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About This Manual

This manual provides information about the Signal Processing Toolset, 
the different types of signal processing analyses you can perform with 
the toolset, the theoretical basis for each type of analysis, and the analysis 
examples provided with the Signal Processing Toolset.

Organization of this Manual
The Signal Processing Toolset User Manual is divided into five sections 
and is organized as follows:

Part I—Introduction
• Chapter 1, Signal Processing Toolset Overview, provides an overview 

of the Signal Processing Toolset, its components, and installation 
instructions.

• Chapter 2, Analysis Beyond FFT, provides basic information about 
signal processing, Fourier transform, Gabor expansion, Wigner-Ville 
distribution, wavelet transform, time-frequency transform, and the role 
of the Signal Processing Toolset in signal analysis.

Part II—Joint Time-Frequency Analysis
• Chapter 3, Joint Time-Frequency Analysis, explains the need for and 

approaches to joint time-frequency analysis (JTFA).

• Chapter 4, Joint Time-Frequency Analysis Algorithms, describes the 
algorithms the JTFA virtual instruments (VIs) use. The JTFA 
algorithms implemented in this toolset fall into the following two 
categories:

– Linear

– Quadratic

• Chapter 5, Joint Time-Frequency Analysis Applications, describes the 
Off-line JTFA example included with the Signal Processing Toolset. 
This example is designed to help you learn more about JTFA.

Part III—Super-Resolution Spectral Analysis
• Chapter 6, Introduction to Model-Based Frequency Analysis, 

introduces the basic concepts of model-based frequency analysis.
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• Chapter 7, Model-Based Frequency Analysis Algorithms, outlines 
the theoretical background of model-based frequency analysis and 
describes the relationship among the model coefficients, power 
spectra, and parameters of damped sinusoids.

• Chapter 8, Applying Super-Resolution Spectral Analysis and 
Parameter Estimation, describes a super-resolution spectral analysis 
example application included with the Signal Processing Toolset. This 
example is designed to help you learn about model-based analysis. 

Part IV—Wavelet Analysis
• Chapter 9, The Fundamentals of Wavelet Analysis, describes the 

history of wavelet analysis, compares Fourier transform and wavelet 
analysis, and describes some applications of wavelet analysis.

• Chapter 10, Wavelet Analysis by Discrete Filter Banks, describes the 
design of two-channel perfect reconstruction filter banks, defines the 
types of filter banks used with wavelet analysis, and discusses wavelet 
packets.

• Chapter 11, Wavelet Analysis Applications, describes the 1D and 2D 
Wavelet Transform examples and the Wavelet Packet example 
included with the Signal Processing Toolset. These examples are 
designed to help you learn about wavelet analysis.

Part V—Digital Filter Design Application
• Chapter 12, Digital Filter Design Application, describes the digital 

filter design (DFD) application used to design infinite impulse 
response (IIR) and finite impulse response (FIR) digital filters.

• Chapter 13, IIR and FIR Implementation, describes the filter 
implementation equations for IIR and FIR filtering and the format of 
the IIR and FIR filter coefficient files.

Conventions
The following conventions appear in this manual:

<> Angle brackets enclose the name of a key on the keyboard—for example, 
<Shift>. Angle brackets that contain numbers separated by an ellipsis 
represent a range of values associated with a bit or signal name—for 
example, DBIO<3..0>.
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[ ] Numbers enclosed by brackets denote references in Appendix B, 
References, of this manual—for example, [27] refers to entry number 27 in 
Appendix B. Empty brackets that follow a parameter type indicate that the 
parameter is an array.

» The » symbol leads you through nested menu items and dialog box options 
to a final action. The sequence File»Page Setup»Options directs you to 
pull down the File menu, select the Page Setup item, and select Options 
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such 
as menu items and dialog box options. Bold text also denotes parameter 
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction 
to a key concept. This font also denotes text that is a placeholder for a word 
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the 
keyboard, sections of code, programming examples, and syntax examples. 
This font is also used for the proper names of disk drives, paths, directories, 
programs, subprograms, subroutines, device names, functions, operations, 
variables, filenames and extensions, and code excerpts.

monospace bold Bold text in this font denotes the messages and responses that the computer 
automatically prints to the screen. This font also emphasizes lines of code 
that are different from the other examples.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value 
that you must supply.

Related Documentation
The following documents contain information that you might find helpful 
as you read this manual:

• Signal Processing Toolset Help, available in LabVIEW 6.1 by 
selecting Help»Signal Processing Toolset; available in LabVIEW 7.0 
and later by selecting Help»VI, Function, & How-To Help and then 
selecting VI and Function Reference»Signal Processing Toolset in 
the table of contents

• LabVIEW Help, available by selecting Help»VI, Function, 
& How-To Help
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• Signal Processing Toolset for LabWindows™/CVI™ Help, available by 
selecting Start»Programs»National Instruments»Signal 
Processing Toolset»SPT for LabWindows/CVI Help

• LabVIEW User Manual

• LabWindows/CVI User Manual
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Part I

Introduction

This section of the manual introduces the Signal Processing Toolset and 
presents background information about signal processing.

• Chapter 1, Signal Processing Toolset Overview, provides an overview 
of the Signal Processing Toolset, its components, and installation 
instructions.

• Chapter 2, Analysis Beyond FFT, provides basic information about 
signal processing, Fourier transform, Gabor expansion, Wigner-Ville 
distribution, wavelet transform, time-frequency transform, and the role 
of the Signal Processing Toolset in signal analysis.
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1
Signal Processing Toolset 
Overview

This chapter provides information on the analysis areas where you can use 
the Signal Processing Toolset, an overview of the toolset and its 
components, and installation instructions.

Analysis Areas
The Signal Processing Toolset is primarily intended for the analysis of 
signals whose frequency contents change over time. Examples of such 
signals include the sound or vibration created by engines, most biomedical 
signals, and seismological data records. Time-frequency and wavelet 
transforms are widely used in modern signal analysis. The Signal 
Processing Toolset provides tools to process those signals for which the 
classical Fourier transform is not suitable, such as transient signals and 
signals whose frequency contents change over time.

The Signal Processing Toolset is divided into the following three major 
analysis areas:

• Joint time-frequency analysis (JTFA)

• Super-resolution spectral analysis (SRSA)

• Wavelet analysis

JTFA is suitable for signals with narrowband instantaneous frequencies. 
Super-resolution spectral analysis, a model-based frequency analysis 
method, is mainly applicable when there is a small number of data samples. 
The wavelet transform is suitable for signals with short time durations. 

Toolset Components
This section describes the Signal Processing Toolset components for JTFA, 
SRSA, wavelet analysis, and digital filter design.
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Joint Time-Frequency Analysis
The Signal Processing Toolset provides several algorithms for applications 
with nonstationary signals, signals where the frequency content varies with 
time. These algorithms include the award-winning and patented Gabor 
spectrogram, as well as the Wigner-Ville distribution, Choi-Williams 
distribution, short-time Fourier transform, cone-shaped distribution, and 
adaptive spectrogram. Applications for JTFA include speech processing, 
sound analysis, sonar, radar, machine testing, vibration analysis, and 
dynamic signal monitoring.

The Signal Processing Toolset includes a stand-alone application you can 
use to test JTFA algorithms. Refer to Chapter 5, Joint Time-Frequency 
Analysis Applications, for information about the JTFA application.

Refer to Part II, Joint Time-Frequency Analysis, for more information 
about joint time-frequency analysis.

The Signal Processing Toolset has easy, advanced, and refnum JTFA VIs 
and functions. LabVIEW users can find the JTFA VIs on the 
Functions»Adv Sig Processing»Easy Level JTFA palette, the 
Functions»Adv Sig Processing»Advanced JTFA palette, and the 
Functions»Adv Sig Processing»Refnum JTFA palette. Refer to 
the Signal Processing Toolset Help for information about individual VIs.

LabWindows/CVI users can find the JTFA functions by selecting 
Library»SPT»JTFA. Refer to the Signal Processing Toolset for 
LabWindows/CVI Help for information about individual JTFA functions 
for LabWindows/CVI.

Super-Resolution Spectral Analysis
SRSA is a model-based analysis method and is especially powerful when 
the number of data samples is limited. The relationship of the number of 
samples to the frequency resolution is quantified by Equation 1-1.

(1-1)

where ∆f denotes the frequency resolution. The frequency resolution 
characterizes the minimum difference that can be distinguished between 
two sinusoids. This analysis method is effective when you have a small 
number of data samples. Refer to Chapter 6, Introduction to Model-Based 
Frequency Analysis, for more information about model-based frequency 
analysis and its role in super-resolution spectral analysis.

∆f
sampling frequency

number of samples
-----------------------------------------------------=
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The Signal Processing Toolset contains a stand-alone application you can 
use to test algorithms such as covariance, Prony’s method, principle 
component auto-regression (PCAR), and the matrix pencil method for 
model-based analysis. Refer to Chapter 8, Applying Super-Resolution 
Spectral Analysis and Parameter Estimation, for information about the 
SRSA application.

Use the super-resolution spectral analysis VIs and functions to perform 
high-resolution spectral analysis and parameter estimation. The parameters 
include amplitude, phase, damping factor, and frequency of damped 
sinusoids. You can use the VIs and functions for other applications such 
as linear prediction, signal synthesis, data compression, and system 
identification. These tools have a diverse range of applications in areas such 
as biomedicine, economics, geophysics, noise and vibration, and speech 
analysis.

Refer to Part III, Super-Resolution Spectral Analysis, for more information 
about super-resolution spectral analysis.

The Signal Processing Toolset has both easy and advanced SRSA VIs and 
functions. LabVIEW users can find the SRSA VIs on the Functions»Adv 
Sig Processing»Easy Level SRSA palette and the Functions»Adv Sig 
Processing»Advanced SRSA palette. Refer to the Signal Processing 
Toolset Help for more information about individual VIs.

LabWindows/CVI users can find the SRSA functions by selecting 
Library»SPT»SRSA. Refer to the Signal Processing Toolset for 
LabWindows/CVI Help for information about individual SRSA functions 
for LabWindows/CVI.

Wavelet Analysis
You can use wavelets for feature extraction and data compression. 
By interactively selecting a wavelet prototype, such as equiripple or 
maxflat, and different finite impulse response combinations, you can easily 
find the best wavelet or filter bank for your application.

As you design the wavelets, you can apply them to 1D and 2D signals, 
or images, and immediately see the effect of the design on your signal. 
The Wavelet Analysis functions are especially powerful for signals that 
have short time duration and wide frequency bandwidth.

The Signal Processing Toolset provides an intuitive and interactive 
interface for designing filter banks, 1D and 2D wavelet transforms, and 
computing the wavelet packet for 1D test data. Refer to Chapter 11, 
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Wavelet Analysis Applications, for information about the wavelet analysis 
applications.

Refer to Part IV, Wavelet Analysis, for more information about wavelet 
analysis and filter bank design.

The Signal Processing Toolset has both easy and advanced Wavelet VIs and 
functions. The toolset also has wavelet packet VIs and functions. LabVIEW 
users can find the wavelet analysis VIs on the Functions»Adv Sig 
Processing»Easy Level Wavelet palette, the Functions»Adv Sig 
Processing»Advanced Wavelet palette, and the Functions»Adv Sig 
Processing»Advanced Wavelet»Wavelet Packet palette. Refer to 
the Signal Processing Toolset Help for more information about 
individual VIs.

LabWindows/CVI users can find the Wavelet functions by selecting 
Library»SPT»Wavelet, and Library»SPT»Wavelet»Wavelet Packet. 
Refer to the Signal Processing Toolset for LabWindows/CVI Help for 
information about individual wavelet analysis functions for 
LabWindows/CVI.

Accessing Example Application Source Code
If you have LabVIEW 6.1 or later installed, you can access the source code 
for the JTFA, SRSA, and wavelet analysis example applications.

Complete the following steps to access the source code for an example 
application.

1. Select Start»Programs»National Instruments»Signal Processing 
Toolset»NI SPT Start-Up Source to open the SPT palette.

2. Click the icon of the application you want to see to open the 
application front panel.

3. Select Window»Show Diagram or press <Ctrl-E>.

Refer to Chapter 5, Joint Time-Frequency Analysis Applications; 
Chapter 8, Applying Super-Resolution Spectral Analysis and Parameter 
Estimation; and Chapter 11, Wavelet Analysis Applications, for 
information about the individual example applications.

Digital Filter Design Application
The Signal Processing Toolset contains a Digital Filter Design (DFD) 
application. The DFD application provides a general-purpose design tool 
for signal conditioning, control systems, digital signal processing, and 
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virtual instrument applications. You can use the DFD application to 
accomplish the following tasks:

• Design bandpass, bandstop, lowpass, and highpass filters.

• Design filters with an arbitrary magnitude response.

• Design infinite impulse response (IIR) and finite impulse response 
(FIR) filters using the graphical user interface.

• Design filters by interactively editing the magnitude response graph or 
the pole-zero plot in the z-plane.

• Test your design online with a built-in function generator.

• Analyze the filter using the step and impulse responses, magnitude and 
phase responses, and pole-zero plot.

• Save the filter coefficients of your completed design to a file for use in 
other applications.

Refer to Chapter 12, Digital Filter Design Application, for more 
information about the DFD application.

System Requirements
To install the Signal Processing Toolset 7.0 for LabVIEW, your system 
must have the Full Development or Professional Development System of 
LabVIEW 6.1 or later.

To install the Signal Processing Toolset 7.0 for LabWindows/CVI, 
your system must have LabWindows/CVI 6.0 or later.

Installation
Complete the following steps to install the Signal Processing Toolset.

1. Insert the Signal Processing Toolset CD into your CD-ROM drive and 
double-click setup.exe.

2. Follow the instructions on your screen.

After you have completed the on-screen installation instructions, you are 
ready to run the Signal Processing Toolset.
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2
Analysis Beyond FFT

Often, it is neither possible nor desirable to physically open up a system 
and study it. In many such instances, you can gain knowledge about a 
system by measuring and analyzing signals associated with the system. 
For example, physicists and chemists use the spectrum dispersed by a 
prism to distinguish between different types of matter. Astronomers 
determine distances between planets by examining spectra modified by 
Doppler Shifts. Physicians use the electrocardiograph (ECG), which traces 
the electrical activity of the heart, as a nonsurgical means of diagnosing 
heart problems. Analyzing signals can be an ideal way to examine closed 
systems.

This chapter provides basic information about signal processing, the 
Fourier transform, the Gabor expansion, the Wigner-Ville distribution, 
the wavelet transform, the time-frequency transform, and the role of the 
Signal Processing Toolset in signal analysis.

Background
Prior to World War II, signal processing was primarily a part of physics, 
and scientists and engineers mainly dealt with analog signals. Then the 
sampling theorem, proved by the mathematician J. Whittaker [35] and 
applied to communication by Claude Shannon [29], led to a new era of 
signal processing.

Think of modern signal processing as the combination of physics and 
statistics. With the discovery of the sampling theorem and the advance of 
the digital computer, scientists are able to employ elegant mathematical 
approaches to process signals that our ancestors would never have been 
able to imagine. One such approach is the virtual prism, or Fourier 
transform. Applications of modern signal processing range from the control 
of the Mars Pathfinder spacecraft more than twenty million miles away 
from earth to the discovery of abnormal cells inside the human body.

One fundamental mathematical tool employed in signal processing is a 
transform. When asked to multiply the Roman numerals LXIV and XXXII, 
only a few of us can immediately give the correct answer. However, after 
you translate the Roman numerals into the Arabic numerals 64 and 32, you 
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can solve to get 2,048. The process of converting the unfamiliar Roman 
numerals into common Arabic numerals is a typical example of transforms 
[12]. Properly applying transforms can simplify calculations or make 
certain attributes of a signal explicit. 

Fourier Transform
One of the most popular transforms known to scientists and engineers is 
the Fourier transform, which converts a signal from the time domain to the 
frequency domain. The Fourier transform is extremely useful when applied 
correctly. Two hundred years ago, during the study of heat propagation 
and diffusion, Jean Baptiste Joseph Fourier found a series of harmonically 
related sinusoids useful to represent the temperature distribution 
throughout a body. That method of computing the weight of each 
sinusoidal function is now known as the Fourier transform. The Fourier 
transform not only benefits the study of heat distribution, but it also is 
useful in many other mathematical operations, such as solving differential 
equations. The example that scientists and engineers are most familiar with 
is the convolution theory. You can apply the Fourier transform to convert 
time-consuming convolutions into more efficient multiplications.

The Fourier transform acts as a mathematical prism to break down a signal 
into a group of waveforms, or different frequencies, as a prism breaks 
up light into a color spectrum. With the help of the Fourier transform, 
scientists can interpret radiation from distant galaxies, diagnose illness in 
a developing fetus, and make inexpensive cellular phone calls. With the 
establishment of quantum mechanics, the significance of Fourier’s 
discovery is even more obvious. For example, with the Fourier transform, 
scientists can quantitatively describe the Heisenberg uncertainty principle, 
a fundamental and inescapable property of the world. The Heisenberg 
uncertainty principle states that certain pairs of quantities, such as the 
position and velocity of a particle, cannot both be predicted with complete 
accuracy.

The Fourier transform is so powerful that people tend to apply it 
everywhere without noticing one fundamental difference between the 
mathematical prism and a real prism. A real prism produces instantaneous 
spectra. Spectra produced in the evening are different than spectra 
produced that morning. When using a real prism to examine spectra of 
light, you need no previous knowledge about the light to produce the 
spectra. However, to compute the Fourier transform, you need to examine 
information over time. The spectrum computed by the Fourier transform is 
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the spectrum averaged over an infinitely long period of time before the 
present to an infinitely long period of time after the present.

Figure 2-1 illustrates two linear chirp signals. Each is a time-reversed 
version of the other. Whereas frequencies of the signal on the left increase 
with time, frequencies of the signal on the right decrease with time. 
Although the frequency behavior of the two signals is obviously different, 
their frequency spectra computed by the Fourier transform, as shown in 
Figure 2-2, are identical. The Fourier transform preserves all information 
about the time waveform. Otherwise, the signal could not be reconstructed 
from the transform.

Figure 2-1.  Time-Reversed Linear Chirp Signals

Figure 2-2.  Frequency Spectra Computed by the Fourier Transform 
for Time-Reversed Linear Chirp Signals
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Figure 2-3 depicts the spectrum of an engine sound, and the top plot of 
Figure 2-4 depicts the corresponding time waveform.

Figure 2-3.  Engine Sound Spectrum

Figure 2-4.  Engine Sound Time Waveform and Wavelet Transform

If you could hear the signal depicted in Figures 2-3 and 2-4, you could 
clearly identify several knocking sounds caused by out-phase firing inside 
the engine. As indicated by the wavelet transform, the second plot in 
Figure 2-4, the knocking sound is actually quite strong. To compute the 
Fourier transform, you have to include the signal before the knocking takes 
place and the signal after the knocking ends. The spectrum computed with 
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the Fourier transform indicates that the frequencies contained in the entire 
time waveform, not the frequencies in a particular time instant. The Fourier 
transform provides the average signal characteristics. Although the 
amplitude of engine knock sounds can be large in a very short time period, 
the energy of the sound, compared to the total background noise, is 
negligible. Because the sound energy of engine knocking is relatively 
small, the presence of engine knocks is completely overwhelmed in the 
averaged spectra computed by the Fourier transform. Consequently, there 
are no obvious signatures in the spectrum to show the presence of engine 
knock. The Fourier transform smears the signal’s local behavior globally.

As Hubbard observed, “the Fourier transform is poorly suited to very brief 
signals, or signals that change suddenly and unpredictably; yet in signal 
processing, brief changes often carry the most interesting information” 
[11]. Although most natural spectra are time dependent, for example, 
morning and evening light, the Fourier transform makes “changing 
frequency” unthinkable. As Gabor once wrote, “even experts could not at 
times conceal an uneasy feeling when it came to the physical interpretation 
of results obtained by the Fourier method” [12].

The set of basic functions employed by Fourier, sine and cosine functions, 
is the mathematical model of the most fundamental natural phenomena, the 
wave, and a solution of differential equations. Unfortunately, this is not the 
case for time-frequency and wavelet transforms. Neither time-frequency 
nor wavelet transforms are likely to have the revolutionary impact upon 
science and engineering that the Fourier transform has had. However, the 
time-frequency and wavelet transforms do offer many interesting features 
that the Fourier transform does not possess.

Gabor Expansion and Wigner-Ville Distribution
The development of Fourier’s alternatives started at least a half century ago 
and has involved many people. The first two important articles dealing with 
the limitation of the Fourier transform appeared right after World War II, 
one written by Dennis Gabor [12] and the other by J. Ville [33]. Because 
Ville’s conclusion was similar to a process introduced by Eugene Wigner 
in quantum mechanics in 1932 [36], traditionally Ville’s method is known 
as the Wigner-Ville distribution.

However, initial reactions to Gabor’s and Ville’s work was not enthusiastic. 
The difficulty with the Gabor expansion is that a set of elementary 
functions suitable for general time-frequency analysis does not form an 
orthogonal basis. The problem with the Wigner-Ville distribution is the 
crossterm interference that makes the resulting presentation difficult to 



Chapter 2 Analysis Beyond FFT

Signal Processing Toolset User Manual 2-6 ni.com

interpret. However, two sets of papers in the early 1980s triggered great 
interest in revisiting Gabor’s and Ville’s pioneering work [1] [3]. Since the 
early 1980s, scientists have made many developments, some of which are 
now mature applications.

Wavelet Transform
The recognition of the wavelet transform is much more recent, though a 
similar methodology can be traced to the early twentieth century [9]. 
Wavelets are not a new idea, and the concept has existed in other forms in 
many different fields. For example, the numerical implementation of the 
wavelet transform is nothing more than the well-established method of 
filter banks.

In addition to detecting engine knocks, the wavelet transform is also 
successfully used for train wheel diagnosis. Two of the main causes of train 
accidents are defective wheels and bearings. Hence, on-line train wheel and 
bearing diagnoses are an important part of avoiding potential catastrophes. 
The parameter that engineers believe can be used to effectively detect 
hidden flaws in wheels and bearings is the variation in railroad track 
vibration. The defective wheels and bearings usually generate impulse-like 
noise as the train moves on the track, making abnormal track vibrations. 
The wavelet transform can effectively filter out such noise.

Figure 2-5 illustrates a typical train wheel on-line testing result. 

Figure 2-5.  Train Wheel On-Line Testing Result

Vibration due to Wheel 5
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When a wheel is far away from the accelerometer mounted beneath the 
track, the corresponding track vibration is weak. Track vibration increases 
as the train wheel approaches the accelerometer. The vibration reaches a 
maximum when a wheel is right above the accelerometer. The plot on the 
top of Figure 2-5 shows the vibration history during the time that eight 
wheels pass the accelerometer. The x-axis describes the time index, and the 
y-axis indicates the magnitude of track vibration. Each bump corresponds 
to one wheel passing over the accelerometer. Obviously, there is no clear 
signature between the normal and abnormal wheels in the time waveform. 
However, in the wavelet transform domain, the plot on the bottom of 
Figure 2-5, you can identify a potential problem at the fifth wheel, between 
x = 500 and x = 550. The wavelet-transform-based on-line diagnosis 
system is expected to substantially reduce potential train accidents caused 
by defective wheels and bearings.

The Fourier transform compares a signal with a set of sine and cosine 
functions. Each sine and cosine function has a different oscillating 
frequency. Hence, the result of Fourier transform indicates magnitudes of 
the signal at each individual frequency. The wavelet transform compares 
a signal with a set of short waveforms called wavelets. Each wavelet has 
a different time duration, or scale. As the time duration becomes shorter, 
the frequency bandwidth becomes wider, and vice versa. In mathematical 
terms, the process of stretching or compressing the fundamental wavelet, 
usually called the mother wavelet, is called dilating. As wavelets get 
narrower and narrower, they eventually become impulse-like functions, 
equivalent to wide frequency bands. Consequently, the wavelet transform 
can process impulse-like signals, such as engine knocks and noise created 
by defective train wheels and bearings. In those examples, the wavelet 
transform is superior to the Fourier transform.

Besides wideband, or short time duration, signal detection, the wavelet 
transform is also widely used for 2D image processing. Figure 2-6 is the 
2D wavelet transform of the picture of an iris. 
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Figure 2-6.  2D Wavelet Transform of the Picture of an Iris

In Figure 2-6, the full image on the left is broken into four subimages. 
The upper-left subimage, which is a quarter of the size of the original 
image, contains the major features of the picture of the iris. The remaining 
three subimages have relatively less important information, and thus have 
less influence on the reconstruction. Figure 2-6 suggests, that instead of 
storing or transferring the entire large image, you only need to store or 
transfer the upper-left image and the number of prominent pixels in the 
other three subimages. Because the number of pixels in each subimage is a 
quarter of the number of pixels contained in the original image, by applying 
a 2D wavelet transform, you can save a lot of memory and communication 
bandwidth.

Time-Frequency Transform and the Gabor Spectrogram
While the wavelet transform is well-suited for the analysis of 
predominately nonstationary signals with sudden peaks or discontinuity, 
the time-frequency transform is effective for analyzing narrowband signals 
or signals whose frequency changes slowly with time. The detection of 
impulse signals by low-orbit satellites is a good example of a 
time-frequency transform application.

The detection and estimation of impulse signals has been an important 
national security issue because nuclear weapon testing can cause impulse 
signals. Figure 2-7 depicts an impulse signal received by the U.S. 
Department of Energy ALEXIS/BLACKBEARD satellite.
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Figure 2-7.  Impulse Signal Received by ALEXIS/BLACKBEARD Satellite 
(Data courtesy of Non-Proliferation & International Security 

Division, Los Alamos National Laboratory)

After passing through dispersive media, such as the ionosphere, the 
impulse signal turns into a non-linear chirp signal. While the time 
waveform is severely corrupted by random noise, the conventional 
spectrum is dominated by radio carrier signals that remain basically 
unchanged over time. As shown in Figure 2-7, neither the time waveform 
nor the power spectrum indicates the existence of the impulse signal. 
However, when looking at the amplitudes of the Gabor coefficients, 
computed by the short-time Fourier transform, you can identify the 
presence of the chirp-type signal arching across the joint time-frequency 
domain.

From the joint time-frequency domain, you can mask the Gabor 
coefficients that correspond to the desired signal, as shown in Figure 2-8.

Figure 2-8.  Signal Masked from Noisy Background
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After the masking operation, apply the Gabor expansion to recover the 
original time waveform. Figure 2-9 compares the noisy and reconstructed 
signals.

Figure 2-9.  Reconstructed Signal

As shown in Figure 2-7, the interesting signal in this example cannot be 
detected from either the time waveform or the conventional spectrum. 
When the signal-to-noise rate (SNR) is very low, as with many satellite 
signals, the short-time Fourier transform and Gabor expansion could be 
the only choices for detection and estimation.

The time-frequency transform describes how the spectrum of a signal 
changes with time, and that is its major advantage. Such an instantaneous 
spectrum is very useful in many applications. One such application is 
aneurysm research. An aneurysm is a bulge or sac formed by the ballooning 
of the wall of an artery or a vein. It can become the site of a blood clot that 
breaks away and lodges in vital organs, such as the heart or the brain, 
causing potentially fatal heart failure or brain damage. Except for 
Computer Tomography (CT) and Magnetic Resonance Imaging (MRI), at 
present, there is no simple and economical method to screen for aneurysms. 
The results obtained from the Gabor spectrogram could eventually lead to 
an economical aneurysm screening test.

