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About This Manual

This manual provides information about the Signal Processing Toolset,
the different types of signal processing analyses you can perform with
the toolset, the theoretical basis for each type of analysis, and the analysis
examples provided with the Signal Processing Toolset.

Organization of this Manual

The Signal Processing Toolset User Manual is divided into five sections
and is organized as follows:

Part I—Introduction

Chapter 1, Signal Processing Toolset Overview, provides an overview
of the Signal Processing Toolset, its components, and installation
instructions.

Chapter 2, Analysis Beyond FFT, provides basic information about
signal processing, Fourier transform, Gabor expansion, Wigner-Ville
distribution, wavelet transform, time-frequency transform, and the role
of the Signal Processing Toolset in signal analysis.

Part ll—Joint Time-Frequency Analysis

Chapter 3, Joint Time-Frequency Analysis, explains the need for and
approaches to joint time-frequency analysis (JTFA).

Chapter 4, Joint Time-Frequency Analysis Algorithms, describes the
algorithms the JTFA virtual instruments (VIs) use. The JTFA
algorithms implemented in this toolset fall into the following two
categories:

—  Linear
—  Quadratic

Chapter 5, Joint Time-Frequency Analysis Applications, describes the
Off-line JTFA example included with the Signal Processing Toolset.
This example is designed to help you learn more about JTFA.

Part Ill—Super-Resolution Spectral Analysis

© National Instruments Corporation

Chapter 6, Introduction to Model-Based Frequency Analysis,
introduces the basic concepts of model-based frequency analysis.
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Chapter 7, Model-Based Frequency Analysis Algorithms, outlines
the theoretical background of model-based frequency analysis and
describes the relationship among the model coefficients, power
spectra, and parameters of damped sinusoids.

Chapter 8, Applying Super-Resolution Spectral Analysis and
Parameter Estimation, describes a super-resolution spectral analysis
example application included with the Signal Processing Toolset. This
example is designed to help you learn about model-based analysis.

Part IV—Wavelet Analysis

Chapter 9, The Fundamentals of Wavelet Analysis, describes the
history of wavelet analysis, compares Fourier transform and wavelet
analysis, and describes some applications of wavelet analysis.

Chapter 10, Wavelet Analysis by Discrete Filter Banks, describes the
design of two-channel perfect reconstruction filter banks, defines the
types of filter banks used with wavelet analysis, and discusses wavelet
packets.

Chapter 11, Wavelet Analysis Applications, describes the 1D and 2D
Wavelet Transform examples and the Wavelet Packet example
included with the Signal Processing Toolset. These examples are
designed to help you learn about wavelet analysis.

Part V—Digital Filter Design Application

Conventions

Chapter 12, Digital Filter Design Application, describes the digital
filter design (DFD) application used to design infinite impulse
response (IIR) and finite impulse response (FIR) digital filters.

Chapter 13, IIR and FIR Implementation, describes the filter
implementation equations for IIR and FIR filtering and the format of
the IIR and FIR filter coefficient files.

The

following conventions appear in this manual:

<> Angle brackets enclose the name of a key on the keyboard—for example,
<Shift>. Angle brackets that contain numbers separated by an ellipsis
represent a range of values associated with a bit or signal name—for
example, DBIO<3..0>.

Signal Processing Toolset User Manual
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Numbers enclosed by brackets denote references in Appendix B,
References, of this manual—for example, [27] refers to entry number 27 in
Appendix B. Empty brackets that follow a parameter type indicate that the
parameter is an array.

The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

Related Documentation

The following documents contain information that you might find helpful
as you read this manual:

*  Signal Processing Toolset Help, available in LabVIEW 6.1 by
selecting Help»Signal Processing Toolset; available in LabVIEW 7.0
and later by selecting Help» VI, Function, & How-To Help and then
selecting VI and Function Reference»Signal Processing Toolset in
the table of contents

*  LabVIEW Help, available by selecting Help» VI, Function,
& How-To Help

© National Instruments Corporation XV Signal Processing Toolset User Manual
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Part |

Introduction

This section of the manual introduces the Signal Processing Toolset and
presents background information about signal processing.

»  Chapter 1, Signal Processing Toolset Overview, provides an overview
of the Signal Processing Toolset, its components, and installation
instructions.

»  Chapter 2, Analysis Beyond FFT, provides basic information about
signal processing, Fourier transform, Gabor expansion, Wigner-Ville
distribution, wavelet transform, time-frequency transform, and the role
of the Signal Processing Toolset in signal analysis.
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Signal Processing Toolset
Overview

This chapter provides information on the analysis areas where you can use
the Signal Processing Toolset, an overview of the toolset and its
components, and installation instructions.

Analysis Areas

The Signal Processing Toolset is primarily intended for the analysis of
signals whose frequency contents change over time. Examples of such
signals include the sound or vibration created by engines, most biomedical
signals, and seismological data records. Time-frequency and wavelet
transforms are widely used in modern signal analysis. The Signal
Processing Toolset provides tools to process those signals for which the
classical Fourier transform is not suitable, such as transient signals and
signals whose frequency contents change over time.

The Signal Processing Toolset is divided into the following three major
analysis areas:

* Joint time-frequency analysis (JTFA)

*  Super-resolution spectral analysis (SRSA)

*  Wavelet analysis

JTFA is suitable for signals with narrowband instantaneous frequencies.
Super-resolution spectral analysis, a model-based frequency analysis

method, is mainly applicable when there is a small number of data samples.
The wavelet transform is suitable for signals with short time durations.

Toolset Components

This section describes the Signal Processing Toolset components for JTFA,
SRSA, wavelet analysis, and digital filter design.
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Chapter 1 Signal Processing Toolset Overview

Joint Time-Frequency Analysis

The Signal Processing Toolset provides several algorithms for applications
with nonstationary signals, signals where the frequency content varies with
time. These algorithms include the award-winning and patented Gabor
spectrogram, as well as the Wigner-Ville distribution, Choi-Williams
distribution, short-time Fourier transform, cone-shaped distribution, and
adaptive spectrogram. Applications for JTFA include speech processing,
sound analysis, sonar, radar, machine testing, vibration analysis, and
dynamic signal monitoring.

The Signal Processing Toolset includes a stand-alone application you can
use to test JTFA algorithms. Refer to Chapter 5, Joint Time-Frequency
Analysis Applications, for information about the JTFA application.

Refer to Part 11, Joint Time-Frequency Analysis, for more information
about joint time-frequency analysis.

The Signal Processing Toolset has easy, advanced, and refnum JTFA VIs
and functions. LabVIEW users can find the JTFA VIs on the
Functions»Adv Sig Processing»Easy Level JTFA palette, the
Functions»Adyv Sig Processing»Advanced JTFA palette, and the
Functions»Adv Sig Processing»Refnum JTFA palette. Refer to

the Signal Processing Toolset Help for information about individual VIs.

LabWindows/CVI users can find the JTFA functions by selecting
Library»SPT»JTFA. Refer to the Signal Processing Toolset for
LabWindows/CVI Help for information about individual JTFA functions
for LabWindows/CVL.

Super-Resolution Spectral Analysis

SRSA is a model-based analysis method and is especially powerful when
the number of data samples is limited. The relationship of the number of
samples to the frequency resolution is quantified by Equation 1-1.

Af = sampling frequency (1-1)

number of samples

where Af denotes the frequency resolution. The frequency resolution
characterizes the minimum difference that can be distinguished between
two sinusoids. This analysis method is effective when you have a small
number of data samples. Refer to Chapter 6, Introduction to Model-Based
Frequency Analysis, for more information about model-based frequency
analysis and its role in super-resolution spectral analysis.
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Chapter 1 Signal Processing Toolset Overview

The Signal Processing Toolset contains a stand-alone application you can
use to test algorithms such as covariance, Prony’s method, principle
component auto-regression (PCAR), and the matrix pencil method for
model-based analysis. Refer to Chapter 8, Applying Super-Resolution
Spectral Analysis and Parameter Estimation, for information about the
SRSA application.

Use the super-resolution spectral analysis VIs and functions to perform
high-resolution spectral analysis and parameter estimation. The parameters
include amplitude, phase, damping factor, and frequency of damped
sinusoids. You can use the VIs and functions for other applications such
as linear prediction, signal synthesis, data compression, and system
identification. These tools have a diverse range of applications in areas such
as biomedicine, economics, geophysics, noise and vibration, and speech
analysis.

Refer to Part III, Super-Resolution Spectral Analysis, for more information
about super-resolution spectral analysis.

The Signal Processing Toolset has both easy and advanced SRSA VIs and
functions. LabVIEW users can find the SRSA VIs on the Functions»Adv
Sig Processing»Easy Level SRSA palette and the Functions»Adv Sig
Processing»Advanced SRSA palette. Refer to the Signal Processing
Toolset Help for more information about individual VIs.

LabWindows/CVI users can find the SRSA functions by selecting
Library»SPT»SRSA. Refer to the Signal Processing Toolset for
LabWindows/CVI Help for information about individual SRSA functions
for LabWindows/CVI.

Wavelet Analysis

You can use wavelets for feature extraction and data compression.

By interactively selecting a wavelet prototype, such as equiripple or
maxflat, and different finite impulse response combinations, you can easily
find the best wavelet or filter bank for your application.

As you design the wavelets, you can apply them to 1D and 2D signals,

or images, and immediately see the effect of the design on your signal.

The Wavelet Analysis functions are especially powerful for signals that
have short time duration and wide frequency bandwidth.

The Signal Processing Toolset provides an intuitive and interactive
interface for designing filter banks, 1D and 2D wavelet transforms, and
computing the wavelet packet for 1D test data. Refer to Chapter 11,
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Chapter 1 Signal Processing Toolset Overview

Wavelet Analysis Applications, for information about the wavelet analysis
applications.

Refer to Part IV, Wavelet Analysis, for more information about wavelet
analysis and filter bank design.

The Signal Processing Toolset has both easy and advanced Wavelet VIs and
functions. The toolset also has wavelet packet VIs and functions. LabVIEW
users can find the wavelet analysis VIs on the Functions»Adv Sig
Processing»Easy Level Wavelet palette, the Functions»Adv Sig
Processing»Advanced Wavelet palette, and the Functions»Adv Sig
Processing»Advanced Wavelet»Wavelet Packet palette. Refer to

the Signal Processing Toolset Help for more information about
individual VIs.

LabWindows/CVI users can find the Wavelet functions by selecting
Library»SPT»Wavelet, and Library»SPT»Wavelet»Wavelet Packet.
Refer to the Signal Processing Toolset for LabWindows/CVI Help for
information about individual wavelet analysis functions for
LabWindows/CVI.

Accessing Example Application Source Code

If you have LabVIEW 6.1 or later installed, you can access the source code
for the JTFA, SRSA, and wavelet analysis example applications.

Complete the following steps to access the source code for an example
application.

1. Select Start»Programs»National Instruments»Signal Processing
Toolset»>NI SPT Start-Up Source to open the SPT palette.

2. Click the icon of the application you want to see to open the
application front panel.

3. Select Window»Show Diagram or press <Ctrl-E>.

Refer to Chapter 5, Joint Time-Frequency Analysis Applications;
Chapter 8, Applying Super-Resolution Spectral Analysis and Parameter
Estimation; and Chapter 11, Wavelet Analysis Applications, for
information about the individual example applications.

Digital Filter Design Application

The Signal Processing Toolset contains a Digital Filter Design (DFD)
application. The DFD application provides a general-purpose design tool
for signal conditioning, control systems, digital signal processing, and
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Chapter 1 Signal Processing Toolset Overview

virtual instrument applications. You can use the DFD application to
accomplish the following tasks:

*  Design bandpass, bandstop, lowpass, and highpass filters.
*  Design filters with an arbitrary magnitude response.

e Design infinite impulse response (IIR) and finite impulse response
(FIR) filters using the graphical user interface.

*  Design filters by interactively editing the magnitude response graph or
the pole-zero plot in the z-plane.

*  Test your design online with a built-in function generator.

*  Analyze the filter using the step and impulse responses, magnitude and
phase responses, and pole-zero plot.

»  Save the filter coefficients of your completed design to a file for use in
other applications.

Refer to Chapter 12, Digital Filter Design Application, for more
information about the DFD application.

System Requirements

To install the Signal Processing Toolset 7.0 for LabVIEW, your system
must have the Full Development or Professional Development System of
LabVIEW 6.1 or later.

To install the Signal Processing Toolset 7.0 for LabWindows/CVI,
your system must have LabWindows/CVI 6.0 or later.

Installation

Complete the following steps to install the Signal Processing Toolset.

1. Insert the Signal Processing Toolset CD into your CD-ROM drive and
double-click setup.exe.

2. Follow the instructions on your screen.

After you have completed the on-screen installation instructions, you are
ready to run the Signal Processing Toolset.
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Analysis Beyond FFT

Background

Often, it is neither possible nor desirable to physically open up a system
and study it. In many such instances, you can gain knowledge about a
system by measuring and analyzing signals associated with the system.
For example, physicists and chemists use the spectrum dispersed by a
prism to distinguish between different types of matter. Astronomers
determine distances between planets by examining spectra modified by
Doppler Shifts. Physicians use the electrocardiograph (ECG), which traces
the electrical activity of the heart, as a nonsurgical means of diagnosing
heart problems. Analyzing signals can be an ideal way to examine closed
systems.

This chapter provides basic information about signal processing, the
Fourier transform, the Gabor expansion, the Wigner-Ville distribution,
the wavelet transform, the time-frequency transform, and the role of the
Signal Processing Toolset in signal analysis.

Prior to World War II, signal processing was primarily a part of physics,
and scientists and engineers mainly dealt with analog signals. Then the
sampling theorem, proved by the mathematician J. Whittaker [35] and
applied to communication by Claude Shannon [29], led to a new era of
signal processing.

Think of modern signal processing as the combination of physics and
statistics. With the discovery of the sampling theorem and the advance of
the digital computer, scientists are able to employ elegant mathematical
approaches to process signals that our ancestors would never have been
able to imagine. One such approach is the virtual prism, or Fourier
transform. Applications of modern signal processing range from the control
of the Mars Pathfinder spacecraft more than twenty million miles away
from earth to the discovery of abnormal cells inside the human body.

One fundamental mathematical tool employed in signal processing is a
transform. When asked to multiply the Roman numerals LXIV and XXXII,
only a few of us can immediately give the correct answer. However, after
you translate the Roman numerals into the Arabic numerals 64 and 32, you
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Analysis Beyond FFT

can solve to get 2,048. The process of converting the unfamiliar Roman
numerals into common Arabic numerals is a typical example of transforms
[12]. Properly applying transforms can simplify calculations or make
certain attributes of a signal explicit.

Fourier Transform

One of the most popular transforms known to scientists and engineers is
the Fourier transform, which converts a signal from the time domain to the
frequency domain. The Fourier transform is extremely useful when applied
correctly. Two hundred years ago, during the study of heat propagation
and diffusion, Jean Baptiste Joseph Fourier found a series of harmonically
related sinusoids useful to represent the temperature distribution
throughout a body. That method of computing the weight of each
sinusoidal function is now known as the Fourier transform. The Fourier
transform not only benefits the study of heat distribution, but it also is
useful in many other mathematical operations, such as solving differential
equations. The example that scientists and engineers are most familiar with
is the convolution theory. You can apply the Fourier transform to convert
time-consuming convolutions into more efficient multiplications.

