&tarn Value from the
Create menu, the dialog box shown in Figure 4-13 appears.

= Create Return Yalue Control

Control Label:

Data Type: : int
Dizplay Format: + Decimal
Control Width: > 96

Figure 4-13. The Create Return Value Control Dialog Box

You see the following items in the Create Return Value Control dialog box.
» Control Label specifies the label that appears above the control on the function panel.

» Data Type lets you select the data type of the variable or value displayed in the return value
control. The data type can be any data type other than an array type or a meta data type.

» Display Format lets you select the format in which values in the return control are displayed.
You can display integers, longs, shorts, and chars in decimal, hexadecimal, octal or ASCII.
You can display doubles and floats in either scientific or floating-point notation. If the data
type ischar * orvoid * | the display format control is not valid.

» Control Width lets you specify the width of the control in pixels. The minimum allowed is
24. The maximum allowed is 2048.

Global Variable...

A global variable controbdisplays the value of a global variable defined in LabWindows/CVI
when users operate the function panel. When you sglebal Variable from theCreate
menu, the dialog box shown in Figure 4-14 appears.

= Create Global Yariable Control

Control Label:
Global ¥ariable Hame:

Data Type: : int
Display Format: : Decimal
Control Width: +/96

Figure 4-14. The Create Global Variable Control Dialog Box

LabWindows/CVI Instrument Driver Guide 4-18 © National Instruments Corporation

Chapter 4 Function Panel Editor

You see the following items in the Create Global Variable Control dialog box.
» Control Label specifies the label that appears above the control on the panel.

» Global Variable Name specifies the name of the variable whose contents are shown in the
global control.

» Data Type lets you select the data type of the item entered in the input control. The data
type can be one of any of the data types listed above DatseTypesection in Chapter 2,
Developing an Instrument Driver

» Display Format lets you select the format in which values in the global variable control are
displayed. You can display integers, longs, shorts, and chars in decimal, hexadecimal, octal
or ASCII. You can display doubles and floats in either scientific or floating-point notation.

If the data type ishar * ,void * , a meta data type, or an array, the display format
control is not valid.

» Control Width lets you specify the width of the control in pixels. The minimum allowed is
24. The maximum allowed is 2048.

Message...

You can place text anywhere on the panel withegsage controlThis serves as an online
documentation tool for panels. When you seldessagefrom theCreate menu, a dialog box
appears. Enter the desired text into the message text control and seld€tcbmmand button.
To enter a new line in the message text control, press <Ctrl-Enter>. The text appears on the
panel and you can position it like any other control.

View

Use theView menu commands to view the current instrument driver function panels or the most
recently used function panels. The commands give easy access to function panels within an
instrument driver. Chapter Bsing Function Panelsn theLabWindows/CVI User Manual

gives more information on théiew menu.

Instrument
Use thelnstrument menu to load and edit instrument drivers, and specify which instrument
driver function panel to edit. THastrument menu operates identically to thestrument

menu on the Function Tree Editor menu bar. Chapf€n@& Function Tree Editpgives more
information about thénstrument menu.

© National Instruments Corporation 4-19 LabWindows/CVI Instrument Driver Guide

Function Panel Editor Chapter 4

Window

TheWindow menu lets you select which window to make active. WWiredow menu operates
like to theWindow menu of the Project window. ChapteBge Project Windown the
LabWindows/CVI User Manuagives more information about théindow menu.

Options

The Options menu lets you invoke the Function Tree Editor or operate the current function
panel. You see the following items on tBptions menu.

Data Types...

TheData Typescommand lets you specify the names of user-defined data types. Data types you
specify with theData Typescommand appear in the Data Type Ring control oretlieControl
dialog boxes for input, slide, binary, ring, output, and global variable controls.

Note: You must define the data types specified with the Data Types command it thige
for the instrument driver.

When you seledData Typesfrom theOptions menu, the dialog box in Figure 4-15 appears.

= Edit Data Type List

Type:

A

Bgwe o

B g Bl o

I T

Digledian

| Add vISA Types |

| Done |

indamavin Eiadn Yype Mone

Figure 4-15. The Edit Data Type List Dialog Box

LabWindows/CVI Instrument Driver Guide 4-20 © National Instruments Corporation

Chapter 4 Function Panel Editor

The items in the Edit Data Type List dialog box are as follows.

» Type specifies the name of a user-defined data type.

* Add places the name in the Type control in the Data Type list.

* Move Up moves the highlight up one entry in the Data Type list.

* Move Downmoves the highlight down one entry in the Data Type list.

* Change...displays a dialog box that prompts you to change the highlighted entry in the Data
Type list.

* Deleteremoves an entry in the Data Type list.
* Add Visa Typesadds the special set of data types defined by the VISA 1/O library.
» Doneaccepts edits to the Data Type list and returns to the Function Panel editor.

* Intrinsic Data Type allows you to associate each user defined data type with one of the data
types that can be used in a numeric control. If you select an item othé&tahanyou will
be able to use the user-defined data type as the data type for a numeric control.
Toolbar...
TheToolbar command displays a dialog box that prompts you to select which icons appear in
the function panel editor toolbar.
Default Panel Size
TheDefault Panel Sizecommand sizes and positions the function panel so that it exactly fills up
the default function panel window size.
Panels Movable
ThePanels Movablecommand lets you specify whether panels are moveable within a function
panel editor window. (They are never moveable in operate mode.)
Toggle Scroll Bars
TheToggle Scroll Barscommand adds or removes horizontal and vertical scroll bars from a
function panel.
Edit Function Tree

TheEdit Function Tree command invokes the Function Tree Editor.

© National Instruments Corporation 4-21 LabWindows/CVI Instrument Driver Guide

Function Panel Editor Chapter 4

Operate Function Panel

TheOperate Function Panelcommand lets you operate the current function panel window.

Moving Controls

When you create a control, the new control always appears in the same location on the function
panel. You can position a control anywhere on a function panel.

Move a control using the keyboard as follows:

1. Press <Page Up> and <Page Down> to move the highlight to the function panel that contains
the control.

2. Press the <Tab> key to move the highlight to the control.

3. Press the arrow keys to move the control up, down, left or right to the desired location. Press
<Ctrl> and the arrow keys to position the control precisely.

To move a control using the mouse, click the mouse button on the control you want to move and
drag the control to the desired location.

Moving Controls between Function Panels

You can move a control from one function panel page to another using the Clipboard.

Move a control from one page to another as follows:

1. Highlight the desired control.

2. SeleciCut Controls from theEdit menu.

3. Move to the new function panel.

4. SelectPastefrom theEdit menu.

Selecting Multiple Controls

To select multiple controls, click and drag the mouse selector box around the controls you wish
to select.

LabWindows/CVI Instrument Driver Guide 4-22 © National Instruments Corporation

Chapter 4 Function Panel Editor

Function Panel Editor Examples

The following examples teach you about creating and editing function panel windows,
specifically the following.

» Creating a function panel window with one function panel
» Creating controls on a function panel
» Changing the type of a control

» Cutting and pasting controls on a panel and between panels

You create only function panels in this example without writing any code.

Example—Creating a Function Window

In this example you create a function panel. The example panel controls an oscilloscope with
two channels, and configures the vertical sensitivity, coupling, and invert setting of the
oscilloscope.

Follow these steps to create a new instrument and panel:
1. Select thé-unction Tree (*.fp) option of theNew command from th&ile menu.
2. Selectinstrument from theCreate menu.

3. EnterFunction Panel Examples as the Name amuhnel as the Prefix. Click on
OK.

4. SelectFunction Panel Windowfrom theCreate menu.
5. EnterConfigure as the Name amtbnfig as the Function Name. Click @K.

6. Highlight the itemConfigure in the function tree and seldetlit Function Panel
Window from theEdit menu. A new function panel window containing a single function
panel appears on the screen. Notice that the code name of the function appears in the
Generated Code window, preceded by the prefix.

© National Instruments Corporation 4-23 LabWindows/CVI Instrument Driver Guide

Function Panel Editor Chapter 4

7. SelecBinary from theCreate menu.

8. Complete the Create Binary Control dialog box as shown in Figure 4-16.

= Create Binary Control

Control Label: Channel

Parameter Position: : 1

Data Type: : int
e

Default ¥alue: - OFf
Dn/Dff Settings... |

Cancel

Figure 4-16. The Channel Create Binary Control Dialog Box

9. Press th®n/Off Setting button and complete the Edit On/Off Settings dialog box as shown
in Figure 4-17. Position the control on the panel.

= Edit On/Off Settings

OH Text:
OFF Text:

OH ¥Yalue:
DOFF ¥Yalue:

Figure 4-17. The Channel Edit On/Off Settings Dialog Box

LabWindows/CVI Instrument Driver Guide 4-24 © National Instruments Corporation

Chapter 4 Function Panel Editor

10. Selectnput from theCreate menu.

11. Complete the Create Input Control dialog box as shown in Figure 4-18, and position the

control on the panel.

= Create Input Control

Control Label:

Parameter Pozition:

Data Type:

Default ¥alue:
Control Width:

Yolts/Div
=l
: double
1.0

Fe

~ 36

Cancel

Figure 4-18. The Volts/Div Create Input Control Dialog Box

12. Selecslide from theCreate menu.

13. Complete the Create Slide Control dialog box as shown in Figure 4-19.

= Create Slide Control

Control Label:
Parameter Posihion:

Data Type:

Default ¥alue:

Coupling
=
: int

Y

~ DC

Label/¥alue Pairs. |

Cancel

Figure 4-19. The Coupling Create Slide Control Dialog Box

© National Instruments Corporation

4-25 LabWindows/CVI Instrument Driver Guide

Function Panel Editor Chapter 4

14. Presd.abel/Value Pairs, and complete the Edit Label/Value Pairs dialog box as shown in
Figure 4-20, and position the control on the panel.

= Edit Labelf¥alue Pairs

Label:

Yalue:

Insert Hew ltem:

Below |

AC
GND
DC

Figure 4-20. The Coupling Edit Label/Value Pairs Dialog Box

15. SelecBinary from theCreate menu.

16. Complete the Create Binary Control dialog box as shown in Figure 4-21.

= Create Binary Control

Control Label: invert
Parameter Pozition: : 4

Data Type: : int

e

Default ¥alue: =]
On/Off Settings... |

Cancel

Figure 4-21. The Invert Create Binary Control Dialog Box

LabWindows/CVI Instrument Driver Guide 4-26 © National Instruments Corporation

Chapter 4

Function Panel Editor

17. Press th®n/Off Settings button and complete the Edit On/Off Settigagog box as shown

in Figure 4-22. Position the control

on the panel.

= Edit OnfOff Settings

OH Text:
OFF Text:
OHN ¥alue:
OFF ¥alue:

Yes
No
1

0

| | Cancel

Figure 4-22. The Invert Edit On/Off Settings Dialog Box

You now see the function panel shown in Figure 4-23.
= on Pane ple 0 qure ¥ i~
File Edit Create 'U'lt:w Instrument Wlnduw Optmns Help
Q77 77y v ae v e @RS [FE] [
panel_cunﬁg |+ |
Channel Yoltz/Div Coupling Invert
o 2 i.0 AC- Bl es
1 GHND - Mo
DC-

[+]
+| [+
wvold panel config {(int Channel. double Volts-Div, int Coupling.

int Inwvert):
| i

Figure 4-23. A Function Panel Window

Example—Changing Control Type

In this example, you change the type of the Volts/Div control from an input control to a slide

control. Follow these steps:

© National Instruments Corporation

4-27

LabWindows/CVI Instrument Driver Guide

Function Panel Editor Chapter 4

1. Be sure the function panel window from the previous example is actidjtimode.
Position the highlight on the Volts/Div control.

2. SeleciChange Control Typefrom theEdit menu. The dialog box shown in Figure 4-24
appears.

= Change Input Control Type

Change To:

Binary

Ring

Humenc
Output

Return Yalue
Global ¥ariable

1] .4 Cancel

Figure 4-24. The Change Input Control Type Dialog Box

3. SelectSlide. TheEdit Slide Control dialog box appears.
4. SelectLabel/Value Pairs. The Edit Label/Value Paidialog box appears.
5. Complete the dialog box as shown in Figure 4-25.

= Edit Labelffalue Pairs

Label: 5%

Yalue: 5.0

Inzert Hew Item:

Below | |

Figure 4-25. The Volts/Div Edit Label/Value Pairs Dialog Box

LabWindows/CVI Instrument Driver Guide 4-28 © National Instruments Corporation

Chapter 4 Function Panel Editor
After you complete the slide control dialog box, sef@kt to replace the Volts/Div input control
with a slide control.

Suppose that you meant this control to be a ring control instead of a slide control. Follow these
steps:

1. Position the highlight on the Volts/Div control.
2. SelectChange Control Typefrom theEdit menu.
3. SelecRing. The Edit Ring dialog box appears.

4. SelectLabel/Value Pairs, leaving all items unchanged he Edit Label/Value Pairs dialog
box appears. Notice that the slide control label value pairs remain.

5. SeleciOK.

A ring control replaces the Volts/Div slide control on the function panel.

Example—Cutting and Pasting Controls

You will frequently want to cut and paste controls. In this example, you copy controls from one
panel to another. Perform the following steps to copy a control:

1. Be sure the function panel from the previous example is active and in the Edit mode.
Position the highlight on the Volts/Div control.

2. SelectControl Help from theEdit menu or click the secondary mouse button on the control.
3. Enter the following text in the Help Editdialog box:
This control specifies the volts per division setting of the oscilloscope.
4. SelectSave .FP Fileand then sele@losefrom theFile menu of the Help Editatialog box.
5. With the highlight still on the Volts/Div control, selécopy Controls from theEdit menu.
6. SelectPastefrom theEdit menu.
7. With the highlight on the new control, sel&clit Control from theEdit menu.
8. Change the Ring Control Label\olts/Div 2 and the parameter position2o

Notice in the Generated Code window that the config function now has an additional parameter,
Volts/Div 2

© National Instruments Corporation 4-29 LabWindows/CVI Instrument Driver Guide

Function Panel Editor Chapter 4

Create a new function panel and copy a control to the panel as follows:
1. Selectdit Function Tree from theOptions menu.

2. Create a function panel window with the following parameters. Ngve Panel in the
Name box anshew_panel in the Function Name box.

3. Position the highlight on the function na@enfigure

4. SelectEdit Function Panel Window from theEdit menu to return to the Configure panel.
5. Position the highlight on the control Volts/Div 2.

6. SelectCut Controls from theEdit menu.

7. Press <Ctrl-Page Down> to move to the New Panel function panel.

8. SelectPastefrom theEdit menu.

The control appears on the panel. View the help information by sel€ximgol Help from the
Edit menu. Notice that the help information is copied with the control.

LabWindows/CVI Instrument Driver Guide 4-30 © National Instruments Corporation

Chapter 5
Adding Help Information

This chapter describes the types of help information available from an instrument driver and how
you can create help information.

New Style vs. Old Style Help

LabWindows/CVI has two styles of online help for instrument drivers: New (Recommended) and
Old (LabWindows DOS). The Old help style maintains compatibility with help information
created in LabWindows version 2.3 or earlier. This help style uses the DOS/IBM character set so
that it can display special extended ASCII characters used by older instrument drivers.

The new help screen style uses the standard Windows character set and automatically displays
the control help with control name and data type information.

There is also a difference in the type of help information that can be displayed. In either New or
Old style help, you can view Instrument help, Function Class help, and Control help. However,
the help information for functions is displayed differently between the two styles. This difference
has an effect only when you have multiple function panels on a single function panel window. In
the New style, you can access Function help for each function panel. In the Old style, you can
access the Function Panel Window help, which describes all of the functions contained in that
function panel window.

We recommend that you use the New help style for all help information for instrument drivers
created in LabWindows/CVI. ChapterThe Function Tree Editogives more information on

New and Old style help. Most of the discussion in this chapter assumes you are using the New
style help.

© National Instruments Corporation 5-1 LabWindows/CVI Instrument Driver Guide

Adding Help Information Chapter 5

Help Options
The user of an instrument driver can view the following types of help information.

Table 5-1. Types of Help Information

Type of help Location of help

Instrument help function class and function help dialog boxes

Function class help dialog box that appears when a user select$ an
instrument from thénstrument menu

Function help Help menu in the function panel window

(New style help only) menu bar

Function panel window help |dialog box that appears when a user select$ an
instrument from thénstrument menu
(Directly editable only in Old style help. In the
New style help, it is generated from the
function help for each function in the windoy)

Control help Help menu in the function panel window
menu bar

Editing Help Information

There are four types of help information that you can enter: instrument, class, function, and
control. You can edit instrument and class help from the Function Tree Editor and function and
control help from the Function Panel Editor. Each of the editors hadiamenu in the menu
bar.Edit Help in theEdit menu of the Function Tree Editor lets you add instrument and class
help.Function Help andControl Help in theEdit menu of the Function Panel Editor let you

add function panel and control help. Help information should always be added in the new style.

Add help information as follows.

1. From either the Function Tree Editor or the Function Panel Editor, place the highlight on the
item that you want to enter help information.

LabWindows/CVI Instrument Driver Guide 5-2 © National Instruments Corporation

Chapter 5 Adding Help Information

2. SelectEdit Help, Function Help, or Control Help from theEdit menu in the menu bar. The
dialog box shown in Figure 5-1 appears.

= Bl 1 1 1 1 L
[File Edit Window Help
File: c:hcyivinstrisample.fp
Window Hame: Configure
Function HName: config
+]
¥]

Figure 5-1. The Help Editor Dialog Box

The Help Editor dialog box contains a scrollable text box. Enter help text in the dialog box as
you do in the Program or Interactive window. You can scroll the displayed text using the arrow
keys or the scroll bars.

You see the following items on the Help Editielog box menu bar.
* File lets you load, save, and manipulate files.
» Edit lets you edit the help text entered in the dialog box.

* Window lets you specify which window to make active.

File

TheFile menu lets you create a new function tree, edit an existing function tree, save function
panel information into &p file on disk, or add function panels to a project. Fihe menu
operates like th&ile menu of the Project window. ChapteBe Project Windowin the
LabWindows/CVI User Manuagives more information about tkde menu.

© National Instruments Corporation 5-3 LabWindows/CVI Instrument Driver Guide

Adding Help Information Chapter 5

Edit
You see the following items in thi&dit menu.

» Cut deletes the highlighted text in the dialog box and copies the text to the Clipboard.

» Copy copies the highlighted text in the dialog box to the Clipboard without deleting the
highlighted text.

» Pasteinserts the contents of the Clipboard into the dialog box at the location of the cursor.
» Deletediscards the highlighted text in the dialog box without copying it to the Clipboard.

» Revertreturns the most recently saved version of help text to the dialog box.

Window

TheWindow menu lets you select which window to make active. Wigdow menu operates
like theWindow menu of the Project window. ChaptefMBie Project Windowin the
LabWindows/CVI User Manuadives more information about thiéindow menu.

Instrument Help

You can select thmestrument Help button to see help information about an instrument when
you are viewing help information for a function class or function panel window.

You can add instrument help information in the Function Tree Editor. Follow these steps to enter
the help information for the instrument:

1. From the Function Tree Editor, highlight the instrument name at the top of the function tree.

2. SeleciEdit Help from the Edit menu. The Help Editor dialog box appears. Alternatively,
you can click on the instrument name with the right mouse button to display the Help Editor
dialog box.

3. Enter the desired help text into the Help dialog box.

Function Class Help

To display help information about a class of function panel windows, highlight the class in the
Select Function Panel dialog box and selecHékp button.

You enter function class help information from the Function Tree Editor. Follow these steps to
add help information.

1. Highlight the desired class.

LabWindows/CVI Instrument Driver Guide 5-4 © National Instruments Corporation

Chapter 5 Adding Help Information

2. SelectEdit Help from theEdit menu in the Function Tree Editor menu bar. The Helipor
dialog box appears. Alternatively, you can click on the desired control with the right mouse
button to display the Help Editor dialog box.

3. Enter the desired help text into the Help dialog box.

Function Help (New Style Help Only)

When you are in the New help style mode, you can display help information pertaining to a
specific function panel by selectifginction from theHelp menu in the Function Panel menu
bar. Alternatively, you can click on the background of the desired function panel with the right
mouse button to display the function panel help.

When you are in the New help style mode, you enter function panel help information from the
Function Panel Editor. Follow these steps to add function panel help:

1. Activate the desired function panel.

2. Selectunction Help from theEdit menu in the Function Panel Editor menu bar. The Help
Editor dialog box appears. Alternatively, you can click on the background of the desired
function panel with the right mouse button to display the Help Editor dialog box.

3. Type appropriate help text into the Help dialog box.

Chapter 3The Function Tree Editpgives more information on changing between the New and
Old style help modes.