Some aneurysms emit specific resonant sounds of varying frequencies. So, 
the frequency of the sound created by blood flow is a potential feature for 
diagnosing an aneurysm. However, the sound associated with an aneurysm 
is generated by a complicated, dynamic fluid system involving the arterial 
wall, heart chamber, surrounding blood vessels, and moving blood, all 
under varying pressure. The sound recorded from an aneurysm is caused 
by vibration stimulated by the blood flow inside the aneurysm and nearby 
blood vessels. This vibrational system is non-linear and time-varying. In 
addition, the sound emitted by an aneurysm is non-stationary and is usually 
combined with the biological noises generated by the heart, respiratory 
system, and eye movements.
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Figure 2-10 shows an aneurysm signal recorded directly from an 
antercranial aneurysm during surgery. 

Figure 2-10.  Gabor Spectrogram of Blood Flow Sound (Data courtesy of the Medical 
School at the University of Pittsburgh)

The record represented by Figure 2-10 has 512 data samples, 
corresponding to 300 milliseconds in time. The spectrum of the signal 
is illustrated on the left. It shows the range of resonant frequencies, 
450 to 550 Hz, but provides no other useful information. The center plot 
depicts the corresponding Gabor spectrogram that describes the 
instantaneous spectrum of the signal.With the help of the Gabor 
spectrogram, the physical system that produces this signal could 
hypothetically be described as follows:

• The main arc is produced by the variation of blood pressure which 
changes the physical parameters of the resonant system. More 
specifically, at the very beginning of the vibration, in the vicinity of 
0.05 seconds, the spectral component is relatively wide, corresponding 
to a low Q, center frequency versus frequency bandwidth, value of the 
vibrational system due to the existence of a large damping effect.

• As the stimulation increases, the pressure-induced vibration becomes 
stronger, and the spectral component narrows, which indicates an 
increasing Q value. As a result, between 0.1 to 0.15 seconds, the 
vibration tends to concentrate on a single frequency, yielding a 
sinusoidal-like waveform.

• As the vibration continues, another interesting phenomenon occurs. 
Between 0.15 to 0.25 seconds, when the vibrational magnitude 
increases considerably, you can observe several branches with 
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harmonic-like patterns deviating from the main arc. However, after 
a short period of time, these branches merge back into the main arc 
again. This interesting behavior could indicate that, at the branching 
points, the vibrational system has reached the upper limit of its linear 
range. However, the stimulation is still present, which provides the 
system with additional energy.

• This over-stimulation causes the vibration to enter a nonlinear stage.

• Conversely, as the stimulation decreases, the vibrational system loses 
energy.

• Finally, the system ceases vibration when the damping effect becomes 
dominant again.

In this example, researchers use the Gabor spectrogram as an X-ray, to get 
a better understanding of the mechanism of an aneurysm system. As shown 
in Figure 2-10, information provided by the Gabor spectrogram is not 
available in either the time waveform or the conventional frequency 
spectrum. The resulting observation could eventually lead to an efficient 
means of diagnosing aneurysms that will not only be less expensive than 
CT and MRI, but also pain-free.

The Gabor spectrogram also has been successfully applied in earthquake 
engineering, with developments like the detection of soil liquefaction 
conducted at the University of Tokyo. Soil liquefaction is an 
earthquake-related phenomenon that takes place in saturated soils from the 
sub-surface soft layer. The cause of liquefaction is the rise of the water pore 
pressure under undrained conditions when the ground shakes. The increase 
of the pore pressure reduces the soil shear resistance to almost zero, causing 
the soil to behave as a liquid. Consequently, the energy of horizontal 
vibrations, seismic shear waves from depth, transferred by the soil is 
substantially reduced, particularly, the high frequency contents. 
Researchers recognize soil liquefaction as the main cause of the collapse of 
earth dams and slopes, failure of foundations, superstructures, and lifelines, 
such as gas and electrical power supplies.

Since the 1964 Niigata earthquake, scientists have obtained and studied a 
number of seismic records from liquefied-soil sites. The records show that 
the horizontal ground acceleration alternates uniquely after the onset of 
liquefaction. The frequency of the acceleration abruptly drops off toward 
the 0.3 to 1 Hz range, and amplitudes decrease, whereas the vertical 
acceleration remains fairly stable. The decrease of the soil shear modulus, 
as a consequence of the water pore-pressure build up, triggers the 
alternation of the horizontal ground acceleration.
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Researchers developed methods for liquefaction detection based on these 
seismic records. Recently, researchers from the International Center for 
Disaster-Mitigation Engineering at the University of Tokyo employed the 
seismic-signal instantaneous spectrum to quantify the alternation of the 
horizontal ground acceleration. Figure 2-11 shows the seismic-signal 
instantaneous spectrum from a site where extensive liquefaction occurred.

Figure 2-11.  East-West Component of the Ground Acceleration Record at 
Higashi-Kobe Bridge from the 1995 Hyogoken-Nanbu Earthquake (Data courtesy of 
the International Center for Disaster-Mitigation Engineering at the Institute of Industrial 

Science, University of Tokyo)
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Figure 2-12 shows the seismic-signal instantaneous spectrum from a site 
where no liquefaction occurred.

Figure 2-12.  East-West Component of the Ground Acceleration Record at JMA Kobe 
Station from the 1995 Hyogoken-Nanbu Earthquake. (Data courtesy of the 

International Center for Disaster-Mitigation Engineering at the Institute of Industrial 
Science, University of Tokyo)

The mean instantaneous frequency computed from the seismic-signal 
instantaneous spectrum can characterize the frequency changes, as shown 
in Figures 2-13 and 2-14.

Figure 2-13.  Mean Instantaneous Frequencies at the Figure 2-11 Site 
The mean instantaneous frequency for East-West component, computed from 

Figure 2-11, is obviously lower than that for non-liquefaction case in Figure 2-14. 
(Data courtesy of the International Center for Disaster-Mitigation Engineering 

at the Institute of Industrial Science, University of Tokyo)
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Figure 2-14.  Mean Instantaneous Frequencies at the Figure 2-12 Site 
The mean instantaneous frequency for East-West component is computed from 
Figure 2-12. (Data courtesy of the International Center for Disaster-Mitigation 

Engineering at the Institute of Industrial Science, University of Tokyo)

Occurrence of liquefaction is judged on the relative difference in the mean 
instantaneous frequency of the horizontal and vertical acceleration. Now, 
researchers from the University of Tokyo are able to remotely detect the 
occurrence of soil liquefaction. Figure 2-13 represents a typical 
liquefaction record, whereas Figure 2-14 indicates no liquefaction 
occurring.

Refer to Qian and Chen’s March 1999 article in the IEEE Signal 
Processing Magazine to learn about other successful signal processing 
applications [28].

Role of the Signal Processing Toolset
There is no doubt that time-frequency and wavelet transforms have begun 
to pervade modern technology, as well as our everyday life. The Signal 
Processing Toolset provides you with the tools to process signals for which 
the classical Fourier transform is not suitable, such as the transient signal 
and the signal whose frequency contents evolve over time.

The remainder of this manual discusses the main areas of signal analysis, 
specifically joint time-frequency analysis (JTFA), super-resolution spectral 
analysis (SRSA), and wavelet analysis, and how you can use the Signal 
Processing Toolset to perform these analyses. The manual also contains 
information about digital filter design.
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Part II

Joint Time-Frequency Analysis

This section of the manual provides information on joint time-frequency 
analysis (JTFA) and the JTFA applications in the Signal Processing 
Toolset.

• Chapter 3, Joint Time-Frequency Analysis, explains the need for and 
approaches to JTFA.

• Chapter 4, Joint Time-Frequency Analysis Algorithms, describes the 
algorithms that the JTFA VIs and functions use.

• Chapter 5, Joint Time-Frequency Analysis Applications, introduces 
Signal Processing Toolset JTFA applications.
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3
Joint Time-Frequency Analysis

This chapter explains the need for and approaches to joint time-frequency 
analysis (JTFA). 

The Need for JTFA
Unlike traditional analysis in which you analyze a signal only in the time 
domain or frequency domain, JTFA allows you to analyze a signal in the 
time and frequency domains simultaneously. This enables you to better 
understand and process a particular signal. JTFA is used primarily to 
observe how the power spectrum of a signal changes over time. Whereas 
classical algorithms, such as the square of the Fourier transform, indicate 
only the average power spectrum of a signal, JTFA algorithms allow you 
to examine the instantaneous spectrum.

The upper-left plot in Figure 3-1 is a time-dependent spectrum which plots 
the energy of the signal as a function of both time and frequency.

Figure 3-1.  Speech Signal
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As shown in Figure 3-1, the time-dependent spectrum clearly reveals the 
pattern of the formants. From the formants, you can see how the frequency 
changes. The relative brightness levels of the plot show the intensity of the 
frequencies. In this example, the JTFA helps illustrate the mechanism of 
human speech.

Another important application with JTFA is the detection of 
noise-corrupted signals. In general, random noise tends to spread evenly 
across the time and frequency domains. However, the signal usually 
concentrates in a relatively short time period or a narrow frequency band. 
If you convert the noise-corrupted signal to the joint time-frequency 
domain, you can substantially improve the local or regional 
Signal-to-Noise Ratio (SNR).

Figure 3-2 depicts an impulse signal received by the U.S. Department of 
Energy ALEXIS/BLACKBEARD satellite.

Figure 3-2.  Ionized Impulse Signal (Data courtesy of Non-Proliferation and 
International Security Division, Los Alamos National Laboratory)

After passing through dispersive media, such as the ionosphere, the 
impulse signal becomes the nonlinear chirp signal. As shown in Figure 3-2, 
random noise dominates both the time waveform and the power spectrum. 
Neither indicates the existence of the impulse signal. However, from the 
time-dependent spectrum, you can immediately identify the presence of 
the chirp-type signal that arches across the joint time-frequency domain. 
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The horizontal lines correspond to radio carrier signals that remain 
basically unchanged over time.

Based on the joint time-frequency representation, you can further mask the 
desired signal, as shown in the top plot in Figure 3-3. 

Figure 3-3.  Reconstructed Signal

You can then apply the inverse transformation to recover the noiseless time 
waveform. The lower plot in Figure 3-3 illustrates the noisy and 
reconstructed signals. When the SNR is very low, as with many satellite 
signals, JTFA might offer the only opportunity to detect the signal of 
interest.

Basic Approaches to JTFA
The development of JTFA began more than a half century ago. The most 
straightforward approach to characterizing the frequency of a signal as a 
function of time is to divide the signal into several blocks that can be 
overlapped. Then the Fourier transform is applied to each data block to 
indicate the frequency contents of each data block. This process is known 
as the short-time Fourier transform (STFT) and roughly reflects how 
frequency contents change over time. The size of the blocks determines 
the time accuracy—the smaller the block, the better the time resolution. 
However, frequency resolution is inversely proportional to the size of 
a block. When the small block yields good time resolution, it also 
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deteriorates the frequency resolution and vice versa. This phenomenon 
is known as the window effect.

From the concept of expansion and series, physicist Dennis Gabor 
suggested expanding a signal into a set of weighted frequency-modulated 
Gaussian functions. Because the Gaussian function is concentrated in both 
the time and frequency domains, the weights describe signal behavior in 
local time and frequency. The resulting presentation is known as the Gabor 
expansion. In fact, you can consider the Gabor expansion as the inverse of 
the STFT. However, this inverse relationship was not clear during Gabor’s 
lifetime and not well understood until the 1980s. At present, both the theory 
and implementation of the Gabor expansion and STFT are mature enough 
to apply to real application problems.

As the linear JTFA develops, the quadratic JTFA, or time-dependent 
spectrum, is attracting attention. The simplest time-dependent spectrum 
is the square of the STFT, which is known as the STFT-based spectrogram, 
or the STFT spectrogram. However, the STFT spectrogram suffers from the 
window effect.

A more elegant method than the STFT spectrogram is the Wigner-Ville 
distribution (WVD), which physicist Eugene P. Wigner originally 
developed in the context of quantum mechanics. The WVD gives high 
resolution and many other useful properties for signal analysis, but it 
suffers from crossterm interference. To reduce crossterm interference, 
you can use two proven algorithms, Cohen’s class and the Gabor 
expansion-based spectrogram, also known as the Gabor spectrogram. 
Scientists at National Instruments developed the Gabor spectrogram in 
the early 1990s. Based on the conventional Gabor expansion and the 
WVD, scientists at National Instruments also introduced the adaptive 
representation-based spectrogram, or the adaptive spectrogram.

Unlike the linear JTFA method, the quadratic JTFA method is not unique. 
This toolset contains the following quadratic algorithms:

• Adaptive spectrogram

• Cohen’s class

– Choi-Williams distribution

– Cone-shaped distribution

– STFT spectrogram

– WVD

• Gabor spectrogram
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Which method should you use? Often, the choice is application dependent. 
With these methods, you can process signals the conventional Fourier 
transform cannot handle.
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4
Joint Time-Frequency 
Analysis Algorithms

This chapter describes the algorithms the joint time-frequency analysis 
(JTFA) VIs and functions use. The JTFA algorithms implemented in this 
toolset fall into two categories—linear and quadratic. Refer to the works of 
Qian and Chen [27] and Cohen [6] for more information about a particular 
algorithm.

Linear JTFA Algorithms
Linear JTFA includes the following methods:

• Gabor expansion, considered the inverse short-time Fourier 
transform (STFT)

• STFT, used for computing the Gabor coefficients

• Adaptive representation, considered the inverse adaptive transform

• Adaptive transform

Gabor Expansion and STFT
In Equation 4-1, the Gabor expansion represents a signal s[i] as the 
weighted sum of the frequency-modulated and time-shifted function h[i]:

(4-1)

where the Gabor coefficients Cm,n are computed by the STFT in the 
following equation.

s i[ ] Cm n, h i m∆M–[ ]e j2πni N⁄

n 0=

N 1–

∑
m

∑=

Cm n, STFT m∆M n,[ ] s i[ ]γ∗ i m∆M–[ ]e
j– 2πni N⁄

i 0=

∑= =
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where N denotes the number of frequency bins and ∆M denotes the time 
sampling interval. You can use any function as γ[i], as long as its dual 
function h[i] exists. For the perfect reconstruction, the oversampling rate 
N/∆M, must be greater than or equal to one. For a given h[i] or γ[i], 
LabVIEW users can use the Fast Dual VI to compute the corresponding 
dual function, and LabWindows/CVI users can use the 
SPTFastDualFunction. Refer to the Signal Processing Toolset Help for 
more information about the Fast Dual VI. Refer to the Signal Processing 
Toolset for LabWindows/CVI Help for more information about the 
SPTFastDualFunction.

If the STFT is not used for computing the Gabor coefficient Cm,n, there are 
no restrictions for γ[i] or the ratio N/∆M.

Adaptive Representation and Adaptive Transform
In the Gabor expansion in Equation 4-1, the elementary functions 
h[i – m∆M]e j2πni/N are time-shifted and frequency-modulated versions of 
the single prototype function h[i]. To better match the analyzed signal, 
the adaptive representation, shown in Equation 4-2, was developed to 
decompose the signal s[i] as a sum of weighted linear adaptive modulated 
Gaussian functions:

(4-2)

where the adaptive Gaussian function hk[i] is defined by

which has three parameters: αk , ik, fk . Therefore, the adaptive 
representation is more flexible than the elementary function used in the 
Gabor expansion.

The parameter D in Equation 4-2 denotes the total number of elementary 
functions used by hk[i]. Ak is the weight of each individual hk[i], as 
computed by the adaptive transform.

Scientists at National Instruments [25] and Mallat and Zhang [16] 
independently developed the adaptive representation, also known as the 
matching pursuit.

s i[ ] Akhk i[ ]
k 0=

D 1–

∑=

hk i[ ] αkπ( ) 0.25– exp
i ik–[ ]2

2αk

------------------ j 2πθk i ik–[ ]( )+–
 
 
 

=
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Quadratic JTFA Algorithms
The quadratic JTFA algorithms include the following methods:

• STFT spectrogram

• Wigner-Ville distribution (WVD)

• Pseudo Wigner-Ville distribution (PWVD)

• Cohen’s class

• Choi-Williams distribution (CWD)

• Cone-shaped distribution

• Gabor spectrogram

• Adaptive spectrogram

STFT Spectrogram
The STFT-based spectrogram is defined as the square of the STFT, 
as shown in the following equation:

where N denotes the number of frequency bins and ∆M denotes the time 
sampling interval. The STFT-based spectrogram is simple and fast but 
suffers from the window effect. 

Figures 4-1 and 4-2 illustrate the window effect of the STFT spectrogram.

SP m∆M n,[ ] s i[ ]γ i m∆M–[ ]e j– 2πni N⁄

i 0=

∑
2

=
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Figure 4-1.  STFT-Based Spectrogram with a Narrowband Hanning Window 
for the Three-Tone Test Signal

Figure 4-2.  STFT-Based Spectrogram with a Wideband Hanning Window 
for the Three-Tone Test Signal

In Figure 4-1, with a narrowband window, the time-dependent spectrum 
has high frequency resolution but poor time resolution. In Figure 4-2, with 
a wideband window, the time-dependent spectrum has poor frequency 
resolution but high time resolution.
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Wigner-Ville Distribution and Pseudo Wigner-Ville Distribution
For a signal s[i], the Wigner-Ville distribution (WVD) is

where the function R[i,m] is the instantaneous correlation given by

R[i,m] = z[i + m]z*{i – m]

and z[i] is the analytical, or interpolated, form of s[i]; refer to 
reference [27].

The WVD also can be computed by

where  and Z[k] denotes the Fourier 
transform of z[i].

The Wigner-Ville distribution is simple and fast. It has the best joint 
time-frequency resolution of all known quadratic JTFA algorithms. 
However, if the analyzed signal contains more than one component, 
the WVD method suffers from crossterm interference.

Figure 4-3 depicts the WVD of the three-tone test signal. 

WVD i k,[ ] R i m,[ ]e
j2πkm L⁄–

m L 2⁄–=

L 2⁄

∑=

WVD i k,[ ] ℜ i m,[ ]e
j2πkm L⁄

m L 2⁄–=

L 2⁄

∑=

ℜ i m,[ ] Z i m+[ ]Z∗ i m–[ ]=
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Figure 4-3.  Wigner-Ville Distribution for the Three-Tone Test Signal

In Figure 4-3, three real signal terms are centered at (0.03 s, 400 Hz), 
(0.09 s, 100 Hz), and (0.09 s, 400 Hz). Three crossterms exist and are 
labeled as 1, 2, and 3 in Figure 4-3.

A crossterm reflects the correlation between a pair of corresponding 
autoterms, always sits halfway between two corresponding autoterms, and 
oscillates frequently. Although the magnitude of a crossterm can be large, 
the average of a crossterm is usually limited. 

Autoterms at (0.03 s, 400 Hz) and (0.09 s, 400 Hz), which have different 
time centers, cause crossterm 1. Autoterms at (0.09 s, 100 Hz) and (0.09 s, 
400 Hz), which have different frequency centers, cause crossterm 3. 
Autoterms at (0.03 s, 400 Hz) and (0.09 s, 100 Hz) create crossterm 2. 

To alleviate the crossterm interference, you can assign different weights to 
the instantaneous correlation R[i,m]. Assigning different weights to R[i,m] 
suppresses the less important parts and enhances the fundamental parts of 
the signal.

1 Crossterm 1 2 Crossterm 2 3 Crossterm 3

1

2

3
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Two traditional methods exist for applying the weighting function to the 
instantaneous correlation R[i,m]. The first is in the time domain and known 
as the Pseudo Wigner-Ville distribution (PWVD). Equation 4-3 represents 
the PWVD.

(4-3)

The PWVD effectively suppresses crossterms that correspond to a pair of 
autoterms with different time centers, such as crossterms 1 and 2 in 
Figure 4-3. Figure 4-4 illustrates the PWVD with the Gaussian window 
function w[m]. When compared with the WVD in Figure 4-3, the PWVD 
successfully eliminates crossterms 1 and 2.

Figure 4-4.  Pseudo Wigner-Ville Distribution with Gaussian Window w[m] 
for the Three-Tone Test Signal

In the second method for applying the weighting function to the 
instantaneous correlation R[i,m], you assign weights to R[i,m] in the 
frequency domain. This method is represented by Equation 4-4.

(4-4)

PWVD i k,[ ] w m[ ]R i m,[ ]e
j2πkm L⁄–

m L 2⁄–=

L 2⁄

∑=

WVD i k,[ ] H m[ ]ℜ i m,[ ]e j2πkm L⁄

m L 2⁄–=

L 2⁄

∑=
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This weighting function effectively suppresses crossterms that correspond 
to a pair of autoterms with different frequencies, such as crossterms 2 and 3 
in Figure 4-3. Figure 4-5 illustrates the PWVD with the Gaussian window 
function H[m]. Compared with the WVD in Figure 4-3, the PWVD 
successfully eliminates crossterms 2 and 3.

Figure 4-5.  Pseudo Wigner-Ville Distribution for the Three-Tone Test Signal

Notice that Equation 4-4 is equivalent to

(4-5)

where h[n] is the inverse Fourier transform of H[m] in Equation 4-4. 

Cohen’s Class
Because the crossterm often oscillates in the joint time-frequency domain, 
another intuitive way of reducing the crossterm interference is to perform 
2D filtering to the Wigner-Ville distribution. The result is described in 
Equation 4-6.

(4-6)

PWVD i k,[ ] h n[ ]R i n– m,[ ]
n
∑ 
 
 

e
j2πkm L⁄–
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L 2⁄
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n
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where Φ[i,m] denotes the kernel function. Notice that the window functions 
w[m] in Equation 4-3 and h[m] in Equation 4-5 are special cases of Φ[i,m] 
in Equation 4-6. 

In 1966, Leon Cohen developed the representation C[i,k] in Equation 4-6, 
so it is traditionally known as Cohen’s class [4]. Compared with the PWVD 
in Equation 4-3 or 4-5, the Cohen’s class method is more general and 
flexible. Most quadratic equations known so far, such as the STFT 
spectrogram, WVD, PWVD, Choi-Williams distribution, and the 
cone-shaped distribution, belong to Cohen’s class.

Choi-Williams Distribution
When the kernel function in Equation 4-6 is defined by

(4-7)

the yield is the Choi-Williams distribution (CWD). By adjusting the 
parameter α in Equation 4-7, you balance crossterm interference and 
time-frequency resolution; as α increases, the smoothing decreases. 
Figure 4-6 illustrates the CWD for the three-tone test signal where α = 1. 
The CWD can effectively suppress the crossterm caused by two autoterms 
with different time and frequency centers, such as crossterm 2 in 
Figure 4-3. However, the CWD method cannot reduce crossterms that 
correspond to autoterms with the same time center or the same frequency 
center, such as crossterms 3 and 1, respectively, in Figure 4-3. Furthermore, 
the computation speed of the CWD is very slow.

Φ i m,[ ] α
4πm2
-------------e

αi
2 4m

2( )⁄–=
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Figure 4-6.  Choi-Williams Distribution (α = 1) for the Three-Tone Test Signal

Cone-Shaped Distribution
When the kernel function in Equation 4-6 is defined by

(4-8)

the yield is the cone-shaped distribution. In the Signal Processing Toolset, 
the constant c is set to 500. By adjusting the parameter α in Equation 4-8, 
you can balance crossterm interference and time-frequency resolution; as α 
increases, the smoothing decreases. Figure 4-7 illustrates the cone-shaped 
distribution for the three-tone test signal where α = 1. The cone-shaped 
distribution effectively suppresses crossterms 2 and 3 from Figure 4-3, but 
it cannot reduce the crossterms that correspond to autoterms with the same 
frequency center, such as crossterm 1 in Figure 4-3. The cone-shaped 
distribution is faster than the CWD method.

Φ i m,[ ] e
αm

2

c
----------–

 for i m<
0  otherwise




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Figure 4-7.  Cone-Shaped Distribution (α = 1) for the Three-Tone Test Signal

Gabor Spectrogram
In addition to applying the Pseudo Wigner-Ville distribution window 
method, you can apply the Gabor expansion to a signal to identify the 
significance of each term to the energy of the signal at point [i, k]. You can 
then preserve those terms that have major contributions at point [i, k] and 
remove those terms that have a negligible influence on the energy of the 
signal. Because this method is a Gabor expansion-based spectrogram, the 
resulting method is the Gabor spectrogram. The Gabor spectrogram is 
defined by the following equation:

where denotes the cross-WVD of frequency-modulated 
Gaussian functions. The order of the Gabor spectrogram, D, controls the 
degree of smoothing. For D = 0, GS0[i, k] is non-negative and similar to the 
STFT spectrogram. As D moves toward infinity, the Gabor spectrogram 
converges to the WVD.

A lower order Gabor spectrogram has less crossterm interference but 
lower resolution. A higher order Gabor spectrogram has better resolution 
but more crossterms and a longer computation time. For best results, 
choose an order of three to five. The Gabor spectrogram has better 

GSD i k,[ ] Cm n, Cm ′ n ′, WVDh h′, i k,[ ]
m m′– n n′– D≤+

∑=

WVDh h′, i k,[ ]
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resolution than the STFT spectrogram and much less crossterm 
interference than the cone-shaped, Choi-Williams, or Wigner-Ville 
distributions.

Figure 4-8 illustrates the fourth-order Gabor spectrogram for the three-tone 
test signal. This Gabor spectrogram possesses high time-frequency 
resolution and does not have the crossterm interference that appears in 
the cone-shaped, Choi-Williams, and Wigner-Ville distributions. The 
computational speed of the fourth-order Gabor spectrogram is slower than 
the STFT spectrogram and WVD but faster than the CWD and 
cone-shaped distribution.

Figure 4-8.  Gabor Spectrogram (Order Four) for the Three-Tone Test Signal

Adaptive Spectrogram
The adaptive spectrogram method is an adaptive representation-based 
spectrogram computed by Equation 4-9.

(4-9)

Refer to Equation 4-2 for the adaptive representation equation.

AS i n,[ ] 2 Ak
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The adaptive spectrogram achieves the best joint time-frequency resolution 
if the analyzed signal is a sum of Gaussian functions. For example, 
Figure 4-9 shows that the adaptive spectrogram effectively describes the 
three-tone test signal. Unfortunately, the computation speed of the adaptive 
spectrogram increases exponentially with the analyzed data size.

Figure 4-9.  Adaptive Spectrogram for the Three-Tone Test Signal

Scientists at National Instruments [25] and Mallat and Zhang [16] 
independently developed the adaptive representation, also known as the 
matching pursuit. The adaptive methods in this toolset were implemented 
with the adaptive oriented orthogonal projective decomposition algorithm.
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5
Joint Time-Frequency Analysis 
Applications

This chapter describes the Off-line JTFA application, a comprehensive 
JTFA example. With this example, you can perform rather sophisticated, 
time-dependent spectrum analysis without needing to use any 
programming. Because each of the JTFA algorithms has advantages and 
disadvantages, select an algorithm that fits your application.

The Off-line JTFA example is designed for demonstration purposes only. 
For actual applications, use the VIs included in the Signal Processing 
Toolset to build your own JTFA instrument.

Opening the JTFA Example
The Off-line JTFA example resides on the SPT palette, shown in 
Figure 5-1. Select Start»Programs»National Instruments»Signal 
Processing Toolset»NI SPT Start-Up to open the SPT palette. On the 
SPT palette, click the Off-line JTFA icon.

Figure 5-1.  SPT Palette

Refer to the Accessing Example Application Source Code section of 
Chapter 1, Signal Processing Toolset Overview, for information about 
accessing the source code for the Off-line JTFA example.

1 Off-line JTFA

1
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Off-line JTFA
With the Off-line JTFA example, you can test all the quadratic JTFA 
algorithms included in the Signal Processing Toolset and find the one 
which best fits your application. When you click the Off-line JTFA icon 
on the SPT palette, the Off-line JTFA front panel, shown in Figure 5-2, 
opens. The following sections describe the Off-line JTFA front panel 
controls and indicators. You also can select Help»Show Context Help or 
press <Ctrl-H> for information about controls and indicators.