The Fourier transform acts as a mathematical prism to break down a signal
into a group of waveforms, or different frequencies, as a prism breaks

up light into a color spectrum. With the help of the Fourier transform,
scientists can interpret radiation from distant galaxies, diagnose illness in
a developing fetus, and make inexpensive cellular phone calls. With the
establishment of quantum mechanics, the significance of Fourier’s
discovery is even more obvious. For example, with the Fourier transform,
scientists can quantitatively describe the Heisenberg uncertainty principle,
a fundamental and inescapable property of the world. The Heisenberg
uncertainty principle states that certain pairs of quantities, such as the
position and velocity of a particle, cannot both be predicted with complete
accuracy.

The Fourier transform is so powerful that people tend to apply it
everywhere without noticing one fundamental difference between the
mathematical prism and a real prism. A real prism produces instantaneous
spectra. Spectra produced in the evening are different than spectra
produced that morning. When using a real prism to examine spectra of
light, you need no previous knowledge about the light to produce the
spectra. However, to compute the Fourier transform, you need to examine
information over time. The spectrum computed by the Fourier transform is
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Chapter 2 Analysis Beyond FFT

the spectrum averaged over an infinitely long period of time before the
present to an infinitely long period of time after the present.

Figure 2-1 illustrates two linear chirp signals. Each is a time-reversed
version of the other. Whereas frequencies of the signal on the left increase
with time, frequencies of the signal on the right decrease with time.
Although the frequency behavior of the two signals is obviously different,
their frequency spectra computed by the Fourier transform, as shown in
Figure 2-2, are identical. The Fourier transform preserves all information
about the time waveform. Otherwise, the signal could not be reconstructed
from the transform.

Linear Chirp
0

Reversed Linear Chirp
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Figure 2-1. Time-Reversed Linear Chirp Signals
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Figure 2-2. Frequency Spectra Gomputed by the Fourier Transform
for Time-Reversed Linear Chirp Signals
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Chapter 2 Analysis Beyond FFT

Figure 2-3 depicts the spectrum of an engine sound, and the top plot of
Figure 2-4 depicts the corresponding time waveform.
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Figure 2-3. Engine Sound Spectrum
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Figure 2-4. Engine Sound Time Waveform and Wavelet Transform

If you could hear the signal depicted in Figures 2-3 and 2-4, you could
clearly identify several knocking sounds caused by out-phase firing inside
the engine. As indicated by the wavelet transform, the second plot in
Figure 2-4, the knocking sound is actually quite strong. To compute the
Fourier transform, you have to include the signal before the knocking takes
place and the signal after the knocking ends. The spectrum computed with
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Chapter 2 Analysis Beyond FFT

the Fourier transform indicates that the frequencies contained in the entire
time waveform, not the frequencies in a particular time instant. The Fourier
transform provides the average signal characteristics. Although the
amplitude of engine knock sounds can be large in a very short time period,
the energy of the sound, compared to the total background noise, is
negligible. Because the sound energy of engine knocking is relatively
small, the presence of engine knocks is completely overwhelmed in the
averaged spectra computed by the Fourier transform. Consequently, there
are no obvious signatures in the spectrum to show the presence of engine
knock. The Fourier transform smears the signal’s local behavior globally.

As Hubbard observed, “the Fourier transform is poorly suited to very brief
signals, or signals that change suddenly and unpredictably; yet in signal
processing, brief changes often carry the most interesting information”
[11]. Although most natural spectra are time dependent, for example,
morning and evening light, the Fourier transform makes “changing
frequency” unthinkable. As Gabor once wrote, “even experts could not at
times conceal an uneasy feeling when it came to the physical interpretation
of results obtained by the Fourier method” [12].

The set of basic functions employed by Fourier, sine and cosine functions,
is the mathematical model of the most fundamental natural phenomena, the
wave, and a solution of differential equations. Unfortunately, this is not the
case for time-frequency and wavelet transforms. Neither time-frequency
nor wavelet transforms are likely to have the revolutionary impact upon
science and engineering that the Fourier transform has had. However, the
time-frequency and wavelet transforms do offer many interesting features
that the Fourier transform does not possess.

Gabor Expansion and Wigner-Ville Distribution

The development of Fourier’s alternatives started at least a half century ago
and has involved many people. The first two important articles dealing with
the limitation of the Fourier transform appeared right after World War II,

one written by Dennis Gabor [12] and the other by J. Ville [33]. Because

Ville’s conclusion was similar to a process introduced by Eugene Wigner
in quantum mechanics in 1932 [36], traditionally Ville’s method is known
as the Wigner-Ville distribution.

Howeyver, initial reactions to Gabor’s and Ville’s work was not enthusiastic.
The difficulty with the Gabor expansion is that a set of elementary
functions suitable for general time-frequency analysis does not form an
orthogonal basis. The problem with the Wigner-Ville distribution is the
crossterm interference that makes the resulting presentation difficult to
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Chapter 2 Analysis Beyond FFT

interpret. However, two sets of papers in the early 1980s triggered great
interest in revisiting Gabor’s and Ville’s pioneering work [1] [3]. Since the
early 1980s, scientists have made many developments, some of which are
now mature applications.

Wavelet Transform

The recognition of the wavelet transform is much more recent, though a
similar methodology can be traced to the early twentieth century [9].
Wavelets are not a new idea, and the concept has existed in other forms in
many different fields. For example, the numerical implementation of the
wavelet transform is nothing more than the well-established method of
filter banks.

In addition to detecting engine knocks, the wavelet transform is also
successfully used for train wheel diagnosis. Two of the main causes of train
accidents are defective wheels and bearings. Hence, on-line train wheel and
bearing diagnoses are an important part of avoiding potential catastrophes.
The parameter that engineers believe can be used to effectively detect
hidden flaws in wheels and bearings is the variation in railroad track
vibration. The defective wheels and bearings usually generate impulse-like
noise as the train moves on the track, making abnormal track vibrations.
The wavelet transform can effectively filter out such noise.

Figure 2-5 illustrates a typical train wheel on-line testing result.

Vibration due to Wheel 5
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Figure 2-5. Train Wheel On-Line Testing Result
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Chapter 2 Analysis Beyond FFT

When a wheel is far away from the accelerometer mounted beneath the
track, the corresponding track vibration is weak. Track vibration increases
as the train wheel approaches the accelerometer. The vibration reaches a
maximum when a wheel is right above the accelerometer. The plot on the
top of Figure 2-5 shows the vibration history during the time that eight
wheels pass the accelerometer. The x-axis describes the time index, and the
y-axis indicates the magnitude of track vibration. Each bump corresponds
to one wheel passing over the accelerometer. Obviously, there is no clear
signature between the normal and abnormal wheels in the time waveform.
However, in the wavelet transform domain, the plot on the bottom of
Figure 2-5, you can identify a potential problem at the fifth wheel, between
x =500 and x = 550. The wavelet-transform-based on-line diagnosis
system is expected to substantially reduce potential train accidents caused
by defective wheels and bearings.

The Fourier transform compares a signal with a set of sine and cosine
functions. Each sine and cosine function has a different oscillating
frequency. Hence, the result of Fourier transform indicates magnitudes of
the signal at each individual frequency. The wavelet transform compares
a signal with a set of short waveforms called wavelets. Each wavelet has
a different time duration, or scale. As the time duration becomes shorter,
the frequency bandwidth becomes wider, and vice versa. In mathematical
terms, the process of stretching or compressing the fundamental wavelet,
usually called the mother wavelet, is called dilating. As wavelets get
narrower and narrower, they eventually become impulse-like functions,
equivalent to wide frequency bands. Consequently, the wavelet transform
can process impulse-like signals, such as engine knocks and noise created
by defective train wheels and bearings. In those examples, the wavelet
transform is superior to the Fourier transform.

Besides wideband, or short time duration, signal detection, the wavelet
transform is also widely used for 2D image processing. Figure 2-6 is the
2D wavelet transform of the picture of an iris.
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Chapter 2 Analysis Beyond FFT

Figure 2-6. 2D Wavelet Transform of the Picture of an Iris

In Figure 2-6, the full image on the left is broken into four subimages.
The upper-left subimage, which is a quarter of the size of the original
image, contains the major features of the picture of the iris. The remaining
three subimages have relatively less important information, and thus have
less influence on the reconstruction. Figure 2-6 suggests, that instead of
storing or transferring the entire large image, you only need to store or
transfer the upper-left image and the number of prominent pixels in the
other three subimages. Because the number of pixels in each subimage is a
quarter of the number of pixels contained in the original image, by applying
a 2D wavelet transform, you can save a lot of memory and communication
bandwidth.

Time-Frequency Transform and the Gabor Spectrogram

While the wavelet transform is well-suited for the analysis of
predominately nonstationary signals with sudden peaks or discontinuity,
the time-frequency transform is effective for analyzing narrowband signals
or signals whose frequency changes slowly with time. The detection of
impulse signals by low-orbit satellites is a good example of a
time-frequency transform application.

The detection and estimation of impulse signals has been an important
national security issue because nuclear weapon testing can cause impulse
signals. Figure 2-7 depicts an impulse signal received by the U.S.
Department of Energy ALEXIS/BLACKBEARD satellite.
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Figure 2-7. Impulse Signal Received by ALEXIS/BLACKBEARD Satellite
(Data courtesy of Non-Proliferation & International Security
Division, Los Alamos National Laboratory)

After passing through dispersive media, such as the ionosphere, the
impulse signal turns into a non-linear chirp signal. While the time
waveform is severely corrupted by random noise, the conventional
spectrum is dominated by radio carrier signals that remain basically
unchanged over time. As shown in Figure 2-7, neither the time waveform
nor the power spectrum indicates the existence of the impulse signal.
However, when looking at the amplitudes of the Gabor coefficients,
computed by the short-time Fourier transform, you can identify the
presence of the chirp-type signal arching across the joint time-frequency

domain.

From the joint time-frequency domain, you can mask the Gabor
coefficients that correspond to the desired signal, as shown in Figure 2-8.

7h.00- f‘
MHz ¥ e
50.00- f
i
25.00- i/
[
noo-

0000 0020 0040 000 0080 0100 0120 O.145(ms)

Figure 2-8. Signal Masked from Noisy Background
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After the masking operation, apply the Gabor expansion to recover the
original time waveform. Figure 2-9 compares the noisy and reconstructed
signals.

—————————————————————
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Figure 2-9. Reconstructed Signal

As shown in Figure 2-7, the interesting signal in this example cannot be
detected from either the time waveform or the conventional spectrum.
When the signal-to-noise rate (SNR) is very low, as with many satellite
signals, the short-time Fourier transform and Gabor expansion could be
the only choices for detection and estimation.

The time-frequency transform describes how the spectrum of a signal
changes with time, and that is its major advantage. Such an instantaneous
spectrum is very useful in many applications. One such application is
aneurysm research. An aneurysm is a bulge or sac formed by the ballooning
of the wall of an artery or a vein. It can become the site of a blood clot that
breaks away and lodges in vital organs, such as the heart or the brain,
causing potentially fatal heart failure or brain damage. Except for
Computer Tomography (CT) and Magnetic Resonance Imaging (MRI), at
present, there is no simple and economical method to screen for aneurysms.
The results obtained from the Gabor spectrogram could eventually lead to
an economical aneurysm screening test.

Some aneurysms emit specific resonant sounds of varying frequencies. So,
the frequency of the sound created by blood flow is a potential feature for
diagnosing an aneurysm. However, the sound associated with an aneurysm
is generated by a complicated, dynamic fluid system involving the arterial
wall, heart chamber, surrounding blood vessels, and moving blood, all
under varying pressure. The sound recorded from an aneurysm is caused
by vibration stimulated by the blood flow inside the aneurysm and nearby
blood vessels. This vibrational system is non-linear and time-varying. In
addition, the sound emitted by an aneurysm is non-stationary and is usually
combined with the biological noises generated by the heart, respiratory
system, and eye movements.
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Figure 2-10 shows an aneurysm signal recorded directly from an
antercranial aneurysm during surgery.
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Figure 2-10. Gabor Spectrogram of Blood Flow Sound (Data courtesy of the Medical
School at the University of Pittsburgh)

The record represented by Figure 2-10 has 512 data samples,
corresponding to 300 milliseconds in time. The spectrum of the signal
is illustrated on the left. It shows the range of resonant frequencies,

450 to 550 Hz, but provides no other useful information. The center plot
depicts the corresponding Gabor spectrogram that describes the
instantaneous spectrum of the signal. With the help of the Gabor
spectrogram, the physical system that produces this signal could
hypothetically be described as follows:

*  The main arc is produced by the variation of blood pressure which
changes the physical parameters of the resonant system. More
specifically, at the very beginning of the vibration, in the vicinity of
0.05 seconds, the spectral component is relatively wide, corresponding
to alow Q, center frequency versus frequency bandwidth, value of the
vibrational system due to the existence of a large damping effect.

*  As the stimulation increases, the pressure-induced vibration becomes
stronger, and the spectral component narrows, which indicates an
increasing Q value. As a result, between 0.1 to 0.15 seconds, the
vibration tends to concentrate on a single frequency, yielding a
sinusoidal-like waveform.

*  As the vibration continues, another interesting phenomenon occurs.
Between 0.15 to 0.25 seconds, when the vibrational magnitude
increases considerably, you can observe several branches with
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harmonic-like patterns deviating from the main arc. However, after

a short period of time, these branches merge back into the main arc
again. This interesting behavior could indicate that, at the branching
points, the vibrational system has reached the upper limit of its linear
range. However, the stimulation is still present, which provides the
system with additional energy.

e This over-stimulation causes the vibration to enter a nonlinear stage.

*  Conversely, as the stimulation decreases, the vibrational system loses
energy.

*  Finally, the system ceases vibration when the damping effect becomes
dominant again.

In this example, researchers use the Gabor spectrogram as an X-ray, to get
a better understanding of the mechanism of an aneurysm system. As shown
in Figure 2-10, information provided by the Gabor spectrogram is not
available in either the time waveform or the conventional frequency
spectrum. The resulting observation could eventually lead to an efficient
means of diagnosing aneurysms that will not only be less expensive than
CT and MRI, but also pain-free.

The Gabor spectrogram also has been successfully applied in earthquake
engineering, with developments like the detection of soil liquefaction
conducted at the University of Tokyo. Soil liquefaction is an
earthquake-related phenomenon that takes place in saturated soils from the
sub-surface soft layer. The cause of liquefaction is the rise of the water pore
pressure under undrained conditions when the ground shakes. The increase
of the pore pressure reduces the soil shear resistance to almost zero, causing
the soil to behave as a liquid. Consequently, the energy of horizontal
vibrations, seismic shear waves from depth, transferred by the soil is
substantially reduced, particularly, the high frequency contents.
Researchers recognize soil liquefaction as the main cause of the collapse of
earth dams and slopes, failure of foundations, superstructures, and lifelines,
such as gas and electrical power supplies.