Function Panel Window Help (Old Style Help Only)

In the Old help style mode, you can display help information pertaining to a function panel
window by selectingVindow from theHelp menu in the Function Panel menu bar.
Alternatively, you can click on the background of the function panel window with the right
mouse button to display the function panel help.

In the OId help style mode, you enter function panel window help information from the Function
Panel Editor. Follow these steps to add function panel window help.

1. SelecWindow Help from theEdit menu in the Function Panel Editor menu bar. The Help
Editor dialog box appears. Alternatively, you can click on the background of the function
panel window with the right mouse button to display the Help Editor dialog box.

2. Type appropriate help text into the Help dialog box.

Chapter 3The Function Tree Editpgives more information on changing between the New and
Old style help modes.

© National Instruments Corporation 5-5 LabWindows/CVI Instrument Driver Guide

Adding Help Information Chapter 5

Control Help

You can display help information for a specific function panel control by highlighting the control
and selectingontrol from theHelp menu in the Function Panel menu bar. Alternatively, you
can click on the control with the right mouse button to display the Function help.

You enter Function help information from the Function Tree Editor or the Function Panel Editor.
Add help information for a function panel control as follows.
1. Highlight the desired control.

2. SelectControl Help from theEdit menu in the Function Panel Editor menu bar. The Help
Editor dialog box appears. Alternatively, you can click on the desired control with the right
mouse button to display the Help Editor dialog box.

3. Type appropriate help text into the Help dialog box.

Help Information Examples

The following examples teach you about creating and editing help information, specifically the
following.

* Adding instrument and panel help information from the Function Tree Editor
» Adding panel and control help information from the Function Panel Editor

» Cutting and pasting help information between controls

You create only function trees and panels in this example, without writing any code.

Example—Adding Help Information in the Function Tree Editor

In this example, you add instrument and function class help information to a function tree.
Follow these steps to create a new instrument and function tree.

1. Select thd=unction Tree (*.fp) option of theNew command from th&ile menu.
2. Selectinstrument from theCreate menu.

3. TypeHelp Information Examples as the Name arttklp as the Prefix. Click on
OK.

4. SelectClassfrom theCreate menu.

5. EnterClass 1 asthe Name. Click o0K.

LabWindows/CVI Instrument Driver Guide 5-6 © National Instruments Corporation

Chapter 5 Adding Help Information

6. Highlight the line beneath the na@kass 1
7. Selectunction Panel Windowfrom theCreate menu.
8. EnterFunction1l asthe Name arfdnl as the Function Name. Click @K .

The new function tree appears in Figure 5-2.

= 1 1 -
-filt: Edit Create Instrument Window Options Help

Halp fnformséron Exanplios +
flass ¥

Function 1

373 | Help Information Exanples |

Figure 5-2. A Sample Function Tree

The first level of help information is associated with the name of the instrument driver.
Add help information to the top level of the tree as follows.
1. Position the highlight on the narhlelp Information Examples

2. SeleciEdit Help from theEdit menu, or click on the instrument name with the right mouse
button. The Help Editor dialog box appears.

3. Enter the following help information.

This driver was created to illustrate how to add help text to an
instrument driver.

4. SelectSave .FP Fileand then sele@losefrom theFile menu to save the text and remove
the HelpEditor dialog box.

© National Instruments Corporation 5-7 LabWindows/CVI Instrument Driver Guide

Adding Help Information Chapter 5

Add help information te&Class 1 as follows.
1. Position the highlight on the narG¢ass 1

2. SelectEdit Help from theEdit menu or click on the class name with the right mouse button.
The Help Editor dialog box appears.

3. Enter the following help information.

An example function class. The functions in this class are:
Function 1 - The only function in the class.

4. SelectSave .FP Fileand then sele@losefrom theFile menu to save the text and remove
the HelpEditor dialog box.

View the help information as follows.

1. SelectHelp Information Examples from thelnstrument menu. The Select Function
Panel dialog box appears.

2. HighlightClass 1 and press Help to display the Class Help dialog box.
3. Pressnstrument Help to display the Instrument Help dialog box.

4. Presdoneto exit the Instrument Help dialog box.

5. PresDoneto exit the Class Help dialog box.

6. Pres<ancelto exit the Select Function Panel dialog box.

Example—Adding Help Information in the Function Panel Editor

In this example, you add help information to function panels and function panel controls from
the Function Panel Editor. Double-click Banction 1~ from the previous example.

To modify the help information for the function panel, perform the following steps from the
Function Panel Editor:

1. Selectrunction Help from theEdit menu. The Help Editatialog box appears.

2. Enter the following help information.
This function is the only function in Function Class.

3. SelectSave .FP Fileand then sele@losefrom theFile menu to save the text and remove
the HelpEditor dialog box.

Help information also is associated with each of the controls in a function.

LabWindows/CVI Instrument Driver Guide 5-8 © National Instruments Corporation

Chapter 5 Adding Help Information

Add a control to the current panel as follows.

1. Selectnput from theCreate menu.

2. Enterinput Control for the Control Label.
3. Pres©OK.

Now add help information to the control.

1. Highlight the control and seleControl Help from theEdit menu. Alternatively, click the
right mouse button on the control. The Help Editor dialog box appears.

2. Enter the following text in the Help Editor dialog box:

This control is an input control on the Function 1 function panel.

3. Select Save .FP File and then select Close from the File menu to save the text and remove the
Help Editor dialog box.

You have now added help information to all possible locations. Sepertite Function Panel
from theOptions menu and then view the help information for the function panel.

Example—Copying and Pasting Help Text

In this exercise, you copy text between function panels, controls, and instruments. The Clipboard
retains its contents as you move between controls, function panels, and even instruments. Help
text also stays with a control or function panel that is cut, copied, or pasted.

Copy the help information between controls on different panels as follows:

1. Create a new function panel window from the Function Tree Editor. Hiypetion 2 in
the Name box anflin2 in the Function Name box.

2. TheFunction1 function panel should be on the screekdit mode. Double-click on
Function 1 in the Function Tree Editor.

SeleciGlobal Variable from theCreate menu.

4. TypeStatus inthe Control Label box antista in the Global Variable Name box. Leave
all other items at their default settings. Click@K.

5. Add the following help information to the Global Control.
This control displays the status of GPIB function calls.
Errors:

0 Success
non-zero See the STATUS control on any GPIB Library function panel

6. SelectSave .FP fileand then sele@@losefrom theFile menu to save the text.

© National Instruments Corporation 5-9 LabWindows/CVI Instrument Driver Guide

Adding Help Information Chapter 5

7. With the highlight positioned on the Status control, sé€leqy Controls from theEdit
menu.

8. Press <Ctrl-Page Down> to display thenction 2 function panel.

9. SelectPastefrom theEdit menu. The Status control appears on the function panel.

10. SelecOperate Function Panelfrom theOptions menu and view the help information.
Notice that the help information stays with a control when you copy that control.

Copy the help textvithout copying the contras follows.

=

SelectEdit Function Panel Window from theOptions menu.

no

SeleciGlobal Variable from theCreate menu.

3. Complete the Create Global Variable Control dialog box as follows. Hiype in the
Control Label box antberr in the Global Variable Name box. Leave all other items at
their default settings. Click c@K.

Position the highlight on the Status control.

SelectControl Help from theEdit menu or click the right mouse button on the control.

4
5
6. Highlight all of the text in the dialog box.
7. SeleciCopy from theEdit menu.

8. SelectClosefrom theFile menu.

9. Position the highlight on the Error control.

10. SelecControl Help from theEdit menu or click the right mouse button on the control.
11. SelecPastefrom theEdit menu. The help information appears in the dialog box.

12. Modify the text so it reads as follows.

This control displays the value of the GPIB global error variable.
The control displays the value of the error only when the STATUS control is

non-zero.

Errors:

0 Success

non-zero See the ERROR control on any GPIB Library function panel

In these examples, you have learned to copy or move text from one control to another. Use the
same methods to copy and move help text between any location, for example, for copying and
moving panel, instrument, window, and control help within an instrument driver or across
instrument drivers.

LabWindows/CVI Instrument Driver Guide 5-10 © National Instruments Corporation

Chapter 6
Programming Guidelines for
Instrument Drivers

This chapter gives you guidelines for creating instrument drivers and using them with one
another. If you write instrument drivers for general distribution to users, these guidelines ensure
portability and proper operation. This chapter tells you how to create an instrument driver from a
LabWindows/CVI core instrument driver.

Note: All instrument drivers in the LabWindows/CVI Instrument Library are based upon a
core instrument driver. Each of the core drivers adheres to the programming
guidelines outlined in this chapter.

General Programming Guidelines

The following guidelines relate to general programming practices.

» Base your instrument driver on an existing instrument driver or one of the core instrument
drivers.

» Avoid declaring function names that exceed 31 characters.

* Choose an instrument prefix to precede all user callable function and global variable names.
The prefix uniquely identifies the instrument driver and is specified when you create an
instrument function tree.

* Use only the VISA (Virtual Instrument Software Architecture) I/O library to perform
instrument 1/0O.

* Use only the VISA data types.

» Declarevoid any function that does not return a value. You must include a return value
control in a panel for functions that return values.

* Avoid exporting global variables to the user. If you need to do so, define the global variables
in the.c file and declare them &xtern inthe.h file.

» Declarestatic variables that are global to the instrument driver, but not needed by any
other drivers.

* Avoid declaring large arrays within instrument drivers, because arrays use large amounts of
memory.

© National Instruments Corporation 6-1 LabWindows/CVI Instrument Driver Guide

Programming Guidelines for Instrument Drivers Chapter 6

* UseFmtOut, printf , and User Interface functions only in exception conditions. Ideally,
no screen I/O should occur within an instrument driver.

* Avoid using Advanced Analysis Library functions in instrument drivers. Users would need
to have the Advanced Analysis Library loaded on their computer.

* Make the base filename of the instrument driver files the same as the prefix for the
instrument driver and the base filename of.tpe file. For example, the filenames for a
driver might beek2430a.fp , tek2430a.c , andtek2430a.h

» Test all of the instrument drivers you create in LabWindows/CVI as standalone applications.

* Include the filevpptype.h in the include file for your instrument driver. Include the file
visa.h in the source code for your instrument driver.

» Declare all user callable function prototypes with the mastlo FUNC before the function
name. Declare all array and output parameters in user callable function with the macro
_VI_FAR before the parameter name.

The Core Instrument Driver

To develop instrument drivers for GPIB, VXI, and RS-232, modify a LabWindows/CVI core
instrument driver or modify an existing driver that is based upon a core instrument driver. You
create a new instrument driver by changing a core instrument driver to match the requirements of
your instrument. LabWindows/CVI gives a core instrument driver for each type of instrument.
Develop your instrument driver using a core instrument driver as a foundation. Each core
instrument contains the following files.

* The.fp file contains a function tree and function panels.
* The.c file contains the source code for developing the instrument program.

« The.h file contains function declarations and defined constants.

The core driver has a simple, flexible structure and a common set of functions to help you
develop all types of instrument drivers. Also, the core driver has template functions for all of the
required instrument driver operations. These template functions are based on IEEE 488.2
common commands. So if your instrument is IEEE 488.2 compliant, the core will require few
modifications to create a baseline driver for your instrument. The core also includes
modification instructions that make it easy to modify for use with non-IEEE 488.2 devices. The
required instrument driver functions are described in detail in ChapRedquired Instrument

Driver Functions

The core also includes many useful functions, caltdily functions to create user callable

functions and to implement a simple error handling scheme. These functions can check
parameter ranges, and perform instrument I/O to and from a file. The utility functions also detect
errors and update error information. The LabWindows/CVI core instrument driver includes the
following utility functions.

LabWindows/CVI Instrument Driver Guide 6-2 © National Instruments Corporation

Chapter 6 Programming Guidelines for Instrument Drivers

* Check for Validviintlé Parameter. Th#45 invalidVilntl6Range function
determines whether\dintlé parameter lies within an acceptable range, thus preventing
the user from sending illegal commands to an instrument. The function accepts four
parameters: th¥ilntl6 value, the minimum, the maximum, and an error code. The return
value indicates whether the parameter lies within the valid range.

* Check for Validviint32 Parameter. Thi#45 invalidVilnt32Range function
determines whether\&Int32 parameter lies within an acceptable range, thus preventing
the user from sending illegal commands to an instrument. The function accepts four
parameters: th¥ilnt32 value, the minimum, the maximum, and an error code. The return
value indicates whether the parameter lies within the valid range.

* Check for ValidViReal64 Parameter. Thi45_invalidViReal64Range function
determines whether\diReal64 parameter lies within an acceptable range, thus preventing
the user from sending illegal commands to an instrument. The function accepts four

parameters: the real value, the minimum, the maximum, and an error code. The return value

indicates whether the parameter lies within the valid range.

» Check for ValidviBoolean Parameter. Thi#45 invalidViBooleanRange
function determines whether a boolean parameter lies within an acceptable range, thus
preventing the user from sending illegal commands to an instrument. The return value
indicates whether the parameter lies within the valid range.

Note: In the preceding list, the functions named are from the Fluke 45 Digital Multimeter
instrument driver. The utility functions used by the Fluke 45 instrument driver are
declared at the beginning of the program listing and the code for the utility functions is
at the end of the listing. The source code for some of the utility functions was omitted
because it is not needed to implement the Fluke 45 instrument driver.

Modifying the Core Driver

Your first step in developing the code for an instrument driver is to modify the core driver to
represent your instrument. Most of the modifications concern the instrument prefix. All
instrument driver functions have a prefix that identifies the instrument. For example, the
instrument prefix for the Fluke 45 instrument drivefld® . The instrument prefix is also the
prefix in the names of all files associated with the instrument driver. As a default, the core
instrument driver uséBREFIX as the instrument prefix which you must change to a prefix
unique to your instrument driver.

Modify the core driver, also given in the source code of the core instrument driver, as follows:

1. Edit the core instrument driver source cadee_gpb.c . Change all occurrences of
PREFIX to the prefix of your instrument.

2. The device-dependent commands in this file are marked with the co@BHAMNGE Search
for occurrences of this comment and make appropriate changes.

© National Instruments Corporation 6-3 LabWindows/CVI Instrument Driver Guide

Programming Guidelines for Instrument Drivers Chapter 6

3. Save the modified source fileiastr_prefix.c

4. Edit the core instrument driver header fdere_gpb.h . Change all occurrences of the
word PREFIX to the prefix of your instrument.

5. Save the modified header fileiastr_prefix.h

6. Edit the core instrument driver function panel file. In the Function Tree Editor window, edit
the instrument descriptor as follows. Change the current name to the name of the instrument
and change the prefix tdiISTR_PREFIX.

7. Save the modified function panel fileiastr_prefix.fp

By following this procedure, you create a good framework from which you can develop your
instrument driver.

The core instrument driver files are located in the subdiret8Y¥R. Their names are shown
in Table 6-1.

Table 6-1. Core Instrument Driver Files

Instrument Type | Filenames Description

GPIB core_gpb.c C source code file
core_gpb.h Include file forcore_gpb.c
core_gpb.fp Instrument function panel file

VXI core_vxi.c C source code file
core_vxi.h Include file forcore_vxi.c
core_vxi.fp Instrument function panel file

RS-232 core_232.c C source code file
core_232.h Include file forcore _232.c
core_232.fp Instrument function panel file

Adding User Callable Functions

Add user callable functions to your instrument driver to control the instrument operations that
you wish to make available to users. All user callable functions have a function panel interface,
and return error and status information. Before you write any code, develop the function panels
for all the user callable functions. We recommend that you define the structure of the driver and
each of the functions before you develop any code.

LabWindows/CVI Instrument Driver Guide 6-4 © National Instruments Corporation

Chapter 6 Programming Guidelines for Instrument Drivers

To add your new functions.
1. Insert the new functions in the appropriate positions of the function tree.
2. Edit the instrument help and all function panel help.

Edit the function panels. Create all function panel controls and edit all control help.

W

Declare the new functions in the instrument driver header file.
5. Insert the function code in the instrument driver source file.
6. Test the instrument driver.

Inserting the function code in the source code is the most difficult step when you are adding a
function to the instrument driver. To make this step easier, define a function code programming
structure. You can divide code writing for instrument driver functions into the following
programming steps.

1. Check input ranges of all parametendtility Function)
2. Create the command string and write it to the instrum&iSA(Functioh

3. Read and parse the data string from the instrument if the instrument has a r@4g#se
Function

Copy and Paste

By copying and pasting utility routines and VISA routines, you can program your driver more
efficiently. The following examples, which are based on the Fluke 45 instrument driver,
illustrate how to paste the utility and VISA functions into your user callable functions.

1. A utility function to check input parameter ranges
a. For integer parameters paste in the following code.

if (fl45 _invalidVilnt16 Range (val, min, max))
return VI_ERROR_PARAMETER?2;

b. For real parameters paste in the following code.

if (fl45_ invalidViReal64 Range (val, min, max))
return VI_ERROR_PARAMETERS3;

2. A VISA function to write the command string to the instrument

if ((fl45_status = viPrintf(instrHandle, “:SYST:ERR?")) < 0)
return fl45_status;

© National Instruments Corporation 6-5 LabWindows/CVI Instrument Driver Guide

Programming Guidelines for Instrument Drivers Chapter 6

3. A VISA function to read the data string from the instrument, if the instrument has a response

if ((fl45_status = viScanf (instrHandle, "%d \"%[™"]",
errCode, errMessage)) < 0)

return fl45_status;

You can use the remaining VISA and utility functions in the same manner. These VISA and
utility functions are the building blocks from which you build user callable functions. The
Fluke 45 instrument driver is a good example of this programming style. Most of the code in
an instrument driver consists of combinations of the previously described programming
statements. Using previously described programming statements makes instrument driver
functions easier to develop, and guarantees that your programming style matches the style of
other drivers in the library.

Note: You may Delete any unused utility functions when you complete instrument driver
development

Tips for Creating an Instrument Driver

An important step in developing a user callable instrument driver function is selecting between
command strings to send to the instrument based on an input parameter. In the following
example, the commandegC, DG andGNDset the vertical coupling of an imaginary oscilloscope.
An integer input parameter selects from these different command strings. The following source
code configures the vertical coupling of this instrument.

[* === === === */

/* This function configures the instrument */

I === === ===)

ViStatus _VI_FUNC scope_config_coup (ViSession instrHandle, Vilnt16 func)
{

if (scope_invalidVilntl6Range (func, 0, 2) !=0)
return VI_ERROR_PARAMETERZ2;

switch (func) {

case O:
scope_status = viPrintf (instrHandle, “AC");
break;

case 1:
scope_status = viPrintf (instrHandle, “DC");
break;

case 2:
scope_status = viPrintf (instrHandle, “GND");
break;

}

return scope_status;

}
Notice the large case statement needed to select the different commands. The more command

options you need, the larger the case statement grows. The next example shows how you can

LabWindows/CVI Instrument Driver Guide 6-6 © National Instruments Corporation

Chapter 6 Programming Guidelines for Instrument Drivers

discard the case statement approach by defining a string array with the three different instrument
commands. The configure function then uses the string array to build the command string.

[* === === === */
/* This function configures the instrument. */
[* === === === */

ViStatus _VI_FUNC scope_config_coup (ViSession instrHandle, Vilnt16 func)

{
static ViString cmd_arr[] = {"AC", "DC", "GND"};

if (scope_invalidVilnt16Range (func, 0, 2) !=0)
return VI_ERROR_PARAMETERZ2;

if ((scope_status = viPrintf (instrHandle, “%s”, cmd_arr[func])) < 0)
return scope_status;

return scope_status;

}

The first example requires a case structure with three different format statements, whereas the
second example requires a single format statement that selects the appropriate command from the
cmd_arr string array. By defining a string array with the instrument commands, you use a

single format command in your user callable functions to keep the instrument driver compact and
readable.

Developing Portable Instrument Drivers

An important consideration in developing an instrument driver is making the driver accessible by
other compilers and operating systems. There are established guidelines for the development of
portable instrument driver code. The main concerns in developing portable instrument driver
code are given to data types, the declaration of user-callable functions and their output and array
parameters, and the use of Scan and Formatting functions.

Instrument Driver Data Types

A subset of the VISA data types has been defined for use in the development of
LabWindows/CVI instrument drivers and is accessible as user-defined data types. These special
data types are used to define all of the parameters of instrument driver functions. The data types
strictly define the type and size of the parameters and therefore promote the portability of the
functions to new operating systems and programming languages.