Figure 5-2.  Off-line JTFA Front Panel

Loading the Test Data
You can use the Off-line JTFA example to analyze either one of the data 
files supplied with the Signal Processing Toolset or your own data file. 
Your data file must be a one-column or one-row spreadsheet text file. 
If your data file contains an x-index, use a word processor to remove the 
x-index before you analyze the data file.
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Complete the following steps to load your test data.

1. Select File»Open to open the Choose spreadsheet file to read dialog 
box.

2. Navigate to the location of the data file you want to analyze.

3. Select the data file you want to analyze and click the Open button or 
double-click the data file name.

Setting the Sampling Rate
Use the Samp Freq control on the Off-line JTFA front panel, shown in 
Figure 5-2, to specify the sampling frequency. While the sampling 
frequency does not affect the computation results, it does affect the Power 
Spectrum display. The y-scale of the Power Spectrum display is the 
frequency. For the conventional power spectrum, as shown in Figure 5-2, 
the frequency ranges from DC to the Nyquist frequency, or half of the 
sampling frequency.

When the power spectrum is displayed as the instantaneous spectrum, the 
frequency range of the y-scale is determined by the zoom factor and the 
amount of area of the Spectrogram being analyzed. Refer to Figure 5-3 and 
refer to the Changing the Spectrogram Display section for more 
information about displaying the instantaneous spectrum.

Detrending
Use the Trend Level control or the slider immediately below it to set the 
trend level. Detrending allows you to better analyze signals that contain DC 
offset or slow trend, for example, the stock index. The higher you set the 
trend level, the more similar the trend of your analyzed signal is to the 
original signal.

Selecting a JTFA Method
Use the JTFA Method control on the Off-line JTFA front panel, shown in 
Figure 5-2, to select the algorithm you want to use. With the Off-line JTFA 
example, you can choose one of the following quadratic algorithms as your 
data analysis method:

• STFT spectrogram

• Gabor spectrogram

• Adaptive spectrogram

• Wigner-Ville distribution
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• Choi-Williams distribution

• Cone-shaped distribution

If your signal processing experience is limited, start with the STFT 
spectrogram because it is fast and simple. After choosing your analysis 
method, click the Go button to compute the spectrogram.

The following sections provide more information about each of the JTFA 
algorithms in the Signal Processing Toolset.

STFT Spectrogram
When you choose the STFT spectrogram, adjust the Analysis Window and 
Length controls so that the resulting STFT spectrogram achieves the best 
balance between time and frequency resolution.

You can choose one of the following window types with the Analysis 
Window control:

• Hanning (default)

• Rectangular

• Blackman

• Hamming

Use the Length control to specify the length of the window used to 
compute the STFT spectrogram. The default value for Length is 128. As 
the window length increases, the frequency resolution improves, but the 
time resolution becomes poorer and vice versa. Consider a long window as 
narrowband and a short window as wideband. You can use the window 
length that gives you the best balance between time and frequency 
resolution as a reference for the Gabor spectrogram.

Use the Freq Bins control to specify the number of frequency lines in the 
Spectrogram display. Increasing the value of Freq Bins increases the 
amount of detail shown in the spectrogram but lengthens computation time. 
The Freq Bins value must be a power of 2.

Use the Reassigned control to specify whether reassignment is performed 
for the spectrogram by moving the dispersive energy to its local center of 
gravity in the joint time-frequency domain. The reassignment improves the 
readability of the spectrogram for some signals.

If you cannot achieve satisfactory resolution with the STFT spectrogram, 
try the Gabor spectrogram or one of the other JTFA methods included with 
the Off-line JTFA example.
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Gabor Spectrogram
If the time-frequency resolution of the STFT spectrogram is not 
satisfactory, try the Gabor spectrogram next. The Gabor spectrogram 
method requires more computation time than the STFT spectrogram but 
achieves better time-frequency resolution.

When you choose the Gabor spectrogram method, you need to specify 
values for the Length, Var, and Order controls. The analysis window for 
the Gabor spectrogram is an optimal Gaussian window specified by length 
and variance. The Length control specifies the window length, and the Var 
control specifies the variance of the window.

The value you specify for the Order control determines resolution and 
crossterm interference. The higher the order, the better the time-frequency 
resolution becomes. As the order goes to infinity, the Gabor spectrogram 
converges to the Wigner-Ville distribution. As the order increases, 
crossterms become more obvious. Also, computation time is proportional 
to the order selected. Set Order to a value between three and five to achieve 
the best compromise between resolution and crossterm interference.

Decrease the value of the Var control to reduce Gaussian window variance. 
Reducing Gaussian window variance eliminates the crossterm caused by a 
pair of autoterms separated in time but deteriorates the time-frequency 
resolution.

Refer to the STFT Spectrogram section for information about the Freq 
Bins control.

Adaptive Spectrogram
If you can consider a signal as the sum of complex sinusoidal functions 
with different Gaussian envelopes, which is a Gaussian pulse, or the sum 
of complex chirp functions with different Gaussian envelopes, which is a 
chirplet, use the adaptive spectrogram to achieve the best time-frequency 
resolution.

Use the mode control to specify the type of the elementary function used 
to decompose the signal. You can choose from the chirplet or the Gaussian 
pulse elementary functions. The chirplet is a linear frequency-modulated 
complex sinusoid with Gaussian envelope. Gaussian pulse is a complex 
sinusoid with Gaussian envelope.

Use the # of Terms control to specify the number of chirplets or Gaussian 
pulses used to approximate the analyzed signal. The higher you set the 



Chapter 5 Joint Time-Frequency Analysis Applications

Signal Processing Toolset User Manual 5-6 ni.com

value of # of Terms, the more accurate the approximation becomes, and the 
smaller the residual becomes. However, increasing the value for # of Terms 
lengthens computation time. It is a good idea to start with a small number 
of terms and increase the value of # of Terms until the Residual (%) 
indicator returns a satisfactory reading. The residual is computed by the 
following equation:

where a[n] denotes the approximation. If the approximation is equal to the 
original signal s[n], the residual goes to zero.

Refer to the STFT Spectrogram section for information about the Freq 
Bins control.

Wigner-Ville Distribution
The Wigner-Ville distribution provides high time-frequency resolution at a 
rapid computation rate. However, the Wigner-Ville distribution can suffer 
from severe crossterm interference if the analyzed signal consists of 
multiple components.

In order to lessen crossterm interference, place a checkmark in the Analytic 
Signal? checkbox. When you place a checkmark in the Analytic Signal? 
checkbox, the Off-line JTFA example converts the data samples into the 
corresponding analytic signal. Converting the data samples into the analytic 
signal reduces the cross interference due to components from negative 
frequencies. However, the conversion can introduce distortion in the low 
frequency portion of the time-dependent spectrum of the signal, especially 
in the vicinity of DC.

Refer to the STFT Spectrogram section for information about the Freq 
Bins control.

Choi-Williams Distribution
The Choi-Williams distribution offers you a reduction in crossterm 
interference while preserving as many useful Wigner-Ville distribution 
properties as possible. Like the Wigner-Ville distribution, placing a 
checkmark in the Analytic Signal? checkbox causes the Off-line JTFA 
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example to convert the data samples into the corresponding analytic signal. 
Converting the data samples into the analytic signal reduces the cross 
interference due to components from negative frequencies but introduces 
distortion in the low frequency portion of the time-dependent spectrum.

You also can lessen crossterm interference by specifying a value for the 
Alpha control. In general, the smaller the Alpha value, the less crossterm 
interference you get, but the time-frequency resolution becomes poorer. 
The Alpha default value is 1.0E-6.

Refer to the STFT Spectrogram section for information about the Freq 
Bins control.

Cone-Shaped Distribution
The cone-shaped distribution is another time-dependent spectrum designed 
to reduce crossterm interference. Like the Wigner-Ville distribution and the 
Choi-Williams distribution, place a checkmark in the Analytic Signal? 
checkbox to lessen crossterm interference.

Refer to the Choi-Williams Distribution section for information about the 
Alpha control.

Refer to the STFT Spectrogram section for information about the Freq 
Bins control.

Displaying Data
The Off-line JTFA example uses the following data displays:

• The Power Spectrum/Instantaneous Spectrum display shows either the 
classical power spectrum or the instantaneous spectrum, depending on 
the settings you have chosen. Refer to the Changing the Spectrogram 
Display section for more information about the Instantaneous display.

• The Spectrogram display shows the time-dependent spectrum for the 
chosen analysis method.

• The Time Waveform display shows the time waveform of the analyzed 
signal.

Changing the Spectrogram Display
You can change the Spectrogram data display by moving the Linear/dB 
switch and/or clicking the Cursor button. With the Linear/dB switch, you 
can choose to display your data in the Spectrogram as either a linear or 
decibel (dB) display.
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Clicking the Cursor button turns the cursor on and off. When the cursor 
is on, as shown in Figure 5-3, the Power Spectrum display changes to 
the Instantaneous Spectrum. The Instantaneous Spectrum shows the 
instantaneous spectrum at the time indicated by the x-value of the cursor.

Frequency Zooming
With the cursor turned on, you can click the Zoom button to zoom in on the 
Spectrogram display in the frequency scale. The frequency range displayed 
equals fs / (2 × zoom factor), where fs is the sampling frequency. The 
central frequency is determined by the y-value of the cursor. The zoom 
factor doubles every time you click the Zoom button. The maximum zoom 
factor is limited to 16, so the smallest frequency range is fs/32.

Figure 5-3.  Instantaneous Spectrum

Mean Instantaneous Frequency
After computing the spectrogram of your test data, click the Mean Inst. 
Freq. button to calculate the mean instantaneous frequency. The 
Spectrogram display shows the profile of the mean instantaneous 
frequency, as shown in Figure 5-4.
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Figure 5-4.  Mean Instantaneous Frequency

Saving Results
When you select File»Save, you can choose any of the following options 
from the pull-down menu and save your results as a text file:

• Detrend saves the detrended time waveform.

• Spectrum saves the power spectrum.

• Spectrogram saves the real spectrogram without truncating or 
normalizing it.
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Part III

Super-Resolution Spectral Analysis

This section of the manual discusses model-based frequency analysis 
and the model-based frequency analysis algorithms used by the Signal 
Processing Toolset. Model-based frequency analysis enables you to obtain 
super-resolution spectra of the signals you are studying. This section of the 
manual also describes a super-resolution spectral analysis example 
included with the Signal Processing Toolset.

• Chapter 6, Introduction to Model-Based Frequency Analysis, 
introduces the basic concepts of model-based frequency analysis.

• Chapter 7, Model-Based Frequency Analysis Algorithms, outlines the 
theoretical background of model-based frequency analysis and 
describes the relationship among the model coefficients, power 
spectra, and parameters of damped sinusoids.

• Chapter 8, Applying Super-Resolution Spectral Analysis and 
Parameter Estimation, describes a comprehensive super-resolution 
spectral analysis example application included with the Signal 
Processing Toolset. This example is designed to help you learn about 
model-based analysis.
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6
Introduction to Model-Based 
Frequency Analysis

This chapter introduces the basic concepts of model-based frequency 
analysis.

Two methods are usually employed to perform spectral analysis, 
non-model-based methods, such as the fast Fourier transform (FFT)-based 
methods, and model-based methods. Model-based methods need fewer 
data samples and are more accurate than the FFT-based methods if the 
model fits the analyzed data samples. When you employ model-based 
methods, you not only obtain super-resolution power spectra with a small 
data set, but you also can estimate the parameters of damped sinusoids. The 
model-based methods are an important alternative to classical FFT-based 
methods in many frequency analysis applications.

The Need for Model-Based Frequency Analysis
The term spectrum has been generalized for arbitrary signals and 
characterizes the frequency behavior of a signal. Examples of questions 
that spectral analysis can answer include whether most of the power of the 
signal resides at low or high frequencies, and whether there are resonances.

Spectral analysis is used widely in such diverse fields as biomedicine, 
economics, geophysics, noise and vibration, radar, sonar, speech, and other 
areas in which signals of unknown or questionable origin are of interest. 
By performing spectral analysis, you can often discover some important 
features of signals that are not obvious in the time waveform of the signal.

Over the last 30 years, a primary tool for spectral analysis has been the FFT. 
However, the frequency resolution of the FFT-based methods is bounded by 
the number of data samples. The relationship of the number of samples and 
frequency resolution can be quantified by Equation 6-1.

(6-1)∆f
sampling frequency

number of samples
-----------------------------------------------------=



Chapter 6 Introduction to Model-Based Frequency Analysis

Signal Processing Toolset User Manual 6-2 ni.com

where ∆f denotes the frequency resolution. The frequency resolution 
characterizes the distinguishable minimum difference between two 
sinusoids. For a given sampling frequency, the more samples you have, 
the higher the frequency resolution becomes.

Figure 6-1 illustrates a sum of two sinusoids.

Figure 6-1.  50 Samples for a Sum of Two Sinusoids

The frequencies of the two sinusoids in Figure 6-1 are 0.11 Hz and 0.13 Hz, 
respectively. To separate the two sinusoids, the frequency resolution ∆f has 
to be less than or equal to 0.02 Hz. Assume that the sampling frequency is 
1 Hz. Based on Equation 6-1, you need at least 50 samples in order to 
separate the two sinusoids. Figure 6-2 uses the rectangular window and the 
Hamming window to depict the FFT-based power spectra. As long as you 
have enough samples, you can use either window to separate the two 
sinusoids.

Figure 6-2.  FFT-Based Power Spectra Based on 50 Samples

However, in many applications, the number of data samples is limited. 
The limited number of samples might be the result of a genuine lack of 
data, as in the seismic patterns of an erupting volcano. In other instances, it 
might be necessary to impose restrictions on the sample size to ensure that 
the spectral characteristics of a signal do not change over the duration of the 
data record, as in speech processing. When the data record is small, 
scientists often think that the frequency resolution of FFT-based power 
spectra is not adequate. For example, reduce the number of data samples for 
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the two sinusoids in the example above to 15. Figure 6-3 shows the 
15-sample data record. The resulting FFT-based power spectra are plotted 
in Figure 6-4. In this case, neither window yields a frequency resolution 
high enough to resolve the two close sinusoids.

Figure 6-3.  Two Sinusoids with 15 Samples

Figure 6-4.  FFT-Based Power Spectra Based on 15 Samples

An alternative is the model-based method. By employing model-based 
analysis techniques, you can obtain super-resolution spectra. Once you 
assume a suitable signal model and determine its coefficients, you can 
predict the missing data based on the given finite data set. When you use 
the model-based method, it is as if you have an infinite number of data 
samples. Thus, you can substantially improve the frequency resolution.

Figure 6-5 depicts two model-based super-resolution power spectra for the 
sinusoids in Figure 6-3. 
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Figure 6-5.  Super-Resolution Power Spectra Based on 15 Samples

Although the FFT-based methods need at least 50 samples, the 
model-based super-resolution power spectra detect two sinusoids 
satisfactorily with only 15 samples.

Another important application of model-based methods is the parameter 
estimation of damped sinusoids. The estimated parameters include 
amplitude, phase, damping factor, and frequency. You can compute the 
signal frequency and phase by applying the FFT, if the number of data 
samples is large enough. However, there is no indication of the signal 
damping behavior. In nature, the signal amplitude often changes with time, 
gradually decreasing or increasing until blowing out. The damping 
behavior is an important aspect of the signal that indicates whether the 
corresponding system is stable. 

Figure 6-6 depicts a sum of two damped sinusoids in which the sampling 
frequency is 1 Hz.

Figure 6-6.  Damped Sinusoids

Table 6-1 lists the corresponding parameters for the two damped sinusoids 
whose sum is depicted in Figure 6-6. Figure 6-7 plots the resulting 
FFT-based power spectra. Applying FFT-based methods provides no way 
to tell the complete information about the two damped sinusoids.
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Figure 6-7.  FFT-Based Power Spectra for Damped Sinusoids

Figure 6-8 illustrates the estimated result obtained by a model-based 
algorithm known as the matrix pencil. Notice that a real signal produces 
two imaginary, symmetrical complex sinusoids. The complex sinusoids 
indicator in the lower left corner of Figure 6-8 shows that there are a total 
of four complex sinusoids for the samples shown in Figure 6-6. Figure 6-8 
also lists the parameters of the components with positive frequencies. Since 
the amplitude of the complex sinusoids is half that of the corresponding real 
sinusoids, the values in Figure 6-8 match those in Table 6-1 exactly.

Figure 6-8.  Parameter Estimation by Matrix Pencil Method

Table 6-1.  Damped Sinusoids

Signal Amplitude
Phase 
(rad)

Damping 
Factor

Frequency 
(Hz)

Signal 1 1.0 0.20 –0.10 0.13

Signal 2 1.0 0.10 –0.20 0.11
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The precision of the FFT-based methods is accurate only at frequencies that 
are integer multiples of the frequency increment1:

(6-2)

There is no such limitation for the model-based methods. Therefore, the 
model-based methods are much more accurate than the FFT-based 
techniques.

Aside from the super-resolution power spectra, model-based analyses are 
also fundamental in many other signal processing applications. Although 
the focus of this part of the manual is on frequency analysis, you easily can 
tailor the model-based applications in the Signal Processing Toolset for 
many other applications, including the following applications:

• Linear prediction, such as linear predict code

• Signal synthesis

• Data compression, such as speech compression

• System identification

Applying Model-Based Methods Properly
Model-based methods can obtain super-resolution power spectra with a 
limited number of data samples or estimate the parameters of damped 
sinusoids. However, for best results, you need to consider the following 
three factors:

• The signal has to be a certain type of time series, and the following 
equation should be able to generate the signal. Equation 6-3 is known 
as the recursive difference equation.

(6-3)

where w[n] denotes the error.

• You need to select the order of the model correctly. Otherwise, you 
might obtain an incorrect spectrum or parameter estimate.

1   The number of samples in Equation 6-1 and the number of FFT points in Equation 6-2 might not be equal. For a given number 
of data samples, you always are able to increase the number of FFT points simply by zero-padding. Increasing the number of 
FFT points reduces the frequency increment but does not improve the ability to resolve two close sinusoids.

sampling frequency

number of FFT points
-----------------------------------------------------------

x n[ ] akx n k–[ ] w n[ ]+

k 1=

p

∑–=
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• The computation time of the super-resolution power spectra is much 
longer than that of FFT, JTFA, and wavelet transform. When the 
number of data samples is more than a few hundred, it is no longer 
appropriate to use model-based methods because of the computation 
time involved and the numerical inaccuracies that might result.

Figure 6-9 shows the plot of super-resolution power spectra for the sum of 
the two sinusoids in Figure 6-3. The spectra were computed by the same 
model-based methods as that in Figure 6-5. However, instead of choosing 
order four, the order is artificially increased to 10. Consequently, in 
addition to the four real components, several spurious peaks appear that do 
not actually exist. Blindly applying model-based techniques does not lead 
to a good estimation. A good estimation relies on selecting the proper 
signal model as well as the model order. The rest of this chapter and 
Chapter 7, Model-Based Frequency Analysis Algorithms, and Chapter 8, 
Applying Super-Resolution Spectral Analysis and Parameter Estimation, 
deal with this central topic.

Figure 6-9.  Super-Resolution Power Spectra with Order 10 for Sum of Two Sinusoids

One reason for using a few samples to perform frequency analysis is to 
ensure that the spectral characteristics of a signal do not change over the 
duration of the data record. This is also a primary motivation of developing 
the JTFA and wavelet transform. 

At this point, a natural question might be, “Which technique is the best?” 
The answer is that each method has advantages and disadvantages. None is 
superior to all others in every application.

Table 6-2 compares model-based methods with FFT, JTFA, and wavelets. 
There is no assumption about the analyzed signal for FFT, JTFA, and 
wavelet analysis, whereas the model-based methods work only for certain 
types of signals. Moreover, the performance of model-based frequency 
analysis is quite sensitive to noise, though there are some variations for 
different algorithms. For example, of the methods shown in Figure 6-5, 
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the principle component auto-regressive (PCAR) method has better noise 
immunization than the covariance method.

The Toolset and Model-Based Methods
The Signal Processing Toolset contains VIs and functions for several 
effective model-based analysis methods. Using these VIs and functions, 
you can build your own applications to perform super-resolution spectral 
analysis and parameter estimation. In addition, there is an example to assist 
users who are not familiar with model-based frequency analysis.

Table 6-2.  FFT, JTFA, Wavelets, and Model-Based Methods

Method Signal Model Stationary
Data 

Length
Frequency 
Resolution

Noise 
Sensitivity Speed

FFT arbitrary yes long low moderate fast

JTFA arbitrary no long low low moderate

Wavelets arbitrary no long constant Q low fast

Model-based not arbitrary no short high high slow
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7
Model-Based Frequency 
Analysis Algorithms

This chapter outlines the theoretical background of model-based frequency 
analysis and describes the relationship among the model coefficients, 
power spectra, and parameters of damped sinusoids. In most cases, the 
conclusions are presented without justification. Refer to the works of 
Kay [14] and Marple [18] for more detailed background information about 
model-based frequency analysis.

Models, Power Spectra, and Damped Sinusoids
This section introduces the signal models used for model-based frequency 
analysis and explains the relationship among the model coefficients, power 
spectra, and parameters of damped sinusoids.

ARMA, MA, and AR Models
As discussed in the Applying Model-Based Methods Properly section of 
Chapter 6, Introduction to Model-Based Frequency Analysis, model-based 
frequency analysis is suitable only for certain types of data. In general, the 
data has to be generated by exciting a linear shift-invariant causal pole-zero 
filter, or rational transfer function, with white noise. In other words, the 
data sample x[n] has to fit the following model:

(7-1)

where b0 = 1 and w[n] is the white noise with zero mean and variance σ2. 
Equation 7-1 is traditionally called the auto-regressive and moving average 
(ARMA) model.

x n[ ] akx n k–[ ] bmw n m–[ ]

m 0=

q

∑+

k 1=

p

∑–= for 0 n N<≤
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Two special cases of Equation 7-1 exist. The first special is ak = 0 for all k. 
Consequently, the equation reduces to

(7-2)

which is called a moving average (MA) model.

The second special case is bm = 0 for m > 0. In this case, the ARMA model 
in Equation 7-1 becomes

(7-3)

which is called an auto-regressive (AR) model. According to Equation 7-3, 
you can use currently known data samples to predict the future data with 
error w[n]. Let the predicted data be , then

(7-4)

or

(7-5)

which is named a forward prediction. Alternatively, there is a backward 
prediction, which is explained later in this chapter.

The AR, MA, and ARMA models cover a wide range of signals in nature. 
In most applications, you can confidently apply model-based methods for 
frequency analysis. Usually, you can choose the appropriate model based 
on physical modeling. In practice, you might not know which of the given 
models is best for the problem at hand. An important result from the Wold 
decomposition [38] and Kolmogorov theorems [15] is that any AR or 

x n[ ] bmw n m–[ ]
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q

∑= for 0 n N<≤
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ARMA process can be represented by an MA process of possibly infinite 
order. Likewise, any MA or ARMA process can be represented by an 
AR process of possibly infinite order [15] [38]. If you choose the wrong 
model among the three, you can still obtain a reasonable approximation by 
using a high enough model order.

The next task is determining the model order. As shown in the Applying 
Model-Based Methods Properly section of Chapter 6, Introduction to 
Model-Based Frequency Analysis, the wrong model order can lead to an 
incorrect result. To select the right order, you need some knowledge about 
the signal. Each complex sinusoid component counts as one order. Each 
real sinusoid component generates two complex sinusoids that correspond 
to two orders. If you are not sure what order you should use, you can use 
the minimum description length algorithm, introduced in the Minimum 
Description Length section, to estimate the order.

Because AR-based algorithms are better understood and more popular than 
their counterparts, the next two sections limit discussion to AR-based 
methods.

Model Coefficients and Power Spectra
Taking the z-transform of Equation 7-1 yields a rational transfer function:

(7-6)X z( ) B z( )
A z( )
-----------

1 bmz
m–

m 1=

q

∑+

1 akz k–

k 1=

p

∑+

---------------------------------- H z( )= = =
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It can be proved that the power spectrum P(f) is P(z) evaluated along the 
unit circle, where

(7-7)

where * denotes the complex conjugate. For the AR model, the power 
spectrum is

(7-8)

which implies that once you compute the coefficients ak of the AR model, 
you can obtain the power spectrum by taking the reciprocal of the fast 
Fourier transform (FFT) of ak.

If A(z) is the z-transform of the coefficients ak as shown in Equation 7-6, it 
can be shown that

whereas A(z)X(z) forms the forward prediction, A*(1/z*)X(z) constitutes a 
backward prediction:

(7-9)

which uses future data to predict the data that was sampled at p steps before. 
The formula of the backward prediction in Equation 7-9 can be written as

(7-10)
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The forward and backward predictions in Equation 7-8 are 
interchangeable. For example, let

The resulting P(z) in Equation 7-7 is the same.

AR Model and Damped Sinusoids
Damped sinusoids are common in applications such as noise and vibration. 
Many natural phenomena can be formulated as a linear combination of 
damped sinusoids:

(7-11)

where the parameter αk indicates the damping factor and Ck denotes the 
complex amplitudes. Equation 7-11 also can be written in matrix form as

(7-12)

where the matrix of the time-indexed z elements has a Vandermonde 
structure.
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At first glance, Equation 7-12 does not seem to belong to any of the models 
described by Equations 7-1, 7-2, and 7-3. However, Equation 7-12 is 
closely related to the AR model in Equation 7-31. In 1795, Baron de Prony 
discovered that zk in Equation 7-12 actually are roots of the polynomial

(7-13)

where ak are the coefficients of the regular AR model in Equation 7-3. 
Consequently, the procedure for finding the damped sinusoids parameters 
is to first compute the AR coefficients ak. Then, solve the polynomial in 
Equation 7-13 to determine zk. Finally, the solution of the linear system in 
Equation 7-12 gives the complex amplitudes Ck.

Algorithms for Super-Resolution Spectral Analysis 
and Parameter Estimation

This section briefly introduces the algorithms included on the Easy Level 
SRSA and Advanced SRSA palettes of the Signal Processing Toolset. The 
covariance and PCAR methods are used to compute super-resolution 
power spectra. The matrix pencil and Prony’s methods are mainly used for 
parameter estimation. The minimum description length algorithm is used to 
estimate the number of complex sinusoids.

Covariance Method
Assume that the future data is estimated by the forward prediction in 
Equations 7-4 and 7-5. The covariance method computes the coefficients 
ak such that the error between x[n] and  is minimized:

1   Prony developed this method 13 years before the Fourier transform was introduced.
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In Equation 7-5, the optimal coefficients ak are the solution of the linear 
system of

The covariance method is not difficult, but it is sensitive to noise.

Principle Component Auto-Regressive (PCAR) Method
The covariance method only minimizes the error between x[n] and  
for p ≤ n < N (that is, N – p points), even though there are N samples of x[n]. 
The PCAR method formulates the linear system as

(7-14)

where  denotes the data vector

 denote the right side vectors of the forward prediction in 
Equation 7-5 and the backward prediction in Equation 7-10. You also can 
write this relationship as
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Similarly, the matrices Xf and Xb are the left side matrices of the forward 
prediction in Equation 7-5 and the backward prediction in Equation 7-10. 
You can write this relationship as

Consequently, the linear system in Equation 7-14 uses forward and 
backward prediction information. In this manner, you obtain extra data 
points and average more errors.

Moreover, you solve for the coefficients by

(7-15)

where

λi denote the L largest eigenvalues of the matrix X.  are L corresponding 
eigenvectors. The parameter L represents the number of complex sinusoids. 
Because you use only L principle components in Equation 7-15, the results 
obtained by PCAR are much less sensitive to noise than results obtained by 
the covariance method.