Since the 1964 Niigata earthquake, scientists have obtained and studied a
number of seismic records from liquefied-soil sites. The records show that
the horizontal ground acceleration alternates uniquely after the onset of
liquefaction. The frequency of the acceleration abruptly drops off toward
the 0.3 to 1 Hz range, and amplitudes decrease, whereas the vertical
acceleration remains fairly stable. The decrease of the soil shear modulus,
as a consequence of the water pore-pressure build up, triggers the
alternation of the horizontal ground acceleration.
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Researchers developed methods for liquefaction detection based on these
seismic records. Recently, researchers from the International Center for
Disaster-Mitigation Engineering at the University of Tokyo employed the
seismic-signal instantaneous spectrum to quantify the alternation of the
horizontal ground acceleration. Figure 2-11 shows the seismic-signal
instantaneous spectrum from a site where extensive liquefaction occurred.
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Figure 2-11. East-West Component of the Ground Acceleration Record at
Higashi-Kobe Bridge from the 1995 Hyogoken-Nanbu Earthquake (Data courtesy of
the International Center for Disaster-Mitigation Engineering at the Institute of Industrial

Science, University of Tokyo)
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Figure 2-12 shows the seismic-signal instantaneous spectrum from a site
where no liquefaction occurred.
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Figure 2-12. East-West Component of the Ground Acceleration Record at JMA Kobe
Station from the 1995 Hyogoken-Nanbu Earthquake. (Data courtesy of the
International Center for Disaster-Mitigation Engineering at the Institute of Industrial

Science, University of Tokyo)

The mean instantaneous frequency computed from the seismic-signal
instantaneous spectrum can characterize the frequency changes, as shown
in Figures 2-13 and 2-14.
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Figure 2-13. Mean Instantaneous Frequencies at the Figure 2-11 Site
The mean instantaneous frequency for East-West component, computed from

Figure 2-11, is

obviously lower than that for non-liquefaction case in Figure 2-14.

(Data courtesy of the International Center for Disaster-Mitigation Engineering
at the Institute of Industrial Science, University of Tokyo)
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Figure 2-14. Mean Instantaneous Frequencies at the Figure 2-12 Site
The mean instantaneous frequency for East-West component is computed from
Figure 2-12. (Data courtesy of the International Center for Disaster-Mitigation
Engineering at the Institute of Industrial Science, University of Tokyo)

Occurrence of liquefaction is judged on the relative difference in the mean
instantaneous frequency of the horizontal and vertical acceleration. Now,
researchers from the University of Tokyo are able to remotely detect the
occurrence of soil liquefaction. Figure 2-13 represents a typical
liquefaction record, whereas Figure 2-14 indicates no liquefaction
occurring.

Refer to Qian and Chen’s March 1999 article in the IEEE Signal
Processing Magazine to learn about other successful signal processing
applications [28].

Role of the Signal Processing Toolset

There is no doubt that time-frequency and wavelet transforms have begun
to pervade modern technology, as well as our everyday life. The Signal
Processing Toolset provides you with the tools to process signals for which
the classical Fourier transform is not suitable, such as the transient signal
and the signal whose frequency contents evolve over time.

The remainder of this manual discusses the main areas of signal analysis,
specifically joint time-frequency analysis (JTFA), super-resolution spectral
analysis (SRSA), and wavelet analysis, and how you can use the Signal
Processing Toolset to perform these analyses. The manual also contains
information about digital filter design.
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Part I

Joint Time-Frequency Analysis

This section of the manual provides information on joint time-frequency
analysis (JTFA) and the JTFA applications in the Signal Processing
Toolset.

»  Chapter 3, Joint Time-Frequency Analysis, explains the need for and
approaches to JTFA.

*  Chapter 4, Joint Time-Frequency Analysis Algorithms, describes the
algorithms that the JTFA VIs and functions use.

»  Chapter 5, Joint Time-Frequency Analysis Applications, introduces
Signal Processing Toolset JTFA applications.
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This chapter explains the need for and approaches to joint time-frequency
analysis (JTFA).

The Need for JTFA

Unlike traditional analysis in which you analyze a signal only in the time
domain or frequency domain, JTFA allows you to analyze a signal in the
time and frequency domains simultaneously. This enables you to better
understand and process a particular signal. JTFA is used primarily to
observe how the power spectrum of a signal changes over time. Whereas
classical algorithms, such as the square of the Fourier transform, indicate
only the average power spectrum of a signal, JTFA algorithms allow you
to examine the instantaneous spectrum.

The upper-left plot in Figure 3-1 is a time-dependent spectrum which plots
the energy of the signal as a function of both time and frequency.
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Figure 3-1. Speech Signal
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As shown in Figure 3-1, the time-dependent spectrum clearly reveals the
pattern of the formants. From the formants, you can see how the frequency
changes. The relative brightness levels of the plot show the intensity of the
frequencies. In this example, the JTFA helps illustrate the mechanism of
human speech.

Another important application with JTFA is the detection of
noise-corrupted signals. In general, random noise tends to spread evenly
across the time and frequency domains. However, the signal usually
concentrates in a relatively short time period or a narrow frequency band.
If you convert the noise-corrupted signal to the joint time-frequency
domain, you can substantially improve the local or regional
Signal-to-Noise Ratio (SNR).

Figure 3-2 depicts an impulse signal received by the U.S. Department of
Energy ALEXIS/BLACKBEARD satellite.
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Figure 3-2. lonized Impulse Signal (Data courtesy of Non-Proliferation and
International Security Division, Los Alamos National Laboratory)

After passing through dispersive media, such as the ionosphere, the
impulse signal becomes the nonlinear chirp signal. As shown in Figure 3-2,
random noise dominates both the time waveform and the power spectrum.
Neither indicates the existence of the impulse signal. However, from the
time-dependent spectrum, you can immediately identify the presence of
the chirp-type signal that arches across the joint time-frequency domain.
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The horizontal lines correspond to radio carrier signals that remain
basically unchanged over time.

Based on the joint time-frequency representation, you can further mask the
desired signal, as shown in the top plot in Figure 3-3.
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Figure 3-3. Reconstructed Signal

You can then apply the inverse transformation to recover the noiseless time
waveform. The lower plot in Figure 3-3 illustrates the noisy and
reconstructed signals. When the SNR is very low, as with many satellite
signals, JTFA might offer the only opportunity to detect the signal of
interest.

Basic Approaches to JTFA

The development of JTFA began more than a half century ago. The most
straightforward approach to characterizing the frequency of a signal as a
function of time is to divide the signal into several blocks that can be
overlapped. Then the Fourier transform is applied to each data block to
indicate the frequency contents of each data block. This process is known
as the short-time Fourier transform (STFT) and roughly reflects how
frequency contents change over time. The size of the blocks determines
the time accuracy—the smaller the block, the better the time resolution.
However, frequency resolution is inversely proportional to the size of

a block. When the small block yields good time resolution, it also
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deteriorates the frequency resolution and vice versa. This phenomenon
is known as the window effect.

From the concept of expansion and series, physicist Dennis Gabor
suggested expanding a signal into a set of weighted frequency-modulated
Gaussian functions. Because the Gaussian function is concentrated in both
the time and frequency domains, the weights describe signal behavior in
local time and frequency. The resulting presentation is known as the Gabor
expansion. In fact, you can consider the Gabor expansion as the inverse of
the STFT. However, this inverse relationship was not clear during Gabor’s
lifetime and not well understood until the 1980s. At present, both the theory
and implementation of the Gabor expansion and STFT are mature enough
to apply to real application problems.

As the linear JTFA develops, the quadratic JTFA, or time-dependent
spectrum, is attracting attention. The simplest time-dependent spectrum
is the square of the STFT, which is known as the STFT-based spectrogram,
or the STFT spectrogram. However, the STFT spectrogram suffers from the
window effect.

A more elegant method than the STFT spectrogram is the Wigner-Ville
distribution (WVD), which physicist Eugene P. Wigner originally
developed in the context of quantum mechanics. The WVD gives high
resolution and many other useful properties for signal analysis, but it
suffers from crossterm interference. To reduce crossterm interference,
you can use two proven algorithms, Cohen’s class and the Gabor
expansion-based spectrogram, also known as the Gabor spectrogram.
Scientists at National Instruments developed the Gabor spectrogram in
the early 1990s. Based on the conventional Gabor expansion and the
WYVD, scientists at National Instruments also introduced the adaptive
representation-based spectrogram, or the adaptive spectrogram.

Unlike the linear JTFA method, the quadratic JTFA method is not unique.
This toolset contains the following quadratic algorithms:
e Adaptive spectrogram
e Cohen’s class
—  Choi-Williams distribution
—  Cone-shaped distribution
—  STFT spectrogram
- WVD

e Gabor spectrogram
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Which method should you use? Often, the choice is application dependent.
With these methods, you can process signals the conventional Fourier
transform cannot handle.
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Joint Time-Frequency
Analysis Algorithms

This chapter describes the algorithms the joint time-frequency analysis
(JTFA) VIs and functions use. The JTFA algorithms implemented in this
toolset fall into two categories—Ilinear and quadratic. Refer to the works of
Qian and Chen [27] and Cohen [6] for more information about a particular
algorithm.

Linear JTFA Algorithms

Linear JTFA includes the following methods:

*  Gabor expansion, considered the inverse short-time Fourier
transform (STFT)

»  STFT, used for computing the Gabor coefficients
* Adaptive representation, considered the inverse adaptive transform

*  Adaptive transform

Gabor Expansion and STFT

In Equation 4-1, the Gabor expansion represents a signal s[i] as the
weighted sum of the frequency-modulated and time-shifted function A[i]:

N-1
s[i] = Zzcm,nh[i—mAM]e-’“”"/N (4-1)

m n=0

where the Gabor coefficients C,, , are computed by the STFT in the
following equation.

—j2mni/N
e

C,.. = STFT[mAM, n] = zs[i]’y*[i—mAM]

i=0
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where N denotes the number of frequency bins and AM denotes the time
sampling interval. You can use any function as y[{], as long as its dual
function A[i] exists. For the perfect reconstruction, the oversampling rate
N/AM, must be greater than or equal to one. For a given A[i] or ¥[i],
LabVIEW users can use the Fast Dual VI to compute the corresponding
dual function, and LabWindows/CVT1 users can use the
SPTFastDualFunction. Refer to the Signal Processing Toolset Help for
more information about the Fast Dual VI. Refer to the Signal Processing
Toolset for LabWindows/CVI Help for more information about the
SPTFastDualFunction.

If the STFT is not used for computing the Gabor coefficient C,,, ,,, there are
no restrictions for y[i] or the ratio N/AM.

Adaptive Representation and Adaptive Transform

In the Gabor expansion in Equation 4-1, the elementary functions

hli — mAM]e/2™i/N are time-shifted and frequency-modulated versions of
the single prototype function A[i]. To better match the analyzed signal,
the adaptive representation, shown in Equation 4-2, was developed to
decompose the signal s[i] as a sum of weighted linear adaptive modulated
Gaussian functions:

D-1
s[i] = ZAkhk[i] 4-2)
k=0
where the adaptive Gaussian function /,[i] is defined by

. .42
hali] = (akn>‘“-25exp{— U= oo i~ ikn}
Ol

which has three parameters: oy, i, f;. Therefore, the adaptive
representation is more flexible than the elementary function used in the
Gabor expansion.

The parameter D in Equation 4-2 denotes the total number of elementary
functions used by i;[i]. A, is the weight of each individual 4[i], as
computed by the adaptive transform.

Scientists at National Instruments [25] and Mallat and Zhang [16]
independently developed the adaptive representation, also known as the
matching pursuit.

Signal Processing Toolset User Manual 4-2 ni.com



Chapter 4 Joint Time-Frequency Analysis Algorithms

Quadratic JTFA Algorithms

The quadratic JTFA algorithms include the following methods:

»  STFT spectrogram

*  Wigner-Ville distribution (WVD)

*  Pseudo Wigner-Ville distribution (PWVD)
*  Cohen’s class

¢ Choi-Williams distribution (CWD)

*  Cone-shaped distribution

*  Gabor spectrogram

*  Adaptive spectrogram

STFT Spectrogram

The STFT-based spectrogram is defined as the square of the STFT,
as shown in the following equation:

]2
SP[mAM, n] = Zs[i]Y[i—mAM]e_"zn"’/N

i=0

where N denotes the number of frequency bins and AM denotes the time
sampling interval. The STFT-based spectrogram is simple and fast but
suffers from the window effect.

Figures 4-1 and 4-2 illustrate the window effect of the STFT spectrogram.
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Figure 4-1. STFT-Based Spectrogram with a Narrowband Hanning Window
for the Three-Tone Test Signal
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Figure 4-2. STFT-Based Spectrogram with a Wideband Hanning Window
for the Three-Tone Test Signal

In Figure 4-1, with a narrowband window, the time-dependent spectrum
has high frequency resolution but poor time resolution. In Figure 4-2, with
a wideband window, the time-dependent spectrum has poor frequency
resolution but high time resolution.
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Wigner-Ville Distribution and Pseudo Wigner-Ville Distribution
For a signal s[i], the Wigner-Ville distribution (WVD) is

L/2
WVD[l, k] = Z R[l, m]e—j21'tkm/L

m=-L/2

where the function R[i,m] is the instantaneous correlation given by
Rli,m] = z[i + m]z*{i — m]

and z[i] is the analytical, or interpolated, form of s[i]; refer to
reference [27].

The WVD also can be computed by

L/2
WVD[l, k] = Z 9‘{[1, m]e,i2nkm/L

m=-L/2

where R[i, m] = Z[i + m]Z*[i —m] and Z[k] denotes the Fourier
transform of z[i].

The Wigner-Ville distribution is simple and fast. It has the best joint
time-frequency resolution of all known quadratic JTFA algorithms.
However, if the analyzed signal contains more than one component,
the WVD method suffers from crossterm interference.

Figure 4-3 depicts the WVD of the three-tone test signal.
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Figure 4-3. Wigner-Ville Distribution for the Three-Tone Test Signal

In Figure 4-3, three real signal terms are centered at (0.03 s, 400 Hz),
(0.09 s, 100 Hz), and (0.09 s, 400 Hz). Three crossterms exist and are
labeled as 1, 2, and 3 in Figure 4-3.

A crossterm reflects the correlation between a pair of corresponding
autoterms, always sits halfway between two corresponding autoterms, and
oscillates frequently. Although the magnitude of a crossterm can be large,
the average of a crossterm is usually limited.

Autoterms at (0.03 s, 400 Hz) and (0.09 s, 400 Hz), which have different
time centers, cause crossterm 1. Autoterms at (0.09 s, 100 Hz) and (0.09 s,
400 Hz), which have different frequency centers, cause crossterm 3.
Autoterms at (0.03 s, 400 Hz) and (0.09 s, 100 Hz) create crossterm 2.

To alleviate the crossterm interference, you can assign different weights to
the instantaneous correlation R[i,m]. Assigning different weights to R[i,m]
suppresses the less important parts and enhances the fundamental parts of
the signal.
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Two traditional methods exist for applying the weighting function to the
instantaneous correlation R[i,m]. The first is in the time domain and known
as the Pseudo Wigner-Ville distribution (PW VD). Equation 4-3 represents
the PWVD.