© National Instruments Corporation 6-7 LabWindows/CVI Instrument Driver Guide

Programming Guidelines for Instrument Drivers

Table 6-2. VISA Data Types

Chapter 6

VISA Type Name

Definition

Vilntl6
Vilnt32
ViReal64
Vilnt16[]
Vilnt32[]
ViReal64]]
ViChar]
ViRsrc
ViSession
ViStatus
ViBoolean

ViBoolean]]

A string

Boolean value

Signed 16-bit integer
Signed 32-bit integer

An array ofViBoolean

64-bit floating point number
An array ofVilnt16
An array ofVilnt32

values
values

An array ofViReal64 values

A VISA resource descriptorsifing
A VISA session handle
A VISA return status type

values

)

Declaring Instrument Driver Functions and Array and Output Parameters

The VISA 1/O library also defines macros that are useful for prototyping the user callable
functions of an instrument driver. These macros are listed below.

Table 6-3. VISA I/O Library Macros

CVi Outside the CVI

Environment | Environment Windows
Macro (Windows 3.1) | (Windows 3.1) 95/NT UNIX
_VI_FUNC | _pascal | far _pascal _export __ stdcall
_VI_FAR _far

The macros have been designed to resolve the differences on Windows between using instrument
driver functions in a LabWindows/CVI environment as opposed to using them with an external
compiler. The VI_FUNC macro is used to define the calling conventions of a function.

The_VI_FAR macro is used to define all output and array parameters used in a user-callable

function.

LabWindows/CVI Instrument Driver Guide 6-8

© National Instruments Corporation

Chapter 6 Programming Guidelines for Instrument Drivers

An example of an instrument driver function prototype using the above datatypes and macros is
shown below.

ViStatus _VI_FUNC tek2430a_read_waveform (ViSession instrSession,
ViReal64 _VI_FAR wvfm[],
ViReal64 VI _FAR *xin,
ViReal64 _VI_FAR *trig_off);

Using Scan and Fmt Functions

In devices that manipulate large arrays of data, such as oscilloscopes or arbitrary waveform
generators, the instrument driver developer usually transfers data from computer to instrument or
from instrument to computer in a binary format to improve throughput and performance. When
you transfer data in a binary format, you must manipulate arrays of binary data, typically integer
arrays. Under normal circumstances, manipulating arrays of binary data is not a problem.
However, the differences between operating systems and programming languages in which the
drivers might be used in the future require more attention in this area. Specifically,
LabWindows/CVI is a multi-platform application and must account for byte ordering on different
platforms. With this in mind, you must give special consideration to code segments that handle
binary instrument data.

Listed below are important rules for developing portable instrument driver codeSesingand
Fmt functions.

1. If you are using &can or Fmt statement to manipulate binary data that has been received
from an instrument or that will be sent to an instrument, useraadifier on the side of the
Scan or Fmt statement that represents the binary data.

Theo modifier describes the byte ordering in relation to Intel ordering.

Example: Intel [001]
Motorola [010]

2. Whenever you are scanning or formatting binary data, use an array of eithardytpe
long , or one of the VISA data types, rather than simiply . The representations of shorts,
longs, and the VISA data types are the same on all LabWindows/CVI platforms.

3. When using &can or Fmt statement to scan or format data in to or out of an array of type
short ,long , or one of the VISA data types, use thmodifier to represent the width of
the data. When you are scanning or formatting data in to or out of an array it typeo
not use thé modifier to represent the width of the data.

© National Instruments Corporation 6-9 LabWindows/CVI Instrument Driver Guide

Programming Guidelines for Instrument Drivers Chapter 6

The code example below shows the correct way to scan binary data read from an instrument. In
the code example, theRead function is used to transfer the binary waveform information

from the instrument to the buffemd. Then aScan function is used to parse the binary

information and place it in théiintl6 arraywavefrm . Notice that th® modifier is on the

side of theScan statement that represents the binary data that was received from the instrument
and that & modifier is used on both sides of thean function to represent the size of the

binary data and the element size of the array where the data will be placed.

Vilnt16 wavefrm[4000];
ViSession instrSession;
Vilntl6 NumPoints;
ViUInt32 retCnt;
ViStatus scope_status;

if ((scope_status = viRead (instrSession, cmd, 1027, &retCnt)) < 0)
return scope_status;
Scan (cmd, "%*d[zb2010]>%*d[b2]", NumPoints, NumPoints, wavefrm);

Error Reporting Guidelines

One of the most important operations performed in an instrument driver is reporting the status of
each operation. The core driver also gives you an error/warning handling scheme. Each user
callable routine is a function with a return value of the ¥®&atus which is used to return

the appropriate error or warning value.

Table 6-2 presents a scheme for determining error values. It lists predefined error codes for
instrument drivers.

Table 6-4. Suggested Error Values

Value Meaning

0 No error occurred.

Positive values | Completion or warning codes such as warnings for instrument driver
features that are not supported by the device or I/O completion cpdes
returned from the VISA 1/O libraries.

Negative values | Errors that are detected in an instrument driver such as the range-
checking of function parameters or 1/O errors reported by the VISA
I/O libraries.

LabWindows/CVI Instrument Driver Guide 6-10 © National Instruments Corporation

Chapter 6 Programming Guidelines for Instrument Drivers

Table 6-5. Instrument Driver Completion and Warning Codes

Completion Code Error Number

VI_SUCCESS

Description

No error: the call was successful

VI_WARN_NSUP_ID_QUERY | Identification query not supporteox3FFC0101L

VI_WARN_NSUP_RESET Reset not supported 0x3FFC0102L

VI_WARN_NSUP_SELF_TEST | Self-test not supported 0x3FFC0103L

VI_WARN_NSUP_ERROR_QUER¥Efrror query not supported Ox3FFC0104L

VI_WARN_NSUP_REV_QUERY | Revision query not supported | O0x3FFC0105L
Instrument-specific warnings 0x3FFC0800 to

0x3FFCOFFF

Table 6-6. Instrument Driver Error Codes

Status Description Error Numbers
VI_ERROR_FAIL_ID_QUERY | Instrument identification query failed| xBFFCO011L
VI_ERROR_INV_RESPONSE | Error interpreting instrument respong&@*BFFC0012L
VI_ERROR_PARAMETER1 | Parameter 1 out of range OxBFFCO001L
VI_ERROR_PARAMETER2 | Parameter 2 out of range OxBFFCO002L
VI_ERROR_PARAMETER3 | Parameter 3 out of range OxBFFCO003L
VI_ERROR_PARAMETER4 | Parameter 4 out of range OxBFFC0004L
VI_ERROR_PARAMETERS5 | Parameter 5 out of range OxBFFCO005L
VI_ERROR_PARAMETER6 | Parameter 6 out of range OxBFFCO006L
VI_ERROR_PARAMETER7 | Parameter 7 out of range OxBFFCO007L
VI_ERROR_PARAMETERS8 | Parameter 8 out of range OxBFFCO008L
Instrument-specific errors 0xBFFC0800 to
OXBFFCOFFF

The defined names for completion and error codes in Table 6-3 and 6-4 are resolved in the file
vpptype.h . By including the filevpptype.h in your instrument driver header file, you can

use these defined names in your instrument driver and users of your driver can use them in their
application programs.

An important error situation is errdi_ ERROR_INV_RESPONSHETrror in interpreting an
instrument respon3e This error is detected wherSaan statement tries to parse data from an
erroneous instrument response. The user-callable furiek@430a_read_waveform in

the Tektronix 2430a example instrument driver shown in Appendix A, gives a good example of
this type of error detection and reporting feature.

© National Instruments Corporation 6-11 LabWindows/CVI Instrument Driver Guide

Programming Guidelines for Instrument Drivers Chapter 6

if (Scan (in_data, “9%1027i[b1u]>%3i[b1]%1024f ", header, wvfm) != 2)
return VI_ERROR_INV_RESPONSE;

In the previous code, errdii_ERROR_INV_RESPONSIKS returned if the scan does not place
data in the variablebeader andwvfm.

Function Panels

Thefunction paneldink the user and the user callable functions. Function panels let users
interactively control the instrument and develop application programs. You should create
function panels with the end user in mind. Make the panels look like other instrument drivers in
the LabWindows/CVI Instrument Library. Arrange controls neatly and center them on the panel.
Place the error return control in the lower right corner of every function panel. Place the
instrument ID control in the lower left corner. When your function panels resemble others in the
library, users feel more comfortable with your instrument driver.

Function Tree Hierarchy

The function tree defines the relationship between each function panel. Users think in terms of
high-level application operations suchlaisialize , Configure , Measure , and so on.

Group the functions in the function tree accordingly. Make function trees from similar
instruments look similar. Multimeter drivers, oscilloscopes, and function generators should
resemble each other.

For example, the Fluke 45 instrument driver function tree is shown in Figure 6-1.

& D:\Program Files\National Instruments\C¥I\instri\fl45_fp

Eil= Edit Create [nstrument “indow Option: Help

Fluke 45 Digitzl Maltimeter | /O =
Initialize
Irplicaticn Functicns
Set Up & Read Heasurements
Configuraticn Functions
Configure Heasurenents
Conf igure Range
Configure Trigger
Configure Mod fiers
Config Compare
Config Hold
Config Decibel
Config Relative
Config Min-Max
Acticn/Status Functicns
Trigger Heasurement
Dzfz Functicns
Read Primary Display
Read Secondarvy Display
Di=zplay Compare Results
Dtilify Functicns
Write To Instrument
Read Instrument Data
Re=et
Self-Te=st
Error-Query
Error Hessage
Revision Query
Clo=e ;I

1219 | Fluke 45 Digital Multimeter (VISA I-0) | Y

Figure 6-1. The Fluke 45 Digital Multimeter Function Tree

LabWindows/CVI Instrument Driver Guide 6-12 © National Instruments Corporation

Chapter 6 Programming Guidelines for Instrument Drivers

The functions are easy to understand and immediately incorporate into an application program.
Be sure to develop your function tree and function pareflsreyou develop any code for your
instrument driver. Develop your function tree with an application in mind and place the
functions in the natural order in which they will be used. Again, keep your function tree
consistent with others in the LabWindows/CVI Instrument Library, so that users feel familiar
with your instrument driver.

Documentation Guidelines

Writing useful documentation is an essential step in developing instrument drivers. Proper
documentation helps the user to understand the instrument driver and its functions. Instrument
driver documentation should consist of the following.

* Online help from within LabWindows/CVI function trees and function panels

« A .doc file distributed on the disk with the instrument driver files

Online Help

Users consult the online help of an instrument driver most frequently. Relevant help information
in a consistent format makes using the instrument driver easier. Include online help at every
level of the instrument driver.

The following examples present the types of help information found in the Fluke 45 instrument
driver. Use these example help screens as a guide when editing online help for your instrument
driver.

Note: You should add help text when you create or edit the function tree or function panels.
Online help text is stored as part of thip file.

© National Instruments Corporation 6-13 LabWindows/CVI Instrument Driver Guide

Programming Guidelines for Instrument Drivers Chapter 6

Instrument driver hel@ppears in dialog boxes when a user views help for a function panel
window or function class. This type of help describes the instrument driver and lists the

functions and classes of functions in the driver. Figure 6-2, shows instrument help for the
Fluke 45 instrument driver.

5 Help Editor: Fluke 45 Digital Multimeter [¥I5A 1/0)

File Edit ‘Window Help

File: Db ALY Ninsteyfl45 fp
Instument Mame: Fluke 45 Digital Multimeter (V154 /0]

Thiz instrument module provides programming support for the

Fluke 45 Digital Hultimeter. The module is diwvided into the
following functions:

Function=-Clas=es:
(1) Initialize:

This function initializes the instrument and sets it to a
default configuration.

(2) Application Functions: (Class)

This class contains high-level, test and measurensnt routines.
The=e exanples call other instrument driwver functions to
configure. and read from the instrument.

(3) Configuration Function=: (Class)
Thi= class of functions configures the instrument by sstting the
neaszurenent function, autorange., rate. trigger and sensitivity

of the primary display. and the measurement function of the
zecondary display.

Figure 6-2. The Fluke 45 Instrument Help

Function class heljs available from the instrument driver pull-down menu after the function
class has been selected. Function class help briefly describes all the functions and subclasses

beneath the selected function class. Figure 6-3, shows function class help from the Fluke 45
instrument driver.

== Help Editor: Data Functions [_[O] =]
File Edit ‘Window Help

File: DA ALY SInsts 45 fp

Clazz Mame: Data Functions

Thi= class of functions transfers data from the instrument by _ﬂ
taking a reading from the corresponding display.

Functions-SubClasses:

(1) Fead Frimary Di=splay:
Thi=s function talkes one reading from the instrument's primary
display based on the instrument configuration.

(2) Read Secondarvy Display:

Thi= function takesz one reading from the instrument's secondary
dizplay ba=zed on the instrument configuration.

{3) Display Compare Results=:

Thi= function displays the results of the compare function in
both string and integer form.

Figure 6-3. The Fluke 45 Function Class Help

LabWindows/CVI Instrument Driver Guide 6-14 © National Instruments Corporation

Chapter 6 Programming Guidelines for Instrument Drivers

* Function panel heljs available from thélelp menu in the Function Panel menu bar.
Function panel help describes the function call. Figure 6-4, shows the function panel help
from the Fluke 45 instrument driver.

EE Help Editor: init M=l 3
File Edit ‘window Help

File: D:h. A2 instrsfl45.fp
Wwindow Mame: |nitislize

Function Narme: init

[Thi= function performs the following initialization actions: =

— Openz a se=sion to the Default Resource Manager resource and a
zes=ion to the specified device using the interface and address
specified in the Resource Hame control.

— Performs an identification query on the Instrument.

- Resets the instrument to a known state.

— Sends initialization command=s to the instrument that =et anvy
necessary programmatic variables such as Headers 0ff, Short
Command form. and Data Transfer Binary to the state necessary

for the operation of the instrument driver.

— Return=s an Instrument Handle which is used to differentiate
between different sesszicn= of this instrument driwver.

— Each time thi= function i= inwvoked a Unigue Ses=sion i= opesned.
It i= possible to have more than one session open for the sane _ﬂ

Figure 6-4. The Fluke 45 Function Panel Help

» Control helpis available from thélelp menu in the Function Panel. Control help contains a
description of the parameter, the valid range, and the default value. Figure 6-5, shows an
example of function panel control help from the Fluke 45 instrument driver.

& Help Editor: Resource Name |_ (O] x|

File Edit ‘window Help

File: D:h. A2 instrsfl45.fp
Wwindow Mame: |nitislize

Contral Mame: Resource Mame

Thi= control specifies the interface and address of the device -
that i= to be initialized {(Instrument Descriptor). The exact I—
grammar to be u=ed in this control i= shown in the note below.

Default Valus: "GPIB: 1"

HCOTE :
Based on the Instrument Descriptor. this operation establishes a
communication session with a device. The grammar for the

Instrument Descriptor is shown below. Optional paramnsters are
shown in square bracket= ([]1).

Interface GCrammar

GPIE GPIB[boaxrd]: :primary address[: secondary address] —
[::INSTR]

The GPIB keyword i= u=ed with GFPIB instruments.

The default waluese for optional paramsters are shown below. _ﬂ

Figure 6-5. The Fluke 45 Function Panel Control Help

© National Instruments Corporation 6-15 LabWindows/CVI Instrument Driver Guide

Programming Guidelines for Instrument Drivers Chapter 6

» Status helps available from thélelp menu in the Function Panel. Error help contains a
description of the parameter and the possible error values. Figure 6-6, shows an example of
status control help from the Fluke 45 instrument driver.

=5 Help Editor: Status M=l E3
File Edt Window Help

File: D:h A2 hinstryfl45.fp
Wwindow Marne: Initialize

Caontral Mame: Status

Thi= control contains the status code returned by the function -
call. —

Statusz Codes:

Statu= Deszcription

0 Ho error (the call was succes=ful).

JFFFO000S The specified termination character was read.
JFFFO006 The specified number of bytes was read.

EFFCO0002 Parameter 2 (ID Query) out of range.
EFFCO003 Parameter 3 (Reset Device) out of ranges.
EFFC0011 Instrument returned invalid response to ID Query

BEFEFOOO0D Miscellansous or systemn srror occurred.

BFFFO00E Inwalid sesszion handle.

EFFFO0015 Timeout occurred before operation could complete.
EFFFO0034 Violation of raw write protocol occurred. ;I

Figure 6-6. The Fluke 45 Function Panel Error Control Help

The .doc File

* The.doc file is an ASCII text file that contains the following information.
* A brief description of the instrument

» A function tree layout

» Assumptions made by the driver developer

» Alist of global variables and constant names declared in the driver

* Alist of the LabWindows/CVI libraries that are referenced in the driver

* A description of each function, including the following:

Syntax

Purpose

Parameter types
— Function type

— Error codes

LabWindows/CVI Instrument Driver Guide 6-16 © National Instruments Corporation

Chapter 6 Programming Guidelines for Instrument Drivers

You should give thedoc file the same base filename as fipe file for the instrument driver.

You can generate.doc file using theGenerate Documentationcommand in th@ptions
menu of the Function Tree Editor window.

Programming Guidelines for RS-232 Instruments

Initialization Routine

The initialization routine for an RS-232 instrument driver must opmoaport using the
OpenComConfig function to specify such parameters as baud rate and parity, and set the
timeout value appropriately.

In addition, the initialization routine should perform the following steps.
1. Clear the instrument.

2. Query current operating status.

3. Send commands to place the instrument in a known state.

The initialize routine in the instrument driver core Gitre 232.c handles these operations
and can be modified for your instrument driver.

Close Routine

The close routine for an RS-232 instrument driver closesdireport used by the driver. The

routine should set the appropriate variables to zero to indicate that the instrument driver has been
closed. The instrument driver core fiere_232.c implements a close routine that can be
modified for your instrument driver.

Utility Routines

The instrument driver core fileore_232.c contains a number of utility functions. These
functions perform operations common to most RS-232 instruments, including reading and
writing to an RS-232 instrument.

© National Instruments Corporation 6-17 LabWindows/CVI Instrument Driver Guide

Programming Guidelines for Instrument Drivers Chapter 6

Programming Guidelines for VXI Instruments

Use the VXI core instrument driver to develop drivers for all message-based and register-based
VXI devices. Drivers developed with the VXI core instrument driver can control a VXI device
from either a GPIB-VXI translator, a MXI-equipped computer interface, or an embedded VXI
controller.

Instrument Driver Checklist

All instrument drivers you add to the LabWindows/CVI Instrument Library must conform to our
recommendations for programming style, error handling, function tree organization, function
panels, and online help. The following form is an abbreviated version of the form used to check
all instrument drivers that are submitted for inclusion in the LabWindows/CVI Instrument
Library. Use this form to verify that your instrument driver is complete and correct.

I. Function Tree
A. The structure is logical and follows the instrument driver internal design model.

B. All required instrument driver functions are implemented (initialize, reset, self-test,
revision, error query, and error message).

____ C. Help exists for the instrument and all functions and classes.
Il. Function Panels
A. The controls are neatly organized.
B. The instrument error control is in the lower right corner.
C. The instrument ID control is in the lower left corner.
D. The proper defaults are set for each control.
E. The return value is consistently used for error reporting.
F. Notes, if any, are understandable.
G. The proper display format is used, such as hexadecimal for status registers, and so on.
H. Help:
1. Exists for all controls.
_____ 2. Iswell formatted and includes:
_____a. Description
_____b. Default value and valid range
______c. Allneeded error codes
lll. Source Code
A, Standard instrument driver header comments are used:
1. Author
_____ 2. Original language
_____ 3. Modifications history
______B. Only the utility functions are declared.

LabWindows/CVI Instrument Driver Guide 6-18 © National Instruments Corporation

Chapter 6 Programming Guidelines for Instrument Drivers

______C. Allinstrument driver functions make proper use of the utility functions:
______ 1. All parameter ranges are checkedvalidVilntl6Range and
_invalidViReal64Range).
2. All scans check for and report errors correctly.
_____D. Errors are reported and correct error codes are used.
______E. Complete and descriptive comments are included.
______F. Reference tables are properly used.
_____G.visa.h isincluded.
______H. Binary instrument data is scanned or formatted correctly for multi-platform use.
_____|. Prototypes for user callable functions are correctly formatted:

1. All function prototypes include the mach_FUNC before the function
name.

2. Use only VISA datatypes for function parameters.
______ 3. All array parameters include the macvd FAR before the parameter name.
IV. Include File
A, Only user callable instrument driver functions are declared.
_____ B. Thefilevpptype.h is included.
_____C. Prototypes correctly formatted:

1. All function prototypes include the mack_FUNC before the function
name.

2. Use only VISA datatypes for function parameters.

3. All array parameters include the macvd FAR before the parameter name.
V. Document File
A The LabWindows/CVI-generated document file is properly edited.