Xf

Xb

x p 1–[ ] x p 2–[ ] … x 0[ ]
x p[ ] x p 1–[ ] … x 1[ ]

. . . .
: : : :

x N 2–[ ] x N 1–[ ] … x N p– 1+[ ]
x 1[ ] x 2[ ] … x p[ ]
x 2[ ] x 3[ ] … x p 1+[ ]

. . . .
: : : :

x N p–[ ] x N p– 1+[ ] … x N 1–[ ]

=

a
1
λi

----vivi
TXTx

i 1=

L

∑=

X
Xf

Xb

≡ and x xf

xb

≡

vi



Chapter 7 Model-Based Frequency Analysis Algorithms

© National Instruments Corporation 7-9 Signal Processing Toolset User Manual

Prony’s Method
Prony’s method estimates the parameters of damped sinusoids. The 
following steps summarize Prony’s method.

1. Apply the covariance method to compute the AR coefficients ak.

2. Find the complex roots zk of the polynomial in Equation 7-13. The 
phase of zk indicates the frequency, and the amplitude is the damping 
factor.

3. Insert zk into Equation 7-12 to solve Ck. The amplitude and phase of the 
sinusoid component zk are equal to the amplitude and phase of Ck, 
respectively.

Matrix Pencil Method
The matrix pencil method is a modified Prony’s method. It is faster and less 
sensitive to noise than Prony’s method. However, the derivation is more 
involved. Refer to the work of Hua and Sarkar [10] for more information 
about the matrix pencil method.

Minimum Description Length
The minimum description length algorithm determines the number of 
sinusoids n by the following equation.

where σ2 is an estimation of the noise variance and N is the number of 
data samples. The optimal value n can be used as the AR order p for the 
covariance method or the number of complex sinusoids L for the PCAR 
and matrix pencil methods.

minn N σ2 3n Nln+ln{ }
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8
Applying Super-Resolution 
Spectral Analysis and 
Parameter Estimation

This chapter describes a comprehensive example based on the 
Super-Resolution Spectral Analysis (SRSA) VIs in the Signal Processing 
Toolset. The example is designed to help you learn about model-based 
analysis. With this example, you can try different algorithms for the data 
samples without needing to use any programming.

Opening the SRSA Example
The SRSA example resides on the SPT palette, shown in Figure 8-1. Select 
Start»Programs»National Instruments»Signal Processing Toolset»
NI SPT Start-Up to open the SPT palette. On the SPT palette, click the 
Super-Resolution Spectral Analysis icon. When you click the icon, the 
Super-Resolution Spectral Analysis example front panel, shown in 
Figure 8-2, opens.

Figure 8-1.  SPT Palette

Refer to the Accessing Example Application Source Code section of 
Chapter 1, Signal Processing Toolset Overview, for information about 
accessing the source code for the Super-Resolution Spectral Analysis 
example.

1 Super-Resolution Spectral Analysis

1
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Performing Super-Resolution Spectral Analysis
Complete the following steps to perform super-resolution spectral analysis 
using the SRSA example.

1. Load the test data.

2. Set the sampling frequency with the Sampling Rate (Hz) control.

3. Select the window type for the FFT-based spectrum.

4. Select the super-resolution spectrum method.

5. Select the damped sinusoid estimation method.

6. Set the number of complex sinusoids.

The following sections describe the above steps and the SRSA example 
front panel controls and indicators. You also can select Help»Show 
Context Help or press <Ctrl-H> for more information about controls and 
indicators.

Figure 8-2.  Super-Resolution Spectral Analysis Front Panel
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Loading the Test Data
You can analyze either synthetic data supplied with the example or your 
own data text file. If you choose to use your own text file, the file must be 
a one-column or one-row spreadsheet text file. The synthetic data simulates 
two damped sinusoids plus Gaussian noise. If you are a first-time user, start 
with the synthetic data, which gives you a better idea of how to properly 
apply the model-based analysis.

Synthetic Data
To use the synthetic data, select File»Load»Signal Generator. When you 
select Signal Generator, the Synthetic Data front panel, shown in 
Figure 8-3, opens. The Synthetic Data front panel generates data samples 
containing two damped sinusoids corrupted with Gaussian white noise. 

Figure 8-3.  Synthetic Data Front Panel



Chapter 8 Applying Super-Resolution Spectral Analysis and Parameter Estimation

Signal Processing Toolset User Manual 8-4 ni.com

The damped sinusoid has the following form:

s[n] = Ae–an cos(2πfn + θ)

Use the Number of Samples control to specify the size of the data set. 
The SRSA example relies heavily on matrix computation, which requires 
more computer resources. National Instruments recommends that you limit 
the value of Number of Samples to less than a few hundred because of 
computing time and memory space considerations. The default value of 
Number of Samples is 50. Table 8-1 lists the default sinusoid parameters.

When Number of Samples is set at 50, both the FFT-based and 
model-based methods separate two different frequencies well. If you 
reduce Number of Samples to 25, only the model-based spectra are able 
to distinguish between the two frequencies.

Use the Gaussian White Noise slide control to adjust the intensity of 
the additive Gaussian white noise. As mentioned in Chapter 6, Introduction 
to Model-Based Frequency Analysis, the results of model-based analysis 
are sensitive to the intensity and type of noise. The performance of 
model-based analysis deteriorates substantially as the intensity of noise 
increases or the noise differs from Gaussian white noise.

Use the phase, damping, and frequency controls to see how the estimation 
results change.

Click the Quit button to close the Synthetic Data front panel.

where A is the real-valued amplitude

a is the real-valued damping factor

f is the normalized frequency

θ is the phase

Table 8-1.  Default Sinusoid Parameters

Sinusoid Amplitude Phase
Damping 

Factor Frequency

sinusoid 1 1.0 0.0 0.0 0.11 Hz

sinusoid 2 1.0 0.0 0.0 0.13 Hz
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Data Stored as Text Files
To use your own data files, select File»Load»Data File and navigate to 
the data file you want to analyze. The data file must be a one-column or 
one-row spreadsheet text file.

Setting the Sampling Frequency
Use the Sampling Rate (Hz) control, located above the Waveform graph 
on the Super-Resolution Spectral Analysis front panel in Figure 8-2, 
to specify the sampling frequency of the test data. The default value 
is 1.0E+3.

Setting the Number of Complex Sinusoids
Correctly specifying the number of complex sinusoids contained in the 
test data is one of the most important factors in effectively applying 
model-based analysis. Usually, each complex sinusoid counts as one order, 
and each real-valued sinusoid counts as two orders. You can have the 
SRSA example automatically count the number of complex sinusoids, or 
you can specify the number yourself. If the number of complex sinusoids 
contained in the test data is unknown, use the automatic method.

Automatic
Place a checkmark in the Automatically Estimating checkbox in the 
Model Parameters section on the Super-Resolution Spectral Analysis 
front panel, shown in Figure 8-2, to count the number of complex sinusoids 
automatically. The SRSA example uses the maximum description length 
algorithm to automatically estimate the number of complex sinusoids for 
the test data. # of Found Complex Sinusoids displays the result of this 
algorithm. To use the maximum description length algorithm, you need to 
define the upper boundary of the AR order. Use the Maximum AR Order 
control to specify the upper boundary. As the value of Maximum AR 
Order increases, your results become more precise. However, computation 
time also increases as Maximum AR Order increases. The value of 
Maximum AR Order should be two to three times larger than the real 
order but cannot be larger than two-thirds of the number of samples. Refer 
to Chapter 7, Model-Based Frequency Analysis Algorithms, for more 
information about the maximum description length algorithm.
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Manual
Remove the checkmark from the Automatically Estimating checkbox in 
the Model Parameters section to specify the number of complex sinusoids 
yourself. When you select to manually specify the number of complex 
sinusoids, the # of Complex Sinusoids control replaces the Maximum AR 
Order control. Use the # of Complex Sinusoids control to specify the 
number of complex sinusoids contained in the test data. For a real-valued 
signal, if DC is presented, # of Complex Sinusoids should be an odd 
number. In all other cases, # of Complex Sinusoids should be an even 
number.

Selecting the Window Type
Use the FFT Window control above the Power Spectrum graph on the 
Super-Resolution Spectral Analysis front panel, shown in Figure 8-2, to 
select the window type used to compute the FFT spectrum. You can choose 
from the following window types:

• Blackman

• Hamming (default)

• Hanning

• Rectangular

Use the FFT-based spectrum for comparison with the model-based 
spectrum in the same display.

Selecting the Super-Resolution Spectrum Method
Use the SRSA Method control above the Power Spectrum graph on the 
Super-Resolution Spectral Analysis front panel, shown in Figure 8-2, to 
select the super-resolution spectrum method. You can choose either the 
covariance method or the principle component auto-regressive (PCAR) 
method (default).

The PCAR method is less sensitive to noise than the covariance method, but 
the PCAR method requires more computing time and memory space.

Selecting the Damped Sinusoid Estimation Method
Use the Method control in the Parameters Estimation section on the 
Super-Resolution Spectral Analysis front panel, shown in Figure 8-2, to 
specify the method used to estimate the parameters associated with damped 
sinusoids. You can choose either the matrix pencil method (default) or 
Prony’s method. The matrix pencil method is more accurate and efficient 
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than Prony’s method. Refer to Chapter 7, Model-Based Frequency 
Analysis Algorithms, for more information about the matrix pencil method 
and Prony’s method.

The indicators in the Parameters Estimation section of the front panel, 
shown in Figure 8-2, return values for amplitude, frequency, phase, and 
damping for each positive-frequency sinusoid.
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Part IV

Wavelet Analysis

This section of the manual discusses wavelet analysis and filter bank 
design.

• Chapter 9, The Fundamentals of Wavelet Analysis, describes the 
history of wavelet analysis, compares Fourier transform and wavelet 
analysis, and describes some applications of wavelet analysis.

• Chapter 10, Wavelet Analysis by Discrete Filter Banks, describes the 
design of two-channel perfect reconstruction filter banks, defines the 
types of filter banks used with wavelet analysis, and discussed wavelet 
packets.

• Chapter 11, Wavelet Analysis Applications, describes the 1D and 2D 
Wavelet Transform and Wavelet Packet examples and how to design a 
wavelet and filter bank.
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9
The Fundamentals of 
Wavelet Analysis

Although Alfred Haar first mentioned the term wavelet in a 1909 thesis [9], 
wavelet analysis received little attention before the late 1970s. In the period 
between the 1970s and the present, scientists have carefully studied 
wavelet analysis and successfully applied it in many areas. Some people 
think current wavelet analysis is just the recasting and unifying of existing 
theories and techniques. However, there exists a wider range of potential 
applications for wavelet analysis than anyone anticipated.

This chapter describes the history of wavelet analysis, compares Fourier 
transform to wavelet analysis, and describes some applications of wavelet 
analysis.

Conventional Fourier Transform
The development of wavelet analysis originally was motivated by the 
desire to overcome the drawbacks of traditional Fourier analysis and 
short-time Fourier transform (STFT) processes. Fourier transform 
characterizes the frequency behaviors of a signal but not the frequency 
changes over time. STFT, or windowed Fourier transform, simultaneously 
characterizes a signal in time and frequency. After you select a window 
type, the signal time and frequency resolutions remain fixed, which can 
cause problems. However, signals encountered in nature always have a 
long time period at low frequency and a short time period at high 
frequency. This suggests that the window should have high time resolution 
at high frequency.
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To understand the fundamentals of wavelet analysis, start with an artificial 
example. Figure 9-1 shows a signal s(t) that consists of two truncated sine 
waveforms.

Figure 9-1.  Sum of Two Truncated Sine Waveforms

The first waveform in Figure 9-1 spans 0 to 1 second. The second 
waveform spans 1 to 1.5 seconds. In other words, the frequency of s(t) is 
1 Hz for 0 ≤ t < 1 and 2 Hz for 1 ≤ t < 1.5.

When describing frequency behavior, you traditionally compare s(t) with 
a group of harmonically-related complex sinusoidal functions, such as 
exp{ j2πkt ⁄T}. Here, the term harmonically-related complex sinusoidal 
functions refers to the sets of periodic sinusoidal functions with 
fundamental frequencies that are all multiples of a single positive 
frequency 2π ⁄T.

You accomplish the comparison process with the following correlation, 
or inner product operation.

where ak is the Fourier coefficient and * denotes a complex conjugate.

The magnitude of ak indicates the degree of similarity between the 
signal s(t) and the elementary function exp{ j2πkt ⁄T}. If the magnitude 
of ak is large, it indicates a high degree of correlation between s(t) and 
exp{ j2πkt ⁄T}. If the magnitude of ak is almost 0, it indicates a low degree 
of correlation between s(t) and exp{ j2πkt ⁄T}. Therefore, you can consider 
ak to be the measure of similarity between the signal s(t) and each complex 
sinusoidal function exp{ j2πkt ⁄T}. Because exp{j2πkt ⁄T} represents a 
distinct frequency 2πk ⁄T, a frequency tick mark, the Fourier coefficient ak 
indicates the amount of signal present at the frequency 2πk ⁄T.
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In Figure 9-1, s(t) consists of two truncated sine waveforms. The inner 
product of such truncated signals and pure sine waveforms, which extends 
from minus infinity to plus infinity, never vanishes. In other words, ak is not 
zero for all k. However, the dominant ak, with the largest magnitude, 
corresponds to 1 Hz and 2 Hz elementary functions. This indicates that the 
primary components of s(t) are 1 Hz and 2 Hz signals, but it is unclear, 
based on ak alone, when the 1 Hz or the 2 Hz components exist in time.

You can use many ways of building the frequency tick marks to measure 
the frequency behavior of a signal. With complex sinusoidal functions, not 
only can you analyze signals but you also can reconstruct the original signal 
with the Fourier coefficient ak. For example, you can write s(t) in terms of 
the sum of complex sinusoidal functions according to Equation 9-1, 
traditionally known as Fourier expansion.

(9-1)

where ak is the Fourier coefficient and 2πk ⁄T is the frequency tick mark.

In Equation 9-1, because ak is not zero for all k, you must use an infinite 
number of complex sinusoidal functions to restore s(t) in Figure 9-1.

Innovative Wavelet Analysis
Looking at s(t) more closely, you find that to determine the frequency 
contents of s(t), you need information regarding only one cycle, such as 
the time span of one cycle. With this information, you can compute the 
frequency with the following equation.

According to this equation, as the frequency becomes higher, the time span 
becomes shorter. Therefore, instead of using infinitely-long complex 
sinusoidal functions, you can use only one cycle of a sinusoidal waveform, 
or a wavelet, to measure s(t). The wavelet ψ(t) used to measure s(t) is one 
cycle of a sinusoidal waveform, as shown in Figure 9-2. 
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Figure 9-2.  Wavelet

Because ψ(t) spans 1 second, you can consider the frequency of ψ(t) to be 
1 Hz. As in the case of Fourier analysis, you can achieve the comparison 
process with the following correlation, or inner product, operation.

(9-2)

where Wm,n denotes the wavelet transform coefficients and ψm,n(t) are the 
elementary functions of the wavelet transform. However, the structure of 
the elementary functions ψm,n(t) differs from the Fourier transformations, 
which are the dilated and shifted versions of ψ(t). You can compute the 
elementary functions of the wavelet transform, ψm,n(t), with Equation 9-3.

(9-3)

where m and n are integers.

When you increase n, you shift ψm,n(t) forward in time. When you increase 
m, you compress the time duration, which increases the center frequency 
and frequency bandwidth of ψ(t) [27]. Consider the parameter m as the 
scale factor and 2–m as the sampling step. Therefore, as the time duration 
becomes shorter, the time sampling step becomes smaller, and vice versa.
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If you assume that the center frequency of ψ(t) is ω0, the center frequency 
of ψm,n(t) is 2mω0. Consequently, you can systematically adjust the scale 
factor m to achieve different frequency tick marks to measure the signal 
frequency contents. In other words, as the scale factor m increases, the 
center frequency and bandwidth of the wavelet increases 2m.

Figure 9-3 depicts the wavelet transform procedure.

Figure 9-3.  Wavelet Analysis

For Figure 9-3, first let m = n = 0 by aligning ψ(t) and s(t) at t = 0. As in 
Equation 9-3, compare ψ(t) with s(t) for 0 ≤ t < 1. The comparison shows 
that W0,0 = 1. When you shift ψ(t) to the next second, n = 1, and compare it 
with s(t) for 1 ≤ t < 2, you see that W0,1 = 0.

Compress ψ(t) into 0 seconds to 0.5 seconds, m = 1, and repeat the previous 
operations with the time-shift step 0.5. You obtain the following results, 
which are also displayed in the upper right corner of Figure 9-3:
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You can continue to compress ψ(t) by increasing the scale factor m and 
reducing the time-shift step 2–m to test s(t). This procedure is called wavelet 
transform. ψ(t) is called the mother wavelet, because the different wavelets 
used to measure s(t) are the dilated and shifted versions of this wavelet. 
The results of each comparison, Wm,n, are named wavelet coefficients. 
The index m and n are the scale and time indicators, respectively, which 
describe the signal behavior in the joint time-scale domain. As shown in 
Figure 9-5, you can convert the scale into frequency. Hence, you also can 
consider Wm,n to be the signal representation in the joint time and frequency 
domain. In the example in Figure 9-3, when you check the wavelet 
coefficients, you find out that for 0 ≤ t < 1, the frequency of s(t) is 1 Hz, 
and for 1 ≤ t < 1.5, the frequency of s(t) is 2 Hz.

Unlike Fourier analysis, wavelet transform not only indicates what 
frequencies the signal s(t) contains but also indicates when these 
frequencies occur. Moreover, the wavelet coefficients Wm,n of a real-valued 
signal s(t) are always real as long as you choose real-valued ψ(t). Compared 
to Fourier expansion, you usually can use fewer wavelet functions to 
represent the signal s(t). In the example in Figure 9-3, s(t) can be 
completely represented by two terms, whereas an infinite number of 
complex sinusoidal functions would be needed in the case of Fourier 
expansion.

Wavelet Analysis Versus Fourier Analysis
You can apply short-time Fourier transform (STFT) to characterize a signal 
simultaneously in both the time and frequency domains. However, you also 
can use wavelet analysis to perform the same operation because of its 
similarity to STFT. You compute both the STFT and the wavelet transform 
by the correlation, or inner product operation, but the main difference lies 
in how you build the elementary functions. Figure 9-6 shows a comparison 
of the transform processes.

Figure 9-4 illustrates the sampling grid for the STFT. For STFT, 
the elementary functions used to test the signal are time-shifted, 
frequency-modulated single window functions, all with some envelope. 
Because this modulation does not change the time or frequency resolutions, 
the time and frequency resolutions of the elementary functions employed 
in STFT are constant [27].
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Figure 9-4.  Short-Time Fourier Transform Sampling Grid

For wavelet transform, increasing the scale parameter m reduces the width 
of the wavelets. The time resolution of the wavelets increases, and the 
frequency resolution decreases as m becomes larger. This shows that 
wavelet analysis has good time resolution at high frequencies and good 
frequency resolution at low frequencies.

Figure 9-5 illustrates the sampling grid for wavelet transform. Suppose 
that the center frequency and bandwidth of the mother wavelet ψ(t) are ω0 
and ∆ω, respectively. For ψ(2mt), the center frequency is 2mω0, and the 
bandwidth is 2m∆ω. Although the time and frequency resolutions change 
at different scales m, the ratio between the bandwidth and the center 
frequency remains constant. Therefore, wavelet analysis is also called 
constant Q analysis, where Q = center frequency ⁄ bandwidth.

Frequency

Time
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Figure 9-5.  Wavelet Transform Sampling Grid

Wavelet transform is closely related to both conventional Fourier transform 
and short-time Fourier transform. As shown in Figure 9-6, all these 
transform processes employ the same mathematical tool, the correlation 
operation, or inner product, to compare the signal s(t) to the elementary 
function bα(t). The difference lies in the structure of the elementary 
functions {eα(t)}. In some cases, wavelet analysis is more natural because 
the signals always have a long time cycle at low frequency and a short time 
cycle at high frequency.
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Figure 9-6.  Comparison of Transform Processes

Applications of Wavelet Analysis
You can use wavelet analysis in a variety of applications, including 
detecting the discontinuity of a signal, looking at a signal from different 
scales, removing the trend of a signal, suppressing noise, and compressing 
data.

Discontinuity Detection
Wavelet analysis detects signal discontinuity, such as jumps, spikes, and 
other non-smooth features. Ridding signals of noise is often much easier 
to identify in the wavelet domain than in the original domain

For example, the top plot of Figure 9-7 illustrates a signal s(k) made up of 
two exponential functions. The turning point, or the discontinuity, of the 
first derivative is at k = 500. The remaining plots are wavelet coefficients 
with different scale factors m. As the scale factor increases, you can 
pinpoint the location of the discontinuity.

Fourier Transform

Windowed FT

Wavelet Transform
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Figure 9-7.  Detection of Discontinuity

Using wavelet analysis to detect the discontinuity, or break point, of a 
signal has helped to successfully repair scratches on old phonograph 
records. The procedure works by taking the wavelet transform on the 
signal, smoothing unwanted spikes, and inverting the transform to 
reconstruct the original signal minus the noise. In 1889, an agent of Thomas 
Edison used a wax cylinder to record Johannes Brahms performing his 
Hungarian Dance No. 1 in G minor. The recording was so poor that it was 
hard to discern the melody. By using wavelet transform, researchers 
improved the sound quality enough to distinguish the melody.

Multiscale Analysis
Multiscale analysis involves looking at a signal from different scales. 
Wavelet transform-based multiscale analysis helps you better understand 
the signal and provides a useful tool for selectively discarding undesired 
components, such as noise and trend, that corrupt the original signal.

Figure 9-8 illustrates a multiscale analysis of a Standard & Poor’s (S&P) 
500 stock index during the years 1947 through 1993.

Discontinuity

Large Scale m

Medial Scale m

Small Scale m
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Figure 9-8.  Multiscale Analysis

In Figure 9-8, the top plot displays a monthly S&P 500 index, and the 
bottom plot describes the long-term trend of the stock movement. The 
remaining two plots display the short-term fluctuation of the stock, at 
different levels, during this time. To better characterize the fluctuation that 
reflects the short-term behavior of the stock, you must remove the trend. 
To do this, first adjust the wavelet decomposition level until you obtain a 
desired trend. Then, set the corresponding wavelet coefficients to zero and 
reconstruct the original samples minus the trend.

Detrending
The trend of a signal is often one of the least interesting aspects of the 
signal. Also, because the trend attaches to a strong DC component in 
the frequency spectrum, it blocks many other important signal features. 
Detrending involves removing the trend from a signal. How to remove 
the trend is one of the most important issues in the application of joint 
time-frequency analysis.

Traditional detrending techniques usually use lowpass filtering to 
remove the trend, which blurs sharp features in the underlying signal. 

S&P 500 Index

Long-Term Trend
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Wavelet-based detrending is somewhat superior to this process because 
it preserves the important features of the original signal.

Figures 9-8 and 9-9 illustrate the same S&P 500 stock index information, 
but Figure 9-9 shows it as a joint time-frequency analysis.

Figure 9-9.  Detrend

In Figure 9-9, the top plot illustrates the S&P 500 stock index and its 
corresponding long-term trend, smooth curve. The center plot displays the 
residue between the original data and the trend, reflecting the short-term 
fluctuation. The bottom plot displays the joint time and frequency behavior 
of the residue. The bottom plot shows that over the past 50 years, a 
four-year cycle dominates the S&P 500 index, which agrees with most 
economists’ assertions.

Denoise
Unlike conventional Fourier transform, which uses only one basis function, 
wavelet transform provides an infinite number of mother wavelets to select. 
Consequently, you can select the wavelets that best match the signal. Once 
the wavelets match the signal, you can use a few wavelets as a basis from 
which to approximate the signal and achieve denoise.
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Figure 9-10 illustrates denoise, one of the most successful applications of 
wavelet analysis. This application works by first taking the wavelet 
transform of the signal, setting the coefficients below a certain threshold to 
zero, and finally, inverting the transform to reconstruct the original signal. 
If the threshold is set properly, the resulting signal has less noise 
interference. Refer to Donoho’s work for more information about wavelet 
transform-based denoising [8].

Figure 9-10.  Denoise

Although Figure 9-10 uses only 25% of the original data, the reconstruction 
preserves all important features contained in the original image. The left 
image is transformed into the wavelet basis with 75% of the wavelet 
components, those of the smallest magnitude, set to zero. The right image 
is reconstructed from the remaining 25% of the wavelet components.

Performance Issues
Although wavelet analysis possesses many attractive features, its 
numerical implementation is not as straightforward as that of its 
counterparts, such as conventional Fourier transform and STFT. 
The difficulty arises from the following two aspects:

• In order to reconstruct the original signal, the selection of the mother 
wavelet ψ(t) is not arbitrary. Although any function can be used in 
Equation 9-2, you sometimes cannot restore the original signal based 
on the resulting wavelet coefficients Wm,n. ψ(t) is a valid, or qualified, 
wavelet only if you can reconstruct the original signal from its 
corresponding wavelet coefficients. The selection of the qualified 
wavelet is subject to certain restrictions. On the other hand, it is not 
unique. Unlike the case of conventional Fourier transform, in which 
the basis functions must be complex sinusoidal functions, you can 
select from an infinite number of mother wavelet functions. Therefore, 
the biggest issue of applying wavelet analysis is how to choose a 

Original Image Reconstruction
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desired mother wavelet ψ(t). It is generally agreed that the success of 
the wavelet transform application depends on a proper wavelet 
function selection.

• Because the scale factor m could go from negative infinity to positive 
infinity, it is impossible to make the time index of the wavelet function, 
2m(t – n2–m), an integer number simply by digitizing t as i∆t, where ∆t 
denotes the time sampling interval. This problem prohibits using 
digital computers to evaluate wavelet transform.

Fortunately, researchers discovered a relationship between wavelet 
transform and the perfect reconstruction filter bank, a type of digital filter 
bank. You can implement wavelet transform with specific types of digital 
filter banks known as two-channel perfect reconstruction filter banks. 
Chapter 10, Wavelet Analysis by Discrete Filter Banks, describes the basics 
of two-channel perfect reconstruction filter banks and the types of digital 
filter banks used with wavelet analysis.
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10
Wavelet Analysis by Discrete 
Filter Banks

This chapter describes the design of two-channel perfect reconstruction 
filter banks, defines the types of filter banks used with wavelet analysis, 
and discusses wavelet packets.

Two-Channel Perfect Reconstruction Filter Banks
Two-channel perfect reconstruction (PR) filter banks have been recognized 
as useful in signal processing for a long time, particularly after researchers 
discovered that two-channel PR filter banks are closely related to wavelet 
transform. Now, two-channel PR filter banks are a common technique for 
computing wavelet transform.

Figure 10-1 illustrates a typical two-channel filter bank system. The signal 
X(z) is first filtered by a filter bank constituted by G0(z) and G1(z). 

Figure 10-1.  Two-Channel Filter Bank
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where N denotes the filter order. Consequently, the filter length is equal to N + 1. Thus, 
ω = 0 is equivalent to z = 1 and ω = π is equivalent to z = –1. That is, G(0) and G(p) in 
the frequency domain correspond to G(1) and G(–1) in the z-domain.

The outputs of G0(z) and G1(z) are downsampled by two to obtain Y0(z) and 
Y1(z). After some processing, the modified signals are upsampled and 
filtered by another filter bank constituted by H0(z) and H1(z). If no 
processing takes place between the two filter banks, Y0(z) and Y1(z) are not 
altered. The sum of outputs of H0(z) and H1(z) is identical to the original 
signal X(z), except for the time delay. Such a system is commonly referred 
to as a two-channel PR filter bank. G0(z) and G1(z) form an analysis filter 
bank, whereas H0(z) and H1(z) form a synthesis filter bank.

Note G(z) and H(z) can be interchanged. For instance, you can use H0(z) and H1(z) for 
analysis and G0(z) and G1(z) for synthesis. H0(z) and H1(z) are usually considered as the 
dual of G0(z) and G1(z), and vice versa.

Traditionally, G0(z) and H0(z) are lowpass filters, whereas G1(z) and H1(z) 
are highpass filters, where the subscripts 0 and 1 represent lowpass and 
highpass filters, respectively. Because two-channel PR filter banks process 
Y0(z) and Y1(z) at half the sampling rate of the original signal X(z), they are 
used in many signal processing applications.