L/2
PWVDIi, k] = z wlmlR[i, m]e > ™" (4-3)

m=-L/2

The PWVD effectively suppresses crossterms that correspond to a pair of
autoterms with different time centers, such as crossterms 1 and 2 in
Figure 4-3. Figure 4-4 illustrates the PWVD with the Gaussian window
function w[m]. When compared with the WVD in Figure 4-3, the PWVD
successfully eliminates crossterms 1 and 2.
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Figure 4-4. Pseudo Wigner-Ville Distribution with Gaussian Window w[m]
for the Three-Tone Test Signal

In the second method for applying the weighting function to the
instantaneous correlation R[i,m], you assign weights to R[i,m] in the
frequency domain. This method is represented by Equation 4-4.

L/2
WVDIi, k] = z H{m|R[i, m]e’*™ " " (4-4)

m=-L/2
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This weighting function effectively suppresses crossterms that correspond
to a pair of autoterms with different frequencies, such as crossterms 2 and 3
in Figure 4-3. Figure 4-5 illustrates the PWVD with the Gaussian window
function H[m]. Compared with the WVD in Figure 4-3, the PWVD
successfully eliminates crossterms 2 and 3.
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Figure 4-5. Pseudo Wigner-Ville Distribution for the Three-Tone Test Signal

Notice that Equation 4-4 is equivalent to

L/2

PWVDIi, k] = Z [Zh[n]R[i—n,m]]e_jz”k'"“ (4-5)

m=-L/2

where h[n] is the inverse Fourier transform of H[m] in Equation 4-4.

Cohen’s Class

Because the crossterm often oscillates in the joint time-frequency domain,
another intuitive way of reducing the crossterm interference is to perform
2D filtering to the Wigner-Ville distribution. The result is described in
Equation 4-6.

L/2
Cli, k] = Z Z(I)[n, mR[i —n, m]e ™"t (4-6)
m=-L/2 1
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where ®[i,m] denotes the kernel function. Notice that the window functions
w[m] in Equation 4-3 and A[m] in Equation 4-5 are special cases of ®[i,m]
in Equation 4-6.

In 1966, Leon Cohen developed the representation C[i,k] in Equation 4-6,
soitis traditionally known as Cohen’s class [4]. Compared with the PWVD
in Equation 4-3 or 4-5, the Cohen’s class method is more general and
flexible. Most quadratic equations known so far, such as the STFT
spectrogram, WVD, PWVD, Choi-Williams distribution, and the
cone-shaped distribution, belong to Cohen’s class.

Choi-Williams Distribution
When the kernel function in Equation 4-6 is defined by

o -ai’/(4m?)
—¢

O[i,m] = 5

4-7)
4dtm

the yield is the Choi-Williams distribution (CWD). By adjusting the
parameter o. in Equation 4-7, you balance crossterm interference and
time-frequency resolution; as o increases, the smoothing decreases.
Figure 4-6 illustrates the CWD for the three-tone test signal where o0 = 1.
The CWD can effectively suppress the crossterm caused by two autoterms
with different time and frequency centers, such as crossterm 2 in

Figure 4-3. However, the CWD method cannot reduce crossterms that
correspond to autoterms with the same time center or the same frequency
center, such as crossterms 3 and 1, respectively, in Figure 4-3. Furthermore,
the computation speed of the CWD is very slow.
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Figure 4-6. Choi-Williams Distribution (o = 1) for the Three-Tone Test Signal

Cone-Shaped Distribution

When the kernel function in Equation 4-6 is defined by

2
om

@[i,m] =1 ¢ ¢ fori<|m| (4-8)

0 otherwise

the yield is the cone-shaped distribution. In the Signal Processing Toolset,
the constant c is set to 500. By adjusting the parameter o in Equation 4-8,
you can balance crossterm interference and time-frequency resolution; as o
increases, the smoothing decreases. Figure 4-7 illustrates the cone-shaped
distribution for the three-tone test signal where o. = 1. The cone-shaped
distribution effectively suppresses crossterms 2 and 3 from Figure 4-3, but
it cannot reduce the crossterms that correspond to autoterms with the same
frequency center, such as crossterm 1 in Figure 4-3. The cone-shaped
distribution is faster than the CWD method.

Signal Processing Toolset User Manual 4-10 ni.com



Chapter 4 Joint Time-Frequency Analysis Algorithms

ol _spectum |
Hz  cument data] gauss3 b | data length [sec][ 1.28E1 ¥l spectium

B.OE+2-

4.0E+2-

30E+2-

2.0E+2-

1.0E+2-

0.0E+0-

2.0E+0- S T

1.0E+0- D.0CE+(0 | sec
3.07E+2 | Hz

0.0E+0-

1.0E+0-

. 7E+D-

I I I I I
DOE+0  20E-2 40E2 BOEZ BOE-Z  1.0E1

Figure 4-7. Cone-Shaped Distribution (o = 1) for the Three-Tone Test Signal

Gabor Spectrogram

In addition to applying the Pseudo Wigner-Ville distribution window
method, you can apply the Gabor expansion to a signal to identify the
significance of each term to the energy of the signal at point [, k]. You can
then preserve those terms that have major contributions at point [i, k] and
remove those terms that have a negligible influence on the energy of the
signal. Because this method is a Gabor expansion-based spectrogram, the
resulting method is the Gabor spectrogram. The Gabor spectrogram is
defined by the following equation:

GSpli, k] = Z CppnCpr wWVD,, li, K]

Im—m’|+|n-n'| <D

where WVD,, ,/[i, k] denotes the cross-WVD of frequency-modulated
Gaussian functions. The order of the Gabor spectrogram, D, controls the
degree of smoothing. For D =0, GS[, k] is non-negative and similar to the
STFT spectrogram. As D moves toward infinity, the Gabor spectrogram
converges to the WVD.

A lower order Gabor spectrogram has less crossterm interference but
lower resolution. A higher order Gabor spectrogram has better resolution
but more crossterms and a longer computation time. For best results,
choose an order of three to five. The Gabor spectrogram has better
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resolution than the STFT spectrogram and much less crossterm
interference than the cone-shaped, Choi-Williams, or Wigner-Ville
distributions.

Figure 4-8 illustrates the fourth-order Gabor spectrogram for the three-tone
test signal. This Gabor spectrogram possesses high time-frequency
resolution and does not have the crossterm interference that appears in
the cone-shaped, Choi-Williams, and Wigner-Ville distributions. The
computational speed of the fourth-order Gabor spectrogram is slower than
the STFT spectrogram and WVD but faster than the CWD and
cone-shaped distribution.
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Figure 4-8. Gabor Spectrogram (Order Four) for the Three-Tone Test Signal

Adaptive Spectrogram

The adaptive spectrogram method is an adaptive representation-based
spectrogram computed by Equation 4-9.

li-i]

D-1
AS[i,n] = 2 z \Ak\zexp{— —oy[n - Gk]} 4-9)
k=0

Refer to Equation 4-2 for the adaptive representation equation.
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The adaptive spectrogram achieves the best joint time-frequency resolution
if the analyzed signal is a sum of Gaussian functions. For example,
Figure 4-9 shows that the adaptive spectrogram effectively describes the
three-tone test signal. Unfortunately, the computation speed of the adaptive
spectrogram increases exponentially with the analyzed data size.
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Figure 4-9. Adaptive Spectrogram for the Three-Tone Test Signal

Scientists at National Instruments [25] and Mallat and Zhang [16]
independently developed the adaptive representation, also known as the
matching pursuit. The adaptive methods in this toolset were implemented
with the adaptive oriented orthogonal projective decomposition algorithm.
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Joint Time-Frequency Analysis
Applications

This chapter describes the Off-line JTFA application, a comprehensive
JTFA example. With this example, you can perform rather sophisticated,
time-dependent spectrum analysis without needing to use any
programming. Because each of the JTFA algorithms has advantages and
disadvantages, select an algorithm that fits your application.

The Off-line JTFA example is designed for demonstration purposes only.
For actual applications, use the VIs included in the Signal Processing
Toolset to build your own JTFA instrument.

Opening the JTFA Example

The Off-line JTFA example resides on the SPT palette, shown in
Figure 5-1. Select Start»Programs»National Instruments»Signal
Processing Toolset»NI SPT Start-Up to open the SPT palette. On the
SPT palette, click the Off-line JTFA icon.

SPTN NI A %] B[ X

1 Off-line JTFA

Figure 5-1. SPT Palette

Refer to the Accessing Example Application Source Code section of
Chapter 1, Signal Processing Toolset Overview, for information about
accessing the source code for the Off-line JTFA example.
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Joint Time-Frequency Analysis Applications

With the Off-line JTFA example, you can test all the quadratic JTFA
algorithms included in the Signal Processing Toolset and find the one
which best fits your application. When you click the Off-line JTFA icon
on the SPT palette, the Off-line JTFA front panel, shown in Figure 5-2,
opens. The following sections describe the Off-line JTFA front panel
controls and indicators. You also can select Help»Show Context Help or
press <Ctrl-H> for information about controls and indicators.

— Off-line JTFA - bat.txt M= E3
File ‘window Help
Power :
Spectrum Spectogram Samp Freg .’;J 1.00E+3
5.0E+2 7764 :
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= R TS T T 0 00 0]
£ o i o0 o5 10
o +,
2 S JTF& Method
2 20E+2 -1.6E-4 |  Gabor
L spectrogram
1.0E42 TTEES
: ~ :
J Likear ) Freq Bing
DOE+D - i 258
15641 Time W aveform )
residue [~ T Cursor ( B Length ar
trend .;J 256 TJI 164.50
-2.8E-1 Zoom »
raw data | OE — Order
o Unda( mmn | of 2 GO
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Loading the Test Data

You can use the Off-line JTFA example to analyze either one of the data
files supplied with the Signal Processing Toolset or your own data file.
Your data file must be a one-column or one-row spreadsheet text file.

If your data file contains an x-index, use a word processor to remove the
x-index before you analyze the data file.
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Chapter 5 Joint Time-Frequency Analysis Applications

Complete the following steps to load your test data.

1. Select File»Open to open the Choose spreadsheet file to read dialog
box.

2. Navigate to the location of the data file you want to analyze.

Select the data file you want to analyze and click the Open button or
double-click the data file name.

Setting the Sampling Rate

Use the Samp Freq control on the Off-line JTFA front panel, shown in
Figure 5-2, to specify the sampling frequency. While the sampling
frequency does not affect the computation results, it does affect the Power
Spectrum display. The y-scale of the Power Spectrum display is the
frequency. For the conventional power spectrum, as shown in Figure 5-2,
the frequency ranges from DC to the Nyquist frequency, or half of the
sampling frequency.

When the power spectrum is displayed as the instantaneous spectrum, the
frequency range of the y-scale is determined by the zoom factor and the
amount of area of the Spectrogram being analyzed. Refer to Figure 5-3 and
refer to the Changing the Spectrogram Display section for more
information about displaying the instantaneous spectrum.

Detrending

Use the Trend Level control or the slider immediately below it to set the
trend level. Detrending allows you to better analyze signals that contain DC
offset or slow trend, for example, the stock index. The higher you set the
trend level, the more similar the trend of your analyzed signal is to the
original signal.

Selecting a JTFA Method

Use the JTFA Method control on the Off-line JTFA front panel, shown in
Figure 5-2, to select the algorithm you want to use. With the Off-line JTFA
example, you can choose one of the following quadratic algorithms as your
data analysis method:

*  STFT spectrogram
*  Gabor spectrogram
*  Adaptive spectrogram

*  Wigner-Ville distribution
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e Choi-Williams distribution

*  Cone-shaped distribution

If your signal processing experience is limited, start with the STFT
spectrogram because it is fast and simple. After choosing your analysis
method, click the Go button to compute the spectrogram.

The following sections provide more information about each of the JTFA
algorithms in the Signal Processing Toolset.

STFT Spectrogram

When you choose the STFT spectrogram, adjust the Analysis Window and
Length controls so that the resulting STFT spectrogram achieves the best
balance between time and frequency resolution.

You can choose one of the following window types with the Analysis
Window control:

e  Hanning (default)
e Rectangular
e Blackman

*  Hamming

Use the Length control to specify the length of the window used to
compute the STFT spectrogram. The default value for Length is 128. As
the window length increases, the frequency resolution improves, but the
time resolution becomes poorer and vice versa. Consider a long window as
narrowband and a short window as wideband. You can use the window
length that gives you the best balance between time and frequency
resolution as a reference for the Gabor spectrogram.

Use the Freq Bins control to specify the number of frequency lines in the
Spectrogram display. Increasing the value of Freq Bins increases the
amount of detail shown in the spectrogram but lengthens computation time.
The Freq Bins value must be a power of 2.

Use the Reassigned control to specify whether reassignment is performed
for the spectrogram by moving the dispersive energy to its local center of
gravity in the joint time-frequency domain. The reassignment improves the
readability of the spectrogram for some signals.

If you cannot achieve satisfactory resolution with the STFT spectrogram,
try the Gabor spectrogram or one of the other JTFA methods included with
the Off-line JTFA example.
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Gabor Spectrogram

If the time-frequency resolution of the STFT spectrogram is not
satisfactory, try the Gabor spectrogram next. The Gabor spectrogram
method requires more computation time than the STFT spectrogram but
achieves better time-frequency resolution.

When you choose the Gabor spectrogram method, you need to specify
values for the Length, Var, and Order controls. The analysis window for
the Gabor spectrogram is an optimal Gaussian window specified by length
and variance. The Length control specifies the window length, and the Var
control specifies the variance of the window.

The value you specify for the Order control determines resolution and
crossterm interference. The higher the order, the better the time-frequency
resolution becomes. As the order goes to infinity, the Gabor spectrogram
converges to the Wigner-Ville distribution. As the order increases,
crossterms become more obvious. Also, computation time is proportional
to the order selected. Set Order to a value between three and five to achieve
the best compromise between resolution and crossterm interference.

Decrease the value of the Var control to reduce Gaussian window variance.
Reducing Gaussian window variance eliminates the crossterm caused by a
pair of autoterms separated in time but deteriorates the time-frequency
resolution.

Refer to the STFT Spectrogram section for information about the Freq
Bins control.

Adaptive Spectrogram

If you can consider a signal as the sum of complex sinusoidal functions
with different Gaussian envelopes, which is a Gaussian pulse, or the sum
of complex chirp functions with different Gaussian envelopes, which is a
chirplet, use the adaptive spectrogram to achieve the best time-frequency
resolution.

Use the mode control to specify the type of the elementary function used
to decompose the signal. You can choose from the chirplet or the Gaussian
pulse elementary functions. The chirplet is a linear frequency-modulated
complex sinusoid with Gaussian envelope. Gaussian pulse is a complex
sinusoid with Gaussian envelope.

Use the # of Terms control to specify the number of chirplets or Gaussian
pulses used to approximate the analyzed signal. The higher you set the
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value of # of Terms, the more accurate the approximation becomes, and the
smaller the residual becomes. However, increasing the value for # of Terms
lengthens computation time. It is a good idea to start with a small number
of terms and increase the value of # of Terms until the Residual (%)
indicator returns a satisfactory reading. The residual is computed by the
following equation:

Z“ls[n]—a[n]l2
le[nn2

where a[n] denotes the approximation. If the approximation is equal to the
original signal s[#n], the residual goes to zero.

residual =

Refer to the STFT Spectrogram section for information about the Freq
Bins control.