B. The document file contains no redundant information such as variable name and
variable type.

© National Instruments Corporation 6-19 LabWindows/CVI Instrument Driver Guide

Chapter 7
Required Instrument Driver Functions

This chapter describes the implementation of the required instrument driver functions of a
LabWindows/CVI instrument driver. For each required instrument driver function, the following
information is presented; the C function prototype, a description of the purpose and operation of
the function, a table defining each parameter, all possible completion and error codes, and any
special implementation requirements.

The required instrument driver functions are as follows.

* Initialize
* Close

* Reset

» Self-Test

* Error Query

* Error Message

* Revision Query

For each function, the following information is given.

» Prototype—The C function prototype

» Description—A desription of the purpose and general operation of the function

» Parameters—A table defining each parameter. Information includes the name of each
parameter, the direction (input or output), the data type, and a description

* Return Values—Lists possible completion and error codes. For each a definition is
specified along with a description and who is responsible for setting this code (either the
instrument driver or the VISA 1/O library)

* Implementation Requirements—Any special implementation requirements that should be
considered when creating this function for a particular instrument driver

© National Instruments Corporation 7-1 LabWindows/CVI Instrument Driver Guide

Required Instrument Driver Functions Chapter 7

PREFIX_init

ViStatus status =_VI_FUNC PREFIX_init (ViRsrc rsrcName, ViBoolean id_query,
ViBoolean reset,
ViSession _VI_FAR*vi);

Purpose

ThePREFIX_init function is the first function called when you access an instrument driver.

It configures the communications interface and sends a default setup command string to the
instrument. Typically, the default setup configures the instrument's operation for the rest of the
driver (such as turning headers on or off or using long or short form for queries). Upon
successful operation, the initialize function returns a session that is used to address the
instrument in all subsequent instrument driver functions.

ThePREFIX_init function has an instrument descriptor string as an input. Based on the
syntax of this input, it configures the 1/O interface and generates an instrument session that is
used by all other instrument driver functions. The grammar for the instrument descriptor is
shown below. Optional parameters are shown in square brackets ([]).

Interface Grammar

GPIB GPIBpoard::primary addresk:secondary addrefsINSTR]

VXI VXl[board]:: VXI logical address:INSTR]

GPIB-VXI GPIB-VXI[board[:: GPIB-VXI primary addregs VXI logical
addresf:INSTR]

The GPIB keyword is used with GPIB instruments. The VXI keyword is used for either
embedded or MXIbus controllers. The GPIB-VXI keyword is used for a GPIB-VXI controller.

Additionally, thePREFIX_init function can perform selectable ID query and reset operations.

It is helpful if the ID query and reset operations are user selectable, because a user can disable the
ID query when he or she attempts to use the driver with a similar instrument but does not need to
modify the driver source code. Also, a user can enable or disable the reset operation, and this
action is useful for debugging when resetting would take the instrument out of the state the user
was trying to test.

LabWindows/CVI Instrument Driver Guide 7-2 © National Instruments Corporation

Chapter 7 Required Instrument Driver Functions
Parameters
Input | rsrcName ViRsrc Instrument Description
Examples:
VXI::5
GPIB-VXI::128::INSTR
id_query ViBoolean if VI_TRUE) perform in-system verification
if (VI_FALSE) do not perform in-system
verification
reset ViBoolean if VI_TRUE) perform reset operation
if (VI_FALSE) do not perform reset operation
Output |vi ViSession Unique logical identifier reference to a sessipn

Return Values

Type ViStatus

This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description Set By
VI_SUCCESS Session opened successfully
VI_WARN_NSUP_ID_QUERY Identification query not supported Driver
VI_WARN_NSUP_RESET Reset operation not supported Driver
Error Codes Description Set By
VI_ERROR_FAIL_ID_QUERY Instrument identification query failed Driver
VI_ERROR_PARAMETER2 id_query parameter out of range Driver
VI_ERROR_PARAMETER3 reset parameter out of range Driver

VI_ERROR_INV_RSRC_NAME

Invalid resource specified. Parsing | VISA
error

VI_ERROR_INV_ACC_MODE

Invalid access mode

VISA

VI_ERROR_RSRC_NFOUND

Insufficient location information or | VISA
resource not present in the system

VI_ERROR_ALLOC

Insufficient system resources to opgrvVISA
a session

© National Instruments Corporation

LabWindows/CVI Instrument Driver Guide

Required Instrument Driver Functions Chapter 7

Implementation Requirements

Verifying the identity can be accomplished by checking the manufacturer ID and model number
in the instrument's VXI register set by using tHeN query for IEEE 488.2 compatible

instruments, or by other means. If your instrument cannot perform an identification query or be
programmatically reset to a known state, their corresponding parameters must still be provided in
thePREFIX _init function, but they can be ignored.

If the PREFIX_init function encounters an error, the value ofwheutput parameter should
beVI_NULL and any valid sessions obtained frei@pen should be closed.

PREFIX_close
ViStatus status =_VI_FUNC PREFIX_close(ViSession vi);
Purpose

All LabWindows/CVI instrument drivers include a Close function that terminates the software
connection to the instrument and deallocates system resources. Additionally, the developer may
select to place the instrument in an idle state. For example, the developer of a switch driver may
disconnect all switches when he or she closes the instrument driver.

Parameter
Input | vi ViSession Unique logical identifier to a session with{an
instrument
Return Values
Type ViStatus This is the operational return status. It returns either a

completion code or an error code as follows

Completion Code Description Set By
VI_SUCCESS Session closed successfully
Error Code Description Set By
VI_ERROR_INV_SESSION The given session is invalid VISA
VI_ERROR_CLOSING_FAILED Unable to deallocate the previously VISA
allocated data structures
corresponding to this session

LabWindows/CVI Instrument Driver Guide 7-4 © National Instruments Corporation

Chapter 7 Required Instrument Driver Functions

PREFIX reset
ViStatus status =_VI_FUNC PREFIX_reset(ViSession vi);
Purpose

ThePREFIX reset function programmatically places the instrument in a known state. In an
IEEE 488.2 instrument, tHeREFIX_reset function sends the command strifgST" to the
instrument. You can either call tR&REFIX_reset function separately, or you can select it to
be called from th®REFIX_init function.

Parameter

Input Vi ViSession Unique logical identifier to a session with
an instrument

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows
Completion Code Description Set By
VI_SUCCESS Reset successful
VI_WARN_NSUP_RESET Reset operation not supported Driver
Error Code Description Set By
VI_ERROR_INV_SESSION The given session is invalid VISA
VI_ERROR_TMO Timeout expired before operation | VISA
completed
VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol VISA
occurred during transfer
VI_ERROR_BERR Bus error occurred during transfer VISA
VI_ERROR_NCIC The interface associated with the | VISA
givenvi is not currently the
controller in charge
VI_ERROR_NLISTENERS No Listeners condition is detected VISA

© National Instruments Corporation 7-5 LabWindows/CVI Instrument Driver Guide

Required Instrument Driver Functions Chapter 7

Implementation Requirements

The default state that the Reset function places the instrument in should be documented in the
help information for the Reset function.

PREFIX self test

Vistatus status =_VI_FUNC PREFIX_self tes{ViSession i,
Vilntl6 VI _FAR* test_result
ViChar _VI_FAR test_messad¢);

Purpose

All LabWindows/CVI instrument driversave a Self-Test function. TIRREFIX self test

function forces the instrument to perform a self-test. HRE&FIX_self test function waits

for the instrument to complete the test, then queries the instrument for the results of the self-test
and returns the results to the user.

Parameter
Input Vi ViSession Unique logical identifier to a session
with an instrument
Output [test_result Vilnt16 Numeric result from self-test operation
0 = no error (test passed)
test_message ViCharf] Self-test status message

Return Values

Type ViStatus This is the operational return status. It returns eitherja
completion code or an error code as follows

Completion Code Description Set By
VI_SUCCESS Self test successful
VI_WARN_NSUP_SELF_TEST Self-test operation not supported Driver

LabWindows/CVI Instrument Driver Guide 7-6 © National Instruments Corporation

Chapter 7 Required Instrument Driver Functions

Error Code Description Set By

VI_ERROR_INV_RESPONSE Error interpreting instrument Driver
response

VI_ERROR_INV_SESSION The given session is invalid VISA

VI_ERROR_TMO Timeout expired before operation | VISA
completed

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol VISA
occurred during transfer

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol VISA
occurred during transfer

VI_ERROR_BERR Bus error occurred during transfer VISA

VI_ERROR_NCIC The interface associated with the | VISA
givenvi is not currently the
controller in charge

VI_ERROR_NLISTENERS No Listeners condition is detected VISA

Implementation Requirements

If your instrument cannot perform a self-test operation, you should still include the function in
the driver and return the warniki WARN_NSUP_SELF_TEST.

PREFIX_error_query
ViStatusstatus=_VI_FUNCPREFIX_error_query (ViSession vi,
Vilnt32 _VI_FAR * error,
ViChar _VI_FAR error_messagfl);

Purpose

All LabWindows/CVI instrument driverBave an Error Query function. This function queries
the instrument and returns the instrument-specific error information.

Parameter
Input Vi ViSession Unique logical identifier to a session wjth
an instrument
Output | error Vilnt32 Instrument error code
error_message | ViCharf] Instrument error message

© National Instruments Corporation 7-7 LabWindows/CVI Instrument Driver Guide

Required Instrument Driver Functions

Return Values

Chapter 7

Type ViStatus This is the operational return status. It returns either g
completion code or an error code as follows

Completion Code Description Set By

VI_SUCCESS Error query successful

VI_WARN_NSUP_SELF_TEST Self-test operation not supported Driver

Error Code Description Set By

VI_ERROR_INV_RESPONSE Error interpreting instrument Driver
response

VI_ERROR_INV_SESSION The given session is invalid VISA

VI_ERROR_TMO Timeout expired before operation | VISA
completed

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol VISA
occurred during transfer

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol VISA
occurred during transfer

VI_ERROR_BERR Bus error occurred during transfer VISA

VI_ERROR_NCIC The interface associated with the |VISA
given vi is not currently the
controller in charge

VI_ERROR_NLISTENERS No Listeners condition is detected VISA

Implementation Requirements

If your instrument cannot perform an error query, you should still include the function in the
driver and return the warning_ WARN_NSUP_ERROR_QUERY

LabWindows/CVI Instrument Driver Guide

© National Instruments Corporation

Chapter 7 Required Instrument Driver Functions

PREFIX_error_message

ViStatus status = VI_FUNCPREFIX_error_messaggViSession i,
ViStatus error,
ViChar _VI_FAR messagf);

Purpose

LabWindows/CVI instrument drivetsave an Error Message function. This function translates
the error return value from a LabWindows/CVI instrument driver function to a user-readable
string.

Parameter
Input Vi ViSession Unique logical identifier to a session with
an instrument
error ViStatus Instrument driver error code
Output message ViCharf] Instrument driver error message

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description Set By

VI_SUCCESS Error message successful

VI_WARN_UNKNOWN_STATUS The status code passed to the Driver
operation could not be interpreted

Implementation Requirements

ThePREFIX_error_message function should accept a valueVf NULL for thevi input
parameter. Ithe valuevl_NULL is passed into the function, thieparameter is ignored;
otherwisethe value of thei parameter may be used by the function. This allows the
PREFIX_error_message function to execute even if ttRREFIX_init function fails.

© National Instruments Corporation 7-9 LabWindows/CVI Instrument Driver Guide

Required Instrument Driver Functions Chapter 7

PREFIX revision

ViStatus status =_VI_FUNC PREFIX_revision (ViSession i,
ViChar _VI_FAR driver_rev]] ,
ViChar _VI_FAR instr_rev[])

Purpose

All LabWindows/CVI instrument drivers have a Revision function. This function outputs the
following.

* The revision of the instrument driver

» The firmware revision of the instrument being used

Parameter
Input Vi ViSession | Unique logical identifier to a session with an
instrument
Output driver_rev |ViChar(] Instrument driver revision
instr_rev | ViChar([] Instrument firmware revision
Return Values
Type ViStatus This is the operational return status. It returns either a

completion code or an error code as follows.

Completion Code Description Set By
VI_SUCCESS Revision query successful
VI_WARN_NSUP_REV_QUERY Revision query not supported Driver

LabWindows/CVI Instrument Driver Guide 7-10 © National Instruments Corporation

Chapter 7

Required Instrument Driver Functions

Error Code Description Set By

VI_ERROR_INV_RESPONSE Error interpreting instrument Driver
response

VI_ERROR_INV_SESSION The given session is invalid VISA

VI_ERROR_TMO Timeout expired before operation | VISA
completed

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol VISA
occurred during transfer

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol VISA
occurred during transfer

VI_ERROR_BERR Bus error occurred during transfer VISA

VI_ERROR_NCIC The interface associated with the |VISA
given vi is not currently the
controller in charge

VI_ERROR_NLISTENERS No Listeners condition is detected VISA

Implementation Requirements

If the instrument firmware revision cannot be queried, the Revision funretiams the literal
string "Not Available" in thenstr_rev output parameter, and the function returns the warning

VI_WARN_NSUP_REV_QUERY

© National Instruments Corporation

7-11

LabWindows/CVI Instrument Driver Guide

Chapter 8
Instrument Driver Example

This chapter shows you how to create a complete GPIB instrument driver. The example
presented in this chapter can serve as a model for your own instrument driver development.

The steps you will learn in this chapter include
* Modifying the filecore_gpb.fp to create the function tree and panels for the new driver.

* Modifying the filescore_gpb.c andcore_gpb.h to create the instrument program for
the new driver.

* Loading and testing the driver.

Example—Creating a GPIB Instrument Driver

This example illustrates all of the steps for creating a complete GPIB instrument driver. An
overview of the procedure appears in the following list.

* Modify the filecore _gpb.fp to create the function tree and panels for the new driver.

* Modify the filescore_gpb.c andcore_gpb.h to create the instrument program for the
new driver.

+ Load and test the instrument driver.

The instrument used in this example is a Tektronix 2430A oscilloscope. For simplicity, only the

following functions are created.

* Initialize

» Configure vertical sensitivity and horizontal timebase
* Read waveform

« Close

In many cases, you do not need to start from the beginning of the procedure as done in this
example. You can frequently modify an existing driver for a similar instrument.

© National Instruments Corporation 8-1 LabWindows/CVI Instrument Driver Guide

Instrument Driver Example Chapter 8

Creating the Function Tree

To create the instrument driver, you first create the function tree using the Function Tree Editor.
To invoke the Function Tree Editor, select Buaction Tree (*.fp) option from either th&lew
or Open commands in th&ile menu.

Use the filecCORE_GPB.FPlocated in théNSTR subdirectory, as a template for building your
instrument driver. Load this file using tgpen command in th&ile menu. The screen appears
as shown in Figure 8-1.

= Ore qQpo.Ip b

-file Edit Create Instrument Window Options Help

rAogs) Mans i — fpsir friear Foaplads +

Initialize

Fedlifpr Funcéions
Fe==t
Self-Test
Fevizion Query
Error—-Quervy
Error Message

Clo=e

1.9 | (Model Hame) — Instr Draiver Template

Figure 8-1. The Function Tree for CORE_GPB.FP
Modify the instrument name at the top of the function tree as follows.
1. Position the highlight on the stateménstrument Model Name)
2. Selectdit Node from theEdit menu.

3. Complete the Edit Instrument Node dialog box as follows: Tgk#ronix 2430A
Oscilloscope in the Name box, angk2430a in the Prefix box.

4. SelectOK.

5. With the highlight still on the instrument name, selsdit Help from theEdit menu, or
click on the name with the right mouse button.

LabWindows/CVI Instrument Driver Guide 8-2 © National Instruments Corporation

Chapter 8 Instrument Driver Example

6. To modify the help information:

a. Change the phragmstrument Name) to Tektronix 2430A
Oscilloscope

b. Insert the following text between the Initialize and Utility Functions descriptions.

2. Configure - Set the volts per division and timebase of
the oscilloscope

3. Read waveform - Read a waveform from the oscilloscope
c. Give Utility Functions the number 4 and Close the number 5.
7. SelectSave .FP File Adrom theFile menu and save the file a&K2430A.FP .
Add two new functions to the function tree as follows.
1. Position the highlight omitialize
2. SelectFunction Panel Windowfrom theCreate menu.
3. Complete the Create Function Panel Window Node dialog box as follows.
TypeConfigure in the Name box ancbnfig in the Function box.
4. SelecOK.
5. Selectrunction Panel Windowfrom theCreate menu.
6. Complete the Create Function Panel Window Node dialog box as follows.

TypeRead Waveform in the Name box angkad _waveform in the Function Name
box.

7. SelecOK.

© National Instruments Corporation 8-3 LabWindows/CVI Instrument Driver Guide

Instrument Driver Example Chapter 8

The function tree should now look like the one in Figure 8-2.

= P A30a. 1o -

_file Edit Create Instrument Window Options Help

Tiai- £ 2 er T FT
S TS A

Initialize

Configure

Fead Waveform

e i e Flpnoctions
Reset
Self-Te=t
Revizion Qusry
Error-Quervy
Error Message

Clo=e

Q|

1-11 | Tektroniz 24304 Oscilloscops

Figure 8-2. The New Function Tree for the Tektronix 2430A Instrument Driver

SelectSave .FP Filefrom theFile menu.
Creating the Configure Function Panel Window
Add help information to the Configure function panel as follows.

1. Position the highlight o@onfigure and selecEdit Function Panel Window from the
Edit menu.

2. Selectunction Help from theEdit menu.

3. Type the following help text.

Configures the vertical volts per division and horizontal timebase of the
oscilloscope.

The Configure function configures the scope so that only the channel
specified by the Channel control is displayed, i.e. the vertical mode is
either channel 1 only or channel 2 only.

4. SelectSave .FP Fileand then sele@losefrom theFile menu of the Help Editatialog box.
Add an Instrument Handle control to specify which instrument to talk to as follows.

1. Press <Ctrl-Page Down> twice to display Resetfunction panel.

LabWindows/CVI Instrument Driver Guide 8-4 © National Instruments Corporation

Chapter 8 Instrument Driver Example

a & w D

7.

Position the highlight on the Instrument Handle control.
SelectCopy Controls from theEdit menu.
Press <Ctrl-Page Up> twice to display @enfigure function panel.

SelectPastefrom theEdit menu to place a copy of the Instrument Handle control on the
Configure panel.

Position the Instrument Handle control in the lower left corner of the panel.

SelectSave .FP Filefrom theFile menu.

Add a control for specifying the channel to configure as follows.

1.
2.

SelecBinary from theCreate menu.

Complete the Edit Binary Control and Edit On/Off Settings dialog boxes as shown in
Figures 8-3 and 8-4.

= Edit Binary Control

Control Label: Channel

Parameter Pozition: : 2

Data Type: : WiBoolean

Y

Default ¥alue: -1

On/Off Settings... |

Cancel

Figure 8-3. The Edit Binary Control Dialog Box

= Edit OnfOff Settings

OH Text: 2|
OFF Text:

1
OM Yalue: 2
OFF ¥alue: 1

Cancel

Figure 8-4. The Channel Edit On/Off Settings Dialog Box

© National Instruments Corporation 8-5 LabWindows/CVI Instrument Driver Guide

Instrument Driver Example Chapter 8

3. SelecOK twice.

4. Position the Channel control in the upper left portion of the panel.
Add help to the Channel control as follows.

1. Highlight the Channel control and sel€cntrol Help from theEdit menu.
2. Enter the following text in the Edit Help dialog box.

Specifies the channel to that Volts/Div and Coupling apply. Channel also
indicates the mode in that to place the scope — channel 1 only or channel 2
only.

Valid Range: 1-Channel 1
2 - Channel 2

3. SelectSave .FP Fileand then seleclosefrom theFile menu.
Add a control for specifying the vertical volts-per-division as follows.
1. SelecRing from theCreate menu.

2. Complete the Edit Ring Contrdialog box as shown in Figure 8-5.

= Edit Ring Control

Control Label: Yoltz/Div
Parameter Pozition: : 3

Data Type: : Vikealnd

Default ¥alue: : hy
Control Width: =128

LabelfY¥alue Pairs.__ |

Cancel

Figure 8-5. The Edit Ring Control Dialog Box for the Volts/Div Ring Control

LabWindows/CVI Instrument Driver Guide 8-6 © National Instruments Corporation

Chapter 8 Instrument Driver Example

3. Press théabel/Value Pairs button.

4. Complete the Edit Label/Value Pairs dialog box as shown in Figure 8-6.

= Edit Labelf¥alue Pairs

Label: LN
Yalue: 0100

Inzert Hew ltem:

Below |

100 my
200 m¥

Figure 8-6. The Volts/Div Ring Control Edit Label/Value Pairs Dialog Box

5. SelectOK twice.

6. Position the Volts/Div control in the upper middle portion of the panel.
Add help to the Volts/Div control as follows.