Figure 10-2 illustrates conventions for wavelet transform.

Figure 10-2.  Conventions for Wavelet Transform

If you assume the conventions shown in Figure 10-2, then Figure 10-3 
illustrates the relationship between two-channel PR filter banks and 
wavelet transform.

G1(z)

G0(z) 2

2
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Figure 10-3.  Relationship of Two-Channel PR Filter Banks and Wavelet Transform

Under certain conditions, two-channel PR filter banks are related to wavelet 
transform in the following ways:

• The impulse response of the lowpass filters converges to the scaling 
function φ(t). Once you obtain φ(t), you can compute the mother 
wavelet function ψ(t) by highpass φ(t), as shown in Figure 10-3.

• The outputs of each of the highpass filters are approximations of the 
wavelet transform. You can accomplish wavelet transform with a tree 
of two-channel PR filter banks. The selection of a desirable mother 
wavelet becomes the design of two-channel PR filter banks [27].

Figure 10-4 illustrates the relationship of filter banks and wavelet transform 
coefficients.

Wm,n

Wm – 1,n

Wm – 2,n

Wm – k,n
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Figure 10-4.  Filter Bank and Wavelet Transform Coefficients

The following sections describe the design fundamentals for two types of 
two-channel PR filter banks, biorthogonal and orthogonal. In most 
equations, you receive the results without justification. Refer to the works 
of Oppenheim and Schafer [19], Parks and Burrus [20], and Parks and 
McClellan [21] [22] for more information about the mathematical bases 
used in the following sections.

Biorthogonal Filter Banks
In Figure 10-1, you can define the output of the low-channel according to 
the following equation. [30] [31]

Similarly, you can define the output of the high channel according to the 
following equation.

Frequency

TimeFilter Banks

Ŷ0 z( ) 1
2
---H0 z( ) G0 z( )X z( ) G0 z–( )X z–( )+[ ]=

Ŷ1 z( ) 1
2
---H1 z( ) G1 z( )X z( ) G1 z–( )X z–( )+[ ]=
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Add the outputs of the two channels together to obtain

(10-1)

One term involves X(z), and the other involves X(–z). For perfect 
reconstruction, the term with X(–z), traditionally called the alias term, must 
be zero. To achieve this, you want

(10-2)

which you accomplish by letting

(10-3)

The relationship in Equation 10-3 implies that you can obtain h0[n] by 
alternating the sign of g1[n], as shown in the following equation.

h0[n] = (–1)ng1[n]

Similarly,

(10-4)

Therefore, g1[n] and h1[n] are the highpass filters, if g0[n] and h0[n] are the 
lowpass filters. For perfect reconstruction, you also want the first term in 
Equation 10-1, called the distortion term, to be a constant or a pure time 
delay. For example,

(10-5)

where l denotes a time delay.

If you satisfy both Equations 10-2 and 10-5, the output of the two-channel 
filter bank in Figure 10-1 is a delayed version of the input signal:

1
2
--- H0 z( )G0 z( ) H1 z( )G1 z( )+[ ]X z( ) 1

2
--- H0 z( )G0 z–( ) H1 z( )G1 z–( )+[ ]+ X z–( )

H0 z( )G0 z–( ) H1 z( )G1 z–( )+ 0=

H0 z( ) G1 z–( )= and H1 z( ) G– 0 z–( )=

h1 n[ ] 1–( )n 1+ g0 n[ ]=

H0 z( )G0 z( ) H1 z( )G1 z( )+ 2z l–=

X̂ z( ) z l– X z( )=
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However, there remains a problem computing G0(z) and G1(z), or H0(z) and 
H1(z). Once you determine G0(z) and G1(z), you can find the rest of the 
filters with Equation 10-3. You also can write Equation 10-3 as

which, when substituted into Equation 10-5, yields

(10-6)

where P0(z) denotes the product of two lowpass filters, G0(z) and H0(z), 
from Equation 10-7.

(10-7)

Equation 10-6 indicates that all odd terms of the product of the two lowpass 
filters, G0(z) and H0(z), must be zero except for order l, where l must be odd. 
However, even order terms are arbitrary. You can summarize these 
observations with Equation 10-8.

(10-8)

This reduces the design of two-channel PR filter banks to two steps.

1. Design a filter P0(z) that satisfies Equation 10-8.

2. Factorize P0(z) into G0(z) and H0(z). Then use Equation 10-3 to 
compute G1(z) and H1(z).

The following two types of filters are frequently used for P0(z):

• Equiripple halfband filter [32]

• Maximum flat filter

G1 z( ) H0 z–( )= and H1 z( ) G0 z–( )–=

G0 z( )H0 z( ) G0– z–( )H0 z–( ) P0 z( ) P0 z–( )– 2z
l–= =

P0 z( ) G0 z( )H0 z( )=

p0 n[ ]
0  n odd and n l≠
2  n l=

arbitrary  n even





=
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In the equiripple halfband filter, halfband refers to a filter in which 
ωs + ωp = π, where ωs denotes the stopband frequency and ωp denotes the 
passband frequency, as shown in Figure 10-5.

Figure 10-5.  Halfband Filter

The form of the maximum flat filter is defined by Equation 10-9.

(10-9)

which has 2p zeros at z = –1 or ω = π. If you limit the order of the 
polynomial Q(z) to 2p – 2, then Q(z) is unique.

Note Here, the maximum flat filter differs from the Butterworth filter. The low-frequency 
asymptote of the Butterworth filter is a constant. The low-frequency asymptote of the 
maximum flat filter is not constant.

In all cases, the product of lowpass filter P0(z) is a type I filter:

where N denotes the filter order. Consequently, the number of coefficients 
p0[n] is odd, N + 1.

0

P0 z( ) 1 z
1–+( )

2p
Q z( )=

p0 n[ ] p0 N n–[ ]= N even
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Figure 10-6 plots the zeros distribution of a maximum flat filter P0(z) 
for p = 3.

Figure 10-6.  Zeros Distribution for (1 – z –1)6Q(z)

In Figure 10-6, six zeros are at ω = π. In this case, the order of the unique 
polynomial Q(z) is four, which contributes another four zeros that are not 
on the unit circle. If you let three zeros at ω = π go to G0(z) according to the 
equation

G0(z) = (1 + z–1)3

and the rest of the zeros go to H0(z), you obtain B-spline filter banks. The 
coefficients of g0[n] and g1[n] and the corresponding scaling function and 
mother wavelet are plotted in Figure 10-7. Both the scaling function and 
mother wavelet generated by g0[n] and g1[n] are smooth.

Figure 10-7.  B-Spline Filter Bank
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Figure 10-8 depicts the dual filter bank h0[n] and h1[n] and the 
corresponding scaling function and mother wavelet. You also can use h0[n] 
and h1[n] for analysis. In Figure 10-8, the tree filter banks constituted by 
h0[n] and h1[n] do not converge.

Figure 10-8.  Dual B-Spline Filter Bank

Remember that two-channel PR filter banks do not necessarily correspond 
to the wavelet transform. The wavelet transformations are special cases of 
two-channel PR filter banks. The conditions of two-channel PR filter banks 
are more moderate than those for the wavelet transform.

Finally, the analysis filter banks and synthesis filter banks presented in this 
section are orthogonal to each other:

(10-10)gi n 2k–[ ]hi n[ ]
n
∑ δ k( )=

and

gi n[ 2k ]– hl n[ ]∑ 0= i l k∀,≠
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The filters banks that satisfy Equation 10-10 are traditionally called 
biorthogonal filter banks. In addition to Equation 10-10, if the analysis 
filter banks also satisfy the following equations.

(10-11)

The resulting filter banks are called orthogonal filter banks. Orthogonal 
filter banks are special cases of biorthogonal filter banks.

Orthogonal Filter Banks
As shown in the Biorthogonal Filter Banks section, once you determine 
P0(z), the product of two lowpass filters, you must factorize P0(z) into 
G0(z) and H0(z). The combinations of zeros are not unique. Different 
combinations lead to different filter banks. Sometimes G0(z) and G1(z) 
work well, but H0(z) and H1(z) might not; refer to Figure 10-7 and 
Figure 10-8. One way to make this process easier is to limit the 
selections to a subset. The most effective approach is to require G0(z) 
and G1(z), and thereby H0(z) and H1(z), to be orthogonal, as described by 
Equation 10-11.

These constraints reduce the filter bank design to one filter design. Once 
you select G0(z), you can find the other filters. The constraints imposed by 
Equation 10-11 guarantee that both filter banks have the same performance 
and provide other advantages, as well. For example, many applications 
demonstrate that the lack of orthogonality complicates quantization and bit 
allocation between bands, eliminating the conservation of energy.

To achieve Equation 10-11, let

(10-12)

which implies that g1[n] is the alternating flip of g0[n]

gi n 2k–[ ]gi n[ ]
n
∑ δ k( )=

and

gi n[ 2k ]– gl n[ ]∑ 0= i l k∀,≠

G1 z( ) z
N–

G0 z
1––( )–=

g1 0[ ] g1 1[ ] g1 2[ ] …,,,( ) g0 N[ ] g– 0 N 1–[ ] g0 N 2–[ ] …,,,( )=
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Equation 10-12 implies that, for orthogonal wavelets and filter banks,

where you use the relation in Equation 10-3. Consequently, Equation 10-7 
can be written as

If , then

(10-13)

which implies that P(z) is non-negative.

Similar to biorthogonal cases, the selection of P0(z) in orthogonal cases is 
dominated by maximum flat and equiripple halfband filters. However, 
because of constraints imposed by Equation 10-13, P0(z) must be the 
time-shifted, non-negative function P(z). Although the maximum flat filter 
in Equation 10-9 ensures this requirement, special care must be taken when 
P0(z) is an equiripple halfband filter.

Figure 10-9 plots the third-order Daubechies filter banks and wavelets. It is 
derived from the same maximum flat filter as that depicted in Figure 10-6.

Figure 10-9.  Third-Order Daubechies Filter Banks and Wavelets

H0 z( ) z
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G0 z
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P e
jω( ) p n[ ]e
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In Figure 10-9, G0(z) contains three zeros at ω = π and all zeros inside the 
unit circle, therefore possessing minimum phase. Because of the 
orthogonality, its dual filter bank has the same convergence property. 
Compared to the B-spline cases in Figures 10-7 and 10-8, the third-order 
Daubechies wavelet and scaling function is not as smooth as that of G0(z) 
and G1(z) in Figure 10-7 but is much smoother than that of H0(z) and H1(z) 
in Figure 10-8.

2D Signal Processing
The preceding sections introduced two-channel PR filter banks for 
1D signal processing. In fact, you also can use two-channel PR filter banks 
for 2D signals, as shown in Figure 10-10.

Figure 10-10.  2D Signal Processing

As shown in Figure 10-10, when using two-channel PR filter banks for 2D 
signals, you process rows first and then columns. Consequently, one 2D 
array splits into the following four 2D sub-arrays:

• low-low

• low-high

• high-low

• high-high

Each sub-array is a quarter the size of the original 2D signal.

Figure 10-11 illustrates 2D image decomposition by two-channel PR filter 
banks.
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Figure 10-11.  2D Image Decomposition

In Figure 10-11, the original 128-by-128 2D array is decomposed into four 
64 × 64 sub-arrays. The total size of the four sub-arrays is the same as the 
original 2D array. For example, the total number of elements in the four 
sub-arrays is 16,384, which equals 128 × 128. However, if you select the 
filters properly, you can make sub-arrays such that the majority elements 
are small enough to be neglected. Consequently, you can use a fraction of 
the entire wavelet transform coefficients to recover the original image and 
achieve data compression. In this example, you use the largest 25% wavelet 
transform coefficients to rebuild the original image. Among them, the 
majority, 93.22%, are from the low-low sub-array. The remaining three 
sub-arrays contain limited information. If you repeat the wavelet transform 
to the low-low sub-array, you can further reduce the compression rate.

low-low low-high

high-low high-high
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Wavelet Packets
The discrete wavelet transform is usually computed by the filter banks. As 
shown by Figure 10-3, applying the filter bank we can split a signal into an 
approximation (lowpass) sequence and a detail (highpass) sequence, 
respectively. The approximation sequence is then further split into 
second-level approximation and detail sequences, and the process is 
repeated. Consequently, the set of sequences containing detail information 
constitutes the wavelet coefficients, or the discrete wavelet transform.

Obviously, the approach described above is not the only way of performing 
decomposition based on filter banks. For example, you can not only split 
the approximation sequence but also split the detail sequence. The process 
is depicted by Figure 10-12, in which the path of each sequence is 
described by a string composed of 0 or 1. Zero represents passing a lowpass 
filter G0(z) (approximation). One represents passing a highpass filter G1(z) 
(detail). The decomposition scheme described in Figure 10-12 is 
commonly named wavelet packet decomposition.

Figure 10-12.  Wavelet Packet Decomposition Tree at Level Three
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You can consider the wavelet packet method as a generalization of wavelet 
decomposition that offers a richer signal analysis. Based on Figure 10-12, 
you can represent a signal by many different sets of sequences, such as 
(1, 01, 001, 000), (1, 00, 010, 011), or (000, 001, 010, 011, 100, 101, 110, 
111). For a given number of levels k, the number of different decomposition 
schemes is given by the following equation.

Each of these different decomposition schemes offers a particular way of 
coding signals, preserving global energy, and reconstructing features. 
Then, we can select the most suitable decomposition of a given signal with 
respect to an entropy-based criterion. Table 10-1 lists the entropy types 
available in the Signal Processing Toolset.

Table 10-1.   Entropy Types Available in the Signal Processing Toolset

Type Description

Shannon

Threshold exceed a threshold ε

Norm the concentration in 

Log Energy

Stein’s Unbiased Risk Estimate (SURE)

where E[i] = 1 if  and 0 elsewhere, 
N[i] = 1 if  and 0 elsewhere

P k( ) P k 1–( )2 1+= P 1( ) 1=

s
2

i[ ] s
2log i[ ]∑–

l
p 1 P 2<≤

s2log i[ ]∑
E i[ ] N i[ ] min s

2
i[ ] p
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11
Wavelet Analysis Applications

This chapter describes the 1D and 2D Wavelet Transform examples, the 
Wavelet Packet example, and how to design a wavelet and filter bank to 
meet your application needs.

With the wavelet transform examples, you can apply wavelet transform to 
1D and 2D signals, perform wavelet packet analysis, and design wavelets 
without using any programming. Although you can use these examples 
without understanding the fundamentals of wavelets and filter banks, you 
should review Chapter 9, The Fundamentals of Wavelet Analysis, and 
Chapter 10, Wavelet Analysis by Discrete Filter Banks, before running the 
examples. Review those two chapters to help you attain the best results.

Opening the Wavelet Analysis Examples
The wavelet transform and wavelet packet examples reside on the 
SPT palette, shown in Figure 11-1. Select Start»Programs»National 
Instruments»Signal Processing Toolset»NI SPT Start-Up to open the 
SPT palette. On the SPT palette, click the 1D Wavelet Transform icon, 
the 2D Wavelet Transform icon, or the Wavelet Packet icon.

Figure 11-1.  SPT Palette

Refer to the Accessing Example Application Source Code section of 
Chapter 1, Signal Processing Toolset Overview, for information about 
accessing the source code for the wavelet analysis examples.

1 1D Wavelet Transform 2 2D Wavelet Transform 3 Wavelet Packet

1 2 3



Chapter 11 Wavelet Analysis Applications

Signal Processing Toolset User Manual 11-2 ni.com

1D Wavelet Transform
You can use the 1D Wavelet Transform example to compute the wavelet 
packet for 1D test data. A wavelet packet is a generalized wavelet 
composition. Refer to the Wavelet Packets section of Chapter 10, Wavelet 
Analysis by Discrete Filter Banks, for more information about wavelet 
packets. You also can use the 1D Wavelet Transform example to test a 
wavelet and filter bank of your own design.

When you click the 1D Wavelet Transform icon on the SPT palette, 
the 1D Wavelet Transform front panel, shown in Figure 11-2, and the 
Wavelets and Filters front panel, shown in Figure 11-3, open. Refer to the 
Selecting the Wavelet section for more information about the Wavelets and 
Filters front panel.

The 1D Wavelet Transform front panel includes four plots. The upper plot 
displays the original signal. The other three plots display the wavelet 
transform results for different tree paths.
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Figure 11-2.  1D Wavelet Transform Front Panel

1 Original Signal 2 Wavelet Transform Results
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Figure 11-3.  Wavelets and Filters Front Panel

Using the 1D Wavelet Transform Example
Complete the following steps to use the 1D Wavelet Transform example to 
compute the wavelet packet for 1D test data.

1. Load the test data.

2. Select the wavelet.

3. Specify the extension type.

4. Specify the tree path.

5. Specify the display method.

6. Save the wavelet transform results.
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The following sections describe the preceding steps and the 1D Wavelet 
Transform example front panel controls and indicators. You also can select 
Help»Show Context Help or press <Ctrl-H> for more information about 
controls and indicators.

Loading the Test Data
You can choose to analyze one of the example data files supplied with the 
Signal Processing Toolset or your own data file. Your data file must be 
either a one-column or one-row spreadsheet text file.

Complete the following steps to load your test data.

1. Select File»Load»Data File to open the Choose spreadsheet file 
to read dialog box.

2. Navigate to the location of the data file you want to analyze.

3. Select the data file you want to analyze and click the Open button or 
double-click the data file name.

Selecting the Wavelet
You can choose to use wavelets supplied with the Signal Processing 
Toolset or wavelets from your own data file, or you can design wavelets 
with the Wavelets Designer. Your wavelet file must contain the filter 
coefficients of G0(z), G1(z), H0(z), and H1(z) in four lines consecutively. 
You can create your data file with the Wavelets Designer or another 
application. Refer to the Wavelets Designer section for information about 
the Wavelets Designer.

Complete the following steps to load a wavelet from your own data file.

1. Select File»Load»Wavelet to open the Choose file to read 
dialog box.

2. Navigate to the location of the data file containing the filter coefficients 
of the wavelet you want to load.

3. Select the data file you want to load and click the Open button or 
double-click the data file name.

Use the Wavelet control to select a wavelet supplied with the Signal 
Processing Toolset.
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The wavelets are stored with the global variables Analysis Filters and 
Synthesis Filters. The mother wavelet, scaling functions, and filter 
coefficients for the global variables are displayed by the following Wavelets 
and Filters front panel indicators, shown in Figure 11-3:

• Analysis Scaling displays the scaling function of the wavelet 
transform.

• Analysis Wavelet displays the mother wavelet of the wavelet 
transform.

• Analysis Lowpass displays the coefficients of the analysis lowpass 
filter G0(z).

• Analysis Highpass displays the coefficients of the analysis highpass 
filter G1(z).

• Synthesis Scaling displays the scaling function of the inverse wavelet 
transform.

• Synthesis Wavelet displays the mother wavelet of the inverse wavelet 
transform.

• Synthesis Lowpass displays the coefficients of the synthesis lowpass 
filter H0(z).

• Synthesis Highpass displays the coefficients of the synthesis highpass 
filter H1(z).

Use the Refinement control on the Wavelets and Filters front panel, shown 
in Figure 11-3, to specify how many levels to go through to compute the 
wavelet and scaling function. A proper wavelet usually converges after four 
or five levels.

Use the Swap control on the 1D Wavelet Transform front panel, shown in 
Figure 11-2, to specify whether the analysis filter is swapped with the 
synthesis filter. The Swap control allows you to select a better combination 
of analysis parameters for your application. Usually, the filter with the 
smoother time waveform is chosen as the synthesis filter.

Specifying the Extension Type
Use the Extension control on the 1D Wavelet Transform front panel, 
shown in Figure 11-2, to specify the padding method for the data. You can 
choose from the following padding methods:

• Zero padding adds zeros at the beginning and end of the original data.

• Symmetric symmetrically folds the original signal at the beginning 
and end.

• Periodic treats the original data as a periodic signal.
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• Spline (default) symmetrically folds the original signal at the 
beginning and end and then smooths with spline.

The number of points padded at either the beginning or end of the original 
signal is determined by the following equation.

where N0 is the number of coefficients of filter G0(z), and N1 is the number 
of coefficients of filter G1(z).

Specifying the Tree Path
Enter a value in Tree Path on the 1D Wavelet Transform front panel, 
shown in Figure 11-2, to specify a path for the wavelet packet. The Tree 
Path value must be a string composed of 0 or 1, where 0 represents passing 
a lowpass filter G0(z) and 1 represents passing a highpass filter G1(z). 
Figure 11-4 illustrates an example tree path.

Figure 11-4.  Example of Tree Path

You can define any tree path for your application. Figure 11-5 illustrates the 
full path for a three-level decomposition.
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Figure 11-5.  Full Path of a Three-Level Perfect Reconstruction Tree

For example, you can decompose the signal X as 0, 100, 101, and 11. Then, 
you use those coefficients to reconstruct the original signal with synthesis 
filter banks, as shown in Figure 11-6.

Figure 11-6.  Wavelet Packet

In this case, although you do not follow the ordinary wavelet 
decomposition scheme discussed in the earlier chapters, you can still 
fully recover the original signal X, if the coefficients are not altered. This 
generalized wavelet decomposition is called a wavelet packet and offers 
a wider range of possibilities for signal processing.

You should let your application determine the tree path you specify. One 
common technique used to determine the tree path is called entropy-based 
criterion. In entropy-based criterion, you check each node of the 
decomposition tree and quantify the information. Then, you continue to 
decompose those nodes that contain more information.

1 

0 

11 

10 

01 

00 

111

110

101

100
011

010

001

000

1 

11 

10 

101

100

0

X(z) X(z)



Chapter 11 Wavelet Analysis Applications

© National Instruments Corporation 11-9 Signal Processing Toolset User Manual

Specifying the Display Method
The plot below Tree Path on the 1D Wavelet Transform front panel, as 
shown in Figure 11-2, displays the wavelet transform result for that path. 
You can display the result as either a waveform or a histogram. Select 
View»Show Waveform or Show Histogram to specify the display 
method.

Saving the Wavelet Transform Result
Click the Save button above the wavelet transform result plot on the 1D 
Wavelet Transform front panel, shown in Figure 11-2, to save that 
particular result as a text file. You can use the wavelet transform result to 
fully reconstruct the original signal.

2D Wavelet Transform
As discussed in Chapter 10, Wavelet Analysis by Discrete Filter Banks, by 
applying wavelet transform, you can break one image into four subimages: 
low-low, low-high, high-low, and high-high. With the 2D Wavelet 
Transform example, you can apply 2D wavelet transform to an image and 
use part of the subimage data to reconstruct the image.

When you click the 2D Wavelet Transform icon on the SPT palette, 
shown in Figure 11-1, the 2D Wavelet Transform front panel opens. 
Figure 11-7 shows the 2D Wavelet Transform front panel with a data file 
already loaded.
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Figure 11-7.  2D Wavelet Transform Front Panel

Using the 2D Wavelet Transform Example
Complete the following steps to use the 2D Wavelet Transform example to 
apply 2D wavelet transform to an image and then reconstruct the image.

1. Load the image.

2. Select a wavelet.

3. Specify the extension type used for reconstruction.

4. Specify the data percentage used for reconstruction.

The following sections describe the preceding steps and the 2D Wavelet 
Transform example front panel controls and indicators. You also can select 
Help»Show Context Help or press <Ctrl-H> for more information about 
controls and indicators.

1 low-low 2 low-high 3 high-high 4 high-low

1

2

3
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Loading the Image
Your image file should be a .bmp file. 

Complete the following steps to load an image.

1. Select File»Load»BMP image to open the Select a BMP file to open 
dialog box.

2. Navigate to the location of the image file you want to analyze.

3. Select the image file you want to analyze and click the Open button or 
double-click the image file name.

Selecting a Wavelet
Refer to the 1D Wavelet Transform section for information about selecting 
a wavelet.

Specifying the Extension Type
Use the Extension control on the 2D Wavelet Transform front panel, 
shown in Figure 11-7, to specify the padding method for the data. Refer to 
the 1D Wavelet Transform section for information about specifying an 
extension.

Specifying the Data Percentage Used for 
Reconstruction
Use the Used coeffs control on the 2D Wavelet Transform front panel, 
shown in Figure 11-7, to specify the data percentage used for 
reconstruction. The value of Used coeffs represents the percentage of the 
largest wavelet coefficients used from all the subimages to restore the 
image.

Using the Zoom Control
The zoom control on the 2D Wavelet Transform front panel, shown in 
Figure 11-7, is located above each image display and is represented by the 
magnifying glass icon. Use the zoom control to zoom in on the front panel 
images. Clicking the zoom control opens a new window containing the 
image. Resizing the new window resizes the image.
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Wavelet Packet
You can use the Wavelet Packet example to compute the wavelet packet for 
1D test data. A wavelet packet is a generalized wavelet composition. Refer 
to the Wavelet Packets section of Chapter 10, Wavelet Analysis 
Applications, for more information about wavelet packets. 

When you click the Wavelet Packet icon on the SPT palette, shown in 
Figure 11-1, the Wavelet Packet front panel, shown in Figure 11-8, opens.

 

Figure 11-8.  Wavelet Packet Front Panel

The Wavelet Packet front panel includes the following plots:

• Analyzed Signal displays the original signal.

• Node Coefficients displays the decomposition coefficients of the node 
you select in the plot on the right.

• The plot on the right displays the tree structure of the wavelet packet 
decomposition.
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Using the Wavelet Packet Example
Complete the following steps to use the Wavelet Packet example to 
compute the wavelet packet for 1D test data.

1. Load the test data.

2. Select the wavelet.

3. Specify the extension type.

4. Specify the method to compute entropy.

5. Specify the number of levels.

6. Operate on a tree node. 

The following sections describe the preceding steps and the Wavelet Packet 
example front panel controls and indicators. You also can select 
Help»Show Context Help or press <Ctrl-H> for more information about 
controls and indicators.

Loading the Test Data
You can choose to analyze your own data file or one of the example data 
files supplied with the Signal Processing Toolset. Your data file must be 
either a one-column or one-row spreadsheet text file. Refer to the 
1D Wavelet Transform section for more information about loading 
test data.

Selecting the Wavelet
Refer to the 1D Wavelet Transform section for information about selecting 
a wavelet.

Specifying the Extension Type
Refer to the 1D Wavelet Transform section for information about 
specifying the extension type.

Specifying the Method to Compute Entropy
Use the Entropy Type control on the Wavelet Packet front panel, shown 
in Figure 11-8, to specify the method to compute the entropies of the 
wavelet packets. Refer to the Wavelet Packets section of Chapter 10, 
Wavelet Analysis by Discrete Filter Banks, for information about selecting 
the entropy type.
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Specifying the Number of Levels
Use the # of Levels control on the Wavelet Packet front panel, shown in 
Figure 11-8, to specify the number of levels of the wavelet packet 
decomposition. 

Operating On a Tree Node
Click the node in the right-hand plot on the Wavelet Packet front panel, 
shown in Figure 11-8, on which you want to operate to open a shortcut 
menu. You can choose from the following shortcut menu items:

• Split Node decomposes the wavelet packet.

• Join Node reconstructs the wavelet packet.

• Read Node reads the coefficients and entropy of the selected node. 
Selecting Read Node highlights the node and displays its coefficients 
and entropy in the Node Coefficients graph and the Entropy indicator 
on the front panel.

Specifying the Display Mode
Use the Display Mode control on the Wavelet Packet front panel, shown 
in Figure 11-8, to specify how to display the tree structure of the wavelet 
packet decomposition. You can choose from the following display modes:

• node path displays the path of the node. 1 denotes highpass filtering. 
0 denotes lowpass filtering. For example, 110 denotes a three-level 
decomposition. The decomposition process specified by 110 is 
highpass-highpass-lowpass.