Wigner-Ville Distribution

The Wigner-Ville distribution provides high time-frequency resolution at a
rapid computation rate. However, the Wigner-Ville distribution can suffer
from severe crossterm interference if the analyzed signal consists of
multiple components.

In order to lessen crossterm interference, place a checkmark in the Analytic
Signal? checkbox. When you place a checkmark in the Analytic Signal?
checkbox, the Off-line JTFA example converts the data samples into the
corresponding analytic signal. Converting the data samples into the analytic
signal reduces the cross interference due to components from negative
frequencies. However, the conversion can introduce distortion in the low
frequency portion of the time-dependent spectrum of the signal, especially
in the vicinity of DC.

Refer to the STFT Spectrogram section for information about the Freq
Bins control.

Choi-Williams Distribution

The Choi-Williams distribution offers you a reduction in crossterm
interference while preserving as many useful Wigner-Ville distribution
properties as possible. Like the Wigner-Ville distribution, placing a
checkmark in the Analytic Signal? checkbox causes the Off-line JTFA

Signal Processing Toolset User Manual 5-6 ni.com



Chapter 5 Joint Time-Frequency Analysis Applications

example to convert the data samples into the corresponding analytic signal.
Converting the data samples into the analytic signal reduces the cross
interference due to components from negative frequencies but introduces
distortion in the low frequency portion of the time-dependent spectrum.

You also can lessen crossterm interference by specifying a value for the
Alpha control. In general, the smaller the Alpha value, the less crossterm
interference you get, but the time-frequency resolution becomes poorer.
The Alpha default value is 1.0E-6.

Refer to the STFT Spectrogram section for information about the Freq
Bins control.

Cone-Shaped Distribution

The cone-shaped distribution is another time-dependent spectrum designed
to reduce crossterm interference. Like the Wigner-Ville distribution and the
Choi-Williams distribution, place a checkmark in the Analytic Signal?
checkbox to lessen crossterm interference.

Refer to the Choi-Williams Distribution section for information about the
Alpha control.

Refer to the STFT Spectrogram section for information about the Freq
Bins control.

Displaying Data
The Off-line JTFA example uses the following data displays:
*  The Power Spectrum/Instantaneous Spectrum display shows either the
classical power spectrum or the instantaneous spectrum, depending on

the settings you have chosen. Refer to the Changing the Spectrogram
Display section for more information about the Instantaneous display.

*  The Spectrogram display shows the time-dependent spectrum for the
chosen analysis method.

e The Time Waveform display shows the time waveform of the analyzed
signal.

Changing the Spectrogram Display

You can change the Spectrogram data display by moving the Linear/dB
switch and/or clicking the Cursor button. With the Linear/dB switch, you
can choose to display your data in the Spectrogram as either a linear or
decibel (dB) display.
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Clicking the Cursor button turns the cursor on and off. When the cursor
is on, as shown in Figure 5-3, the Power Spectrum display changes to
the Instantaneous Spectrum. The Instantaneous Spectrum shows the
instantaneous spectrum at the time indicated by the x-value of the cursor.

Frequency Zooming

With the cursor turned on, you can click the Zoom button to zoom in on the
Spectrogram display in the frequency scale. The frequency range displayed
equals f5 / (2 X zoom factor), where fs is the sampling frequency. The
central frequency is determined by the y-value of the cursor. The zoom
factor doubles every time you click the Zoom button. The maximum zoom
factor is limited to 16, so the smallest frequency range is f5/32.
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Figure 5-3. Instantaneous Spectrum

Mean Instantaneous Frequency

After computing the spectrogram of your test data, click the Mean Inst.
Freq. button to calculate the mean instantaneous frequency. The
Spectrogram display shows the profile of the mean instantaneous
frequency, as shown in Figure 5-4.
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Figure 5-4. Mean Instantaneous Frequency

Saving Results

When you select File»Save, you can choose any of the following options
from the pull-down menu and save your results as a text file:

¢ Detrend saves the detrended time waveform.
*  Spectrum saves the power spectrum.

*  Spectrogram saves the real spectrogram without truncating or
normalizing it.
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Super-Resolution Spectral Analysis

This section of the manual discusses model-based frequency analysis

and the model-based frequency analysis algorithms used by the Signal
Processing Toolset. Model-based frequency analysis enables you to obtain
super-resolution spectra of the signals you are studying. This section of the
manual also describes a super-resolution spectral analysis example
included with the Signal Processing Toolset.

*  Chapter 6, Introduction to Model-Based Frequency Analysis,
introduces the basic concepts of model-based frequency analysis.

e Chapter 7, Model-Based Frequency Analysis Algorithms, outlines the
theoretical background of model-based frequency analysis and
describes the relationship among the model coefficients, power
spectra, and parameters of damped sinusoids.

»  Chapter 8, Applying Super-Resolution Spectral Analysis and
Parameter Estimation, describes a comprehensive super-resolution
spectral analysis example application included with the Signal
Processing Toolset. This example is designed to help you learn about
model-based analysis.
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Introduction to Model-Based
Frequency Analysis

This chapter introduces the basic concepts of model-based frequency
analysis.

Two methods are usually employed to perform spectral analysis,
non-model-based methods, such as the fast Fourier transform (FFT)-based
methods, and model-based methods. Model-based methods need fewer
data samples and are more accurate than the FFT-based methods if the
model fits the analyzed data samples. When you employ model-based
methods, you not only obtain super-resolution power spectra with a small
data set, but you also can estimate the parameters of damped sinusoids. The
model-based methods are an important alternative to classical FFT-based
methods in many frequency analysis applications.

The Need for Model-Based Frequency Analysis

The term spectrum has been generalized for arbitrary signals and
characterizes the frequency behavior of a signal. Examples of questions
that spectral analysis can answer include whether most of the power of the
signal resides at low or high frequencies, and whether there are resonances.

Spectral analysis is used widely in such diverse fields as biomedicine,
economics, geophysics, noise and vibration, radar, sonar, speech, and other
areas in which signals of unknown or questionable origin are of interest.
By performing spectral analysis, you can often discover some important
features of signals that are not obvious in the time waveform of the signal.

Over the last 30 years, a primary tool for spectral analysis has been the FFT.
However, the frequency resolution of the FFT-based methods is bounded by
the number of data samples. The relationship of the number of samples and
frequency resolution can be quantified by Equation 6-1.

Af = sampling frequency 6-1)
i number of samples
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where Af denotes the frequency resolution. The frequency resolution
characterizes the distinguishable minimum difference between two
sinusoids. For a given sampling frequency, the more samples you have,
the higher the frequency resolution becomes.

Figure 6-1 illustrates a sum of two sinusoids.

zum of hwo zinusoidz

0 & 10 15 20 25 30 35 40 45 49

Figure 6-1. 50 Samples for a Sum of Two Sinusoids

The frequencies of the two sinusoids in Figure 6-1 are 0.11 Hz and 0.13 Hz,
respectively. To separate the two sinusoids, the frequency resolution Af has
to be less than or equal to 0.02 Hz. Assume that the sampling frequency is
1 Hz. Based on Equation 6-1, you need at least 50 samples in order to
separate the two sinusoids. Figure 6-2 uses the rectangular window and the
Hamming window to depict the FFT-based power spectra. As long as you
have enough samples, you can use either window to separate the two

sinusoids.
Rectangular Window Harnming *indow
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Figure 6-2. FFT-Based Power Spectra Based on 50 Samples

However, in many applications, the number of data samples is limited.
The limited number of samples might be the result of a genuine lack of
data, as in the seismic patterns of an erupting volcano. In other instances, it
might be necessary to impose restrictions on the sample size to ensure that
the spectral characteristics of a signal do not change over the duration of the
data record, as in speech processing. When the data record is small,
scientists often think that the frequency resolution of FFT-based power
spectra is not adequate. For example, reduce the number of data samples for
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the two sinusoids in the example above to 15. Figure 6-3 shows the
15-sample data record. The resulting FFT-based power spectra are plotted
in Figure 6-4. In this case, neither window yields a frequency resolution
high enough to resolve the two close sinusoids.

sum of bwo sinuzoids

0.0

1.3+ i I i i i i i
a 2 4 E a 10 12 14

Figure 6-3. Two Sinusoids with 15 Samples
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Figure 6-4. FFT-Based Power Spectra Based on 15 Samples

An alternative is the model-based method. By employing model-based
analysis techniques, you can obtain super-resolution spectra. Once you
assume a suitable signal model and determine its coefficients, you can
predict the missing data based on the given finite data set. When you use
the model-based method, it is as if you have an infinite number of data
samples. Thus, you can substantially improve the frequency resolution.

Figure 6-5 depicts two model-based super-resolution power spectra for the
sinusoids in Figure 6-3.
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Covariance . PCAR
-25- 20—
E0-
A0-
754
955 0 i [ [0 [ 1 B0} i 0 fl\ i [ [
0.5 04 0.2 0.a 0z 04 05 0.5 0.4 0.2 IR} 0.z 04 05

Figure 6-5. Super-Resolution Power Spectra Based on 15 Samples

Although the FFT-based methods need at least 50 samples, the
model-based super-resolution power spectra detect two sinusoids
satisfactorily with only 15 samples.

Another important application of model-based methods is the parameter
estimation of damped sinusoids. The estimated parameters include
amplitude, phase, damping factor, and frequency. You can compute the
signal frequency and phase by applying the FFT, if the number of data
samples is large enough. However, there is no indication of the signal
damping behavior. In nature, the signal amplitude often changes with time,
gradually decreasing or increasing until blowing out. The damping
behavior is an important aspect of the signal that indicates whether the
corresponding system is stable.

Figure 6-6 depicts a sum of two damped sinusoids in which the sampling
frequency is 1 Hz.

sum of bwo damped zinusoids
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1.0
0.0-

11=
0

Figure 6-6. Damped Sinusoids

Table 6-1 lists the corresponding parameters for the two damped sinusoids
whose sum is depicted in Figure 6-6. Figure 6-7 plots the resulting
FFT-based power spectra. Applying FFT-based methods provides no way
to tell the complete information about the two damped sinusoids.
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Table 6-1. Damped Sinusoids
Phase Damping Frequency
Signal Amplitude (rad) Factor (Hz)
Signal 1 1.0 0.20 -0.10 0.13
Signal 2 1.0 0.10 -0.20 0.11
Rectangular Window Harnrning Window
5 10+
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Figure 6-7. FFT-Based Power Spectra for Damped Sinusoids

Figure 6-8 illustrates the estimated result obtained by a model-based
algorithm known as the matrix pencil. Notice that a real signal produces
two imaginary, symmetrical complex sinusoids. The complex sinusoids
indicator in the lower left corner of Figure 6-8 shows that there are a total
of four complex sinusoids for the samples shown in Figure 6-6. Figure 6-8
also lists the parameters of the components with positive frequencies. Since
the amplitude of the complex sinusoids is half that of the corresponding real
sinusoids, the values in Figure 6-8 match those in Table 6-1 exactly.

Estimated Parameters

amplitude

phaze damping  frequency
|| e ][
[ 0.50|f oia|f 020 011

I b atrie Pencil vI

Figure 6-8. Parameter Estimation by Matrix Pencil Method

- comples sinuzoids
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The precision of the FFT-based methods is accurate only at frequencies that
are integer multiples of the frequency increment!:

sampling frequency

number of FFT points 6-2)

There is no such limitation for the model-based methods. Therefore, the
model-based methods are much more accurate than the FFT-based
techniques.

Aside from the super-resolution power spectra, model-based analyses are
also fundamental in many other signal processing applications. Although
the focus of this part of the manual is on frequency analysis, you easily can
tailor the model-based applications in the Signal Processing Toolset for
many other applications, including the following applications:

e Linear prediction, such as linear predict code
e Signal synthesis
e Data compression, such as speech compression

e  System identification

Applying Model-Based Methods Properly

Model-based methods can obtain super-resolution power spectra with a
limited number of data samples or estimate the parameters of damped
sinusoids. However, for best results, you need to consider the following
three factors:

* The signal has to be a certain type of time series, and the following
equation should be able to generate the signal. Equation 6-3 is known
as the recursive difference equation.

P
x[n] = —Zakx[n—k] +w[n] (6-3)
k=1
where w[n] denotes the error.

*  You need to select the order of the model correctly. Otherwise, you
might obtain an incorrect spectrum or parameter estimate.

! The number of samples in Equation 6-1 and the number of FFT points in Equation 6-2 might not be equal. For a given number
of data samples, you always are able to increase the number of FFT points simply by zero-padding. Increasing the number of
FFT points reduces the frequency increment but does not improve the ability to resolve two close sinusoids.
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*  The computation time of the super-resolution power spectra is much
longer than that of FFT, JTFA, and wavelet transform. When the
number of data samples is more than a few hundred, it is no longer
appropriate to use model-based methods because of the computation
time involved and the numerical inaccuracies that might result.

Figure 6-9 shows the plot of super-resolution power spectra for the sum of
the two sinusoids in Figure 6-3. The spectra were computed by the same
model-based methods as that in Figure 6-5. However, instead of choosing
order four, the order is artificially increased to 10. Consequently, in
addition to the four real components, several spurious peaks appear that do
not actually exist. Blindly applying model-based techniques does not lead
to a good estimation. A good estimation relies on selecting the proper
signal model as well as the model order. The rest of this chapter and
Chapter 7, Model-Based Frequency Analysis Algorithms, and Chapter 8,
Applying Super-Resolution Spectral Analysis and Parameter Estimation,
deal with this central topic.

Covariance PCAR
- 0-
20 20—
A0
40~
B0
70— [ i T [ [ 1 B0 [ i j‘l\ T [ 1
05 04 0.2 na nz 04 05 05 04 0.2 na nz 04 05

Figure 6-9. Super-Resolution Power Spectra with Order 10 for Sum of Two Sinusoids

One reason for using a few samples to perform frequency analysis is to
ensure that the spectral characteristics of a signal do not change over the
duration of the data record. This is also a primary motivation of developing
the JTFA and wavelet transform.

At this point, a natural question might be, “Which technique is the best?”
The answer is that each method has advantages and disadvantages. None is
superior to all others in every application.

Table 6-2 compares model-based methods with FFT, JTFA, and wavelets.
There is no assumption about the analyzed signal for FFT, JTFA, and
wavelet analysis, whereas the model-based methods work only for certain
types of signals. Moreover, the performance of model-based frequency
analysis is quite sensitive to noise, though there are some variations for
different algorithms. For example, of the methods shown in Figure 6-5,
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the principle component auto-regressive (PCAR) method has better noise
immunization than the covariance method.

Table 6-2. FFT, JTFA, Wavelets, and Model-Based Methods

Data | Frequency Noise
Method Signal Model | Stationary | Length | Resolution | Sensitivity Speed
FFT arbitrary yes long low moderate fast
JTFA arbitrary no long low low moderate
Wavelets arbitrary no long constant Q | low fast
Model-based not arbitrary no short high high slow

The Toolset and Model-Based Methods

The Signal Processing Toolset contains VIs and functions for several
effective model-based analysis methods. Using these VIs and functions,
you can build your own applications to perform super-resolution spectral
analysis and parameter estimation. In addition, there is an example to assist
users who are not familiar with model-based frequency analysis.