1. Highlight the Volts/Div control and seleControl Help from theEdit menu.

2. Enter the following text in the Help Editdralog box.

Specifies the volts/division setting of the channel specified by the
Channel control.

Valid Range: 100 mV to 50 V
3. SelectSave .FP Fileand then sele@losefrom theFile menu.

Add a control for specifying the horizontal timebase as follows.

1. SelecRing from theCreate menu.

© National Instruments Corporation 8-7 LabWindows/CVI Instrument Driver Guide

Instrument Driver Example Chapter 8

2. Complete the Edit Ring Contrdialog box as shown in Figure 8-7.

= Edit Ring Control

Control Label:

P— e
Parameter Pozition: =k}

Data Type: : ViFealod
Default ¥alue: : 1 u5
Control Width: - 128

LabelfYalue Pairs._. |

Cancel

Figure 8-7. The Edit Ring Control Dialog Box
3. Press théabel/Value Pairs button.

4. Complete the Edit Label/Value Paitislog box as shown in Figure 8-8.

= Edit Labelffalue Pairs
Label: [

Yalue: 1.0e-6

Inzert New Item:

Below |

i1 us
2us

B = B = =
CooooD o oD
R i
dada o oo dnicn

Figure 8-8. The Edit Label/Value Pairs Dialog Box

Note: Figure 8-7 shows an abbreviated listing of the possible timebase settings of the 2430A.
You can specify other values when operating the panel by selecting Toggle Control
Style and entering the desired value.

5. SeleciOK twice.

LabWindows/CVI Instrument Driver Guide 8-8 © National Instruments Corporation

Chapter 8 Instrument Driver Example

6. Position the Sec/Div control in the upper right portion of the panel.
Add help to the Sec/Div control as follows.
1. Highlight the Sec/Div control and sel€xntrol Help from theEdit menu.

2. Enter the following text in the Help Editdiralog box.

Specifies the seconds/division setting for the main (A) timebase of the
oscilloscope

Valid Range: 10nSto5S
3. SelectSave .FP Fileand then seleclosefrom theFile menu.
Add a return control to indicate errors as follows.
1. Press <Ctrl-Page Up> to display the Initialize function panel.
2. Position the highlight on the Error control.
3. SelectCopy Controls from theEdit menu.
4. Press <Ctrl-Page Down> to display the Configure function panel.
5. SelectPastefrom theEdit menu to place a copy of the Error control on the Configure panel.
6. Position the Error control in the lower right corner of the panel.
Add help to the Error control as follows.
1. SelectControl Help from theEdit menu.
2. Modify the text in the Help Editatialog box so that it appears as follows.

Reports the status of the function call.

Status Codes:
Status Description

VI_SUCCESS No error (the call was successful).
VI_ERROR_PARAMETER2 IDQuery parameter out of range.
VI_ERROR_PARAMETER3 reset parameter out of range.
VI_ERROR_INV_SESSION The session is invalid.

VI_ERROR_TMO Timeout expired.
VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol.
VI_ERROR_BERR Bus error occurred.

VI_ERROR_NCIC Not the controller in charge.

VI_ERROR_NLISTENERS No Listeners.

3. SelectSave .FP Fileand then sele&losefrom theFile menu.

© National Instruments Corporation 8-9 LabWindows/CVI Instrument Driver Guide

Instrument Driver Example Chapter 8

The Configure function panel window should now appear as shown in Figure 8-9.

| Tektronix 24304 Oscilloscope - Configure
File Edit Create View Instrument VWindow Options Help
| & 1.2 | 2| 1 2| @] e 2 |PR|S] |BN] |EF
tek2430a_conhg
Channel Yolts/Div Sec/Div
2 v 5Y 21us
1
Inztrument Handle Sl
ViStatus Status = telk2d4ila_coniig (ViSession Instrument_Handle,
ViBoolean Channel.
o VilHealtd Volts-Div, .

Figure 8-9. The Complete Configure Function Panel Window

SelectSave .FP Filefrom theFile menu and save the function panels using the default filename,
tek2430a.fp

Creating the Read Waveform Function Panel

Press <Ctrl-Page Down> to move to the Read Waveform function panel.
Add help information to the panel as follows.

1. SelectPanel Helpfrom theEdit menu.

2. Enter the following help text.

Reads a waveform from the current acquisition channel of the 2430A.

Also returns the sampling period and trigger offset.

LabWindows/CVI Instrument Driver Guide 8-10 © National Instruments Corporation

Chapter 8 Instrument Driver Example

3. SelectSave .FP Fileand then seleclosefrom theFile menu of the Help Editor dialog box.
Add an Instrument Handle control to specify which instrument to talk to as follows.

1. Press <Ctrl-Page Down> to display Besetfunction panel.

2. Position the highlight on the Instrument Handle control.

3. SelectCopy Controls from theEdit menu.

4. Press <Ctrl-Page Up> to display tRead Waveformfunction panel.

5. SelectPastefrom theEdit menu to place a copy of the Instrument Handle control on the
Read Waveform panel.

6. Position the Instrument Handle control in the lower left corner of the panel.
7. SelectSave .FP Filefrom theFile menu.

Add a control for specifying the waveform array as follows.

1. SelecOutput from theCreate menu.

2. Complete the Create Output Control dialog box as shown in Figure 8-10.

= Create Output Control

Control Label:

P e
Parameter Pozition: -2

Data Type: ViRealbd[]

-~

iavdas Foomad i

Fe

Control Width: - 36

Cancel

Figure 8-10. The Waveform Array Create Output Control Dialog Box

3. Pres®OK.
4. Position the Waveform Array control in the upper left portion of the panel.
Add help to the Waveform Array control as follows.

1. Highlight the Waveform Array control and sel€xntrol Help from theEdit menu.

© National Instruments Corporation 8-11 LabWindows/CVI Instrument Driver Guide

Instrument Driver Example Chapter 8

2. Enter the following text in the Help Editdiralog box.

Specifies the name of the array in which to store the waveform values.
The dimension of the array must be greater than or equal to 1024 elements.

3. SelectSave .FP Fileand then sele&@losefrom theFile menu.
Add a control for displaying the sample period as follows.
1. SelecOutput from theCreate menu.

2. Complete the Create Output Control dialog box as shown in Figure 8-11.

= Create Output Control

Control Label: S ample Period
Parameter Position: : 3

Data Type: : ViFealbd
Dizplay Format: : Scientific

Fe

Control Width: - 36

Cancel

Figure 8-11. The Sample Period Create Output Control Dialog Box

3. Pres®OK.
4. Position the Sample Period control in the upper middle portion of the panel.
Add help to the Sample Period control as follows.
1. Highlight the Sample Period control and se@antrol Help from theEdit menu.
2. Enter the following text in the Help Editdiralog box.
Displays the sample rate in seconds at which the waveform was captured.
3. SelectSave .FP Fileand then seleclosefrom theFile menu.
Add a control for displaying the trigger offset as follows.

1. SelecOutput from theCreate menu.

LabWindows/CVI Instrument Driver Guide 8-12 © National Instruments Corporation

Chapter 8 Instrument Driver Example

2. Complete the Create Output Contl@log box as shown in Figure 8-12.

= Create Qutput Control
Control Label: Trigger Offset

P— o
Parameter Position: - 4

Data Type: : ViRealed

Dizplay Format: : Scientific

o

Control Width: - 36

Figure 8-12. The Trigger Offset Create Output Control Dialog Box

3. Pres©OK.
4. Position the Trigger Offset control in the upper right portion of the panel.
Add help to the Trigger Offset control as follows.
1. SelectControl Help from theEdit menu.
2. Type the following text in the Help Editor dialog box.
Displays the trigger offset of the waveform in seconds.
3. SelectSave .FP Fileand then seleclosefrom theFile menu.
Add a return control to indicate errors as follows.

1. Press <Ctrl-Page Up> to display the Configure function panel.

2. Position the highlight on the Error control.

3. SelectCopy Controls from theEdit menu.

4. Press <Ctrl-Page Down> to display the Read Waveform function panel.

5. SelectPastefrom theEdit menu to place a copy of the Error control on the Read Waveform

panel.
6. Position the Error control in the lower right corner of the panel.
Add help to the Error control as follows.

1. Highlight the Error control and selgcontrol Help from theEdit menu.

© National Instruments Corporation 8-13 LabWindows/CVI Instrument Driver Guide

Instrument Driver Example Chapter 8

2. Modify the text in the Help Editor dialog box so that it appears as follows.
Reports the status of the function call.

Status Codes:

Status Description

VI_SUCCESS No error (the call was successful).
VI_ERROR_INV_SESSION The session is invalid.
VI_ERROR_TMO Timeout expired.
VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol.
VI_ERROR_BERR Bus error occurred.

VI_ERROR_NCIC Not the controller in charge.

VI_ERROR_NLISTENERS No Listeners.
3. SelectSave .FP Fileand then seleclosefrom theFile menu.

The Read Waveform function panel should now appear as shown in Figure 8-13.

| Tektronix 2430A Oscilloscope - Read Waveform bt
File Edit Create View Instrument YWindow Options Help
SR AR AT AL EdR S Rk it d= S S g el
tek2430a_read waveform |+]
Waveform Amrray Sample Period Trigger Offzet
Ingtrument Handle Cratus
[+
*| [+
ViStatu= Status =
tek?2430a_read waveform (ViSession Instrument Handle.
ViFEealtd Waveform Arrav[].
O O

Figure 8-13. The Complete Read Waveform Function Panel Window

The function panels are now complete. Sefaste .FP Filefrom theFile menu. Save the
function panels again using the filenartek2430a.fp

LabWindows/CVI Instrument Driver Guide 8-14 © National Instruments Corporation

Chapter 8 Instrument Driver Example

Creating the Instrument Program

You are now ready to create the instrument program for the instrument driver. Create the
program in three stages.

Modify the device-dependent items in the filere_gpb.c

Modify the device-dependent items and add new declarations to the include file
core_gpb.h

Add new functions to the fileore_gpb.c

Modifying CORE_GPB.C Source File

As discussed in ChapterBrogramming Guidelines for Instrument Drivetise filecore_gpb
contains the source code for some core functions for a GPIB instrument driver. Load this file
into a source window.

The comments at the beginning of the file list the device-dependent items you must change.
Make the following changes to the file.

1. SelecReplacefrom theEdit menu and perform a global change with @ase Sensitive

option selected as follows:
Type PREFIX in the Find What box and typek2430a in the Replace With box.

The commenCHANGHNarks the locations of device-dependent items you must change.
SelectFind from theEdit menu and search for the waZtHANGEvith theCase Sensitive

option selected. In Steps 2-6, delete the change comments when you have completed that
step.

The second occurrence of the w@HANGEppears at the location where you insert the
Instrument Driver information. Insert the following information.

e The instrument model name
* The original release date

» The name or names of the person or people who wrote or modified the instrument driver

Find the next occurrence of the w&@HANGE You must now specify the default setup
string, if any, that is sent to the instrument every time the initialize function is called. Modify
the code as follows:

* Change the strinBEFAULT_STRINGo PATH OFF
» Change the variabPBEFAULT_STRING_LENGTkb 8

© National Instruments Corporation 8-15 LabWindows/CVI Instrument Driver Guide

Instrument Driver Example Chapter 8

Find the next occurrence of the w&@HANGE The following code performs an ID query.
Modify the code as follows:

Change if ((tek2430a_status = viWrite (*instrSession,
"IDN?", 5,&retCnt)) < 0)

To if ((tek2430a_status = viWrite (*instrSession,
"ID?", 3, &retCnt))< 0)

Find the next occurrence of the w&@HANGE You must now modify the parsing of the ID
query to reflect the response of the instrument. Read the comments explaining the actions
taking place in the ID query. The Tektronix 2430A responds with the StERGR430A .

Modify the code as follows:

* Change the strintP_ RESPONSEo0 TEK/2430A
» Change the variabl® RESPONSE_LENGTE 9

Find the next occurrence of the w&@HANGE You must now specify the optional reset
string, if any, to be sent to the instrument. The command INIT resets the Tektronix 2430A to
a known state. Modify the code as follows:

* Change the strintNIT_STRING toINIT
* Change the variab®NIT_STRING_LENGTH to 4

SelectSave .FP File Adrom theFile menu and save the modified file in a new file called
tek2430a.c

Modifying the CORE_GPB.H Include File

The instrument program you are creating uses an include file. You must modify the include file
CORE_GPB.Has you did the instrument program.

Create the include file for the new driver as follows.

1.

2.

Load the include fileore_gpb.h

Change the phrasgnstrument Model Name> to Tektronix 2430A
Oscilloscope

SelectChangefrom theEdit menu and perform a global change as follows:
TypePREFIX in the Find What box and typek2430a in the Change To box.
Add the declarations for the new functions you will write.

ViStatus _VI_FUNC tek2430a_config (ViSession instrSession, Vilnt32 chan,
ViReal64 v_div, ViReal64 sec_div);

LabWindows/CVI Instrument Driver Guide 8-16 © National Instruments Corporation

Chapter 8 Instrument Driver Example

ViStatus _VI_FUNC tek2430a_read_waveform (ViSession instrSession,
ViReal64 VI _FAR *wvfm,
ViReal64 VI _FAR *xin,
double *trig_off);

5. SelectSave .FP File Adrom theFile menu and save the modified file in an include file
namediek2430a.h

Writing the New Functions

You are now ready to add the new functions to the instrument driver. Before doing this, compile
the program. To compile the instrument driver, create a project for it by selBobjegt (*.prj)

from theNew option in theFile menu. Add the fileSEK2430A.C, TEK2430A.H, and

TEK2430A.FP to the project by selectingdd Files To Projectfrom theEdit menu. Then

highlight TEK2430A.C and selec€ompile Project from theBuild menu. If any errors occur,
compare the source and include files to the listings in the previous section. Correct any mistakes
that you find.

Move the cursor to the line after the end of the fundig®2430a_init

Writing the Configure Function

This function sets the volts per division of the specified channel and the horizontal timebase of
the oscilloscope. The function performs the following operations.

* Check parameters for valid values.

* Format command strings as follows.

- v_mode_string specifies the Vertical Display mode.
ifchan=1 the mode is "CH1:ON,CH2:0OFF"
if chan = 2 the mode is "CH1:0OFF,CH2:ON"

- CH%dspecifies the channel.

- VOL:%f[ep3] specifies the volts per division.

- HOR MOD:ASW,ASE:%f[ep3] specifies the seconds per division.
- ATR MOD:AUTGsets the trigger mode to AUTO.

- VMO DISP:YT,%s specifies the vertical display.

- DAT SOU:CH%dspecifies the source of the acquired data.

* Write the command string to the oscilloscope.

© National Instruments Corporation 8-17 LabWindows/CVI Instrument Driver Guide

Instrument Driver Example Chapter 8

Enter the following code for theonfigure function.

[* === === === */
/* Function: Configure *

/* Purpose: This function configures the vertical sensitivity, timebase, */

[* and trigger mode. */

[* —-== —-== —-== */

ViStatus _VI_FUNC tek2430a_config (ViSession instrSession, Vilnt32 chan,

{

ViReal64 v_div, ViReal64 sec_div)

static ViString v_mode_string[] = {"CH1:ON,CH2:0OFF", "CH1.0FF,CH2:ON"};
ViuInt32 retCnt;
ViStatus tek2430a_status = VI_SUCCESS;

if (tek2430a_invalidVilnt32Range (chan, 1, 2))
return VI_ERROR_PARAMETER?Z2;
if (tek2430a_invalidViReal64Range (v_div, 0.1, 5.0))
return VI_ERROR_PARAMETERS;
if (tek2430a_invalidViReal64Range (sec_div, 5.0e-9, 5.0))
return VI_ERROR_PARAMETER4;
tek2430a_status = viPrintf (instrSession, "%s<CH%d VOL:%f[p3];HOR

MOD:ASW,ASE:%f[ep3];ATE MOD:AUTO;VMO DISP:YT,%s;DAT SOU:CH%d",

chan, v_div, sec_div, v_mode_string[chan-1], chan);
return tek2430a_status;

Writing the Read Waveform Function

This function performs the following operations.

Build command strings as follows.
- DAT END:RPB specifies the data format.
- PATH OFF specifies the format of the response to queries.
- WFM? XIN queries for the sample rate (x increment).
- WFEM? YMUWueries for the y multiplier.
- WFM? YORqueries for the y offset.

- WFM? PT.Oqueries for the point offset.

Read the response to the queries, and parse out the x increment, y multiplier, y offset, and
point offset.

Query the waveform fdPATH ON;CURV?

LabWindows/CVI Instrument Driver Guide 8-18 © National Instruments Corporation

Chapter 8 Instrument Driver Example

* Read the header and the 1,024 one-byte integer data points into tha.daty or
in_data . The integers are packed low-byte/high-byte in the array.

* Place the three-byte header in the array header using the Scan function. The function
converts the packed one-byte integers to floating-point values and places them in the array

wvfm.

» Use the Analysis Library functionnEv1D to scale the data imvfm using they offset
andy multiplier values.

Enter the following code for the Read Waveform function after the Configure function.

[* === === === */
/* Function: Read Waveform */

/* Purpose: This function reads a waveform and returns x increment, and */

[* trigger offset. */

[* —-== —-== —-== */

ViStatus _VI_FUNC tek2430a_read_waveform (ViSession instrSession,
ViReal64 _VI_FAR *wvfm,
ViReal64 _VI_FAR *xin,
double *trig_off)

ViUInt32 retCnt;
ViStatus tek2430a_status = VI_SUCCESS;
ViReal64 ymu, yof;
ViChar header[2];

if ((tek2430a_status = viWrite (instrSession,
"DAT ENCD:RPB;PATH OFF;WVM? XIN;WFM? YMU;WVM? YOF;WFM? PT.0",
58,&retCnt)) < 0)
return tek2430a_status;
if ((tek2430a_status = viScanf (instrSession, "%f;%f;%f;%f",
xin, &ymu, &yof, trig_off)) < 0)
return tek2430a_status;
if ((tek2430a_status = viWrite (instrSession, "CURV?", 5, &retCnt)) < 0)
return tek2430a_status;
if ((tek2430a_status = viRead (instrSession, in_data, 1027,
&retCnt)) < 0)
return tek2430a_status;
yof = -ymu * (yof + 128.0);
if (Scan (in_data, "%1027i[b1u]>%3i[b1]%1024f", header, wvfm) != 2)
return VI_ERROR_INV_RESPONSE;

LinEv1iD (wvfm, 1024, ymu, yof, wvfm);

return tek2430a_status;

© National Instruments Corporation 8-19 LabWindows/CVI Instrument Driver Guide

Instrument Driver Example Chapter 8

Adding New Include Statements and Variable Declarations

Before compiling the program, you must add several statements at the top of the program to
include a file and declare variables. Move to the top of the Program window.

The Read Waveform function scales the waveform data using an Analysis Library routine
LinEv1D . You must, therefore, add an include statement for the Analysis Library include file.
The include statement you should insert appears here in bold type in the following C language
code excerpt.

#include <visa.h>
#include <formatio.h>
#include <string.h>
#include <analysis.h>
#include "tk2430.h"

The Read Waveform function reads binary data into a char array. You must set a dimension for
this array. Add the following declaration and comment beneath the declaratial.of

/* in_data is a buffer for binary data from the scope */
static char tek2430a_in_data[514];

Compile the program to verify that you entered the code correctly. Correct any syntax errors you
find. Save the completed program in the tdk2430a .

Testing the Driver

If you have a Tektronix 2430A oscilloscope, you should now test the instrument driver using the

function panels. You should always develop and test the instrument program in source code
form, as described in Chapter®ogramming Guidelines for Instrument Drivers

LabWindows/CVI Instrument Driver Guide 8-20 © National Instruments Corporation

Appendix A
Tektronix 2430A Instrument Driver
Code Sample

This appendix contains instrument driver code samples for the Tektronix 2430A.