• (depth, pos) displays the level index and the node index at its level of 
a node. For example, (3, 4) is the fourth node at level three.

• entropy displays the entropy of the node.

Drawing the Best Tree
Place a checkmark in the Best Tree checkbox on the Wavelet Packet front 
panel, shown in Figure 11-8, to compute from entropy-based criteria the 
most suitable decomposition tree for the signal. Remove the checkmark 
from the Best Tree checkbox to perform a full tree decomposition.
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Wavelets Designer
With the Wavelets Designer, you can design the filters G0(z) and H0(z), 
which can be used to derive G1(z) and H1(z). The mother wavelet and the 
scaling function can then be computed by G0(z), G1(z), H0(z), and H1(z). 
Refer to Chapter 10, Wavelet Analysis by Discrete Filter Banks, for more 
information about the wavelet and filter banks.

Opening the Wavelets Designer Front Panel
You can open the Wavelets Designer front panel, shown in Figure 11-9, 
from the front panels of the 1D Wavelet Transform example, the 2D 
Wavelet Transform example, and the Wavelet Packet example. You can 
use the following methods to open the Wavelets Designer front panel:

• Select Tools»Wavelet Designer when using the 1D Wavelet 
Transform example.

• Select Tools»Show Wavelet Designer when using the 2D Wavelet 
Transform and Wavelet Packet examples.

• Click in the Wavelet control and select user defined from the shortcut 
menu.

Refer to the Accessing Example Application Source Code section of 
Chapter 1, Signal Processing Toolset Overview, for information about 
accessing the source code for the Wavelets Designer.

Wavelets Designer Front Panel Displays
The upper plot on the Wavelets Designer front panel, shown in Figure 11-9, 
displays the frequency response of G0(z) and G1(z).

The lower plot on the Wavelets Designer front panel, shown in Figure 11-9, 
illustrates the zero distribution of G0(z) and H0(z). Because all the zeros are 
symmetrical with respect to the x-axis, only the upper half of the plane is 
displayed. The ° symbol represents the zeros in G0(z), and the × symbol 
represents the zeros in H0(z). To select a zero, place the cursor on the zero 
that you want to choose and click the left mouse button. This switches the 
zeros from G0(z) to H0(z) and vice versa. If two zeros are too close to 
choose, use the Zoom Tool on the graph palette to zoom in on the zeros 
until you can identify the them. Refer to the Digital Filter Design Front 
Panels section of Chapter 12, Digital Filter Design Application, for 
information about the Zoom Tool and the graph palette.
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Figure 11-9.  Wavelets Designer

Designing Wavelets
Figure 11-10 illustrates the wavelet design process. Figure 11-9 shows the 
Wavelets Designer controls to use when designing wavelets.
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Figure 11-10.  Design Procedure for Wavelets and Filter Banks

Complete the following steps to design wavelets.

1. Select the type of filter bank.

2. Find the product of G0(z) and H0(z), P0(z).

3. Factorize P0(z) into G0(z) and H0(z).
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The following sections describe each of the steps in the wavelet design 
process and the Wavelets Designer front panel controls you use to complete 
the steps. You also can select Help»Show Context Help or press <Ctrl-H> 
for more information about front panel controls and indicators.

Selecting the Type of Filter Bank
Use the Filter Bank control on the Wavelets Designer front panel, shown 
in Figure 11-9 as step 1, to select the filter bank type. You can choose from 
two types of wavelets and filter banks, Orthogonal (default) and 
Biorthogonal. The orthogonal filters and wavelets are easier to design 
because they involve fewer parameters, but the orthogonal filter banks 
cannot be linear phase.

Finding the Product P0(z)
P0(z) denotes the product of G0(z) and H0(z), as shown in the following 
equation.

P0(z) = G0(z)H0(z)

Use the P0(z) control, shown in Figure 11-9 as step 2, to specify the P0(z) 
type. When Filter Bank is set to Orthogonal, you can set P0(z) to either 
Maxflat (default), for a maximum flat filter, or to Positive Equiripple. When 
Filter Bank is set to Biorthogonal, you can set P0(z) to Maxflat (default), 
General Equiripple, or Positive Equiripple.

Because all filters in the Wavelets Designer act as real-valued finite impulse 
response (FIR) filters, the zeros of P0(z), G0(z), and H0(z) are symmetrical 
in the z-plane. This implies that for any zero zi, there always exists zi*. If zi 
is complex, as shown in Figure 11-11, you only need to deal with half of 
the z-plane. Once you select zi, the Wavelets Designer automatically 
includes its complex conjugate zi*.
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Figure 11-11.  Non-Negative Equiripple Halfband Filter

The maximum flat filter has the form given by the following equation.

The maximum flat filter differs from the Butterworth filter. The maximum 
flat filter has good frequency attenuation but wider transition band. The 
parameter p is controlled by the zero pairs at π control on the Wavelets 
Designer front panel, shown in Figure 11-9. Q(z) is a 2p – 2 order 
polynomial, which you can uniquely determine if p is decided. Therefore, 
the total number of coefficients of P0(z) is 4p – 1. For maximum flat filters, 
there are multiple zeros at z = 0. Use the zeros at π control to determine 
how many zeros at z = 0.

The equiripple is further divided into the general equiripple and positive 
equiripple filters. However, you can select only positive equiripple filters 
for orthogonal filter banks. Although both are halfband filters, the sum of 
the normalized passband and stopband frequencies equals 0.5, the Fourier 
transform of the positive equiripple filter p0[n] is always real and 
non-negative, as shown in Figure 11-11. 

Two parameters are associated with equiripple filters, # of taps 
and passband, as shown in Figure 11-12. Use the # of taps control to 
define the number of coefficients of P0(z). Because P0(z) is a type I FIR 
filter, the length of P0(z) must be 4p – 1, where p = 2, 3, …. Use the 
passband control to define the normalized cutoff frequency of P0(z), 
which must be less than 0.5.
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Figure 11-12.  Equiripple Filter

Factorizing P0(z) into G0(z) and H0(z)
Once you determine P0(z), you must factorize it into the lowpass filters, 
G0(z) and H0(z). Use Type of G0(z) and H0(z), shown in Figure 11-9 as 
step 3, to accomplish the factorization. The combination of G0(z) and H0(z) 
is not unique. For a given P0(z), you have the following four choices for 
G0(z) and H0(z):

• Linear Phase—Any zero and its reciprocal must belong to the same 
filter as shown in Figure 11-13. This selection is only available when 
the filter is biorthogonal.

• Minimum Phase—G0(z) contains all the zeros inside the unit circle as 
shown in Figure 11-14. When P0(z) is maximum flat and G0(z) is 
minimum phase, the resulting wavelets are traditionally known as 
Daubechies wavelets.

• B-Spline—This choice is only available when the filter is biorthogonal 
and maximum flat. In this case

where k is specified with the zeros at π control. p is decided by the 
zeros at π control. Figure 11-15 shows an example of B-Spline 
factorization.

• Arbitrary—No specific constraints are associated with this filter. 
Figure 11-16 shows an example of arbitrary factorization.

After you decide the type of G0(z) and H0(z), the Wavelets Designer 
automatically computes the constraints. For example, once you select a 
zero, the reciprocal of the zero is automatically included if you choose 
G0(z) for linear phase. Figure 11-10 summarizes all possible design 
combinations provided by the Wavelets Designer.
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Figure 11-13.  Linear Phase Filter

Figure 11-14.  Minimum Phase Filter
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Figure 11-15.  B-Spline Filter

Figure 11-16.  Arbitrary Filter

Note The conditions for linear phase and orthogonality are contradictory. In general, 
you cannot achieve linear phase and orthogonality simultaneously.

The Wavelets Designer also provides the following additional utilities:

• Select File»Load»Design Spec to load a saved design file.

• Select File»Save»Wavelet to save the designed analysis filter 
coefficients and synthesis filter coefficients in a text file.

• Select File»Save»Design Spec to save your design information in a 
binary file.

• Select Windows»Show Filter Coef to display a table listing the 
designed analysis and synthesis filter coefficients.
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• Select Windows»Show Wavelets to open the Wavelets and Filters 
front panel, shown in Figure 11-3. Refer to the 1D Wavelet Transform 
section for information about the Wavelets and Filters front panel.

To assist you with testing your own applications, the Wavelets Designer 
saves the filter coefficients as the following global variables in the Wavelet 
Design Globals VI:

• Analysis Filter Coefficients contains coefficients G0(z) and G1(z).

• Synthesis Filter Coefficients contains coefficients H0(z) and H1(z).

These variables simultaneously change as you change the design. If you 
incorporate those parameters into your own application, you can see the 
effect of the different design.
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Part V

Digital Filter Design

This section of the manual describes the Digital Filter Design (DFD) 
application. Refer to the works of Jackson [13], Oppenheim and Schafer 
[19], Parks and Burrus [20], Parks and McClellan [21] [22], and Williams 
and Taylor [37] for more information about the theory and algorithms 
implemented in the DFD application.

• Chapter 12, Digital Filter Design Application, describes the 
DFD application used to design infinite impulse response (IIR) 
and finite impulse response (FIR) digital filters.

• Chapter 13, IIR and FIR Implementation, describes the filter 
implementation equations for IIR and FIR filtering and the format of 
the IIR and FIR filter coefficient files.
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12
Digital Filter Design Application

This chapter describes the Digital Filter Design (DFD) application, 
including all required filter coefficient forms and implementation 
equations. The DFD application provides complete filter design and 
analysis tools you can use to design digital filters to meet your precise filter 
specifications. You can graphically design infinite impulse response (IIR) 
and finite impulse response (FIR) digital filters, interactively review filter 
responses, save your filter design work, and load your design work from 
previous sessions.

You can save digital-filter coefficients for later implementation from 
within LabVIEW and LabWindows/CVI. Also, you can call Windows 
DFD dynamic link libraries (DLLs) from other applications, or other 
applications can load the filter-coefficient files directly.

If you have a National Instruments data acquisition (DAQ) device, you can 
perform real-world filter testing in the DFD application. You can view the 
time waveforms or the spectra of the input signal and the filtered signal 
while you simultaneously redesign your digital filters.
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Figure 12-1 illustrates the interaction between the DFD application and 
related applications.

Figure 12-1.  Conceptual Overview of the Digital Filter Design Application

Main Menu
Select Start»Programs»National Instruments»Signal Processing 
Toolset»NI Digital Filter Design to open the Main Menu dialog box, 
shown in Figure 12-2.

Figure 12-2.  DFD Main Menu

Digital Filter Design Application

Filter Specification Files

LabVIEW

Save

Data Acquisition and Filtering

Load Save

LabWindows/CVI Windows DLL

Filter Coefficient Files
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Opening the Filter Design Front Panels
From the Main Menu dialog box, you can open any one of the following 
digital filter design front panels:

• Classical IIR Filter Design

• Classical FIR Filter Design

• Pole-Zero Placement

• Arbitrary FIR Filter Design.

Refer to the Digital Filter Design Front Panels section for more 
information about each design front panel.

Directly Loading a Filter Specification File
Click the Load Spec button in the Main Menu dialog box to load a 
previously designed filter specification file directly from the Main Menu 
dialog box. The DFD application prompts you to select the filter 
specification file that you saved during previous design work. After you 
select the file, you can open the appropriate design front panel for that 
specification file. Then, resume work on an ongoing design project.

Editing the DFD Preferences
Click the Preferences button in the Main Menu dialog box to customize 
your DFD application preferences. You can edit your DFD application 
preferences for future design sessions.

Getting Information about the DFD Application
Click the Get Info button in the Main Menu dialog box to get information 
about the entire DFD application or an individual filter design application.

Quitting the DFD Application
Click the Quit button in the Main Menu dialog box to quit the 
DFD application.
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Digital Filter Design Front Panels
When you double-click one of the four design selections in the Main Menu 
dialog box, the DFD application loads and runs the selected design front 
panel. You can use these design front panels to design IIR or FIR filters, 
save your design work and filter coefficients, or load previous filter 
designs.

After designing your filter, you can move from the design front panels to 
the Analysis of Filter Design front panel to view various frequency domain 
and time domain filter responses. You can save these responses to text 
files for use in other applications. You also can perform real-world testing 
of your filter designs by moving to the DAQ and Filter front panel, which 
performs data acquisition and filtering in parallel with your filter designing. 
Refer to the Analysis of Filter Design Front Panel and the DAQ and Filter 
Front Panel sections for more information about these two front panels.

Common Controls and Features
The following sections describe the controls and features of the 
DFD application. Figure 12-3 shows the Classical IIR Filter Design front 
panel, which is representative of the filter design front panels.

Figure 12-3.  Classical IIR Filter Design Front Panel
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Saving Filter Specifications
Select File»Save Spec to save all your specifications for the present filter 
design front panel. The DFD application prompts you for the name of the 
filter-specification file to save. Name your specification files appropriately 
for a given filter design. For example, if you design a lowpass IIR filter, 
name the file lowpass.iir or lowp1.iir if this design is the first of 
many lowpass IIR designs.

Table 12-1 lists suggested filename extensions for the four filter design 
front panels. These names have no effect on how the DFD application 
interprets the file contents.

Loading Filter Specifications
Select File»Load Spec to load a filter specification file into the present 
filter design front panel. The DFD application prompts you for the location 
of the filter specification file to load. If the selected specification file is the 
same type design as the present design front panel, the DFD application 
loads the specification from the selected file into the present design front 
panel for viewing, editing, or analysis.

If you designed the selected specification file in a different design front 
panel than the present front panel, the DFD application prompts you to 
open the appropriate design front panel for that specification file. For 
example, if you are using the Pole-Zero Placement front panel and you load 
a specification file saved in the Classical FIR Design front panel, the DFD 
application prompts you to open the Classical FIR Design front panel to 
resume work on the loaded filter specifications.

Saving Filter Coefficients
Select File»Save Coeff to save your filter coefficients to a file. The DFD 
application first prompts you for the format, either text or log, of the 
coefficient file.

Table 12-1.  Suggested DFD Filename Extensions

Design Front Panel Filename

Classical IIR Design filename.iir

Classical FIR Design filename.fir

Pole-Zero Placement filename.pz

Arbitrary FIR Design filename.arb
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Click the text button to select the text format. The text format allows you 
to view or print the coefficient file or to use the coefficients in other 
non-LabVIEW filtering applications.

Click the log button to select the log format for LabVIEW-only filtering 
applications. However, LabVIEW filtering utilities read both 
text-formatted and log-formatted coefficient files.

After you select the format of the coefficient file, the DFD application 
prompts you for the name of the filter coefficient file to save. Name your 
coefficient files appropriately for a given filter design. For example, if 
you save bandpass IIR filter coefficients, name the file bpiir.txt or 
bpiir.log, depending on the coefficient file type.

Analyzing Filter Designs
Select File»Analysis to analyze your filter design. The DFD application 
loads and runs the Analysis of Filter Design front panel. From this analysis 
front panel, you can view the filter magnitude response, phase response, 
impulse response, step response, and pole-zero plot. You also can view and 
print full-screen plots of each response. From the full-screen views, you 
can save the analysis results to a text file. Refer to the Analysis of Filter 
Design Front Panel section for more information about analyzing filter 
designs.

Testing Filter Designs
If you have a National Instruments DAQ device, you can test the present 
filter design on real-world signals by selecting File»DAQ and Filter. The 
DFD application loads and runs the DAQ and Filter front panel. From this 
front panel, you can configure your DAQ device and then acquire real 
signals. The acquired data passes through the currently designed filter, and 
the DFD application plots the input and output waveforms and spectrums.

You also can test your filter designs using a built-in simulated function 
generator. Select File»DAQ and Filter and configure the DAQ source to 
simulated DAQ. You then can click the Function Generator button on the 
DAQ and Filter front panel to view and edit settings that include signal 
type, frequency, amplitude, and noise level.

Refer to the DAQ and Filter Front Panel section for more information 
about the DAQ and Filter front panel.
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Transferring Filter Designs
You can transfer some filter design specifications from one design front 
panel to another. For example, you can configure your passband and 
stopband requirements while you design an FIR filter and find the IIR filter 
that meets your design specifications. Not all design front panels can share 
specifications. Table 12-2 shows the transfers you can perform and the 
corresponding command path.

Returning to the Main Menu
Select File»Main Menu to return to the Main Menu dialog box.

Panning and Zooming Options
The graphs on the filter design front panels include the plot legend and 
graph palette. Use the controls on the plot legend and graph palette to pan 
the display area of a graph and zoom in and out of graph sections. 
Figure 12-4 shows a graph and its plot legend and graph palette.

Table 12-2.  Filter Specification Transfers

Design Transfer Command Path

Filter specs from the Classical IIR to the 
Classical FIR

File»Xfer Classical FIR

Filter specs from the Classical FIR to the 
Classical IIR

File»Xfer Classical IIR

Poles and zeros from Classical IIR to the 
Pole-Zero Placement

File»Xfer Pole Zero
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Figure 12-4.  Graph with Plot Legend and Graph Palette

Plot Legend
Use the plot legend, shown in Figure 12-5, to pan the display of the graph.

Figure 12-5.  Plot Legend

The plot legend contains the following controls:

• Lock button—click the Lock button next to the desired autoscale 
button to autoscale that particular scale continuously.

• Autoscale X button—click the Autoscale X button to autoscale the 
x-data of the graph.

1 Plot Legend 2 Graph Palette

1 Lock X
2 Autoscale X

3 Scale Format X
4 Lock Y

5 Autoscale Y
6 Scale Format Y

1 2

1 2 3 4 5 6
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• Scale Format buttons—click the Scale Format buttons for run-time 
control over the format of the x-scale and y-scale markers. When you 
click a Scale Format button, a menu appears. From the shortcut menu, 
you can choose the Format, Precision, and Mapping Mode of the 
graph.

• Autoscale Y button—click the Autoscale Y button to autoscale the 
y-data of the graph.

Graph Palette
Use the graph palette, shown in Figure 12-6, to zoom in and out of graph 
sections.

Figure 12-6.  Graph Palette

The graph palette contains the following controls:

• Plus button—click the Plus button to place the graph in operate mode. 
In operate mode, you can click in the graph to move the cursors.

• Zoom Tool—click the Zoom Tool to open the Zoom palette, shown 
in Figure 12-7. 

Figure 12-7.  Zoom Palette

1 Plus 2 Panning Tool 3 Zoom Tool

1 2

3



Chapter 12 Digital Filter Design Application

Signal Processing Toolset User Manual 12-10 ni.com

The top row of the Zoom palette contains the following buttons from 
left to right:

– Zoom by rectangle

– Zoom by rectangle, with zooming restricted to x-data

– Zoom by rectangle, with zooming restricted to y-data

After choosing your zooming method, you can zoom in on a section of 
the graph by dragging a selection rectangle around that section. 

The bottom row of the Zoom palette contains the following buttons 
from left to right:

– Undo last zoom resets the graph to its previous setting.

– Zoom in about a point allows you to zoom in on a specific point. 
If you click and hold the mouse button on a specific point, the 
graph continuously zooms in until you release the mouse button. 
Press <Shift> and click the mouse button to zoom in the opposite 
direction.

– Zoom out about a point allows you to zoom out on a specific 
point. If you click and hold the mouse button on a specific point, 
the graph continuously zooms out until you release the mouse 
button. Press <Shift> and click the mouse button to zoom in the 
opposite direction.

• Click the Panning Tool to switch to a mode in which you can scroll 
the visible data by clicking and dragging sections of the graph.

Graph Cursors
The graphs on the Classical IIR and Classical FIR design front panels have 
movable cursors. Figure 12-8 shows two cursors on a graph. When the 
graph is in operate mode, you can move a cursor by clicking on it and 
dragging it with the Operating Tool.
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Figure 12-8.  Example of Two Cursors on a Graph

You also can click the direction diamonds on the Cursor Movement 
control on the cursor legend to move selected cursors in the specified 
direction. You select cursors by first moving them on the graph with the 
Operating Tool. To make the cursor legend visible, right-click the graph 
and select Visible Items»Cursor Legend.

Classical IIR Filter Design
Figure 12-9 shows the Classical IIR Design front panel. This front panel 
includes a graphical interface with the magnitude versus frequency cursors 
and plot on the left side and a text-based interface with digital controls 
on the right side.

1 Cursors

1
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Figure 12-9.  Classical IIR Design Front Panel

Use this front panel to design classical IIR digital filters. These filters 
include the classic types of lowpass, highpass, bandpass, and bandstop, as 
well as the classic designs of Butterworth, Chebyshev, Inverse Chebyshev, 
and Elliptic.

To design classical IIR filters, adjust the filter specifications. The 
passband and stopband requirements define a filter specification. You 
can define these requirements by using either the text-based interface or 
the cursors in the magnitude versus frequency graph. As you use the mouse 
to click and drag the cursors, the panel updates the text-based entries. 
Similarly, as you enter new specifications in the text-base interface, the 
panel updates the cursors.

The lower passband frequency fp1, upper passband frequency fp2, and the 
passband response Gp define the passband specification. For the bandpass 
filter, the passband ranges from fp1 to fp2. The passband is the region in the 
frequency domain with a response near 1.0. Gp is the minimum allowable 
passband gain or filter magnitude response. In Figure 12-9, the passband is 
specified as having a minimum gain of –5 dB between the frequencies of 
fp1 = 1,900 Hz and fp2 = 2,600 Hz.
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The following ranges define the passband:

The lower stopband frequencies fs1 and fs2  and the stopband attenuation 
Gs define the stopband specification. For the bandpass filter, the stopband 
ranges from 0.0, DC to the lower stopband frequency fs1, and from the 
upper stopband frequency fs2 to half of the sampling rate, or the Nyquist 
rate. The stopband is the region in the frequency domain with a response 
near 0.0. Gs is the minimum acceptable stopband attenuation or filter 
magnitude response. 

In Figure 12-9, the stopband specification has a minimum attenuation of 
–40 dB between the frequencies of 0 and fs1 = 1,500 Hz and between the 
frequencies of fs2 = 3,000 Hz and 4,000 Hz.

The following ranges define the stopband:

The Classical IIR Design front panel estimates the minimum filter order 
required for the selected type and design to meet or exceed the modified 
filter specifications. The DFD application automatically computes other 
appropriate filter parameters and designs, and plots the IIR filter. You see 
immediate graphical feedback to help you determine whether the filter 
meets your specifications.

lowpass

highpass

bandpass 

bandstop , 

where fp1 is passband frequency 1

fp2 is passband frequency 2

fsamp is the sampling rate

lowpass

highpass

bandpass , 

bandstop 

where fs1 is passband frequency 1

fs2 is passband frequency 2

fsamp is the sampling rate

0 f fp1≤ ≤
fp1 f fsamp 2⁄≤ ≤
fp1 f fp2≤ ≤
0 f fp1≤ ≤ fp2 f fsamp 2⁄≤ ≤

fs1 f fsamp 2⁄≤ ≤
0 f fs1≤ ≤
0 f fs1≤ ≤ fs2 f fsamp 2⁄≤ ≤
fs1 f 2≤ ≤
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Classical IIR Design Front Panel Controls 
and Displays
Use the Classical IIR Design front panel File menu to complete the 
following tasks:

• Save your filter specifications and coefficients.

• Load filter designs from previous work.

• Open the Analysis or DAQ and Filter front panels.

• Transfer the IIR design specifications to the Classical FIR Design front 
panel.

• Transfer the poles and zeros to the Pole-Zero Placement front panel.

• Return to the Main Menu dialog box.

Magnitude-Frequency Plot
The graph in Figure 12-9 plots the frequency response H(f) as magnitude 
of the designed digital filter. The magnitude, or y-axis, is in linear or 
decibel units, depending on how you set the dB/linear button. The 
frequency, or x-axis, is in hertz. The full scale ranges from 0.0 to Nyquist, 
or half the sampling rate.

Cursors
When you move the blue cursors, you control the passband response, 
or horizontal lines, and the passband frequencies, or vertical lines.

When you move the red cursors, you control the stopband attenuation, 
or horizontal lines, and the stopband frequencies, or vertical lines.

These cursors represent the filter design specifications for the selected 
classical IIR filter. In the passband, the filter has a gain greater than or equal 
to the specified passband response. In the stopband, the filter has a gain less 
than or equal to the specified stopband attenuation.

dB/Linear Button
Use the dB/linear button to control the display units, either dB or linear, 
of all magnitude and gain controls and displays. The magnitude and gain 
controls and displays include the y-axis of the magnitude versus frequency 
plot, the passband response, the stopband attenuation, and the magnitude 
tracking cursor.
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Frequency and Magnitude Indicators
The frequency and magnitude indicators display the location of the 
square, transparent tracking cursor. This cursor is locked to the frequency 
response H( f), so moving this cursor updates the frequency and magnitude 
digital displays with data points from H( f).

Text-Based Interface
You can enter the complete filter specifications using the text-based portion 
of the Classical IIR Design front panel, which is the right-hand side of the 
front panel, shown in Figure 12-9.

Use passband resp to define the minimum gain in the passband. 
The horizontal blue cursor line represents this response in the magnitude 
versus frequency plot.

In the passband, the filter gain is guaranteed to be at least as high as 
the specified passband response (Gp). That is, .

When type is set to bandpass or bandstop, use the first value in passband 
freq to define one frequency edge of the passband. In the magnitude versus 
frequency plot, the left-hand vertical blue cursor line represents the first 
value in passband freq. Use the second value in passband freq to define 
the second frequency edge of the passband. In the magnitude versus 
frequency plot, the right-hand vertical blue cursor line represents the 
second value in passband freq.

Use stopband atten to define the minimum attenuation in the stopband. 
In the magnitude versus frequency plot, the horizontal red cursor line 
represents stopband atten.

In the stopband, the filter gain is guaranteed to be no higher than the 
specified stopband attenuation (Gs). That is, .

When type is set to bandpass or bandstop, use the first value in stopband 
freq to define one frequency edge of the stopband. In the magnitude versus 
frequency plot, the left vertical red cursor line represents the first value in 
stopband freq. Use the second value in stopband freq to define the 
second frequency edge of the stopband. In the magnitude versus frequency 
plot, the right vertical red cursor line represents the second value in 
stopband freq.

H f( ) Gp≥

H f( ) Gs≤



Chapter 12 Digital Filter Design Application

Signal Processing Toolset User Manual 12-16 ni.com

Sampling Rate Control
Use the sampling rate control to specify the sampling rate in samples per 
second, hertz.

Type Control
Use the type control to specify one of the following filter types:

• Lowpass 

• Highpass

• Bandpass 

• Bandstop

Design Control
Use the design control to specify one of the following filter design 
algorithms:

• Butterworth

• Chebyshev

• Inverse Chebyshev

• Elliptic

Filter Order Indicator
The filter order indicator displays the estimated filter order of the classical 
IIR filter. The DFD application automatically estimates the filter order as 
the lowest possible order that meets or exceeds the desired filter 
specifications.

Message Window
The message window displays errors that occur during the IIR design 
procedure. These errors occur when the filter specifications are inconsistent 
with the chosen filter type.

Classical FIR Design
Figure 12-10 shows the Classical FIR Design front panel. This front panel 
functions similarly to the Classical IIR Design front panel. The front panel 
includes a graphical interface with the magnitude versus frequency cursors 
and plot on the left side and a text-based interface with digital controls on 
the right side.
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Figure 12-10.  Classical FIR Design Front Panel

Use the Classical FIR Design front panel to design classical FIR digital 
filters. These filters include the classic types of lowpass, highpass, 
bandpass, and bandstop and use the Parks-McClellan equiripple FIR filter 
design algorithm.

To design classical FIR filters, adjust the desired filter specifications. The 
passband and stopband requirements define a filter specification. You can 
define these requirements by using either the text-based interface or the 
cursors in the magnitude versus frequency graph. As you use the mouse to 
click and drag the cursors, the text entries update. Similarly, as you enter 
new specifications in the text-based interface, the cursors update.