Signal Processing Toolset User Manual
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Model-Based Frequency
Analysis Algorithms

This chapter outlines the theoretical background of model-based frequency
analysis and describes the relationship among the model coefficients,
power spectra, and parameters of damped sinusoids. In most cases, the
conclusions are presented without justification. Refer to the works of
Kay [14] and Marple [18] for more detailed background information about
model-based frequency analysis.

Models, Power Spectra, and Damped Sinusoids

This section introduces the signal models used for model-based frequency
analysis and explains the relationship among the model coefficients, power
spectra, and parameters of damped sinusoids.

ARMA, MA, and AR Models

As discussed in the Applying Model-Based Methods Properly section of
Chapter 6, Introduction to Model-Based Frequency Analysis, model-based
frequency analysis is suitable only for certain types of data. In general, the
data has to be generated by exciting a linear shift-invariant causal pole-zero
filter, or rational transfer function, with white noise. In other words, the
data sample x[#n] has to fit the following model:

p q
x[n] = —Zakx[n—k]+ mew[n—m] for0<n<N (7-1)
k=1 m=0
where by = 1 and w[n] is the white noise with zero mean and variance G2.

Equation 7-1 is traditionally called the auto-regressive and moving average
(ARMA) model.
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Two special cases of Equation 7-1 exist. The first special is a;, = 0 for all k.
Consequently, the equation reduces to

q

x[n] = b,wln—m] for0<n<N (7-2)
0

which is called a moving average (MA) model.

The second special case is b,,, = 0 for m > 0. In this case, the ARMA model
in Equation 7-1 becomes

P
x[n] = —Zakx[n—k]+w[n] for0<n<N (7-3)
k=1
which is called an auto-regressive (AR) model. According to Equation 7-3,

you can use currently known data samples to predict the future data with
error w[n]. Let the predicted data be x[n], then

p
x[n] = —Zakx[n—k] for p<n<N (7-4)
k=1
or
x[p-11 x[p-2] ...  x[0] a x[p]
xlpl xlp-11 ...  x[1] ||a, X[p+1]
= - . (7-5)
X[N=2] x[N=1] ... xIN-p +11|a, x[N-1]

which is named a forward prediction. Alternatively, there is a backward
prediction, which is explained later in this chapter.

The AR, MA, and ARMA models cover a wide range of signals in nature.
In most applications, you can confidently apply model-based methods for
frequency analysis. Usually, you can choose the appropriate model based
on physical modeling. In practice, you might not know which of the given
models is best for the problem at hand. An important result from the Wold
decomposition [38] and Kolmogorov theorems [15] is that any AR or
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ARMA process can be represented by an MA process of possibly infinite
order. Likewise, any MA or ARMA process can be represented by an

AR process of possibly infinite order [15] [38]. If you choose the wrong
model among the three, you can still obtain a reasonable approximation by
using a high enough model order.

The next task is determining the model order. As shown in the Applying
Model-Based Methods Properly section of Chapter 6, Introduction to
Model-Based Frequency Analysis, the wrong model order can lead to an
incorrect result. To select the right order, you need some knowledge about
the signal. Each complex sinusoid component counts as one order. Each
real sinusoid component generates two complex sinusoids that correspond
to two orders. If you are not sure what order you should use, you can use
the minimum description length algorithm, introduced in the Minimum
Description Length section, to estimate the order.

Because AR-based algorithms are better understood and more popular than
their counterparts, the next two sections limit discussion to AR-based
methods.

Model Coefficients and Power Spectra

Taking the z-transform of Equation 7-1 yields a rational transfer function:

q
1+ Z b,z "

_ M — m=1 — _
X = {5 = = = H© (7-6)
1+ Zakz_k
k=1
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It can be proved that the power spectrum P(f) is P(z) evaluated along the
unit circle, where

_ w(1/00g2 = BRBHL/ZF) ]
P(z) = H(z)H*(1/z*)o A(z)A*(l/z*)G (7-7)

where * denotes the complex conjugate. For the AR model, the power
spectrum is

2
P(f) = o (7-8)

p 2
—j2nfk
1+ Zakej /
k=1

which implies that once you compute the coefficients a; of the AR model,
you can obtain the power spectrum by taking the reciprocal of the fast
Fourier transform (FFT) of a,.

If A(z) is the z-transform of the coefficients a; as shown in Equation 7-6, it
can be shown that

p
AR(1/7%) = 1+ Z(ak)*zk
k=1

whereas A(z)X(z) forms the forward prediction, A *(1/z*)X(z) constitutes a
backward prediction:

p
Xnl = —Z(ak)*x[n+k] for 0<n<N (7-9)

k=1

which uses future data to predict the data that was sampled at p steps before.
The formula of the backward prediction in Equation 7-9 can be written as

x[1] x[21 ... x[p] ||@DF X001
x[2] x[3] ... x[p+1]||(ay)* x[1]

= - . (7-10)
XIN=pl xIN=p+11 ... xIN=11]|(q )+ x[N-p-1]
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The forward and backward predictions in Equation 7-8 are
interchangeable. For example, let

p P
A(z) = 1+ Zaszk or A(z) = 1+ Z(ak)*zk
k=0 k=0

The resulting P(z) in Equation 7-7 is the same.

AR Model and Damped Sinusoids

Damped sinusoids are common in applications such as noise and vibration.
Many natural phenomena can be formulated as a linear combination of
damped sinusoids:

p P
x[n] = ZCkexp{(ock+j2nfk)n} = ch(zk)" for0<n<N
k=1 k=1

(7-11)

where the parameter o, indicates the damping factor and C; denotes the
complex amplitudes. Equation 7-11 also can be written in matrix form as

(Zl)o (22)0 (Zp)o _Cl_ x[0]
@) @' . @ |G x[1]

= . (7-12)
-(ZI)N—l (ZZ)N—l (ZP)N—l_ _Cp_ x[N-1]

where the matrix of the time-indexed z elements has a Vandermonde
structure.

© National Instruments Corporation 7-5 Signal Processing Toolset User Manual



Chapter 7 Model-Based Frequency Analysis Algorithms

At first glance, Equation 7-12 does not seem to belong to any of the models
described by Equations 7-1, 7-2, and 7-3. However, Equation 7-12 is
closely related to the AR model in Equation 7-3'. In 1795, Baron de Prony
discovered that z; in Equation 7-12 actually are roots of the polynomial

P P

Az) = 1+ zak{k = H(l—zkz*) (7-13)
k=1 k=1

where g, are the coefficients of the regular AR model in Equation 7-3.

Consequently, the procedure for finding the damped sinusoids parameters

is to first compute the AR coefficients a;. Then, solve the polynomial in

Equation 7-13 to determine z,. Finally, the solution of the linear system in
Equation 7-12 gives the complex amplitudes C;.

Algorithms for Super-Resolution Spectral Analysis
and Parameter Estimation

This section briefly introduces the algorithms included on the Easy Level
SRSA and Advanced SRSA palettes of the Signal Processing Toolset. The
covariance and PCAR methods are used to compute super-resolution
power spectra. The matrix pencil and Prony’s methods are mainly used for
parameter estimation. The minimum description length algorithm is used to
estimate the number of complex sinusoids.

Covariance Method

Assume that the future data is estimated by the forward prediction in
Equations 7-4 and 7-5. The covariance method computes the coefficients
ay, such that the error between x[n] and x[n] is minimized:

N-1
minakz |x[n]—)Ac[n]|2

n=p

! Prony developed this method 13 years before the Fourier transform was introduced.
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In Equation 7-5, the optimal coefficients g are the solution of the linear

system of
x[p-1] x[p-2] ... x[0] a, x[p]
x[pl x[p-117 ... x[1] a, x[p+1]
X[N-2] x[N-1] ... x[N-p + 1] 4, x[N-1]

The covariance method is not difficult, but it is sensitive to noise.

Principle Component Auto-Regressive (PCAR) Method

The covariance method only minimizes the error between x[n] and x[n]
for p < n < N (thatis, N —p points), even though there are N samples of x[n].
The PCAR method formulates the linear system as

Xla = _| ¥ (7-14)
Xy Xb

where a denotes the data vector

T
-
a = [al ay ... ap:|

xr and x,, denote the right side vectors of the forward prediction in
Equation 7-5 and the backward prediction in Equation 7-10. You also can
write this relationship as

be T
H = [x[p] x[p+ 11 ... x[N=1] x[0] x[1] ... x[N=p—1]]

Xb
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Similarly, the matrices Xf and Xb are the left side matrices of the forward
prediction in Equation 7-5 and the backward prediction in Equation 7-10.
You can write this relationship as

x[p-11 xlp-21 .. x[0]
x[p] x[p-11 ... x[1]

Xe| _ |x[N-2] x[N-1] ... x[N-p+1]
x[1] x[2] x[p]
x[2] x[3] .. x[p+1]

X[N-p]l x[N-p+1] ... x[N-1] |

Consequently, the linear system in Equation 7-14 uses forward and
backward prediction information. In this manner, you obtain extra data
points and average more errors.

Moreover, you solve for the coefficients by
L
4= z %ﬁ,-ﬁ,-TXT?c (7-15)

where

X= Xy and =Y
X, Xb

A; denote the L largest eigenvalues of the matrix X. ; are L corresponding
eigenvectors. The parameter L represents the number of complex sinusoids.
Because you use only L principle components in Equation 7-15, the results
obtained by PCAR are much less sensitive to noise than results obtained by
the covariance method.
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Prony’s Method

Prony’s method estimates the parameters of damped sinusoids. The
following steps summarize Prony’s method.

1. Apply the covariance method to compute the AR coefficients a;.

2. Find the complex roots z; of the polynomial in Equation 7-13. The
phase of z; indicates the frequency, and the amplitude is the damping
factor.

3. Insertz;into Equation 7-12 to solve Cy. The amplitude and phase of the
sinusoid component z; are equal to the amplitude and phase of C,
respectively.

Matrix Pencil Method

The matrix pencil method is a modified Prony’s method. It is faster and less
sensitive to noise than Prony’s method. However, the derivation is more
involved. Refer to the work of Hua and Sarkar [10] for more information
about the matrix pencil method.

Minimum Description Length

The minimum description length algorithm determines the number of
sinusoids n by the following equation.

min, {NInc" + 3nInN}

where 62 is an estimation of the noise variance and N is the number of
data samples. The optimal value n can be used as the AR order p for the
covariance method or the number of complex sinusoids L for the PCAR
and matrix pencil methods.

© National Instruments Corporation 7-9 Signal Processing Toolset User Manual



Applying Super-Resolution
Spectral Analysis and
Parameter Estimation

This chapter describes a comprehensive example based on the
Super-Resolution Spectral Analysis (SRSA) VIs in the Signal Processing
Toolset. The example is designed to help you learn about model-based
analysis. With this example, you can try different algorithms for the data
samples without needing to use any programming.

Opening the SRSA Example

The SRSA example resides on the SPT palette, shown in Figure 8-1. Select
Start»Programs»National Instruments»Signal Processing Toolset»
NI SPT Start-Up to open the SPT palette. On the SPT palette, click the
Super-Resolution Spectral Analysis icon. When you click the icon, the
Super-Resolution Spectral Analysis example front panel, shown in

Figure 8-2, opens.

sPT N A, [ | % | X

1 Super-Resolution Spectral Analysis

Figure 8-1. SPT Palette

Refer to the Accessing Example Application Source Code section of
Chapter 1, Signal Processing Toolset Overview, for information about
accessing the source code for the Super-Resolution Spectral Analysis
example.
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Performing Super-Resolution Spectral Analysis

Complete the following steps to perform super-resolution spectral analysis
using the SRSA example.

A e

Load the test data.

Select the window type for the FFT-based spectrum.
Select the super-resolution spectrum method.
Select the damped sinusoid estimation method.

Set the number of complex sinusoids.

Set the sampling frequency with the Sampling Rate (Hz) control.

The following sections describe the above steps and the SRSA example
front panel controls and indicators. You also can select Help»Show
Context Help or press <Ctrl-H> for more information about controls and
indicators.

File ‘Windows Help

= Super-Resolution Spectral Analysis

= 3

Power 5pectrum

FFT Window  SRSA Method
’._—/;l Hamming .’—)l FCAR W ethod
.’—)l M atriz: Pencil

Signal - —todel P
\Waveform Sampling Riate (Hz] o 1.06+3  SNAIDB] |6e 77
3.0E+0
20E+0 g [+ Autamatically E stimating
g 1.0E+0
= I awirum AR Order
= 0.0E+0 o
.—)l 10
1.0E+0
2.0E+0 i : # of Found Complex Sinusoids
L 4
Samples
—Power Spectrum E stimation —P ters E stimation

% ;
. Estimated Parameters
= . .
=¥ amplitude | frequency| phase | damping ﬁ
= 0.50 130,00 | 0.00 0.00
: 0.50 110,00 | 0.00 0.00
00 800 100.0 1500 2000 250.0 300.0 350.0 4000 450.0 4935
Frequency [Hz]
Model Based w2 (487 8
- 8| B o o
FFT Based v[5785 | & | J_Y|\' vv* _QJ
Figure 8-2. Super-Resolution Spectral Analysis Front Panel
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Loading the Test Data

You can analyze either synthetic data supplied with the example or your
own data text file. If you choose to use your own text file, the file must be
a one-column or one-row spreadsheet text file. The synthetic data simulates
two damped sinusoids plus Gaussian noise. If you are a first-time user, start
with the synthetic data, which gives you a better idea of how to properly
apply the model-based analysis.

Synthetic Data

To use the synthetic data, select File»Load»Signal Generator. When you
select Signal Generator, the Synthetic Data front panel, shown in
Figure 8-3, opens. The Synthetic Data front panel generates data samples
containing two damped sinusoids corrupted with Gaussian white noise.

— Synthetic Data E3

© National Instruments Corporation

Murnber of
: Samples
|50 Gluit l
Signal 1 Signal 2
phase phase
oo oo
damping damping
oo oo
frequency frequency
ot Hoaa
Gauzsian White Noize ;J]W
v
0.0E+0 25E-3 5.0E-3

Figure 8-3. Synthetic Data Front Panel
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The damped sinusoid has the following form:

s[n] = Ae=an cos(2mfn + 6)
where A is the real-valued amplitude
a is the real-valued damping factor
f1s the normalized frequency
0 is the phase

Use the Number of Samples control to specify the size of the data set.
The SRSA example relies heavily on matrix computation, which requires
more computer resources. National Instruments recommends that you limit
the value of Number of Samples to less than a few hundred because of
computing time and memory space considerations. The default value of
Number of Samples is 50. Table 8-1 lists the default sinusoid parameters.

Table 8-1. Default Sinusoid Parameters

Damping
Sinusoid Amplitude Phase Factor Frequency
sinusoid 1 1.0 0.0 0.0 0.11 Hz
sinusoid 2 1.0 0.0 0.0 0.13Hz

When Number of Samples is set at 50, both the FFT-based and
model-based methods separate two different frequencies well. If you
reduce Number of Samples to 25, only the model-based spectra are able
to distinguish between the two frequencies.

Use the Gaussian White Noise slide control to adjust the intensity of

the additive Gaussian white noise. As mentioned in Chapter 6, Introduction
to Model-Based Frequency Analysis, the results of model-based analysis
are sensitive to the intensity and type of noise. The performance of
model-based analysis deteriorates substantially as the intensity of noise
increases or the noise differs from Gaussian white noise.