Tektronix 2430A Instrument Driver Header File
[*== Tektronix 2430A Oscilloscope Include File === */

#ifndef __ PREFIX_HEADER
#define _ PREFIX_HEADER

#include <vpptype.h>

/*= GLOBAL FUNCTION DECLARATIONS ==== === */

#if defined(__cplusplus) || defined(__cplusplus__)
extern "C" {
#endif

ViStatus _VI_FUNC tek2430a_init (ViRsrc resourceName, ViBoolean IDQuery,
ViBoolean reset, ViPSession instrSession);
ViStatus _VI_FUNC tek2430a_close (ViSession instrSession);
ViStatus _VI_FUNC tek2430a_reset (ViSession instrSession);
ViStatus _VI_FUNC tek2430a_config (ViSession instrSession, Vilnt32 chan,
ViReal64 v_div, ViReal64 sec_div);
ViStatus _VI_FUNC tek2430a_read_waveform (ViSession instrSession,
ViReal64 _VI_FAR *wvfm,
ViReal64 _VI_FAR *xin,
ViReal64 _VI_FAR *trig_off);
ViStatus _VI_FUNC PREFIX_self_test (ViSession instrSession,
ViPInt16 testResult,
ViChar _VI_FAR testMessage[]);
ViStatus _VI_FUNC PREFIX_error_query (ViSession instrSession,
ViPInt32 errCode,
ViChar _VI_FAR errMessage[]);
ViStatus _VI_FUNC PREFIX_error_message (ViSession instrSession,
ViStatus error,
ViChar _VI_FAR message[]);
ViStatus _VI_FUNC PREFIX_revision_query (ViSession instrSession,
ViChar _VI_FAR driverRev[],
ViChar _VI_FAR instrRev[]);

#if defined(__cplusplus) || defined(__cplusplus_)
#endif

#endif
[*=== END INCLUDE FILE === === */

© National Instruments Corporation A-1 LabWindows/CVI Instrument Driver Guide

Tektronix 2430A Instrument Driver Code Sample Appendix A
Tektronix 2430A Instrument Driver Source File
#include <visa.h>
#include <formatio.h>
#include <string.h>
#include <analysis.h>
#include "tk2430.h"
#define tek2430a_REVISION "A1.0" /* Instrument driver revision
/*= Instrument Model Name === *
/* LabWindows Instrument Driver */
/* Original Release: November, 1993 */
/* By: Bill Pitts *
/* Modification History: None *
[* === === */
/*= INTERNAL DATA === === ==/
static char in_data[1027];
[*= UTILITY ROUTINES === === ===*/
ViBoolean tek2430a_invalidViBooleanRange (ViBoolean val);
ViBoolean tek2430a_invalidVilnt32Range (Vilnt32 val, Vilnt32 min,
Vilnt32max);
ViBoolean tek2430a_invalidViReal64Range (ViReal64 val, ViReal64 min, ViReal64
max);
ViStatus tek2430a_initCleanUp (ViSession openRMSession,
ViSession *openlinstrSession, ViStatus
currentStatus);
[* === === */
/* Function: Initialize */
/* Purpose: This function opens the instrument, queries the instrument
/* for its ID, and initializes the instrument to a known state. */
[* === === */

ViStatus _VI_FUNC tek2430a_init (ViRsrc resourceName, ViBoolean IDQuery,
ViBoolean reset, ViPSession instrSession)

{
ViStatus tek2430a_status = VI_SUCCESS;

ViSession rmSession = 0;
ViUInt32 retCnt = O;

/*- Check input parameter ranges */

if (tek2430a_invalidViBooleanRange (IDQuery))
return VI_ERROR_PARAMETERZ2;

if (tek2430a_invalidViBooleanRange (reset))
return VI_ERROR_PARAMETERS;

LabWindows/CVI Instrument Driver Guide A-2

© National Instruments Corporation

Appendix A Tektronix 2430A Instrument Driver Code Sample

/*- Open instrument session */

if ((tek2430a_status = viOpenDefaultRM (&rmSession)) < 0)
return tek2430a_status;

if ((tek2430a_status = viOpen (rmSession, resourceName, VI_NULL,
VI_NULL, instrSession)) < 0) {
viClose (rmSession);
return tek2430a_status;

}

/*- Configure VISA Formatted 1/O */

if ((tek2430a_status = viSetAttribute (*instrSession,
VI_ATTR_TMO_VALUE, 10000)) < 0)
return tek2430a_initCleanUp (rmSession, instrSession,
tek2430a_status);
if ((tek2430a_status = viSetBuf (*instrSession,
VI_READ_BUF|VI_WRITE_BUF, 4000)) < 0)
return tek2430a_initCleanUp (rmSession, instrSession,
tek2430a_status);
if ((tek2430a_status = viSetAttribute (*instrSession,
VI_ATTR_WR_BUF_OPER_MODE,
VI_FLUSH_ON_ACCESS)) < 0)
return tek2430a_initCleanUp (rmSession, instrSession,
tek2430a_status);
if ((tek2430a_status = viSetAttribute (*instrSession,
VI_ATTR_RD_BUF_OPER_MODE,
VI_FLUSH_ON_ACCESS)) < 0)
return tek2430a_initCleanUp (rmSession, instrSession,
tek2430a_status);

/*- ldentification Query */

if (IDQuery) {
if ((tek2430a_status = viWrite (*instrSession, "ID?", 3,
&retCnt)) < 0)
return tek2430a_initCleanUp (rmSession, instrSession,
tek2430a_status);

if ((tek2430a_status = viScanf (*instrSession,
"TEK/2430A%*[\n]")) < 0)
return tek2430a_initCleanUp (rmSession, instrSession,
VI_ERROR_FAIL_ID_QUERY);

/*- Reset instrument */

if (reset)
if ((tek2430a_status = tek2430a_reset (*instrSession)) < 0)
return tek2430a_initCleanUp (rmSession, instrSession,
tek2430a_status);

© National Instruments Corporation A-3 LabWindows/CVI Instrument Driver Guide

Tektronix 2430A Instrument Driver Code Sample Appendix A

/*- Send Default Instrument Setup *

if ((tek2430a_status = viWrite (*instrSession, "PATH OFF", 8,
&retCnt)) < 0)
return tek2430a_initCleanUp (rmSession, instrSession,
tek2430a_status);

return tek2430a_status;

}
[* === === === */
/* Function: Reset */
/* Purpose: This function resets the instrument. If the reset function */
/* is not supported by the instrument, this function returns ~ */
* the warning VI_WARN_NSUP_RESET. */
[* === === === */
ViStatus _VI_FUNC tek2430a_reset (ViSession instrSession)
{

ViuInt32 retCnt;

ViStatus tek2430a_status = VI_SUCCESS;

/* Initialize the instrument to a known state. */

if ((tek2430a_status = viWrite (instrSession, "INIT", 4, &retCnt)) < 0)

return tek2430a_status;

return tek2430a_status;
}
[* === === === */
/* Function: Configure */
/* Purpose: This function configures the vertical sensitivity, timebase, */
/* and trigger mode. */
[* === === === */

ViStatus _VI_FUNC tek2430a_config (ViSession instrSession, Vilnt32 chan,
ViReal64 v_div, ViReal64 sec_div)
{

static ViString v_mode_string[] = {"CH1:0ON,CH2:0FF", "CH1:0FF,CH2:ON"};
ViUInt32 retCnt;
ViStatus tek2430a_status = VI_SUCCESS;

if (tek2430a_invalidVilnt32Range (chan, 1, 2))
return VI_ERROR_PARAMETERZ2;

if (tek2430a_invalidViReal64Range (v_div, 0.1, 5.0))
return VI_ERROR_PARAMETERS;

if (tek2430a_invalidViReal64Range (sec_div, 5.0e-9, 5.0))
return VI_ERROR_PARAMETER4;

tek2430a_status = viPrintf (instrSession, "%s<CH%d VOL:%f[p3];HOR

MOD:ASW,ASE:%f[ep3];ATE MOD:AUTO;VMO DISP:YT,%s;DAT SOU:CH%d",
chan, v_div, sec_div, v_mode_string[chan-1], chan);

return tek2430a_status;

LabWindows/CVI Instrument Driver Guide A-4 © National Instruments Corporation

Appendix A Tektronix 2430A Instrument Driver Code Sample

[* === === === */
/* Function: Read Waveform *

/* Purpose: This function reads a waveform and returns x increment, and */

* trigger offset. */

[* === === === */

ViStatus _VI_FUNC tek2430a_read_waveform (ViSession instrSession, ViReal64
_VI_FAR *wvfm, ViReal64 _VI_FAR *xin, ViReal64 _VI_FAR *trig_off)

{
ViUInt32 retCnt;
ViStatus tek2430a_status = VI_SUCCESS;
ViReal64 ymu, yof;
ViChar header[2];
if ((tek2430a_status = viWrite (instrSession,
"DAT ENCD:RPB;PATH OFF;WVM? XIN;WFM? YMU;WVM? YOF;WFM? PT.0",
58, &retCnt)) < 0)
return tek2430a_status;
if ((tek2430a_status = viScanf (instrSession, "%f;%f;%f;%f",
xin, &ymu, &yof, trig_off)) < 0)
return tek2430a_status;
if ((tek2430a_status = viWrite (instrSession, "CURV?", 5,
&retCnt)) < 0)
return tek2430a_status;
if ((tek2430a_status = viRead (instrSession, in_data, 1027,
&retCnt)) < 0)
return tek2430a_status;
yof = -ymu * (yof + 128.0);
if (Scan (in_data, "%1027i[b1u]>%3i[b1]%1024f", header, wvfm) != 2)
return VI_ERROR_INV_RESPONSE;
LinEv1iD (wvfm, 1024, ymu, yof, wvfm);
return tek2430a_status;
}
[* === === === */
/* Function: Self-Test */
/* Purpose: This function executes the instrument self-test and returns */
/* the result. */
[* === === === */

ViStatus _VI_FUNC tek2430a_self test (ViSession instrSession, ViPInt16
testResult, ViChar _VI_FAR testMessage[])
{

ViuInt32 retCnt;

ViStatus tek2430a_status = VI_SUCCESS;

if ((tek2430a_status = viWrite (instrSession, "TESTT SELFD;EXE;ERR?",

20, &retCnt)) < 0)
return tek2430a_status;

© National Instruments Corporation A-5 LabWindows/CVI Instrument Driver Guide

Tektronix 2430A Instrument Driver Code Sample

if ((tek2430a_status = viScanf (instrSession, "%d%["\"]",
testResult, testMessage)) < 0)
return tek2430a_status;

return tek2430a_status;

}

[* === === ===
/* Function: Error Query *

/* Purpose: This function queries the instrument error queue. */

[* === === ===

ViStatus _VI_FUNC tek2430a_error_query (ViSession instrSession, ViPInt32
errCode, ViChar _VI_FAR errMessage(])

{
return VI_WARN_NSUP_ERROR_QUERY;
}
[* === === ===
/* Function: Error Message */
/* Purpose: This function Translates the error return value from the */
/* instrument driver into a user-readable string. */
[* === === ===

ViStatus _VI_FUNC tek2430a_error_message (ViSession instrSession, ViStatus
errorCode, ViChar _VI_FAR errMessage][])

{
ViStatus tek2430a_status = VI_SUCCESS;

tek2430a_status = viStatusDesc (instrSession, errorCode, errMessage);
if (tek2430a_status = VI_WARN_UNKNOWN_STATUS) {
switch (errorCode) {

case VI_WARN_NSUP_ERROR_QUERY:
errMessage = "WARNING: Error Query not supported";
tek2430a_status = VI_SUCCESS;
break;

case VI_ERROR_PARAMETERZ2:
errMessage = "ERROR: Parameter 2 out of range";
tek2430a_status = VI_SUCCESS;
break;

case VI_ERROR_PARAMETERZ3:
errMessage = "ERROR: Parameter 3 out of range";
tek2430a_status = VI_SUCCESS;
break;

case VI_ERROR_FAIL_ID_QUERY:
errMessage = "ERROR: Identification query failed";
tek2430a_status = VI_SUCCESS;
break;

case VI_ERROR_INV_RESPONSE:

errMessage = "ERROR: Interpreting instrument response”;

tek2430a_status = VI_SUCCESS;
break;

LabWindows/CVI Instrument Driver Guide A-6 © National Instruments Corporation

Appendix A

*/

*/

*

*

Appendix A Tektronix 2430A Instrument Driver Code Sample

default:
errMessage = "Unknown Error";
tek2430a_status = VI_WARN_UNKNOWN_STATUS;

break;
}
}
return tek2430a_status;
}
[* === === === */
/* Function: Revision */
/* Purpose: This function returns the driver and instrument revisions. */
[* === === === */

ViStatus _VI_FUNC tek2430a_revision_query (ViSession instrSession, ViChar
_VI_FAR driverRevV[], ViChar _VI_FAR

instrRev[])
{
ViUInt32 retCnt = 0;
Viulntl6i=0;
ViStatus tek2430a_status = VI_SUCCESS;
strepy (driverRev, tek2430a_REVISION);
if ((tek2430a_status = viWrite (instrSession, "ID?", 3, &retCnt)) < 0)
return tek2430a_status;
if ((tek2430a_status = viScanf (instrSession, "%*[*,],%[™Mn]",
instrRev)) < 0)
return tek2430a_status;
return tek2430a_status;
}
[* === === === =—=*
/* Function: Close */
/* Purpose: This function closes the instrument. */
[* === === === =—=*

ViStatus _VI_FUNC tek2430a_close (ViSession instrSession)
{

ViSession rmSession;
ViStatus tek2430a_status = VI_SUCCESS;

if ((tek2430a_status = viGetAttribute (instrSession,
VI_ATTR_RM_SESSION,
&rmSession)) < 0)
return tek2430a_status;

tek2430a_status = viClose (instrSession);
viClose (rmSession);

return tek2430a_status;

© National Instruments Corporation A-7 LabWindows/CVI Instrument Driver Guide

Tektronix 2430A Instrument Driver Code Sample Appendix A

/*= UTILITY ROUTINES === === ===
[* === === === */
/* Function: Invalid Boolean Range */
/* Purpose: This function checks a boolian to see if it lies betweena */
[* minimum and maximum value. If the value is out of range, set */
/* the return value to VI_FALSE. If the value is OK, set the */
/* return value to VI_TRUE. */
[* === === === */
ViBoolean tek2430a_invalidViBooleanRange (ViBoolean val)
{

return (val < VI_FALSE || val > VI_TRUE);
}
[* === === === */
/* Function: Invalid Long Integer Range *
/* Purpose: This function checks a long integer to see if it lies between */
[* a minimum and maximum value. If the value is out of range, */
/* set the global error variable to the value err_code. If the */
/* value is OK, error = 0. The return value is equal to the */
/* global error value. *
[* === === === */
ViBoolean tek2430a_invalidVilnt32Range (Vilnt32 val, Vilnt32 min,

Vilnt32 max)

{

return (val < min || val > max);
}
[* === === === */
/* Function: Invalid Real Range *
/* Purpose: This function checks a real number to see if it lies between */
/* a minimum and maximum value. If the value is out of range, */
/* set the global error variable to the value err_code. If the */
/* value is OK, error = 0. The return value is equal to the */
/* global error value. */
[* === === === */

ViBoolean tek2430a_invalidViReal64Range (ViReal64 val, ViReal64 min,
ViReal64 max)

{
return (val < min || val > max);
}
[* === === === */
/* Function: Initialize Clean Up */
/* Purpose: This function is used only by the tek2430a_init function. */
/* When an error is detected this function is called to close */
/* the open resource manager and instrument object sessions and */
/* to set the instrSession that is returned from tek2430a_init */
[* to VI_NULL. */
[* === === === */

LabWindows/CVI Instrument Driver Guide A-8 © National Instruments Corporation

Appendix A Tektronix 2430A Instrument Driver Code Sample

ViStatus tek2430a_initCleanUp (ViSession openRMSession, ViSession
*openlinstrSession, ViStatus currentStatus)

{
viClose (*openlInstrSession);
viClose (openRMSession);
*openlnstrSession = VI_NULL;
return currentStatus;
}
[*=== THE END ===== === === */

© National Instruments Corporation A-9 LabWindows/CVI Instrument Driver Guide

Appendix B
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve technical problems you might have as well as a form you can use to comment on
the product documentation. Filling out a copy of Teehnical Support Forrhefore contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S.
and Canada, applications engineers are available Monday through Friday from 8:00 a.m. to

6:00 p.m. (central time). In other countries, contact the nearest branch office. You may fax
guestions to us at any time.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded
instructions on how to use the bulletin board and FTP services and for BBS automated
information, call (512) 795-6990. You can access these services at:

* United States: (512) 794-5422 or (800) 327-3077
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

e United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

* France: 14865 1559
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

El FaxBack Support

FaxBack is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access FaxBack from a touch-tone telephone at the
following number: (512) 418-1111.

© National Instruments Corporation B-1 LabWindows/CVI Instrument Driver Guide

Customer Communication

FTP Support

To access our FTP site, log on to our Internet fipshatinst.com
use your Internet address, suchaesmith@anywhere.com
support files and documents are located inghpport

Appendix B

, as anonymous and
, as your password. The
directories.

E-Mail Support (currently U.S. only)

You can submit technical support questions to the appropriate applications engineering team
through e-mail at the Internet addresses listed below. Remember to include your name, address,
and phone number so we can contact you with solutions and suggestions.

gpib.support@natinst.com

DAQ:. dag.support@natinst.com
VXI: vXi.support@natinst.com
LabVIEW: Iv.support@natinst.com

LabWindows: Iw.support@natinst.com

HiQ: hig.support@natinst.com
Lookout: lookout.support@natinst.com
VISA: visa.support@natinst.com

Fax and Telephone Support

National Instruments has branch offices all over the world. Use the list below to find the
technical support number for your country. If there is no National Instruments office in your
country, contact the source from which you purchased your software to obtain support.

Australia 0398799422 0398799179
Austria 0662 4579900 0662 45 79 90 19
Belgium 02 757 00 20 02 75703 11
Canada (Ontario) 519 622 9310

Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 4576 26 02
Finland 90 527 2321 90 502 2930
France 148142424 1481424 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505

Italy 02 413091 02 41309215
Japan 035472 2970 035472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5520 3282
Netherlands 0348 433466 0348 430673
Norway 32848400 3284 86 00
Singapore 2265886 2265887

Spain 91 640 0085 91 640 0533
Sweden 087304970 08 7304370
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154
LabWindows/CVI Instrument Driver Guide B-2 © National Instruments Corporation

Telephone

Fax

Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware, and use the completed
copy of this form as a reference for your current configuration. Completing this form accurately before contacting
National Instruments for technical support helps our applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem, include the
configuration forms from their user manuals. Include additional pages if necessary.

Name

Company

Address

Fax () Phone ()
Computer brand Model Processor

Operating system: Windows 3.1, Windows for Workgroups 3.11, Windows NT 3.1, Windows NT 3.5,
Windows 95, other (include version number)

Clock Speed MHz RAM MB Display adapter
Mouse ___yes __ no Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model Revision
Configuration

National Instruments software product Version
Configuration

The problem is

List any error messages

The following steps will reproduce the problem

Hardware and Software Configuration Form

Record the settings and revisions of your hardware and software on the line to the right of each item. Complete a
new copy of this form each time you revise your software or hardware configuration, and use this form as a
reference for your current configuration. When you complete this form accurately before contacting National
Instruments for technical support, our applications engineers can answer your questions more efficiently.

National Instruments Products

Data Acquisition Hardware Revision

Interrupt Level of Hardware

DMA Channels of Hardware

Base I/0O Address of Hardware

NI-DAQ, LabVIEW, or
LabWindows Version

Other Products

Computer Make and Model

Microprocessor

Clock Frequency

Type of Video Board Installed

Operating System

Operating System Version

Operating System Mode

Programming Language

Programming Language Version

Other Boards in System

Base 1/0 Address of Other Boards

DMA Channels of Other Boards

Interrupt Level of Other Boards

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our products. This
information helps us provide quality products to meet your needs.

Title: LabWindows®/CVI Instrument Driver Developers Guide
Edition Date: July 1996
Part Number: 320684C-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Fax () Phone ()

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678

Austin, TX 78730-5039

Glossary

Prefix Meaning Value
p- pico- 1012
n- nano- 109
- micro- 106
m- milli- 103
k- kilo- 182
M- mega-
A
ANSI American National Standards Institute
B
binary A function panel control that operates like a mechanical on/off switch. A
control binary control specifies a parameter value to be one of two predefined
values, depending upon whether the control is in the up or down position.
C
common A function panel control that specifies the first parameter in every
control function, primary and secondary, associated with a function panel. When
a function panel has a common control, secondary functions have two
parameters, the second of which is specified by a secondary control.
control An input and output device that appears on a function panel for specifying
function parameters and displaying function results.
E

external module

Alib ,.obj ,or.dll file that can be loaded and executed.

© National Instruments Corporation G-1 LabWindows/CVI Instrument Driver Guide

Glossary

fp file

function panel

Function Panel
Editor

function tree
Function Tree
Editor

G

Generated
Code window

global variable
control

A file containing information that allows the LabWindows/CVI interactive
program to display function panels that correspond to a specific instrument
driver.