The lower passband frequency fp1, upper passband frequency fp2, and the 
passband response Gp define the passband specification. For the bandpass 
filter, the passband ranges from fp1 to fp2. The passband is the region in the 
frequency domain with a response near 1.0. Gp is the minimum allowable 
passband gain or filter magnitude response. 

In Figure 12-10, the passband specification is a minimum gain of –5 dB 
between the frequencies of fp1 = 1,900 Hz and fp2 = 2,600 Hz.
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The following ranges define the passband:

The stopband frequencies fs1 and fs2 and the stopband attenuation Gs define 
the stopband specification. For the bandpass filter, the stopband ranges 
from 0.0, DC to the lower stopband frequency fs1, and from the upper 
stopband frequency fs2 to half of the sampling rate, or Nyquist. 
The stopband is the region in the frequency domain with a response 
near 0.0. Gs is the minimum acceptable stopband attenuation or filter 
magnitude response. 

In Figure 12-10, the stopband specification has a minimum attenuation 
of –40 dB between the frequencies of 0 and fs1 = 1,500 Hz and between the 
frequencies of fs2 = 3,000 Hz and 4,000 Hz.

The following ranges define the stopband:

The Classical FIR Design front panel estimates the minimal filter order 
required for the selected type and design to meet or exceed the modified 
filter specifications. The DFD application automatically computes other 
appropriate filter parameters and designs, and plots the FIR filter. You see 
immediate graphical feedback to help you determine whether the filter 
meets your specifications.

lowpass

highpass

bandpass 

bandstop , 

where fp1 is passband frequency 1

fp2 is passband frequency 2

fsamp is the sampling rate

lowpass

highpass

bandpass , 

bandstop 

where fs1 is passband frequency 1

fs2 is passband frequency 2

fpsamp is the sampling rate

0 f fp1≤ ≤
fp1 f fsamp 2⁄≤ ≤
fp1 f fp2≤ ≤
0 f fp1≤ ≤ fp2 f fsamp 2⁄≤ ≤

fs1 f fsamp 2⁄≤ ≤
0 f fs1≤ ≤
0 f fs1≤ ≤ fs2 f fsamp 2⁄≤ ≤
fs1 f 2≤ ≤
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Classical FIR Design Front Panel Controls 
and Displays
The Classical FIR Design front panel controls and displays are similar to 
those on the Classical IIR Design front panel but with two exceptions. The 
Classical FIR Design front panel has a minimize filter order checkbox but 
does not have a design control.

Use the minimize filter order checkbox to specify whether the DFD 
application minimizes the estimated filter order. If you place a checkmark 
in the minimize filter order checkbox, the DFD application iteratively 
adjusts the filter order until it finds the minimum order that meets or 
exceeds the filter specifications. If you do not place a checkmark in the 
minimize filter order checkbox, the DFD application uses a fast formula 
to estimate the filter order to meet or exceed the desired filter 
specifications.

Use the Classical FIR Design front panel File menu to complete the 
following tasks:

• Save your filter specifications and coefficients.

• Load filter designs from previous work.

• Open the Analysis or the DAQ and Filter front panels.

• Transfer the FIR design specifications to the Classical IIR Design front 
panel.

• Return to the Main Menu dialog box.

Refer to the Classical IIR Design Front Panel Controls and Displays 
section for information about the same controls and displays on the 
Classical FIR Design front panel.

Pole-Zero Placement Filter Design
Figure 12-11 shows the Pole-Zero Placement filter design front panel. 
The front panel includes a graphical interface with the z-plane pole and 
zero cursors and the magnitude versus frequency plot on the left side and a 
text-based interface with digital controls on the right side.
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Figure 12-11.  Pole-Zero Placement Filter Design Front Panel

Use the Pole-Zero Placement filter design front panel to design IIR digital 
filters by manipulating the filter poles and zeros in the z-plane. The poles 
and zeros initially could have originated from classical IIR designs. Use 
this front panel to move existing poles and zeros directly on the z-plane 
plot. You can add and delete poles and zeros and accurately control their 
important characteristics.

You can describe the poles and zeros by using either the text-based 
interface or the cursors in the z-plane plot. As you use the mouse to click 
and drag the cursors, the text entries update. Similarly, as you enter new 
specifications in the text entries, the pole and zero cursors update.

The following specifications describe pole-zero filter designs:

• Pole and zero locations in the z-plane

• Characteristics of each pole and zero

• Gain

• Sampling rate

Any change in these parameters corresponds to a change in the filter 
coefficients. The DFD application matches the poles and zeros and 
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creates stable second-order stages for IIR filter coefficients. The DFD 
application then uses these coefficients to compute the filter magnitude 
response. For immediate graphical feedback to your pole-zero filter 
designs, the magnitude versus frequency plot updates automatically when 
you change the poles or zeros.

Pole-Zero Placement Front Panel Controls and 
Displays
Use the Pole-Zero Placement front panel File menu to complete the 
following tasks:

• Save your filter specifications and coefficients.

• Load filter designs from previous work.

• Open the Analysis or the DAQ and Filter front panels.

• Return to the Main Menu dialog box.

Z-Plane Plot
In the z-plane plot, you can move each pole, represented by a red ×, 
anywhere within the unit circle along and above the x-axis. You can move 
each zero, represented by a blue o, anywhere along and above the x-axis.

Click the delete selected button to delete the selected pole or zero. 
Click poles and zeros to select them.

Click the add pole button to add a pole to the z-plane. The new pole is 
located at the origin.

Click the add zero button to add a zero to the z-plane. The new zero is 
located at the origin.

Coordinates Control
Use the coordinates control to specify how the DFD application displays 
the poles and zeros, either in rectangular or polar coordinates.

Array of Zeros in Rectangular Coordinates
The Zeros section of the Pole-Zero Placement front panel, shown in 
Figure 12-11, is the array of zeros in rectangular coordinates indicator. 
The complex value of each zero represents its rectangular position on 
the z-plane. The integer, 3, in the upper-left box is the index of the 
displayed zero. By changing this index value, you can display a particular 
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zero of the array of zeros. When you select a particular zero in the z-plane 
plot, the DFD application sets the index value of the array to the selected 
zero.

If you place a checkmark in the real checkbox, the zero becomes purely 
real and is limited to real-axis movement.

When you place a checkmark in the lp checkbox, the zero has linear phase. 
If the zero is not real or on the unit circle, the DFD application matches it 
with another zero at a radius of 1/r, where r is the radius of the original zero. 
The radius is the distance from the origin. Linear-phase zeros are important 
in linear-phase FIR filters. If your z-plane plot contains only zeros and all 
the zeros have linear phase, the FIR filter you designed has an overall linear 
phase response.

If you place a checkmark in the uc checkbox, the zero must be located on 
the unit circle with a radius of 1.0 The zero is limited to movement along 
the unit circle.

The order control specifies the order of the zero or the number of actual 
zeros at this location in the z-plane.

An M th-order zero at z = b has a z-transform of H(z) = (z – b)M.

Array of Poles in Rectangular Coordinates
The Poles section of the Pole-Zero Placement front panel, shown in 
Figure 12-11, is the array of poles in rectangular coordinates.

The complex value of each pole represents its rectangular position on 
the z-plane. The integer 0 in the upper-left box is the index of the displayed 
pole. By changing this index value, you can display a particular pole of the 
array of poles. When you select a particular pole in the z-plane plot, the 
DFD application sets the index value of the array to the selected pole.

Whether poles are real is the only special characteristic that applies to 
poles. If you place a checkmark in the real checkbox, the pole becomes 
purely real and is limited to real-axis movement.

The order text control specifies the pole order or the number of actual poles 
at this location in the z-plane.

An M th-order pole at z = a has a z-transform of H(z) = (z – a)–M.

If you change the coordinates to polar, the DFD application displays the 
poles and zeros in polar coordinates, as shown in Figure 12-12.
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Figure 12-12.  Array of Zeros and Poles in Polar Coordinates

Magnitude-Frequency Plot
The magnitude versus frequency graph in Figure 12-11 plots the frequency 
response, H( f), and magnitude of the designed digital filter. The 
magnitude, y-axis, is in linear or decibel units, depending on how you set 
the linear/dB button in the upper-left corner of the graph. The frequency, 
x-axis, is in hertz. The full scale ranges from 0.0 to Nyquist, or half the 
sampling rate.

Sampling Rate Control
Use the sampling rate control to specify the sampling rate in samples per 
second, hertz.

Gain Control
Use the gain control to specify the gain constant for the designed filter. 
Increasing gain increases the overall gain of the designed filter. Setting 
the Normalize to ON adjusts the filter gain so that the maximum response 
is 1.0, 0 dB. If you set Normalize to ON, you cannot adjust the gain control 
manually. Setting the Normalize to OFF allows you to manually adjust the 
gain control but does not guarantee a maximum response of 1.0.

Arbitrary FIR Design
Figure 12-13 shows the Arbitrary FIR Design front panel. The front panel 
includes a graphical interface with the magnitude versus frequency cursors 
and plot on the left side and a text-based interface with digital controls on 
the right side.
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Figure 12-13.  Arbitrary FIR Design Front Panel

Use the Arbitrary FIR Design front panel to design arbitrary-magnitude 
FIR digital filters. Enter or modify the array magnitude response points, 
frequency and magnitude. From these points, the DFD application forms 
a desired magnitude response that covers the entire frequency 
range from 0.0 to Nyquist, or half the sampling rate. The DFD application 
then processes this desired response, along with the filter order, and uses 
the Parks-McClellan algorithm to design an optimal equiripple FIR filter. 
The Parks-McClellan algorithm minimizes the difference between the 
desired and the actual filter response across the entire frequency range.

To design arbitrary-magnitude FIR filters, enter or modify the desired 
frequency-magnitude points and choose an interpolation type to generate 
the desired response between your specified points. The DFD application 
automatically designs and plots the equiripple FIR filter. You receive 
immediate graphical feedback to help you determine whether the filter 
meets your specifications.
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Arbitrary FIR Filter Design Front Panel 
Controls and Displays
Use the Arbitrary FIR Design front panel File menu to complete the 
following tasks:

• Save your filter specifications and coefficients.

• Load filter designs from previous work.

• Open the Analysis or the DAQ and Filter front panels.

• Return to the Main Menu dialog box.

Magnitude versus Frequency Graph
The magnitude versus frequency graph in Figure 12-13 plots the desired 
and actual magnitude response of the designed FIR filter. The magnitude, 
y-axis, is in linear or decibel units, depending on how you set the linear/dB 
button in the upper-left corner of the graph. The frequency, x-axis, is in 
hertz. The full scale ranges from 0.0 to Nyquist, or half the sampling rate.

Linear/dB Button
Use the linear/dB button to control the display units, either linear or dB, of 
all magnitude and gain controls and displays. These controls and displays 
include the y-axis of the magnitude versus frequency plot, passband 
response, stopband attenuation, and the magnitude tracking cursor.

# Points Control
Use # points to specify the number of frequency-magnitude 
points the DFD application uses to create the desired filter 
magnitude-response. Reducing the value of # points deletes points from 
the end of the frequency-magnitude array. Increasing the value of # points 
inserts the additional number of points to the right of the selected point.

Multiple Select Checkbox
Place a checkmark in the multiple select checkbox to select more than one 
frequency-magnitude point on the response graph. Clicking a selected point 
removes that point from the selection list.

Interpolation Control
Use the interpolation control to select the type of interpolation the 
DFD application uses to generate the desired response from the array of 
frequency-magnitude points. Choose linear interp to create flat filters, 
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such as lowpass, highpass, bandpass, and bandstop. Choose spline interp 
to create smoothly varying filters.

Ins Button
Click the ins button to insert a frequency-magnitude point between the 
selected point and the next point. If the selected point is the last point in 
the frequency-magnitude array, the DFD application inserts the new point 
between the last two points of the array. The DFD application inserts new 
points halfway along the line connecting the two outer points.

Del Button
Click the del button to delete the selected frequency-magnitude points. 
The DFD application deletes all selected points.

Selected Points Indicator
The selected points indicator displays the selected frequency-magnitude 
points. You can select points on the magnitude versus frequency graph by 
clicking the point. You also can select points directly from the 
frequency-magnitude array by clicking the circle to the right of each point.

Array of Frequency-Magnitude Points
The right side of the Arbitrary FIR Design front panel displays the array 
of frequency-magnitude points the DFD application uses to construct the 
desired filter magnitude response. The DFD application forms the desired 
filter response by interpolating between these points.

The frequency of each point is in hertz. The magnitude is in linear or 
decibel units of gain, depending on the setting of the linear/dB button 
in the upper-left corner of the magnitude versus frequency graph.

You can select points in this array by clicking the circle to the right of each 
point. Then, you can click the del button to delete the selected points. To 
move selected points, click the desired direction diamond in the cursor 
movement control in the lower-right corner of the magnitude versus 
frequency graph.

Filter Order Control
Use filter order to specify the total number of coefficients in the digital 
FIR filter.
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Ripple Indicator
The ripple indicator displays the largest absolute error, linear, between 
the desired and actual filter responses.

Message Window
The message window displays errors that occurred during the FIR 
design procedure.

Locked Frequencies Checkbox
Place a checkmark in the locked frequencies checkbox to lock the present 
frequency values of the frequency-magnitude points. If you place a 
checkmark in this checkbox, you can alter only the magnitude, the y-value, 
of the frequency-magnitude points.

Uniform Spacing Checkbox
Place a checkmark in the uniform spacing checkbox to space the 
frequency values of the frequency-magnitude points. The DFD application 
spaces the frequency-magnitude points uniformly from 0.0 to half the 
sampling rate, inclusive. Before spacing the frequency-magnitude points, 
the DFD application displays a dialog box. Click the Uniform Spacing 
button to continue and the Cancel button to cancel the spacing operation.

Sort by Frequency Button
Click the sort by frequency button to sort the frequency-magnitude points 
in both the response graph and the array by ascending frequency. The value 
of each frequency-magnitude point remains unchanged. Only the order of 
the points can change.
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Import from File Button
Click the import from file button to import frequency-magnitude points 
from a text file. The imported file format consists of the following 
tab-delimited columns:

For example, a file with five frequency-magnitude points appears as

Sampling Rate Control
Use the sampling rate control to specify the sampling rate in samples per 
second, hertz.

Analysis of Filter Design Front Panel
Select File»Analysis from a filter design front panel toolbar to open the 
Analysis of Filter Design front panel, shown in Figure 12-14. Use the 
Analysis of Filter Design front panel to complete the following tasks:

• View the filter magnitude response, phase response, impulse response, 
step response, and pole-zero plot.

• View and print full-screen plots of each response.

• Save the analysis results in the full-screen views to text files.

The Analysis of Filter Design front panel uses the particular filter design 
specified in the filter design front panel from which it is opened to compute 
the various filter responses. You also can choose any of the four filter 

1st line:  sampling rate dB/linear setting (0 for linear, 1 for dB)

2nd line:  frequency 1 magnitude 1

3rd line:  frequency 2 magnitude 2

4th line:  frequency 3 magnitude 3

. . .

. . .

. . .

last line:  last frequency last magnitude

8000.0 1

0.0 –60.0

1000.0 –40.0

2000.0 –20.0

3000.0 0.0

4000.0 –60.0
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designs to analyze with the Design Analyzed control on the Analysis of 
Filter Design front panel, shown in Figure 12-14. The Analysis of Filter 
Design front panel uses the filter parameters from the selected filter design.

Figure 12-14.  Analysis of Filter Design Front Panel

File Menu
Use the File menu to complete the following tasks:

• Load filter designs from previous work.

• Open the DAQ and Filter front panel.

• Go to the filter design front panel specified in Design Analyzed.

• Return to the Main Menu dialog box.
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Design Analyzed Control
Use the Design Analyzed control to select the filter control to analyze. 
Select File»Goto Design to load and run the filter design front panel 
selected with the Design Analyzed control. If you continue to modify the 
same filter design that the DFD application is analyzing, the application 
recomputes all filter responses.

Analysis Displays
Each of the five filter plots has a zoom box control in the upper-right 
corner. Click the zoom box to display a full-screen version of the plot. 
You can change the units in the full-screen versions of the following plots:

• Magnitude Response—you can change the units from linear 
to decibel.

• Phase Response—you can change the units from radians to degrees.

• Impulse Response and Step Response—you can change the units from 
seconds to samples.

At each full-screen view, you can save the response data to text files.

Magnitude Response Plot
Magnitude Response displays the magnitude of the filter response H(f) 
as frequency varies from zero to half the sampling rate.

Phase Response Plot
Phase Response displays the phase of the filter response H( f) as frequency 
varies from zero to the sampling rate.

Impulse Response Plot
Impulse Response displays the output of the digital filter when the input is 
a unit sample sequence, such as 1, 0, 0, … The input before the 
unity sample is also zero.

Step Response Plot
Step Response displays the output of the digital filter when the input is a 
unit step sequence, such as 1, 1, 1, … The input samples before the step 
sequence are defined as zero.
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Z-Plane Plot
In the z-plane plot, each pole is represented by a red ×, and each zero is 
represented by a blue o.

H(z) for IIR Filters
H(z) is the z-transform of the designed digital filter. For an IIR filter, H(z) 
can be represented by a product of fractions of second-order z-polynomials:

You can view the N(z) and D(z) polynomials for other stages by 
incrementing the index shown in the upper-left side of the H(z) display.

H(z) for FIR Filters
H(z) is the z-transform of the designed digital filter. You can scroll through 
H(z) using the scroll bar. For an FIR filter, H(z) can be represented as a 
polynomial in z–1:

DAQ and Filter Front Panel
Select File»DAQ and Filter from a filter design front panel toolbar to 
access the DAQ and Filter front panel, shown in Figure 12-15. Use the 
DAQ and Filter front panel to accomplish the following tasks:

• Check the performance of your filter design on your own signals, 
if you have a National Instruments DAQ device.

where is the numerator for stage k

is the denominator for stage k

is the number of second-order stages

where ,

represents the FIR filter coefficients, and

order is the number of FIR coefficients.

H z( )
Nk z( )

Dk z( )
------------

k 1=

Ns

∏=

Nk z( )
Dk z( )
Ns

H z( ) hjz
j–

j 0=

order 1–

∑=

j 0 1 … order 1–, , ,=

hj
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• Check the performance of your filter design with a simulated signal.

• Configure your DAQ device and acquire your own signals.

When filtering signals, the DAQ and Filter front panel uses the particular 
set of filter coefficients specified in the filter design front panel from which 
it is opened. The signal data passes through the designed filter, and the DFD 
application plots the input and output waveforms and spectrums. You also 
can use any of the four filter designs from the Filter Design control on the 
DAQ and Filter front panel, shown in Figure 12-15. The DAQ and Filter 
front panel uses the filter parameters from the selected design specification.

 

Figure 12-15.  DAQ and Filter Front Panel

File Menu
Use the File menu to complete the following tasks:

• Load and test filter designs from previous work.

• Open the Analysis of Filter Design front panel.

• Go to the filter design front panel specified by Filter Design.

• Return to the Main Menu dialog box.
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Filter Design Control
Use the Filter Design control to designate the filter design to use in 
filtering the acquired signal. Select File»Goto Design to load and run the 
filter design front panel selected with the Filter Design control.

Off/On Switch
Use the off/on switch to specify whether you want the DFD to acquire 
blocks continuously or on demand. Set the switch to on to continuously 
acquire blocks of data. Set the switch to off to acquire data when the 
Acquire Once button is clicked. The Acquire Once button only appears 
when the switch is set to off.

Function Generator Button
If you select simulated DAQ in the source control on the DAQ Setup front 
panel, shown in Figure 12-16, a built-in simulated function generator 
provides signals to the DAQ and Filter front panel. On the DAQ and Filter 
front panel, click the Function Generator button to view and edit settings, 
including signal type, frequency, amplitude, and noise level.

Time Waveform/Spectrum Control
To change the view of a response plot, use the ring control above the plot. 
Select either Time Waveform or Spectrum for the input acquired signal 
or the output signal. 

Sampling Rate Indicator
The actual sampling rate appears in the sampling rate indicator on the DAQ 
and Filter front panel, shown in Figure 12-15.

DAQ Setup Button and DAQ Setup Front Panel
Click the DAQ Setup button on the DAQ and Filter front panel to open the 
DAQ Setup front panel, shown in Figure 12-16. With the DAQ Setup front 
panel, you can change the data acquisition settings, such as the device 
number, number of samples to acquire, triggering parameters, or sampling 
rate. You also can set the signal source to either DAQ Device or simulated 
DAQ with the source control.
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Figure 12-16.  DAQ Setup Front Panel
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13
IIR and FIR Implementation

This chapter describes the filter implementation equations for IIR and FIR 
filtering and the format of the IIR and FIR filter coefficient files.

Infinite Impulse Response Filters
Infinite impulse response (IIR) filters are digital filters with impulse 
responses that, theoretically, can be infinite in length or duration. 
The general difference equation characterizing IIR filters is shown in 
Equation 13-1.

(13-1)

where Nb is the number of forward coefficients bj and Na is the number 
of reverse coefficients ak.

In most IIR filter designs, coefficient a0 is 1. The output sample at the 
present sample index i consists of the sum of scaled present and past 
inputs (xi and xi – j when j ≠ 0) and scaled past outputs (yi – k).

The response of the general IIR filter to an impulse where x0 = 1 and xi = 0 
for all i ≠ 0 is called the impulse response of the filter. The impulse response 
of the filter described by Equation 13-1 has an infinite length for nonzero 
coefficients. In practical filter applications, however, the impulse response 
of stable IIR filters decays to near zero in a finite number of samples.

The advantage of digital IIR filters over finite impulse response (FIR) filters 
is that IIR filters usually require fewer coefficients to perform similar 
filtering operations. Therefore, IIR filters execute much faster and do not 
require extra memory because they execute in place.

The disadvantage of IIR filters is that the phase response is nonlinear. 
If the application does not require phase information, such as simple 
signal monitoring, IIR filters might be appropriate. Use FIR filters for 
applications that require linear phase responses.
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IIR filters are also known as recursive filters or autoregressive 
moving-average (ARMA) filters. Refer to the works of Jackson [13], 
Oppenheim and Schafer [19], Parks and Burrus [20], and Parks and 
McClellan [21] [22] for more information about digital filter design.

Cascade-Form IIR Filtering
Filters implemented using the structure which Equation 13-1 directly 
defines are known as direct-form IIR filters. Direct form implementations 
often are sensitive to errors introduced by coefficient quantization and by 
computational precision limits. Additionally, a filter designed to be 
stable can become unstable with increasing coefficient length, which 
is proportional to filter order.

You can obtain a less-sensitive structure by dividing the direct-form transfer 
function into lower-order sections, or filter stages. The direct-form transfer 
function of the filter given by Equation 13-1, with a0 = 1, can be written as 
a ratio of z transforms in Equation 13-2.

(13-2)

When you factor Equation 13-2 into second-order sections, the transfer 
function of the filter becomes a product of second-order filter functions:

where Ns = Na/2 is the largest integer less than or equal to Na/2 and 
Na ≥ Nb. This new filter structure can be described as a cascade of 
second-order filters, as shown in Figure 13-1.

Figure 13-1.  Cascaded Filter Stages

You can implement each second-order stage using the direct-form filter 
equations:
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The illustration in Figure 13-2 shows the graphical representation of these 
direct-form equations.

Figure 13-2.  Direct Form Structure

For each stage, you must maintain two past inputs (x[i – 1], x[i – 2]) and 
two past outputs (y[i – 1], y[i – 2]).

A more efficient implementation of each second-order stage is known as 
the direct-form II. You can implement each second-order stage using the 
direct-form II filter equations:

The illustration in Figure 13-3 shows the graphical representation of these 
direct-form II equations.

+

+ +
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Figure 13-3.  Direct Form II Structure

Finite Impulse Response Filters
FIR filters are digital filters with finite impulse responses. FIR filters are 
also known as nonrecursive filters, convolution filters, or moving-average 
(MA) filters because you can express the output of an FIR filter as a finite 
convolution:

(13-3)

where xi represents the input sequence to be filtered, yi represents the 
output filtered sequence, and hk represents the FIR filter coefficients.

FIR filters have the following characteristics:

• They can be designed to have linear phase by ensuring coefficient 
symmetry.

• They are always stable.

• You can perform the filtering function using the convolution. A delay 
generally is associated with the output sequence:

where n is the number of FIR filter coefficients.
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You design FIR filters by approximating a specified desired-frequency 
response of a discrete-time system. The most common techniques 
approximate the desired-magnitude response while maintaining a 
linear-phase response.

Format of the Filter-Coefficient Text Files
When you save your filter coefficients to a text file, the DFD application 
generates a readable text file that contains all the information you need to 
implement the designed FIR or IIR digital filter. This section describes 
the format for both FIR and IIR filter-coefficient files.

FIR-Coefficient File Format
Table 13-1 provides example FIR-coefficient text files and descriptions. 
You can use Equation 13-3 directly to implement the FIR filter.

 
Table 13-1.  FIR-Coefficient Text Files and Descriptions

Coefficient File Example Description

FIR filter coefficients type of file

Sampling rate sampling rate label

8.000000E+3 sampling rate in Hz

N filter order label

22 filter order

h[0..21] coefficients label

6.350871E–3 first coefficient, h[0]

–8.833535E–3 second coefficient, h[1]

–2.847674E–2 .

4.626607E–2 .

4.103986E–2 .

–1.114579E–1

–1.412791E–2

1.810791E–1

–5.984635E–2
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IIR Coefficient File Format
IIR coefficient files are slightly more complex than FIR coefficient files. 
IIR filters are usually described by two sets of coefficients, a and b 
coefficients. The total number of existing a coefficients equals M × S, 
and the total number of existing b coefficients equals (M + 1) × S, where 
M is the stage order, usually two, and S is the number of stages. An IIR 
filter with three second-order stages has two a coefficients per stage, for a 
total of six a coefficients, and three b coefficients per stage, for a total of 
nine b coefficients. 

You can use Equation 13-1 to implement the IIR filter in cascade stages and 
maintain two past inputs and two past outputs for each stage, or you can use 
the direct form II equations and maintain two past internal states.

Table 13-2 provides example IIR-coefficient text files and descriptions.

–2.002337E–1

1.516199E–1

1.516199E–1

–2.002337E–1

–5.984635E–2

1.810791E–1

–1.412791E–2

–1.114579E–1

4.103986E–2

4.626607E–2 .

–2.847674E–2 .

–8.833535E–3 .

6.350871E–3 last coefficient, h[N – 1]

Table 13-1.  FIR-Coefficient Text Files and Descriptions (Continued)

Coefficient File Example Description
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Table 13-2.  IIR-Coefficient Text Files and Descriptions

Coefficient File Example Description

IIR filter coefficients coefficient type

Sampling rate sampling rate label

8.000000E+3 sampling rate in Hz

Stage order stage order label

2 order of each stage

Number of stages number of stages label

3 number of stages

a coefficients a coefficients label

6 number of coefficients

3.801467E–1 a1 for stage 1

8.754090E–1 a2 for stage 1

–1.021050E–1 a1 for stage 2

9.492741E–1 a2 for stage 2

8.460304E–1 a1 for stage 3

9.450986E–1 a2 for stage 3

b coefficients b coefficients label

9 number of b coefficients

1.514603E–2 b0 for stage 1

0.000000E+0 b1 for stage 1

1.514603E–2 b2 for stage 1

1.000000E+0 b0 for stage 2

6.618322E–1 b1 for stage 2

1.000000E+0 b2 for stage 2
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1.000000E+0 b0 for stage 3

1.276187E+0 b1 for stage 3

1.000000E+0 b2 for stage 3

Table 13-2.  IIR-Coefficient Text Files and Descriptions (Continued)

Coefficient File Example Description
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A
Frequently Asked Questions

This appendix addresses some questions users frequently ask.

What is the difference between linear and quadratic JTFA methods?