Use the phase, damping, and frequency controls to see how the estimation
results change.

Click the Quit button to close the Synthetic Data front panel.
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Data Stored as Text Files

To use your own data files, select File»Load»Data File and navigate to
the data file you want to analyze. The data file must be a one-column or
one-row spreadsheet text file.

Setting the Sampling Frequency

Use the Sampling Rate (Hz) control, located above the Waveform graph
on the Super-Resolution Spectral Analysis front panel in Figure 8-2,

to specify the sampling frequency of the test data. The default value

is 1.0E+3.

Setting the Number of Complex Sinusoids

Correctly specifying the number of complex sinusoids contained in the
test data is one of the most important factors in effectively applying
model-based analysis. Usually, each complex sinusoid counts as one order,
and each real-valued sinusoid counts as two orders. You can have the
SRSA example automatically count the number of complex sinusoids, or
you can specify the number yourself. If the number of complex sinusoids
contained in the test data is unknown, use the automatic method.

Automatic

Place a checkmark in the Automatically Estimating checkbox in the
Model Parameters section on the Super-Resolution Spectral Analysis
front panel, shown in Figure 8-2, to count the number of complex sinusoids
automatically. The SRSA example uses the maximum description length
algorithm to automatically estimate the number of complex sinusoids for
the test data. # of Found Complex Sinusoids displays the result of this
algorithm. To use the maximum description length algorithm, you need to
define the upper boundary of the AR order. Use the Maximum AR Order
control to specify the upper boundary. As the value of Maximum AR
Order increases, your results become more precise. However, computation
time also increases as Maximum AR Order increases. The value of
Maximum AR Order should be two to three times larger than the real
order but cannot be larger than two-thirds of the number of samples. Refer
to Chapter 7, Model-Based Frequency Analysis Algorithms, for more
information about the maximum description length algorithm.
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Remove the checkmark from the Automatically Estimating checkbox in
the Model Parameters section to specify the number of complex sinusoids
yourself. When you select to manually specify the number of complex
sinusoids, the # of Complex Sinusoids control replaces the Maximum AR
Order control. Use the # of Complex Sinusoids control to specify the
number of complex sinusoids contained in the test data. For a real-valued
signal, if DC is presented, # of Complex Sinusoids should be an odd
number. In all other cases, # of Complex Sinusoids should be an even
number.

Selecting the Window Type

Use the FFT Window control above the Power Spectrum graph on the
Super-Resolution Spectral Analysis front panel, shown in Figure 8-2, to
select the window type used to compute the FFT spectrum. You can choose
from the following window types:

e Blackman
e Hamming (default)
e Hanning

e Rectangular

Use the FFT-based spectrum for comparison with the model-based
spectrum in the same display.

Selecting the Super-Resolution Spectrum Method

Use the SRSA Method control above the Power Spectrum graph on the
Super-Resolution Spectral Analysis front panel, shown in Figure 8-2, to
select the super-resolution spectrum method. You can choose either the
covariance method or the principle component auto-regressive (PCAR)
method (default).

The PCAR method is less sensitive to noise than the covariance method, but
the PCAR method requires more computing time and memory space.

Selecting the Damped Sinusoid Estimation Method

Use the Method control in the Parameters Estimation section on the
Super-Resolution Spectral Analysis front panel, shown in Figure 8-2, to
specify the method used to estimate the parameters associated with damped
sinusoids. You can choose either the matrix pencil method (default) or
Prony’s method. The matrix pencil method is more accurate and efficient
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than Prony’s method. Refer to Chapter 7, Model-Based Frequency
Analysis Algorithms, for more information about the matrix pencil method
and Prony’s method.

The indicators in the Parameters Estimation section of the front panel,
shown in Figure 8-2, return values for amplitude, frequency, phase, and
damping for each positive-frequency sinusoid.
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Part IV

Wavelet Analysis

This section of the manual discusses wavelet analysis and filter bank
design.

e Chapter 9, The Fundamentals of Wavelet Analysis, describes the
history of wavelet analysis, compares Fourier transform and wavelet
analysis, and describes some applications of wavelet analysis.

e Chapter 10, Wavelet Analysis by Discrete Filter Banks, describes the
design of two-channel perfect reconstruction filter banks, defines the
types of filter banks used with wavelet analysis, and discussed wavelet
packets.

*  Chapter 11, Wavelet Analysis Applications, describes the 1D and 2D
Wavelet Transform and Wavelet Packet examples and how to design a
wavelet and filter bank.
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The Fundamentals of
Wavelet Analysis

Although Alfred Haar first mentioned the term wavelet in a 1909 thesis [9],
wavelet analysis received little attention before the late 1970s. In the period
between the 1970s and the present, scientists have carefully studied
wavelet analysis and successfully applied it in many areas. Some people
think current wavelet analysis is just the recasting and unifying of existing
theories and techniques. However, there exists a wider range of potential
applications for wavelet analysis than anyone anticipated.

This chapter describes the history of wavelet analysis, compares Fourier
transform to wavelet analysis, and describes some applications of wavelet
analysis.

Conventional Fourier Transform

The development of wavelet analysis originally was motivated by the
desire to overcome the drawbacks of traditional Fourier analysis and
short-time Fourier transform (STFT) processes. Fourier transform
characterizes the frequency behaviors of a signal but not the frequency
changes over time. STFT, or windowed Fourier transform, simultaneously
characterizes a signal in time and frequency. After you select a window
type, the signal time and frequency resolutions remain fixed, which can
cause problems. However, signals encountered in nature always have a
long time period at low frequency and a short time period at high
frequency. This suggests that the window should have high time resolution
at high frequency.
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To understand the fundamentals of wavelet analysis, start with an artificial
example. Figure 9-1 shows a signal s(f) that consists of two truncated sine
waveforms.

s(t)

0.0 1.0 \/

Figure 9-1. Sum of Two Truncated Sine Waveforms

The first waveform in Figure 9-1 spans O to 1 second. The second
waveform spans 1 to 1.5 seconds. In other words, the frequency of s(¢) is
IHzforO<t<land2Hzfor1<tr<15.

When describing frequency behavior, you traditionally compare s(f) with
a group of harmonically-related complex sinusoidal functions, such as
exp{j2mkt/T}. Here, the term harmonically-related complex sinusoidal
functions refers to the sets of periodic sinusoidal functions with
fundamental frequencies that are all multiples of a single positive
frequency 2n/T.

You accomplish the comparison process with the following correlation,
or inner product operation.

a, = js(t)ek*(t)dz - J's(z) exp{—j%‘t}m

T T

where a; is the Fourier coefficient and * denotes a complex conjugate.

The magnitude of g, indicates the degree of similarity between the

signal s(#) and the elementary function exp{ j2mk?/T}. If the magnitude

of a, is large, it indicates a high degree of correlation between s(7) and
exp{j2mkt/T}. If the magnitude of a; is almost 0, it indicates a low degree
of correlation between s(f) and exp{j2rnkt/T}. Therefore, you can consider
ay to be the measure of similarity between the signal s(#) and each complex
sinusoidal function exp{j2nkt/T}. Because exp{j2nkt/T} represents a
distinct frequency 21k /7, a frequency tick mark, the Fourier coefficient a;
indicates the amount of signal present at the frequency 2k /T.
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In Figure 9-1, s(¢) consists of two truncated sine waveforms. The inner
product of such truncated signals and pure sine waveforms, which extends
from minus infinity to plus infinity, never vanishes. In other words, a; is not
zero for all k. However, the dominant g, with the largest magnitude,
corresponds to 1 Hz and 2 Hz elementary functions. This indicates that the
primary components of s(f) are 1 Hz and 2 Hz signals, but it is unclear,
based on g alone, when the 1 Hz or the 2 Hz components exist in time.

You can use many ways of building the frequency tick marks to measure
the frequency behavior of a signal. With complex sinusoidal functions, not
only can you analyze signals but you also can reconstruct the original signal
with the Fourier coefficient ;. For example, you can write s(f) in terms of
the sum of complex sinusoidal functions according to Equation 9-1,
traditionally known as Fourier expansion.

s(t) = z age,(t) = z akexp{jz—;l‘k} 9-1)
k=—oo k=—oco

where q, is the Fourier coefficient and 21k /T is the frequency tick mark.

In Equation 9-1, because a is not zero for all k, you must use an infinite
number of complex sinusoidal functions to restore s(¢) in Figure 9-1.

Innovative Wavelet Analysis

Looking at s(#) more closely, you find that to determine the frequency
contents of s(¢), you need information regarding only one cycle, such as
the time span of one cycle. With this information, you can compute the
frequency with the following equation.

1

time span of one cycle

frequency =

According to this equation, as the frequency becomes higher, the time span
becomes shorter. Therefore, instead of using infinitely-long complex
sinusoidal functions, you can use only one cycle of a sinusoidal waveform,
or a wavelet, to measure s(¢). The wavelet () used to measure s(f) is one
cycle of a sinusoidal waveform, as shown in Figure 9-2.
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Figure 9-2. Wavelet

Because y(#) spans 1 second, you can consider the frequency of y(#) to be
1 Hz. As in the case of Fourier analysis, you can achieve the comparison
process with the following correlation, or inner product, operation.

W, = J s(OV,, ,(Ddt 9-2)

T

where W, ,, denotes the wavelet transform coefficients and w,, ,(¢) are the
elementary functions of the wavelet transform. However, the structure of
the elementary functions W, ,(¢) differs from the Fourier transformations,
which are the dilated and shifted versions of (7). You can compute the
elementary functions of the wavelet transform, ,, ,(¢), with Equation 9-3.

m/2

v, (1) = 2" (2" (1= n27")) (9-3)

where m and n are integers.

When you increase n, you shift ,, ,(¢) forward in time. When you increase
m, you compress the time duration, which increases the center frequency
and frequency bandwidth of () [27]. Consider the parameter m as the
scale factor and 2" as the sampling step. Therefore, as the time duration
becomes shorter, the time sampling step becomes smaller, and vice versa.
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If you assume that the center frequency of y(f) is ®, the center frequency
of \,,, (1) is 2™wy. Consequently, you can systematically adjust the scale
factor m to achieve different frequency tick marks to measure the signal
frequency contents. In other words, as the scale factor m increases, the
center frequency and bandwidth of the wavelet increases 2.

Figure 9-3 depicts the wavelet transform procedure.

0 1 2
()
’ \\ 2
/ ‘\\ . N
v oo 1| o0]|T
\\ ; R
W(r-n) "
\/2 —p
1. 1 o |T
0 " i
‘/an
s(t)
\2
0.5 1.5 n !
O N v ]
1 . .
s(1) = y(r) + ﬁ\y(z(z— i)) Two Basis Functions

Figure 9-3. Wavelet Analysis

For Figure 9-3, first let m = n = 0 by aligning y(¢) and s(¢) at t = 0. As in
Equation 9-3, compare y(#) with s(¢) for 0 <t < 1. The comparison shows
that Wy o = 1. When you shift y(?) to the next second, n = 1, and compare it
with s(7) for 1 <7< 2, you see that W, ; = 0.

Compress y(f) into 0 seconds to 0.5 seconds, m = 1, and repeat the previous
operations with the time-shift step 0.5. You obtain the following results,
which are also displayed in the upper right corner of Figure 9-3:
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You can continue to compress Y(#) by increasing the scale factor m and
reducing the time-shift step 27" to test s(f). This procedure is called wavelet
transform. y(?) is called the mother wavelet, because the different wavelets
used to measure s(¢) are the dilated and shifted versions of this wavelet.
The results of each comparison, W,, ,,, are named wavelet coefficients.
The index m and n are the scale and time indicators, respectively, which
describe the signal behavior in the joint time-scale domain. As shown in
Figure 9-5, you can convert the scale into frequency. Hence, you also can
consider W, ,, to be the signal representation in the joint time and frequency
domain. In the example in Figure 9-3, when you check the wavelet
coefficients, you find out that for 0 <7 < 1, the frequency of s(¢) is 1 Hz,
and for 1 <7< 1.5, the frequency of s(¢) is 2 Hz.

Unlike Fourier analysis, wavelet transform not only indicates what
frequencies the signal s(f) contains but also indicates when these
frequencies occur. Moreover, the wavelet coefficients W,, ,, of a real-valued
signal s(¢) are always real as long as you choose real-valued y(#). Compared
to Fourier expansion, you usually can use fewer wavelet functions to
represent the signal s(¢). In the example in Figure 9-3, s(¢) can be
completely represented by two terms, whereas an infinite number of
complex sinusoidal functions would be needed in the case of Fourier
expansion.

Wavelet Analysis Versus Fourier Analysis

You can apply short-time Fourier transform (STFT) to characterize a signal
simultaneously in both the time and frequency domains. However, you also
can use wavelet analysis to perform the same operation because of its
similarity to STFT. You compute both the STFT and the wavelet transform
by the correlation, or inner product operation, but the main difference lies
in how you build the elementary functions. Figure 9-6 shows a comparison
of the transform processes.

Figure 9-4 illustrates the sampling grid for the STFT. For STFT,

the elementary functions used to test the signal are time-shifted,
frequency-modulated single window functions, all with some envelope.
Because this modulation does not change the time or frequency resolutions,
the time and frequency resolutions of the elementary functions employed
in STFT are constant [27].
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Figure 9-4. Short-Time Fourier Transform Sampling Grid

For wavelet transform, increasing the scale parameter m reduces the width
of the wavelets. The time resolution of the wavelets increases, and the
frequency resolution decreases as m becomes larger. This shows that
wavelet analysis has good time resolution at high frequencies and good
frequency resolution at low frequencies.

Figure 9-5 illustrates the sampling grid for wavelet transform. Suppose
that the center frequency and bandwidth of the mother wavelet y(¥) are o,
and A, respectively. For y(2"f), the center frequency is 2", and the
bandwidth is 2"A . Although the time and frequency resolutions change
at different scales m, the ratio between the bandwidth and the center
frequency remains constant. Therefore, wavelet analysis is also called
constant Q analysis, where Q = center frequency/bandwidth.
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Figure 9-5. Wavelet Transform Sampling Grid

Wavelet transform is closely related to both conventional Fourier transform

and short-time Fourier transform. As shown in Figure 9-6, all these

transform processes employ the same mathematical tool, the correlation
operation, or inner product, to compare the signal s(¢) to the elementary

function b, (#). The difference lies in the structure of the elementary

functions {ey(7)}. In some cases, wavelet analysis is more natural because
the signals always have a long time cycle at low frequency and a short time
cycle at high frequency.
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inner product J.s(t)ea* (t)dt

Fourier Transform

Windowed FT
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Wavelet Transform

Figure 9-6. Comparison of Transform Processes

Applications of Wavelet Analysis

You can use wavelet analysis in a variety of applications, including
detecting the discontinuity of a signal, looking at a signal from different
scales, removing the trend of a signal, suppressing noise, and compressing
data.