A user interface to the LabWindows/CVI libraries that allows interactive
execution of library functions and is capable of generating code for
inclusion in a program.

The window used to create and modify instrument driver function panels.

The hierarchical structure that defines the way functions in an instrument

driver are grouped.

The window used to create and modify the function tree for an instrument
driver.

A small window located at the bottom of the function panel that displays
the code produced by the manipulation of function panel controls.

A function panel control that displays the value of a global variable
defined in LabWindows/CVI at the time the function panel is operated.

H

Hz hertz

hex hexadecimal

I

in. inches

include file A file that contains function declarations, constant definitions, and
external declaration of global variables exported by the instrument driver.

LabWindows/CVI Instrument Driver Guide G-2 © National Instruments Corporation

Glossary

input control A function panel control in which a value or variable name is entered from
the keyboard.

instrument A set of routines designed to control an instrument, and a set of data
driver structures to represent the driver within LabWindows/CVI.

Instrument Library A LabWindows/CVI library that contains instrument drivers.

K

ksamples 1,000 samples

M

MB megabytes of memory

message control A function panel control that serves as a documentation tool that allows
you to place text on a function panel.

N

numeric control A function panel control that allows you to specify a numeric value using
the mouse.

@)

output control A function panel control that displays the value of an output parameter
after the function is called.

P

primary control A function panel control that specifies parameters in the primary function.

primary function The function that performs the main task associated with a function panel.

The primary function always appears in the Generated Code window and
is always executed when Go is selected from the command bar of a
function panel.

primary parameter A parameter that becomes a formal parameter to the function call.

© National Instruments Corporation G-3 LabWindows/CVI Instrument Driver Guide

Glossary

pt

pts/s

R

return value control

return value error
reporting method

ring control
S
S

secondary control

secondary function

secondary
parameter

s/pt

slide control

value parameter

points

points per second

A function panel control that displays a value returned from the primary
function.

The method used to declare each instrument driver routine as an integer
function and return the appropriate value.

A control that displays a list of options one option at a time.

seconds

A function panel control that specifies the parameter in a secondary
function. Each secondary control is associated with a different secondary
function, as opposed to primary controls, which are associated with the
same function.

A function that performs a task that is complementary to, but not required
by, the primary task. Secondary functions do not appear in the Generated
Code window unless you specifically activate them.

A parameter that becomes a parameter to a separate function.

seconds per point

A function panel control that resembles a mechanical slide switch; it
inserts a parameter value depending upon the position of the cross-bar on
the slide control.

volts

An integer, long, or double-precision scalar parameter whose value is not
modified by the subroutine or function. In other words, an integer, long,
single-precision, or double-precision scalar parameter is a value parameter
if and only if its function panel control it an output control.

LabWindows/CVI Instrument Driver Guide G-4 © National Instruments Corporation

Index

A

action/status functions, 1-9
Align Horizontal Centers command, Edit
menu, 4-5
Alignment command, Edit menu, 4-5
Any Array data type, 2-6
Any Type data type, 2-6
application functions
PREFIX_init and PREFIX_close
functions not called by (note), 1-10
purpose and use, 1-9 to 1-10
architectureSeeinstrument driver
architecture.
array data types, user-defined, 2-8
Attach and Edit Source command, Edit
Instrument dialog box, 3-8

B

Binary command, Create menu, 4-11 to 4-12
binary controls
control label, 4-11
Create Binary Control dialog box
available items, 4-11
creating function window
(example), 4-24, 4-26
creating, 4-11 to 4-12, 4-24
data type, 4-11
default value, 4-11
definition, 4-11
Edit Binary Control dialog box, 8-5
Edit On/Off Settings dialog box
available items, 4-12
creating function window
(example), 4-24
Edit On/Off Settings dialog
box, 4-27
GPIB instrument driver example, 8-5

© National Instruments Corporation

Instrument Handle control example, 8-4
to 8-5
parameter position, 4-11
bulletin board support, B-1

C

Change Control Type command, Edit
menu, 4-5
Change Input Control Type dialog box, 4-28
Check for Valid ViBoolean Parameter utility
function, 6-3
Check for Valid Vilnt16 Parameter utility
function, 6-3
Check for Valid Vilnt32 Parameter utility
function, 6-3
Check for Valid ViReal64 Parameter utility
function, 6-3
Class command, Create menu, 3-5
classesSee undefunction trees.
close function for instrument drivers
definition, 1-9
PREFIX close, 7-4
RS-232 instruments, 6-17
common control panel, 4-6
configuration functions, 1-8
Configure function example
creating function panel window, 8-4
to 8-10
writing, 8-17 to 8-18
Control Help command, Edit menu, 4-6
Copy command, Edit menu, 3-3
Copy Controls command, Edit menu, 4-4
Copy Panel command, Edit menu, 4-4
copying and pasting
help text, 5-9 to 5-10
utility routines, 6-5 to 6-6
core instrument driveSeeinstrument
drivers, programming.

LabWindows/CVI Instrument Driver Guide

Index

Create Binary Control dialog box
available options, 4-11
creating function window
(example), 4-24, 4-26
Edit On/Off Settings dialog box, 4-12
illustration, 4-12
Create Distribution Kit dialog box, USER:
3-22 to 3-27
Create Dynamic Link Library dialog
box, 3-10 to 3-11
Create Global Variable Control dialog box,
4-18 to 4-19
Create Input Control dialog box
available options, 4-7 to 4-8
creating function window
(example), 4-25
illustration, 4-7
Create menu
Function Panel Editor, 4-6 to 4-18ee
alsofunction panel controls.
available controls (figure), 4-7
Binary command, 4-11 to 4-12
Global Variable command, 4-18
to 4-19
Input command, 4-7 to 4-8
Message command, 4-19
Numeric command, 4-15 to 4-16
Output command, 4-17
Return Value command, 4-18
Ring command, 4-12 to 4-14
Slide command, 4-8 to 4-10
Function Tree Editor
available options, 3-4
Class command, 3-5
Function Panel Window command,
3-5t0 3-6
Instrument command, 3-4
Create Numeric Control dialog box, 4-15
to 4-16
Create Output Control dialog box, 4-17
Create Return Value Control dialog
box, 4-18
Create Ring Control dialog box, 4-12
to 4-13

LabWindows/CVI Instrument Driver Guide

Create Slide Control dialog box
available options, 4-8 to 4-9
creating function window example, 4-25
Edit Label/Value Pairs dialog box, 4-9
to 4-10
illustration, 4-8
customer communicationy, B-1 to B-2
Cut command, Edit menu, 3-3
Cut Controls command, Edit menu, 4-4
Cut Panel command, Edit menu, 4-4
cutting and pasting
controls (example), 4-29 to 4-30
functions and panels (example), 3-13
to 3-14

D

data functions, instrument drivers, 1-9
data types, 2-4 to 2-12
defining in header files (note), 4-20
instrument driver data types
overview, 6-7
table, 6-8
intrinsic C data types, 2-5
meta data types, 2-5 to 2-7
Any Array, 2-6
Any Type, 2-6
definition, 2-5
Numeric Array, 2-6
Var Args, 2-7
predefined data types, 2-4 to 2-7
purpose and use, 2-4
user-defined, 2-7 to 2-8
array data types, 2-8
creating, 2-7 to 2-8
VISA data types
how to use, 2-9
list of types (table), 2-9, 6-8
purpose and use, 1-3, 2-8 to 2-9, 6-7
Data Types command, Options menu, 4-20
to 4-21
Default Panel Size command, Options
menu, 4-21

© National Instruments Corporation

Index

Detach Program command, Edit Instrument illustration
dialog box, 3-8 ring controls, 4-13
developing instrument driverSee slide controls, 4-9
instrument drivers, programming. instrument driver example, 8-7
Distribute Vertical Centers command, Edit positioning control (example), 4-26
menu, 4-5 to 4-6 Edit menu
Distribution command, Edit menu, 4-5 Function Panel Editor, 4-3 to 4-6
DLLs. SeeMicrosoft Windows DLLs. Align Horizontal Centers
documentation command, 4-5
conventions used in manuaiy-xv Alignment command, 4-5
LabWindows/CVI documentation sety available options, 4-3
organization of manuakxjii-xiv Change Control Type command, 4-5
documentation for instrument driver Control Help command, 4-6
writing, 2-12, 6-13 to 6-17 Copy Controls command, 4-4
.doc file, 6-16 to 6-17 Copy Panel command, 4-4
online help examples, 6-13 to 6-16 Cut Controls command, 4-4
Done command, Edit Instrument Dialog Cut Panel command, 4-4
box, 3-8 Distribute Vertical Centers

command, 4-5 to 4-6
Distribution command, 4-5
E Edit Control command, 4-4
Edit Function command, 4-5

Edit Binary Control dialog box, 8-5 Function Help command, 4-6

Edit command, Instrument menu, 3S&ke Paste command, 4-4
also Edit Instrument dialog box. Window Help command, 4-6
Edit Control command, Edit menu, 4-4 Function Tree Editor, 3-3 to 3-4
Edit Function command, Edit menu, 4-5 Help Editor dialog box, 5-3
Edit Function Panel Window command Edit Node command, Edit menu, 3-3
Edit menu, 3-3, 4-1 Edit On/Off Settings dialog box

Options menu, 4-1
Edit Function Tree command controls, 4-12

Edit Instrument dialog box, 3-8 creating function window

‘Options menu, 4-21 (example), 4-24, 4-27
Edit Help command, Edit menu, 3-3 instrument driver programming
Edit Instrument dialog box example, 8-5

available settings for binary

available options, 3-8 Edit Ring Control dialog box, 8-6, 8-8
.I||UStI’at|0n, 3-8 o Edit Value Set dialog box, 4-16
Edit Label/Value Pairs dialog box editing help information, 5-2 to 5-4

adding label and value electronic support services, B- to B-2
ring control list, 4-14 e-mail support, B-2

slide control list, 4-10 Error control example, 8-9, 8-13 to 8-14

available options, 4-9 error help for instrument drivers, 6-16, 8-9
changing control type (example), 4-28 error message function
command buttons definition. 1-9

ring controls, 4-14

. PREFIX_error_message, 7-9
slide controls, 4-10

error query function

© National Instruments Corporation 1-3 LabWindows/CVI Instrument Driver Guide

Index

definition, 1-9
PREFIX_error_query, 7-7 to 7-8
error reporting, 6-10 to 6-12
completion and warning codes
(table), 6-11
error codes (table), 6-11
error values (table), 6-10
example programs
instrument driversSeeinstrument driver
programming example.
Tektronix 2430A sample code, A-1
to A-9
external interface modebee under
instrument driver architecture.

F

fax and telephone support, B-2
FaxBack support, B-1
File menu
Function Panel Editor, 4-3
Function Tree Editor, 3-3
Help Editor dialog box, 5-3
Fluke 8840a Digital Multimeter utility
functions (note), 6-3
Fmt function, in portable instrument
drivers, 6-9
FP Auto-Load List command, Edit
menu, 3-3 to 3-4
FTP support, B-2
function classesSee undefunction trees.
Function Help command, Edit menu, 4-6
function panel controls
adding help, 4-6
alignment commands
Align Horizontal Centers
command, 4-5
Alignment command, 4-5
binary, 4-11 to 4-12, 4-24
changing control type

Change Control Type command, 4-5

Change Input Control Type dialog
box, 4-28
example, 4-27 to 4-29
common control panel, 4-6

LabWindows/CVI Instrument Driver Guide

copying, 4-4
cutting and pasting (example), 4-29
to 4-30

distribution commands

Distribute Vertical Centers
command, 4-5 to 4-6

Distribution command, 4-5

example instrument driver
Error control, 8-9, 8-13 to 8-14
Instrument Handle control, 8-4 to 8-5
return value control, 8-9, 8-13
ring control, 8-6 to 8-9
Sample Period control, 8-12
Trigger Offset control, 8-13
Waveform Array control, 8-11

to 8-12

global variable, 4-18 to 4-19

help information, 5-6, 6-15

input, 4-7 to 4-8, 4-25

message, 4-19

moving, 4-22

numeric, 4-15 to 4-16

output, 4-17

removing (cutting), 4-4

return value, 4-18

ring, 4-12 to 4-14

slide, 4-8 to 4-10, 4-25

types of controls (figure), 4-7

Function Panel Editor

available menus, 4-2 to 4-3
Create menu, 4-6 to 4-19
Edit menu, 4-3 to 4-6
examples
changing control type, 4-27 to 4-29
creating function window, 4-23
to 4-27
cutting and pasting controls, 4-29
to 4-30
File menu, 4-3
illustration, 4-2
Instrument menu, 4-19
invoking, 4-1
items in Function Panel Editor, 4-2
Options menu, 4-20 to 4-22
View menu, 4-19
Window menu, 4-20

© National Instruments Corporation

Function Panel Window command, Create
menu, 3-5 to 3-6

Function Panel windows

creating (example), 4-23 to 4-27
definition, 4-6
illustration, 4-27
function panelsSee alsdunction panel
controls; interactive developer interface.
building for instrument drivers, 2-11
common control panel, 4-6
copying, 4-4
creating function window (example),
4-23 to 4-27
cutting and pasting (example), 3-13
to 3-14
definition, 4-6
determining movability, 4-21
help information, 6-15
adding, 4-6
example, 5-8 to 5-9
converting old style help to new
style, 3-9
new style help only, 5-5
old style help only, 5-5
instrument driver example
Configure function panel window,
8-4 to 8-10
Read Waveform function panel, 8-10
to 8-14
invoking Function Panel Editor, 4-1
moving controls, 4-22
operating, 4-22
programming considerations, 6-12
removing (cutting), 4-4
setting default size, 4-21
toggling scroll bars, 4-21

Function Tree Editor

available menus, 3-2
Create menu, 3-4 to 3-6
Edit menu, 3-3 to 3-4
examples
cutting and pasting functions and
panels, 3-13 to 3-14
editing items in function tree, 3-14
to 3-15

© National Instruments Corporation

Index

multiple classes in function tree,
3-12 to 3-13
File menu, 3-3
Instrument menu, 3-6 to 3-8
invoking, 3-1
invoking Function Panel Editor, 4-1
Options menu, 3-9 to 3-11
Window menu, 3-9
Function Tree Editor window (figure), 3-2
Function Tree (*.fp) option, 3-12
Function Tree option, New command or
Open command, 3-1
function trees
adding help information (example), 5-6
to 5-8
adding new functions, 3-5 to 3-6
building for instrument drivers, 2-11, 3-4
classes
adding new classes, 3-5
creating multiple classes (example),
3-12 to 3-13
help information, 5-4 to 5-5, 6-14
inserting into existing tree, 3-5
number of functions and classes
allowed (note), 3-5
cutting and pasting functions and panels
(example), 3-13 to 3-14
definition, 3-1
grouping functions hierarchically, 6-12
to 6-13
illustration, 6-12
instrument driver example
adding new functions, 8-3 to 8-4
Configure function panel window,
creating, 8-4 to 8-10
creating function tree, 8-2 to 8-4
modifying instrument name, 8-2
to 8-3
Read Waveform function panel,
creating, 8-10 to 8-14
number of functions and classes allowed
(note), 3-5
functional body
definition, 1-4
purpose and use, 1-5

I-5 LabWindows/CVI Instrument Driver Guide

Index

G

Generate DLL Make File command, Options

Generate Documentation command, Options

menu, 3-9

menu, 3-9

Generate Function Prototypes command,
Options menu, 3-9
Generate ODL File command, Options

Generate Windows Help command, Options

G

menu, 3-10

menu, 3-9
lobal Variable command, Create
menu, 4-18 to 4-19

global variable controls, 4-18 to 4-19

G

control label, 4-19
control width, 4-19
Create Global Variable Control dialog
box, 4-18 to 4-19
data type, 4-19
definition, 4-18
display format, 4-19
global variable name, 4-19
PIB instruments
core instrument driver files (table), 6-4
programming example, 8-1 to 8-20
Configure function, writing, 8-17
to 8-18
Configure Function Panel window,
creating, 8-4 to 8-10
creating the program, 8-15 to 8-20
function tree, creating, 8-2 to 8-4
include statements, adding, 8-20
modifying CORE_GPB.C source
file, 8-15 to 8-16
modifying CORE_GPB.H include
file, 8-16 to 8-17
Read Waveform function, writing, 8-
18 to 8-19
Read Waveform function panel,
creating, 8-10 to 8-14
testing the driver, 8-20
variable declarations, adding, 8-20
writing new functions, 8-17

LabWindows/CVI Instrument Driver Guide

H

Help Editor dialog box, 5-3 to 5-4
Edit menu, 5-4
File menu, 5-3
illustration, 5-3
Window menu, 5-4
help information, 5-1 to 5-10
controls, 4-6, 5-6, 6-15
editing, 5-2 to 5-4
error help, 6-16
examples
adding help in Function Panel Editor,
5-8to 5-9
adding help in Function Tree Editor,
5-6 to 5-8
copying and pasting help text, 5-9
to 5-10
instrument drivers, 6-13 to 6-14, 8-4
function classes, 5-4 to 5-5, 6-14
function panels
converting old style help to new
style, 3-9
example, 6-15
new style help only, 5-5
old style help only, 5-5
selecting old style or new style
help, 4-6
generating files for Windows Help
Compiler, 3-9
Help Editor dialog box, 5-3
instrument drivers
adding, 5-4
example, 6-13 to 6-14, 8-4
new style vs. old style help, 3-9, 5-1
status help, 6-16
types of help (table), 5-2
Help Style command, Options menu, 3-9

© National Instruments Corporation

initialization routine, RS-232

instruments, 6-17

initialize function for instrument drivers

input and output parameters for instrument
drivers, 2-9 to 2-10

definition, 1-8
generic nature of, 1-3
PREFIX_init, 7-2 to 7-4

Input command, Create menu, 4-7 to 4-8
input controls

control label, 4-7

control width, 4-8

Create Input Control dialog box, 4-7
to 4-8, 4-25

creating, 4-7 to 4-8, 4-25

data type, 4-8

default value, 4-8

definition, 4-7

parameter position, 4-7 to 4-8

Instrument command, Create menu, 3-4
instrument driver architecture, 1-3 to 1-10

external interface model, 1-4 to 1-6
functional body, 1-5
general model (illustration), 1-4
interactive developer interface, 1-7
programmatic developer

interface, 1-6

subroutine interface, 1-5
VISA 1/O interface, 1-5

internal design model, 1-7 to 1-9
action/status functions, 1-9
application functions, 1-9 to 1-10
close function, 1-9
component functions, 1-7 to 1-8
configuration functions, 1-8
data functions, 1-9
illustration, 1-7
initialize function, 1-8
utility functions, 1-9

instrument driver functions, 1-7 to 1-10

action/status, 1-9
adding to function tree, 3-5 to 3-6

creating multiple classes (example),

3-12 to 3-13

© National Instruments Corporation

Index

empty tree or class, 3-6
existing tree, 3-6
application functions, 1-9 to 1-10
close, 1-9
configuration, 1-8
cutting and pasting functions and panels
(example), 3-13 to 3-14
data, 1-9
developer-specified, 1-7, 1-8
grouping hierarchically, 6-12 to 6-13
initialize, 1-8
naming, 3-5 to 3-6
required.Seerequired functions for
instrument drivers.
user-callable functions, 6-4 to 6-5
macros for prototyping, 6-8 to 6-9
utility, 1-9
instrument driver programming example,
8-1 to 8-20 See alsanstrument drivers,
programming.
adding include statements, 8-20
creating function tree, 8-2 to 8-15
adding new functions, 8-3 to 8-4
binary channel control, adding, 8-5
to 8-6
creating Configure Function Panel
window, 8-4 to 8-10
Error control, adding, 8-9, 8-13
to 8-14
horizontal timebase control, adding,
8-7 to 8-8
Instrument Handle control, adding,
8-4 to 8-5
modifying instrument name, 8-2
to 8-3
Read Waveform function panel,
creating, 8-10 to 8-14
return value control,
adding, 8-9, 8-13
ring control, adding, 8-6 to 8-9
Sample Period control, adding, 8-12
Trigger Offset control, adding, 8-13
Waveform Array control, adding,
8-11to 8-12
creating the instrument program, 8-15
to 8-20