This package includes both linear and quadratic methods. Linear JTFA 
transforms include the following methods:

• Gabor expansion, which is the inverse of short-time Fourier 
transform (STFT)

• STFT, which computes the Gabor coefficients

• Adaptive representation, which is the inverse of adaptive transform

• Adaptive transform

Quadratic JTFA algorithms include the following methods:

• STFT spectrogram

• Wigner-Ville Distribution (WVD)

• Pseudo Wigner-Ville Distribution (PWVD)

• Cohen’s class

• Choi-Williams Distribution (CWD)

• Cone-shaped distribution

• Gabor spectrogram

• Adaptive spectrogram

If you consider linear JTFA to be an evolved form of conventional Fourier 
transform, then quadratic JTFA is the counterpart of the standard power 
spectrum. The difference between using linear and quadratic JTFA 
methods is that you can invert linear transform. As with fast-Fourier 
transform (FFT), you can use the Gabor coefficients to reconstruct the 
original signal. Linear transform is suitable for signal processing, such as 
time-varying filtering.

In general, the quadratic form is not reversible. You cannot restore the 
original time waveform from the time-dependent spectrum. However, 
quadratic JTFA describes the energy distribution of the signal in the joint 
time-frequency domain, which is useful for signal analysis.
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Which quadratic JTFA algorithms should I use?

Each quadratic JTFA algorithm has advantages and disadvantages. 
You should select an algorithm that fits the application. Generally 
speaking, no algorithm is superior to all others in all applications. 
Table A-1 summarizes the advantages and disadvantages of all quadratic 
algorithms provided in this package. 

If the frequency contents of the analyzed signal do not change rapidly, 
try the STFT spectrogram first. You can apply a relatively long window 
function to obtain a good frequency resolution with tolerable time 
resolution deterioration. Because the STFT spectrogram is fast, it is 
suitable for online analysis.

The other algorithms generally have better joint time and frequency 
resolution than the STFT spectrogram, but they require more computation 

Table A-1.  Quadratic JTFA Algorithms

Method
Resolution and

Crossterm Description Speed

Adaptive spectrogram • extremely high resolution 
when a signal is made up of 
Gaussian pulses

• no crossterms

• non-negative

slow

CWD less crossterm than PWVD very slow

Cone-shaped distribution less crossterm interference 
than PWVD or CWD

slow

Gabor spectrogram • good resolution

• robust

• minor crossterms

moderate

PWVD • extremely high resolution 
for a few types of signals

• severe crossterms

fast

STFT spectrogram • poor resolution

• robust

• non-negative

fast
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time, which is only suitable for offline analysis. If you need a higher 
resolution, use the third- or fourth-order Gabor spectrogram to reduce 
crossterm interference and achieve faster processing speeds.

National Instruments recommends that you complete the following steps 
when you analyze a signal:

1. Begin with the STFT and determine which analysis window is 
best—wideband, mediumband, or narrowband.

2. If you are satisfied with the results, use STFT. If not, continue with 
step 3. 

3. If the STFT does not produce satisfactory results, try the Gabor 
spectrogram. Regardless of the analysis window you use, as the order 
increases, the Gabor spectrogram converges to the Wigner-Ville 
Distribution. If the order is low, the type of the analysis window 
influences the Gabor spectrogram, although the effect is not as large 
as the effect type has on the STFT. Select your Gabor spectrogram 
analysis window based on the window information obtained in step 1.

4. Increase the order until the crossterm interference is evident. For most 
applications, an order of three to five is adequate.

5. Reduce the data block length and increase the freq. zoom to examine 
detailed features.

Can I measure a signal’s energy point-to-point in the joint 
time-frequency domain?

This question addresses a fundamental issue in the joint time-frequency 
analysis area. Except for a few special cases, the answer is no. At this point, 
scientists know that no algorithm can meaningfully measure a signal’s 
energy point-to-point in the joint time-frequency domain.

Roughly speaking, the result, P(t,w), of all quadratic JTFA algorithms 
indicates a certain type of weighted average energy near the point (t, f). 
Some algorithms take the average over a larger area, such as the STFT 
spectrogram. In this case, the time-frequency resolution is poor, but it is 
always greater than or equal to zero. Some methods cause heavy weights 
on a small number of points, such as the high-order Gabor spectrogram, 
which yields better time-frequency resolution. In this case, some points 
might approach negativity, which is not acceptable for certain applications. 
In short, every algorithm has advantages and disadvantages.

Figure A-1 shows an STFT spectrogram with a test signal that contains 
10 sine cycles at 10 Hz. Although the signal starts at t = 1 s and ends at 
t = 2 s, the STFT spectrogram clearly shows something before t = 1 s and 
after t = 2 s, as indicated by the arrows. The time-dependent spectrum 
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indicates that the signal not only contains 10 Hz, but that it possesses a 
certain bandwidth.

Figure A-1.  STFT Spectrogram (Hanning Window)

You can apply other methods to substantially suppress the energy outside 
1 s to 2 s and 10 Hz, and achieve a near point-to-point measurement. 
Figure A-2, shows the Gabor spectrogram. Most of the signal’s energy is 
between 1 s to 2 s and 10 Hz. As the order increases, the concentration also 
increases, and you come closer to achieving a point-to-point measurement. 
However, a higher order Gabor spectrogram produces negative values, 
which can cause problems with the classical energy definition. The Gabor 
spectrogram generally requires more computation time than the 
STFT spectrogram.
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Figure A-2.  Gabor Spectrogram (Order Four)

What can I do if the time-dependent spectrum only shows a line at DC?

If the analyzed signal is non-negative, such as an ECG or the stock index, 
or if it contains a large DC offset, the resulting time-dependent spectrum is 
dominated by a single line in the vicinity of DC. You might not be able to 
see more interesting frequency patterns. To suppress the DC component, 
you have to apply certain types of preprocessing. However, the methods for 
removing the DC components, or detrending, are application dependent. 
No general method works in all cases. Common techniques of detrending 
include lowpass filtering and curve fitting. However, a more promising 
technique is the wavelet transform. Refer to Part IV, Wavelet Analysis, for 
information on wavelet-based detrending.

Can I use other software to plot the time-dependent spectrum?

Yes. Save the time-dependent spectrum to a text file. The resulting text file 
contains only Z values and does not retain the time and frequency axis 
information. The time and frequency axis can be determined as follows.
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When t0 and f0 are shown on the front panel of Offline Analyzer, the time 
increment ∆t is computed by the following equation:

and the frequency increment ∆f is determined by the following equation:

∆t
time span

number of rows
------------------------------------------=

∆f
sampling frequency

2 zoom factor 128××
--------------------------------------------------------=
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C
Technical Support and 
Professional Services

Visit the following sections of the National Instruments Web site at 
ni.com for technical support and professional services:

• Support—Online technical support resources include the following:

– Self-Help Resources—For immediate answers and solutions, 
visit our extensive library of technical support resources available 
in English, Japanese, and Spanish at ni.com/support. These 
resources are available for most products at no cost to registered 
users and include software drivers and updates, a KnowledgeBase, 
product manuals, step-by-step troubleshooting wizards, hardware 
schematics and conformity documentation, example code, 
tutorials and application notes, instrument drivers, discussion 
forums, a measurement glossary, and so on.

– Assisted Support Options—Contact NI engineers and other 
measurement and automation professionals by visiting 
ni.com/ask. Our online system helps you define your question 
and connects you to the experts by phone, discussion forum, 
or email.

• Training—Visit ni.com/custed for self-paced tutorials, videos, and 
interactive CDs. You also can register for instructor-led, hands-on 
courses at locations around the world.

• System Integration—If you have time constraints, limited in-house 
technical resources, or other project challenges, NI Alliance Program 
members can help. To learn more, call your local NI office or visit 
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact 
your local office or NI corporate headquarters. Phone numbers for our 
worldwide offices are listed at the front of this manual. You also can visit 
the Worldwide Offices section of ni.com/niglobal to access the branch 
office Web sites, which provide up-to-date contact information, support 
phone numbers, email addresses, and current events.
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Glossary

 

Numbers/Symbols

% Percent.

Infinity.

π Pi. 

1D One-dimensional.

2D Two-dimensional. 

A

alias term An image term in the frequency domain.

alternating flip For a periodic sequence g[n] with a period N, the sequence (–1)ng[N – n] 
is considered the alternating flip of g[n].

analysis filter bank A filter bank that converts a signal from time domain into wavelet 
domain.

B

basis A core or fundamental function.

biorthogonal
filter bank

A filter bank in which analysis and synthesis filter banks are orthogonal to 
each other.

Butterworth filter A special kind of filter in which the low-frequency asymptope is a constant.

C

chirplet A complex chirp function with Gaussian envelope.

constant Q analysis Analysis in which the ratio between the center frequency and frequency 
bandwidth is constant.

∞
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CWD Choi-Williams distribution.

D

Daubechies wavelet 
and filter bank

Wavelet and filter bank that has a maximum number of zeros at π. The 
wavelet and filter bank was initially developed by Ingrid Daubechies.

dB Decibels. A logarithmic unit for measuring ratios of amplitude 
levels. If the amplitudes are specified in terms of power, then 

 where P is the measured power and Pr 
is the reference power. If the amplitudes are specified in terms of voltage, 
then  where V is the measured voltage 
and Vr is the reference voltage.

decimation filter The output of the filter does not preserve all points.

denoise Remove the noise from the original signal.

DFD Digital Filter Design.

distortion term A term that causes distortion in a filter output.

DLL Dynamic Link Library.

E

equiripple filter A filter with equiripples in the passband and stopband.

F

FFT Fast Fourier Transform, an efficient and fast method for calculating the 
discrete Fourier transform. The number of samples must usually be a power 
of two. The fast Fourier transform (or the discrete Fourier transform) 
determines the amplitude and phase of the frequency components present 
in a time domain digital signal.

filter bank A group of filters.

finite impulse 
response filter

A filter without feedback that only contains zeros in the z-domain.

FIR Finite impulse response.

1 dB 10 10 P Pr⁄( )log×=

1 dB 20 10 V Vr⁄( )log×=
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frame Segment of time domain data.

G

Gaussian pulse A complex sinusoidal function with Gaussian envelope.

H

halfband filter A filter with a cut-off frequency at half of the frequency band.

Hz Hertz. Cycles per second.

I

IEEE Institute for Electrical and Electronic Engineers.

IIR filters Infinite impulse response filters.

image compression Using only part of the data to recover the original image.

inner product A mathematical operation used to test the difference between two 
functions.

J

JTFA Joint time-frequency analysis.

M

maximum flat filter A type I filter that has a maximum number of zeros at π.

MB Megabytes of memory.

mother wavelet An elementary wavelet.

multicomponent signal A signal containing significant energy concentrated around more than one 
distinct and separate frequency.

multiscale analysis Analyzing a signal in several different scales.



Glossary

Signal Processing Toolset User Manual G-4 ni.com

N

nonstationary signal Signal whose frequency content changes within a captured frame.

Nyquist rate Half the sampling rate.

O

octave Interval between two frequencies, one of which is twice the other. For 
example, frequencies of 250 Hz and 500 Hz are one octave apart, as are 
frequencies of 1 kHz and 2 kHz. See also third-octave.

orthogonal filter bank A filter bank where both the analysis and synthesis filter banks are 
orthogonal to themselves. It is a special case of biorthogonal filter banks.

oversampling rate Ratio between the number of Gabor coefficients and the number of test 
samples.

P

preemphasis Filtering before processing.

PWVD Pseudo Wigner-Ville Distribution.

S

sampling rate Rate at which a continuous waveform is digitized.

signal discontinuity The point where the first derivative does not exist.

spectral changes Changes in the frequency content of a signal.

spectral leakage Phenomenon whereby the measured spectral energy appears to leak from 
one frequency into other frequencies. It occurs when a sampled waveform 
does not contain an integral number of cycles over the time period during 
which it was sampled. To reduce spectral leakage, multiply the 
time-domain waveform by the window function. See also window.

spectrogram A display of the energy distribution of a signal with one axis being time and 
the other being frequency.

STFT Short-time Fourier Transform.



Glossary

© National Instruments Corporation G-5 Signal Processing Toolset User Manual

string controls and 
indicators

Front panel objects used to manipulate and display, or input and output, 
text.

synthesis filter bank A filter bank that transfers a signal from the wavelet domain into the time 
domain.

T

temporal Of or relating to time domain.

third-octave Ratio between two frequencies, equal to 21/3. See also octave.

two-dimensional Having two dimensions, such as an array with both rows and columns.

type I filter The filter coefficients are symmetric around the middle point.

W

wavelet transform A transform using wavelet as the elementary functions.

wavelet-based detrend A method of detrend, which is achieved by wavelet transform.

window Technique used to reduce spectral leakage by multiplying the time-domain 
waveform by a window function. The process of windowing reduces the 
amplitudes of discontinuities at the edges of a waveform, which reduces 
spectral leakage. If the waveform contains an integral number of cycles, 
there is no spectral leakage. See also spectral leakage.

WVD Wigner-Ville Distribution.
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Index

Numerics
1D wavelet transform, 11-2
2D signal processing, 10-12
2D wavelet transform, 11-9

A
accessing example application source code, 1-4
adaptive representation, 4-2
adaptive spectrogram, 3-4, 4-12, A-2

equation for, 4-12
JTFA example, 5-5

adaptive transform, 4-2
algorithms

adaptive representation, 4-2
adaptive spectrogram, 4-12
adaptive transform, 4-2
Choi-Williams distribution (CWD), 4-9
Cohen’s class, 3-4, 4-8
cone-shaped distribution, 4-10
estimating number of complex sinusoids

minimum description length, 7-9
Gabor expansion, 4-1
Gabor spectrogram, 4-11
linear vs. quadratic, A-1
parameter estimation, 7-6

matrix pencil method, 7-9
Prony’s method, 7-9

point-to-point measurement of a signal, A-3
pseudo Wigner-Ville distribution 

(PWVD), 4-5
selecting, A-2
SRSA, 7-1, 7-6

covariance, 7-6
PCAR, 7-7

STFT, 4-1
STFT spectrogram, 4-3

Wigner-Ville distribution, 4-5
Analysis of Filter Design front panel, 

12-6, 12-28
applications

DFD, 1-4, 12-1
accessing, 12-2
editing preferences, 12-3
loading filter specification files, 12-3
obtaining information about, 12-3
opening front panels, 12-3
quitting, 12-3

digital filter design, 1-4, 12-1
JTFA, 5-1
SRSA, 8-1
wavelet analysis, 11-1

1D wavelet transform, 11-2
2D wavelet transform, 11-9
wavelet packet, 11-12
Wavelets Designer, 11-15
Wavelets Designer front panel, 11-15
Wavelets Designer front panel (figure), 

11-16
approaches to JTFA, 3-3
AR, 7-2, 7-4, 7-5
ARMA, 7-1, 7-2
Atlas, L.E., B-3
auto-regressive and moving average. See ARMA
auto-regressive. See AR

B
bibliography, B-1
biorthogonal filter banks, 10-4
block diagram

accessing example, 1-4
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C
Chen, D., B-2
Choi, H., B-1
Choi-Williams distribution, 3-4, A-2

equation for, 4-9
JTFA example, 5-6

Cohen, L., B-1
Cohen’s class, 3-4, 4-8

equation for, 4-8
cone-shaped distribution, 3-4, 4-10, A-2

equation for, 4-10
JTFA example, 5-7

contacting National Instruments, C-1
conventions used in this manual, xiv
covariance method, 7-6
crossterm interference, 3-4, 4-5, 4-9, 4-11
customer

education, C-1
professional services, C-1
technical support, C-1

CWD. See Choi-Williams distribution

D
damped sinusoids, 7-5
DAQ and Filter front panel, 12-6, 12-31
DAQ Setup front panel, 12-33
DC component, A-5
designing filters

Analysis of Filter Design front 
panel, 12-28

arbitrary FIR, 12-23
front panel controls and 

indicators, 12-25
classical FIR, 12-16

front panel controls and 
indicators, 12-19

passband ranges, 12-18
stopband ranges, 12-18

classical IIR, 12-11
front panel controls and 

indicators, 12-14
passband ranges, 12-13
stopband ranges, 12-13

DAQ and Filter front panel, 12-31
DAQ Setup front panel, 12-33
pole-zero placement, 12-19

front panel controls and 
indicators, 12-21

specifications for, 12-20
DFD, 1-4, 12-1

accessing, 12-2
designing filters

arbitrary FIR, 12-23
classical FIR, 12-16
classical FIR passband ranges, 12-18
classical FIR stopband ranges, 12-18
classical IIR, 12-11
classical IIR passband ranges, 12-13
classical IIR stopband ranges, 12-13
pole-zero placement, 12-19
pole-zero placement 

specifications, 12-20
editing preferences, 12-3
filter specifications

filename extensions (table), 12-5
transfers (table), 12-7

front panels, 12-4
Analysis of Filter Design, 

12-6, 12-28
analyzing filter designs, 12-6
arbitrary FIR, 12-25
classical FIR, 12-19
classical IIR, 12-14
DAQ and Filter, 12-6, 12-31
DAQ Setup, 12-33
Function Generator, 12-6
graph cursors, 12-10
graph palette, 12-9
loading filter specifications, 12-5
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panning and zooming, 12-7
plot legend, 12-8
pole-zero placement, 12-21
returning to Main Menu dialog 

box, 12-7
saving filter coefficients, 12-5
saving filter specifications, 12-5
testing filter designs, 12-6
transferring filter designs, 12-7
Zoom palette, 12-10
Zoom palette (figure), 12-9

interaction with related applications 
(figure), 12-2

loading filter specification files, 12-3
Main Menu dialog box, 12-2
obtaining information about, 12-3
opening front panels, 12-3
quitting, 12-3

diagnostic resources, C-1
digital filter design. See DFD
distribution

Choi-Williams, 3-4
equation for, 4-9
JTFA example, 5-6

cone-shaped, 3-4
equation for, 4-10
JTFA example, 5-7

Wigner-Ville, 2-5, 3-4
equation for, 4-5
JTFA example, 5-6

documentation
conventions used in manual, xiv
online library, C-1

drivers
instrument, C-1
software, C-1

E
entropy types (table), 10-15
equiripple filters, 11-19

positive, 11-19
estimating number of complex sinusoids, 7-9
example code, C-1
examples

DFD, 1-4, 12-1
accessing, 12-2
editing preferences, 12-3
loading filter specification files, 12-3
obtaining information about, 12-3
opening front panels, 12-3
quitting, 12-3

JTFA, 5-1, 5-2
adaptive spectrogram, 5-5
calculating mean instantaneous 

frequency, 5-8
changing spectrogram display, 5-7
Choi-Williams distribution, 5-6
cone-shaped distribution, 5-7
detrending, 5-3
displaying data, 5-7
frequency zooming, 5-8
Gabor spectrogram, 5-5
loading data, 5-2
saving results, 5-9
selecting method, 5-3
setting sampling rate, 5-3
STFT spectrogram, 5-4
Wigner-Ville distribution, 5-6

SRSA, 8-1
wavelet analysis, 11-1

1D wavelet transform, 11-2
2D wavelet transform, 11-9
wavelet packet, 11-12
Wavelets Designer, 11-15
Wavelets Designer front panel, 11-15
Wavelets Designer front panel 

(figure), 11-16
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F
filter banks

biorthogonal, 10-4
designing (figure), 11-17
discrete, 10-1
orthogonal, 10-10
relationship to wavelet transform 

coefficients (figure), 10-4
two-channel perfect reconstruction, 10-1

relationship to wavelet 
transform, 10-3

filters
equiripple, 11-19

general, 11-19
maximum flat, 11-19

Fourier transform, 2-2
compared to wavelet analysis, 9-6

frequently asked questions, A-1, C-1
Function Generator, 12-6, 12-33

G
Gabor expansion, 2-5, 3-4, 4-1
Gabor spectrogram, 2-8, 3-4, 4-11, A-2

detecting aneurysms, 2-10
earthquake engineering, 2-12
equation for, 4-11
JTFA Example, 5-5

Gabor, Dennis, 3-4
general equiripple filter, 11-19
graph palette, 12-9

H
help

professional services, C-1
technical support, C-1

I
installing Signal Processing Toolset, 1-5
instrument drivers, C-1

J
joint time-frequency analysis. See JTFA
JTFA, 3-1

Advanced JTFA palette, 1-2
algorithms, 4-1

adaptive representation, 4-2
adaptive spectrogram, 4-12
adaptive transform, 4-2
Choi-Williams distribution 

(CWD), 4-9
Cohen’s class, 3-4, 4-8
cone-shaped distribution, 4-10
Gabor expansion, 4-1
Gabor spectrogram, 4-11
linear, 4-1
pseudo Wigner-Ville distribution 

(PWVD), 4-5
quadratic, 4-3, A-2
STFT, 4-1
STFT spectrogram, 4-3
Wigner-Ville distribution 

(WVD), 4-5
applications, 5-1
approaches to, 3-3
Easy Level JTFA palette, 1-2
example, 5-1

adaptive spectrogram, 5-5
calculating mean instantaneous 

frequency, 5-8
changing spectrogram display, 5-7
Choi-Williams distribution, 5-6
cone-shaped distribution, 5-7
detrending, 5-3
displaying data, 5-7
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frequency zooming, 5-8
Gabor spectrogram, 5-5
loading data, 5-2
saving results, 5-9
selecting method, 5-3
setting sampling rate, 5-3
STFT spectrogram, 5-4
Wigner-Ville distribution, 5-6

introduction to, 1-2
LabWindows/CVI, 1-2
need for, 3-1
quadratic, 3-4
Refnum JTFA palette, 1-2

K
KnowledgeBase, C-1

L
LabWindows/CVI

JTFA, 1-2
SRSA, 1-3
wavelet analysis, 1-4

linear JTFA, 3-4
linear JTFA algorithms, 4-1
linear vs. quadratic methods, A-1

M
MA, 7-2
Marks, R.J., B-3
matrix pencil method, 7-9
maximum flat filter, 11-19
measuring signal energy, A-3
minimum length description algorithm, 7-9
model-based frequency analysis. See SRSA
Morris, J.M., B-2
moving average. See MA

N
National Instruments

customer education, C-1
professional services, C-1
system integration services, C-1
technical support, C-1
worldwide offices, C-1

O
online technical support, C-1
orthogonal filter banks, 10-10

P
palette

Adv Sig Processing, 1-2
Advanced JTFA, 1-2
Advanced SRSA, 1-3
Advanced Wavelet, 1-4
Easy Level JTFA, 1-2
Easy Level SRSA, 1-3
Easy Level Wavelet, 1-4
Refnum JTFA, 1-2
SPT

JTFA, 5-1
SRSA, 8-1
wavelet analysis, 11-1

Wavelet Packet, 1-4
parameter estimation

algorithms for, 7-6
matrix pencil method, 7-9
Prony’s method, 7-9

example, 8-1
PCAR, 7-7
phone technical support, C-1
plot legend, 12-8
point-to-point measurement, A-3
positive equiripple filter, 11-19
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principle component auto-regressive method. 
See PCAR

professional services, C-1
programming examples, C-1
Prony’s method, 7-9
pseudo Wigner-Ville distribution (PWVD), 

4-5, A-2

Q
Qian, S., B-2
quadratic JTFA, 3-4

algorithms for, 4-3
quadratic vs. linear methods, A-1

R
Raz, S., B-3
references, B-1
residual equation, 5-6

S
saving time-dependent spectrums to a text 

file, A-5
selecting an algorithm, A-2
short-time Fourier transform (STFT), 3-3, 4-1
signal energy measurements, A-3
Signal Generator, 8-3
Signal Processing Toolset

role in signal processing, 2-15
software drivers, C-1
source code

accessing examples, 1-4
spectrogram

adaptive
equation for, 4-12
JTFA example, 5-5

Gabor, 2-8, 3-4
equation for, 4-11
JTFA example, 5-5

STFT, 3-4
equation for, 4-3
JTFA example, 5-4

SPT palette
JTFA, 5-1
SRSA, 8-1
wavelet analysis, 11-1

SRSA, 6-1
Advanced SRSA palette, 1-3
algorithms for, 7-1

covariance, 7-6
PCAR, 7-7

applying methods of, 6-6
comparing

FFT, 6-7
JTFA, 6-7
to wavelets, 6-7

damped sinusoids, 7-5
Easy Level SRSA palette, 1-3
examples, 8-1
introduction to, 1-2
LabWindows/CVI, 1-3
model coefficients, 7-3
models, 7-1

AR, 7-2, 7-4, 7-5
ARMA, 7-1, 7-2
auto-regressive, 7-2
auto-regressive and moving 

average, 7-1
MA, 7-2
moving average, 7-2

need for, 6-1
performing, 8-2

loading data, 8-3
selecting damped sinusoid estimation 

method, 8-6
selecting SRSA method, 8-6
selecting window type, 8-6
setting number of complex 

sinusoids, 8-5
setting sampling rate, 8-5
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using data from text files, 8-5
using synthetic data, 8-3

power spectra, 7-3
STFT

compared to wavelet analysis, 9-6
STFT spectrogram, 3-4, 4-3, A-2

equation for, 4-3
JTFA example, 5-4

super-resolution spectral analysis. See SRSA
support

technical, C-1
suppressing the DC component, A-5
Synthetic Data front panel, 8-3
system integration services, C-1
system requirements, 1-5

T
technical support, C-1
telephone technical support, C-1
time-dependent spectrum

plotting with other software, A-5
saving to a text file, A-5

time-frequency transform, 2-8
training

customer, C-1
transform, 2-1

Fourier, 2-2, 9-1
compared to wavelet analysis, 9-6

short-time Fourier, 3-3
time-frequency, 2-8
wavelet, 2-6

troubleshooting resources, C-1
two-channel perfect reconstruction filter 

banks, 10-1

W
wavelet analysis

2D signal processing, 10-12
Advanced Wavelet palette, 1-4

applications of, 9-9
denoise, 9-12
detecting discontinuity, 9-9
detrending, 9-11
multiscale analysis, 9-10

compared to Fourier transform, 9-6
computing frequency, 9-3
Easy Level Wavelet palette, 1-4
entropy types (table), 10-15
examples, 11-1

1D wavelet analysis, 11-2
2D wavelet transform, 11-9
using the 1D wavelet transform 

example, 11-4
using the 2D wavelet transform 

example, 11-10
wavelet packet, 11-12
Wavelets Designer, 11-15
Wavelets Designer front panel, 11-15
Wavelets Designer front panel 

(figure), 11-16
filter banks

biorthogonal filter, 10-4
orthogonal, 10-10
two-channel perfect 

reconstruction, 10-1
fundamentals of, 9-1
introduction to, 1-3
LabWindows/CVI, 1-4
performance issues, 9-13
procedure for (figure), 9-5
relationship of wavelet transform 

coefficients to filter banks 
(figure), 10-4

relationship to two-channel perfect 
reconstruction filter banks, 10-3

SPT palette, 11-1
using discrete filter banks, 10-1
Wavelet Packet palette, 1-4
wavelet packets, 10-14
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wavelet packets, 10-14
example, 11-12

wavelet transform, 2-6
wavelets

designing (figure), 11-17
designing, procedure for, 11-17

factorizing P0(z) into G0(z) and H0(z), 
11-20

finding the product P0(z), 11-18
selecting filter bank type, 11-18
using the Wavelets Designer 

(figure), 11-16
examples

using the wavelet packet 
example, 11-13

Wavelets Designer, 11-15
additional utilities, 11-22
front panel (figure), 11-16
opening front panel, 11-15

Web
professional services, C-1
technical support, C-1

Wexler, J., B-3
Wigner, Eugene P., 3-4
Wigner-Ville distribution, 2-5, 3-4, 4-5

equation for, 4-5
JTFA example, 5-6

Williams, W.J., B-1
works cited, B-1
worldwide technical support, C-1
WVD. See Wigner-Ville distribution

X
Xia, X.G., B-3

Z
Zhao, Y., B-3
Zoom palette, 12-10
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