-7 LabWindows/CVI Instrument Driver Guide

Index

modifying CORE_GPB.C source file,
8-15to 8-16
modifying CORE_GPB.H include file,
8-16 to 8-17
overview, 8-1
Tektronix 2430A sample code, A-1
to A-9
include file, A-1
source file, A-2 to A-9
testing the driver, 8-20
variable declarations, adding, 8-20
writing Configure function, 8-17 to 8-18
writing new functions, 8-17
writing Read Waveform function, 8-18
to 8-19
Instrument Driver Support Only command,
Build menu, 3-10
instrument drivers
files for instrument drivers, 1-1
help information, 5-4, 6-13 to 6-14
historical evolution, 1-3
operation of, 1-2, 2-11 to 2-12
purpose and use, 1-1, 1-2
instrument drivers, programmingee also
data types; function panels; instrument
driver programming example.
building function panels, 2-11
checklist, 6-18 to 6-19
core instrument driver
files for instrument drivers, 6-2
table, 6-4
modifying, 6-3 to 6-4
utility functions, 6-2 to 6-3
documentation guidelines, 6-13 to 6-17
.doc file, 6-16 to 6-17
online help, 6-13 to 6-16
writing, 2-12
error reporting guidelines, 6-10 to 6-12
function parameters
defining, 2-4
input and output parameters, 2-9
to 2-10
function tree
adding new classes, 3-5
adding new functions, 3-5 to 3-6
building, 2-11, 3-4

LabWindows/CVI Instrument Driver Guide

grouping functions hierarchically,
2-4, 6-12 t0 6-13
functions
adding user-callable functions, 6-5
to 6-6
defining, 2-2 to 2-4
grouping hierarchically, 2-4, 6-12
to 6-13
return values, 2-10
structuring, 2-3 to 2-4
writing function code, 2-11
general guidelines, 2-1, 6-1 to 6-2
naming drivers, 2-2, 3-5 to 3-6
portable instrument drivers, 6-7 to 6-10
data types, 6-7 to 6-8
declaring array and output
parameters, 6-8 to 6-9
Scan and Fmt functions, 6-9 to 6-10
prefixes, 6-3 to 6-4
RS-232 instruments, 6-17
steps for programming, 2-1 to 2-2
testing instrument drivers, 2-12
tips for creating, 6-6 to 6-7
user-callable functions, 6-5 to 6-6
utility functions
copying and pasting, 6-5 to 6-6
list of functions for core instrument
drivers, 6-3
VXI instruments, 6-18
Instrument Handle control example, 8-4
to 8-5
Instrument Library, 1-1
Instrument menu
Function Panel Editor, 4-19
Function Tree Editor, 3-6 to 3-8
available options, 3-7
Edit command, 3-8
Load command, 3-7
Unload command, 3-7
interactive developer interface
definition, 1-4
purpose and use, 1-6
internal design modeSee undemstrument
driver architecture.
intrinsic C data types, 2-5

© National Instruments Corporation

L

Load command, Instrument menu, 3-7

M

macros, for prototyping user-callable
functions, 6-8 to 6-9
manual.Seedocumentation.
Message command, Create menu, 4-19
message controls, 4-19
meta data types, 2-5 to 2-7
Any Array, 2-6
Any Type, 2-6
definition, 2-5
Numeric Array, 2-6
Var Args, 2-7
Microsoft Windows DLLs
Create DLL Project command, Options
menu, 3-10
Generate DLL Make Files command,
Options menu, 3-9
VXIplugé&playStyle command, Options
menu, 3-10 to 3-11
models for instrument driverSee
instrument driver architecture.
moving controls, 4-22

N

names

functions for instrument drivers, 3-5

to 3-6

instrument drivers, 2-2, 3-5 to 3-6
New command, File menu, 3-1
Numeric Array data type, 2-6
Numeric command, Create menu, 4-15

to 4-16

numeric controls

control label, 4-15

Create Numeric Control dialog box, 4-15

to 4-16
creating, 4-15 to 4-16
data type, 4-15

© National Instruments Corporation

Index

default value, 4-16

definition, 4-15

display format, 4-16

Edit Value Set dialog box, 4-16
increment and decrement values, 4-16
maximum value, 4-16

minimum value, 4-16

parameter position, 4-15

O

Object Description Language (.odl) file,
generating, 3-10
ODL file, generating, 3-10
online help Seehelp information.
Open command, File menu, 3-1
Operate Function Panel command, Options
menu, 4-22
Options menu
Function Panel Editor, 4-20 to 4-22
Data Types command, 4-20 to 4-21
Default Panel Size command, 4-21
Edit Data Type List dialog box, 4-20
to 4-21
Edit Function Tree command, 4-21
Operate Function Panel
command, 4-22
Panels Movable command, 4-21
Toggle Scroll Bars command, 4-21
Toolbar command, 4-21
Function Tree Editor, 3-9 to 3-11
Create DLL Project command, 3-10
Generate DLL Make File
command, 3-9
Generate Documentation
command, 3-9
Generate Function Prototypes
command, 3-9
Generate ODL File command, 3-10
Generate Windows Help
command, 3-9
Help Style command, 3-9
Transfer Window Help to Function
Help command, 3-9

LabWindows/CVI Instrument Driver Guide

Index

VXIplugé&playStyle command, 3-10
to 3-11
Oscilloscope, sampl&eeinstrument driver
programming example.

Output command, Create menu, 4-17
output controls, 4-17

control label, 4-17

control width, 4-17

Create Output Control dialog box, 4-17

data type, 4-17

definition, 4-17

display format, 4-17

parameter position, 4-17

P

Panels Movable command, Options
menu, 4-21
parameters for instrument driveBee also
data types.
defining, 2-4
input and output parameters, 2-9 to 2-10
Paste Above command, Edit menu, 3-3
Paste Below command, Edit menu, 3-3
Paste command, Edit menu, 4-4
pasting
controls (example), 4-29 to 4-30
functions and panels (example), 3-13
to 3-14
help text, 5-9 to 5-10
utility routines, 6-5 to 6-6
prefix for instrument driver names, 2-2
PREFIX_close function
not called by instrument driver
application functions (note), 1-10
purpose and use, 7-4
PREFIX_error_message function, 7-9
PREFIX_error_query function, 7-7 to 7-8
PREFIX_init function
not called by instrument driver
application functions, 1-10
purpose and use, 7-2 to 7-4
PREFIX_reset function, 7-5
PREFIX_revision function, 7-10 to 7-11
PREFIX_self test, 7-6 to 7-7

LabWindows/CVI Instrument Driver Guide

I-10

programmatic developer interface
definition, 1-4
purpose and use, 1-6
programming exampleSeeexample
programs.
programming instrument driverSee
instrument drivers, programming.

R

Read Waveform function example
creating function panel, 8-10 to 8-14
writing, 8-18 to 8-19

Reattach Program command, Edit

Instrument dialog box, 3-8

required functions for instrument drivers
list of functions, 1-8, 2-10, 7-1
PREFIX_close, 7-4
PREFIX_error_message, 7-9
PREFIX_error_query, 7-7 to 7-8
PREFIX_init, 7-2 to 7-4
PREFIX_reset, 7-5
PREFIX revision, 7-10 to 7-11
PREFIX_self_test, 7-6 to 7-7

reset function
definition, 1-9
PREFIX reset, 7-5

Return Value command, Create menu, 4-18

return value controls, 4-18
control label, 4-18
control width, 4-18
Create Return Value Control dialog

box, 4-18
data type, 4-18
definition, 4-18
display format, 4-18
example instrument driver, 8-9, 8-13
return values, instrument driver
functions, 2-10

revision query function
definition, 1-9
PREFIX_revision, 7-10 to 7-11

Ring command, Create menu, 4-12 to 4-14

ring controls.See alsdedit Label/Value

Pairs dialog box.

© National Instruments Corporation

adding label and value to ring control
list, 4-14
control label, 4-13
control width, 4-13
Create Ring Control dialog box, 4-12
to 4-13
creating, 4-12 to 4-14
data type, 4-13
default value, 4-13
definition, 4-12
Edit Label/Value Pairs dialog box, 4-13
to 4-14, 8-7
Edit Ring Control dialog box, 8-6, 8-8
example instrument driver, 8-6 to 8-9
parameter position, 4-13
RS-232 instruments
core instrument driver files (table), 6-4
programming guidelines
close routine, 6-17
initialization routine, 6-17
utility routines, 6-17

S

Sample Oscilloscope progra®ee
instrument driver programming example.

Sample Period control (example), 8-12

sample program$eeexample programs.

Scan function, in portable instrument
drivers, 6-9 to 6-10

self-test functionSeePREFIX_self test.

Show Info command, Edit Instrument dialog

box, 3-8
Slide command, Create menu, 4-8 to 4-10
slide controls

adding labels and values to slide control

list, 4-10

control label, 4-8

Create Slide Control dialog box, 4-8
to 4-9, 4-25

creating, 4-8 to 4-10, 4-25

data type, 4-9

default value, 4-9

definition, 4-8

© National Instruments Corporation

-11

Index

Edit Label/Value Pairs dialog box, 4-9
to 4-10, 4-26, 4-28
parameter position, 4-8 to 4-9
status help for instrument drivers, 6-16
subroutine interface
definition, 1-4
purpose and use, 1-5

T

technical support, B-1 to B-2
Tektronix 2430A sample code, A-1 to A-9
include file, A-1
source file, A-2 to A-9
testing instrument drivers, 2-12, 8-20
Toggle Scroll Bars command, Options
menu, 4-21
Toolbar command, Options menu, 4-21
Transfer Window Help to Function Help
command, Options menu, 3-9
Trigger Offset control example, 8-13

U

Unload command, Instrument menu, 3-7
user-callable functions, 6-5 to 6-6
macros for prototyping, 6-8 to 6-9
user-defined data types, 2-7 to 2-8
array data types, 2-8
creating, 2-7 to 2-8
VISA data types, 2-9
VISA data types (table), 6-8
utility functions for instrument drivers
copying and pasting, 6-5 to 6-6
list of functions, 6-3
RS-232 instruments, 6-17
types of, 1-9

LabWindows/CVI Instrument Driver Guide

Index

Vv

Var Args data type, 2-7
VIBoolean data type (table), 2-9, 6-8
VIBoolean[] data type (table), 2-9, 6-8
VIChar[] data type (table), 2-9, 6-8
VI_ERROR_INV_RESPONSE error
code, 6-11
View menu, Function Panel Editor, 4-19
_VI_FAR macro, 6-8
_VI_FUNC macro, 6-8
VIIntl6 data type (table), 2-9, 6-8
VIInt16[] data type (table), 2-9, 6-8
VIInt32 data type (table), 2-9, 6-8
VIInt32[] data type (table), 2-9, 6-8
VIReal64 data type (table), 2-9, 6-8
VIReal64[] data type (table), 2-9, 6-8
VIRsrc data type (table), 2-9, 6-8
Virtual Instrumentation Software
Architecture.SeeVISA 1/O interface.

VISA data types

how to use, 2-9

list of types (table), 2-9, 6-8

purpose and use, 1-3, 2-8 to 2-9, 6-7
VISA 1/O interface

data types, 1-3

definition, 1-4

purpose and use, 1-5
VISession data type (table), 2-9, 6-8
VIStatus data type (table), 2-9, 6-8
VXI instruments

core instrument driver files (table), 6-4

programming guidelines, 6-18
VXI plug&play instrument driver, 1-4
VXIplugé&playStyle command, Options
menu, 3-10 to 3-11
default settings
Advanced dialog box, 3-11
Create Distribution Kit dialog
box, 3-11

Create Dynamic Link Library dialog

box, 3-10 to 3-11
Instrument Driver Support Only
command, 3-10
effects on DLL project, 3-10

LabWindows/CVI Instrument Driver Guide

[-12

wW

Waveform Array control example, 8-11
to 8-12
Window Help command, Edit menu, 4-6
Window menu
Function Panel Editor, 4-20
Function Tree Editor, 3-9
Help Editor dialog box, 5-4
writing instrument driversSeeinstrument
drivers, programming.

© National Instruments Corporation

	LabWindows/CVI Instrument Driver Developers Guide
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Table of Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	The LabWindows/CVI Documentation Set
	Customer Communication

	Chapter 1 Instrument Driver Overview
	About the Instrument Library and Instrument Drivers
	How Users Operate the Instrument Driver
	Purpose and Benefits of Instrument Drivers
	Historical Evolution of Instrument Drivers
	Instrument Driver Architecture
	Instrument Driver External Interface Model
	Functional Body
	VISA I/O Interface
	Subroutine Interface
	Programmatic Developer Interface
	Interactive Developer Interface
	Instrument Driver Internal Design Model
	Component Functions
	Initialize Function
	Configuration Functions
	Action/Status Functions
	Data Functions
	Utility Functions
	Close Function
	Application Functions

	Chapter 2 Developing an Instrument Driver
	General Guidelines
	Writing an Instrument Driver
	Naming the Driver
	Defining the Instrument Functions
	Structuring Functions In An Instrument Driver
	Defining the Hierarchy of Functions
	Defining the Function Parameters
	Data Types
	Predefined Data Types
	Intrinsic C Data Types
	Meta Data Types
	Numeric Array
	Any Array
	Any Type
	Var Args
	User-Defined Data Types
	Creating a User-Defined Data Type
	User-Defined Array Data Types
	VISA Data Types
	Input and Output Parameters
	Return Values
	Required Instrument Driver Functions
	Building the Function Tree
	Building the Function Panels
	Writing the Function Code
	Operating the Driver
	Testing the Instrument Driver
	Documenting the Driver

	Chapter 3 Function Tree Editor
	About the Function Tree and Function Tree Editor
	Function Tree Editor Menu Bar
	File
	Edit
	Create
	Instrument...
	Class
	Adding a Class to an Empty Tree or Class
	Inserting a Class into an Existing Tree
	Function Panel Window...
	Adding a Function to an Empty Tree or Class
	Inserting a Function into an Existing Tree
	Instrument
	Load...
	Unload...
	Edit...
	Window
	Options
	Function Tree Editor Examples
	Example—Multiple Classes in a Function Tree
	Example—Cutting and Pasting Functions and Panels
	Using Existing Function Panels In a New Driver
	Example—Editing Items in the Function Tree

	Chapter 4 Function Panel Editor
	Invoking the Function Panel Editor
	Invoking from the Function Tree Editor
	Invoking from a Function Panel
	The Function Panel Editor Menu Bar
	File
	Edit
	Cut Controls
	Copy Controls
	Paste
	Cut Panel
	Copy Panel
	Edit Control...
	Change Control Type...
	Edit Function...
	Alignment
	Align Horizontal Centers
	Distribution
	Distribute Vertical Centers
	Control Help
	Function Help or Window Help
	Create
	Function Panel Window, Function Panel, and Common Control Panel
	Control Types
	Input...
	Slide...
	Adding a Label and Value to the Slide Control List
	Dialog Box Command Buttons
	Binary...
	Ring...
	Adding a Label and Value to the Ring Control List
	Dialog Box Command Buttons
	Numeric...
	Output...
	Return Value...
	Global Variable...
	Message...
	View
	Instrument
	Window
	Options
	Data Types...
	Toolbar...
	Default Panel Size
	Panels Movable
	Toggle Scroll Bars
	Edit Function Tree
	Operate Function Panel
	Moving Controls
	Moving Controls between Function Panels
	Selecting Multiple Controls
	Function Panel Editor Examples
	Example—Creating a Function Window
	Example—Changing Control Type
	Example—Cutting and Pasting Controls

	Chapter 5 Adding Help Information
	New Style vs. Old Style Help
	Help Options
	Editing Help Information
	File
	Edit
	Window
	Instrument Help
	Function Class Help
	Function Help (New Style Help Only)
	Function Panel Window Help (Old Style Help Only)
	Control Help
	Help Information Examples
	Example—Adding Help Information in the Function Tree Editor
	Example—Adding Help Information in the Function Panel Editor
	Example—Copying and Pasting Help Text

	Chapter 6 Programming Guidelines for Instrument Drivers
	General Programming Guidelines
	The Core Instrument Driver
	Modifying the Core Driver
	Adding User Callable Functions
	Copy and Paste
	Tips for Creating an Instrument Driver
	Developing Portable Instrument Drivers
	Instrument Driver Data Types
	Declaring Instrument Driver Functions and Array and Output Parameters
	Using Scan and Fmt Functions
	Error Reporting Guidelines
	Function Panels
	Function Tree Hierarchy
	Documentation Guidelines
	Online Help
	The .doc File
	Programming Guidelines for RS-232 Instruments
	Initialization Routine
	Close Routine
	Utility Routines
	Programming Guidelines for VXI Instruments
	Instrument Driver Checklist

	Chapter 7 Required Instrument Driver Functions
	PREFIX_init
	PREFIX_close
	PREFIX_reset
	PREFIX_self_test
	PREFIX_error_query
	PREFIX_error_message
	PREFIX_revision

	Chapter 8 Instrument Driver Example
	Example—Creating a GPIB Instrument Driver
	Creating the Function Tree
	Creating the Configure Function Panel Window
	Creating the Read Waveform Function Panel
	Creating the Instrument Program
	Modifying CORE_GPB.C Source File
	Modifying the CORE_GPB.H Include File
	Writing the New Functions
	Writing the Configure Function
	Writing the Read Waveform Function
	Adding New Include Statements and Variable Declarations
	Testing the Driver

	Appendix A Tektronix 2430A Instrument Driver Code Sample
	Tektronix 2430A Instrument Driver Header File
	Tektronix 2430A Instrument Driver Source File

	Appendix B Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1. Instrument Driver External Interface Model
	Figure 1-2. Instrument Driver Internal Design Mode
	Figure 3-1. A Function Tree
	Figure 3-2. The Edit Instrument Dialog Box
	Figure 3-3. A Sample Function Tree
	Figure 4-1. The Function Panel Editor
	Figure 4-2. Control Types
	Figure 4-3. The Create Input Control Dialog Box
	Figure 4-4. The Create Slide Control Dialog Box
	Figure 4-5. The Edit Label/Value Pairs Dialog Box
	Figure 4-6. The Create Binary Control Dialog Box
	Figure 4-7. The Edit On/Off Settings Dialog Box
	Figure 4-8. The Create Ring Control Dialog Box
	Figure 4-9. The Ring Control Edit Label/Value Pairs Dialog Box
	Figure 4-10. The Create Numeric Control Dialog Box
	Figure 4-11. The Edit Value Set Dialog Box
	Figure 4-12. The Create Output Control Dialog Box
	Figure 4-13. The Create Return Value Control Dialog Box
	Figure 4-14. The Create Global Variable Control Dialog Box
	Figure 4-15. The Edit Data Type List Dialog Box
	Figure 4-16. The Channel Create Binary Control Dialog Box
	Figure 4-17. The Channel Edit On/Off Settings Dialog Box
	Figure 4-18. The Volts/Div Create Input Control Dialog Box
	Figure 4-19. The Coupling Create Slide Control Dialog Box
	Figure 4-20. The Coupling Edit Label/Value Pairs Dialog Box
	Figure 4-21. The Invert Create Binary Control Dialog Box
	Figure 4-22. The Invert Edit On/Off Settings Dialog Box
	Figure 4-23. A Function Panel Window
	Figure 4-24. The Change Input Control Type Dialog Box
	Figure 4-25. The Volts/Div Edit Label/Value Pairs Dialog Box
	Figure 5-1. The Help Editor Dialog Box
	Figure 5-2. A Sample Function Tree
	Figure 6-1. The Fluke 45 Digital Multimeter Function Tree
	Figure 6-2. The Fluke 45 Instrument Help
	Figure 6-3. The Fluke 45 Function Class Help
	Figure 6-4. The Fluke 45 Function Panel Help
	Figure 6-5. The Fluke 45 Function Panel Control Help
	Figure 6-6. The Fluke 45 Function Panel Error Control Help
	Figure 8-1. The Function Tree for CORE_GPB.FP
	Figure 8-2. The New Function Tree for the Tektronix 2430A Instrument Driver
	Figure 8-3. The Edit Binary Control Dialog Box
	Figure 8-4. The Channel Edit On/Off Settings Dialog Box
	Figure 8-5. The Edit Ring Control Dialog Box for the Volts/Div Ring Control
	Figure 8-6. The Volts/Div Ring Control Edit Label/Value Pairs Dialog Box
	Figure 8-7. The Edit Ring Control Dialog Box
	Figure 8-8. The Edit Label/Value Pairs Dialog Box
	Figure 8-9. The Complete Configure Function Panel Window
	Figure 8-10. The Waveform Array Create Output Control Dialog Box
	Figure 8-11. The Sample Period Create Output Control Dialog Box
	Figure 8-12. The Trigger Offset Create Output Control Dialog Box
	Figure 8-13. The Complete Read Waveform Function Panel Window

	Tables
	Table 2-1. VISA Data Types.
	Table 5-1. Types of Help Information
	Table 6-1. Core Instrument Driver Files
	Table 6-2. VISA Data Types
	Table 6-3. VISA I/O Library Macros
	Table 6-4. Suggested Error Values
	Table 6-5. Instrument Driver Completion and Warning Codes
	Table 6-6. Instrument Driver Error Codes