Discontinuity Detection

Wavelet analysis detects signal discontinuity, such as jumps, spikes, and
other non-smooth features. Ridding signals of noise is often much easier
to identify in the wavelet domain than in the original domain

For example, the top plot of Figure 9-7 illustrates a signal s(k) made up of
two exponential functions. The turning point, or the discontinuity, of the
first derivative is at k = 500. The remaining plots are wavelet coefficients
with different scale factors m. As the scale factor increases, you can
pinpoint the location of the discontinuity.
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Discontinuity
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Figure 9-7. Detection of Discontinuity

Using wavelet analysis to detect the discontinuity, or break point, of a
signal has helped to successfully repair scratches on old phonograph
records. The procedure works by taking the wavelet transform on the
signal, smoothing unwanted spikes, and inverting the transform to
reconstruct the original signal minus the noise. In 1889, an agent of Thomas
Edison used a wax cylinder to record Johannes Brahms performing his
Hungarian Dance No. 1 in G minor. The recording was so poor that it was
hard to discern the melody. By using wavelet transform, researchers
improved the sound quality enough to distinguish the melody.

Multiscale Analysis

Multiscale analysis involves looking at a signal from different scales.
Wavelet transform-based multiscale analysis helps you better understand
the signal and provides a useful tool for selectively discarding undesired
components, such as noise and trend, that corrupt the original signal.

Figure 9-8 illustrates a multiscale analysis of a Standard & Poor’s (S&P)
500 stock index during the years 1947 through 1993.
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Figure 9-8. Multiscale Analysis

In Figure 9-8, the top plot displays a monthly S&P 500 index, and the
bottom plot describes the long-term trend of the stock movement. The
remaining two plots display the short-term fluctuation of the stock, at
different levels, during this time. To better characterize the fluctuation that
reflects the short-term behavior of the stock, you must remove the trend.
To do this, first adjust the wavelet decomposition level until you obtain a
desired trend. Then, set the corresponding wavelet coefficients to zero and
reconstruct the original samples minus the trend.

The trend of a signal is often one of the least interesting aspects of the
signal. Also, because the trend attaches to a strong DC component in
the frequency spectrum, it blocks many other important signal features.
Detrending involves removing the trend from a signal. How to remove
the trend is one of the most important issues in the application of joint
time-frequency analysis.

Traditional detrending techniques usually use lowpass filtering to
remove the trend, which blurs sharp features in the underlying signal.
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Denoise

Wavelet-based detrending is somewhat superior to this process because
it preserves the important features of the original signal.

Figures 9-8 and 9-9 illustrate the same S&P 500 stock index information,
but Figure 9-9 shows it as a joint time-frequency analysis.

SP500.dat

V\

N— Long-Term Trend

Dietrended

N— Residue

Frequency

f— Four-Year Cycle

Figure 9-9. Detrend

In Figure 9-9, the top plot illustrates the S&P 500 stock index and its
corresponding long-term trend, smooth curve. The center plot displays the
residue between the original data and the trend, reflecting the short-term
fluctuation. The bottom plot displays the joint time and frequency behavior
of the residue. The bottom plot shows that over the past 50 years, a
four-year cycle dominates the S&P 500 index, which agrees with most
economists’ assertions.

Unlike conventional Fourier transform, which uses only one basis function,
wavelet transform provides an infinite number of mother wavelets to select.
Consequently, you can select the wavelets that best match the signal. Once
the wavelets match the signal, you can use a few wavelets as a basis from
which to approximate the signal and achieve denoise.
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Figure 9-10 illustrates denoise, one of the most successful applications of
wavelet analysis. This application works by first taking the wavelet
transform of the signal, setting the coefficients below a certain threshold to
zero, and finally, inverting the transform to reconstruct the original signal.
If the threshold is set properly, the resulting signal has less noise
interference. Refer to Donoho’s work for more information about wavelet
transform-based denoising [8].

Original Image Reconstruction

Figure 9-10. Denoise

Although Figure 9-10 uses only 25% of the original data, the reconstruction
preserves all important features contained in the original image. The left
image is transformed into the wavelet basis with 75% of the wavelet
components, those of the smallest magnitude, set to zero. The right image
is reconstructed from the remaining 25% of the wavelet components.

Performance Issues

Although wavelet analysis possesses many attractive features, its
numerical implementation is not as straightforward as that of its
counterparts, such as conventional Fourier transform and STFT.
The difficulty arises from the following two aspects:

* In order to reconstruct the original signal, the selection of the mother
wavelet y(#) is not arbitrary. Although any function can be used in
Equation 9-2, you sometimes cannot restore the original signal based
on the resulting wavelet coefficients W, ,,. W(#) is a valid, or qualified,
wavelet only if you can reconstruct the original signal from its
corresponding wavelet coefficients. The selection of the qualified
wavelet is subject to certain restrictions. On the other hand, it is not
unique. Unlike the case of conventional Fourier transform, in which
the basis functions must be complex sinusoidal functions, you can
select from an infinite number of mother wavelet functions. Therefore,
the biggest issue of applying wavelet analysis is how to choose a
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desired mother wavelet y(¢). It is generally agreed that the success of
the wavelet transform application depends on a proper wavelet
function selection.

e Because the scale factor m could go from negative infinity to positive
infinity, it is impossible to make the time index of the wavelet function,
2M(t — n2-™), an integer number simply by digitizing ¢ as iA,, where A,
denotes the time sampling interval. This problem prohibits using
digital computers to evaluate wavelet transform.

Fortunately, researchers discovered a relationship between wavelet
transform and the perfect reconstruction filter bank, a type of digital filter
bank. You can implement wavelet transform with specific types of digital
filter banks known as two-channel perfect reconstruction filter banks.
Chapter 10, Wavelet Analysis by Discrete Filter Banks, describes the basics
of two-channel perfect reconstruction filter banks and the types of digital
filter banks used with wavelet analysis.
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This chapter describes the design of two-channel perfect reconstruction
filter banks, defines the types of filter banks used with wavelet analysis,
and discusses wavelet packets.

Two-Channel Perfect Reconstruction Filter Banks

Two-channel perfect reconstruction (PR) filter banks have been recognized
as useful in signal processing for a long time, particularly after researchers
discovered that two-channel PR filter banks are closely related to wavelet
transform. Now, two-channel PR filter banks are a common technique for
computing wavelet transform.

Figure 10-1 illustrates a typical two-channel filter bank system. The signal
X(z) is first filtered by a filter bank constituted by Gy(z) and G(2).

Processing

Figure 10-1. Two-Channel Filter Bank

@ Note For a finite impulse response (FIR) digital filter g[n], the z-transform is defined as

N N
G(z) = zg[n][n = GE'®) = G(w) = Zg[n]e’j‘”"
n=0 n=0
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where N denotes the filter order. Consequently, the filter length is equal to N + 1. Thus,
o =0 is equivalent to z = 1 and ® = w is equivalent to z = —1. That is, G(0) and G(p) in
the frequency domain correspond to G(1) and G(-1) in the z-domain.

The outputs of Gy(z) and G,(z) are downsampled by two to obtain Y((z) and
Y1(2). After some processing, the modified signals are upsampled and
filtered by another filter bank constituted by Hy(z) and H,(z). If no
processing takes place between the two filter banks, Yy(z) and Y;(z) are not
altered. The sum of outputs of Hy(z) and H,(z) is identical to the original
signal X(z), except for the time delay. Such a system is commonly referred
to as a two-channel PR filter bank. Gy(z) and G,(z) form an analysis filter
bank, whereas Hy(z) and H;(z) form a synthesis filter bank.

@ Note G(z) and H(z) can be interchanged. For instance, you can use Hy(z) and H,(z) for
analysis and Gy(z) and G,(z) for synthesis. Hy(z) and H;(z) are usually considered as the
dual of Gy(z) and G/(z), and vice versa.

Traditionally, Gy(z) and Hy(z) are lowpass filters, whereas G(z) and H(z)
are highpass filters, where the subscripts 0 and 1 represent lowpass and
highpass filters, respectively. Because two-channel PR filter banks process
Yy(z) and Y;(z) at half the sampling rate of the original signal X(z), they are
used in many signal processing applications.

Figure 10-2 illustrates conventions for wavelet transform.

E B E

Figure 10-2. Conventions for Wavelet Transform

If you assume the conventions shown in Figure 10-2, then Figure 10-3
illustrates the relationship between two-channel PR filter banks and
wavelet transform.
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Figure 10-3. Relationship of Two-Channel PR Filter Banks and Wavelet Transform

Under certain conditions, two-channel PR filter banks are related to wavelet

transform in the following ways:

Figure 10-4 illustrates the relationship of filter banks and wavelet transform

The impulse response of the lowpass filters converges to the scaling
function ¢(#). Once you obtain ¢(#), you can compute the mother
wavelet function y(#) by highpass ¢(#), as shown in Figure 10-3.

The outputs of each of the highpass filters are approximations of the

wavelet transform. You can accomplish wavelet transform with a tree

of two-channel PR filter banks. The selection of a desirable mother
wavelet becomes the design of two-channel PR filter banks [27].

coefficients.
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Figure 10-4. Filter Bank and Wavelet Transform Coefficients

The following sections describe the design fundamentals for two types of
two-channel PR filter banks, biorthogonal and orthogonal. In most
equations, you receive the results without justification. Refer to the works
of Oppenheim and Schafer [19], Parks and Burrus [20], and Parks and
McClellan [21] [22] for more information about the mathematical bases
used in the following sections.

Biorthogonal Filter Banks

In Figure 10-1, you can define the output of the low-channel according to
the following equation. [30] [31]

I;O(Z) = %Ho(z)[Go(z)X(z)+Go(—z)X(—z)]

Similarly, you can define the output of the high channel according to the
following equation.

Y,(2) = %Hl(z)[GAz)X(z) + Gy (-0)X(-2)]
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Add the outputs of the two channels together to obtain
1 1
E[HO(Z)GO(Z) +H(2)G(2)1X(2) + E[HO(Z)GO(—Z) +H\(2)G(-2)]1X(-2)

(10-1)
One term involves X(z), and the other involves X(—z). For perfect
reconstruction, the term with X(—z), traditionally called the alias term, must
be zero. To achieve this, you want
Hy(2)Gy(-z) + H{(z2)G{(-z) = 0 (10-2)
which you accomplish by letting

Hy(z) = G{(-2) and H(z) = -Gy(-2) (10-3)

The relationship in Equation 10-3 implies that you can obtain iy[n] by
alternating the sign of g;[n], as shown in the following equation.

holn] = (-=1)"g1[n]
Similarly,
hy[n] = (-1)""'g,[n] (10-4)
Therefore, g[n] and h;[n] are the highpass filters, if go[n] and hy[n] are the
lowpass filters. For perfect reconstruction, you also want the first term in

Equation 10-1, called the distortion term, to be a constant or a pure time
delay. For example,

Hy(2)Gy(2) + H,(2)G,(z) = 27 (10-5)

where [/ denotes a time delay.

If you satisfy both Equations 10-2 and 10-5, the output of the two-channel
filter bank in Figure 10-1 is a delayed version of the input signal:

)A((z) = zle(z)
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However, there remains a problem computing G((z) and G(z), or Hy(z) and
H (z). Once you determine Gy(z) and G,(z), you can find the rest of the
filters with Equation 10-3. You also can write Equation 10-3 as

G,(z) = Hy(-2) and H(z) = -Gy(-2)
which, when substituted into Equation 10-5, yields
Go(2)Hy(2)-Go(=2)Hy(~2) = Py(2) = Po(=2) = 22" (10-6)

where Py(z) denotes the product of two lowpass filters, Gy(z) and Hy(z),
from Equation 10-7.

Py(z) = Gy(2)Hy(2) (10-7)

Equation 10-6 indicates that all odd terms of the product of the two lowpass
filters, Go(z) and Hy(z), must be zero except for order /, where / must be odd.
However, even order terms are arbitrary. You can summarize these
observations with Equation 10-8.

0 noddand n#1
poln] =4 2 n=1 (10-8)

arbitrary n even

This reduces the design of two-channel PR filter banks to two steps.
1. Design a filter Py(z) that satisfies Equation 10-8.

2. Factorize Py(z) into Gy(z) and Hy(z). Then use Equation 10-3 to
compute G1(z) and H;(z).

The following two types of filters are frequently used for Py(z):
e Equiripple halfband filter [32]

e Maximum flat filter
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In the equiripple halfband filter, halfband refers to a filter in which
o, + ®, = T, where @, denotes the stopband frequency and ®, denotes the
passband frequency, as shown in Figure 10-5.

A PO

| | » ®
/2 (O T

p

Figure 10-5. Halfband Filter
The form of the maximum flat filter is defined by Equation 10-9.
~1.2p
Py(z) = (1+z2 ) 0(2) (10-9)

which has 2p zeros at z = -1 or ® = «. If you limit the order of the
polynomial Q(z) to 2p — 2, then Q(z) is unique.

@ Note Here, the maximum flat filter differs from the Butterworth filter. The low-frequency
asymptote of the Butterworth filter is a constant. The low-frequency asymptote of the
maximum flat filter is not constant.

In all cases, the product of lowpass filter Py(z) is a type I filter:
polnl = py[N—n] N even

where N denotes the filter order. Consequently, the number of coefficients
poln]is odd, N + 1.
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Figure 10-6 plots the zeros distribution of a maximum flat filter Py(z)
forp =3.

Figure 10-6. Zeros Distribution for (1-z71)°Q(2)

In Figure 10-6, six zeros are at ® = 7. In this case, the order of the unique
polynomial Q(z) is four, which contributes another four zeros that are not
on the unit circle. If you let three zeros at ® = Tt go to G(z) according to the
equation

Gy =1+

and the rest of the zeros go to Hy(z), you obtain B-spline filter banks. The
coefficients of go[n] and g;[n] and the corresponding scaling function and
mother wavelet are plotted in Figure 10-7. Both the scaling function and
mother wavelet generated by go[#] and g;[n] are smooth.

Figure 10-7. B-Spline Filter Bank
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Figure 10-8 depicts the dual filter bank hy[n] and h[n] and the
corresponding scaling function and mother wavelet. You also can use /y[n]
and A, [n] for analysis. In Figure 10-8, the tree filter banks constituted by
ho[n] and h;[n] do not converge.

Scaling Function Mother Wavelats
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Figure 10-8. Dual B-Spline Filter Bank

Remember that two-channel PR filter banks do not necessarily correspond
to the wavelet transform. The wavelet transformations are special cases of
two-channel PR filter banks. The conditions of two-channel PR filter banks
are more moderate than those for the wavelet transform.

Finally, the analysis filter banks and synthesis filter banks presented in this
section are orthogonal to each other:

© National Instruments Corporation

zg,.[n —2k]h,[n] = 8(k) (10-10)

and

Zgi[n—Zk]hl[n] =0 i#l,Vk
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The filters banks that satisfy Equation 10-10 are traditionally called
biorthogonal filter banks. In addition to Equation 10-10, if the analysis
filter banks also satisfy the following equations.

Z&[n—%]gi[n] = 0(k) (10-11)

and

Zgi[n—Zk]gl[n] =0 izl Vk

The resulting filter banks are called orthogonal filter banks. Orthogonal
filter banks are special cases of biorthogonal filter banks.

Orthogonal Filter Banks

As shown in the Biorthogonal Filter Banks section, once you determine
Py(z), the product of two lowpass filters, you must factorize Py(z) into
Gy(z) and Hy(z). The combinations of zeros are not unique. Different
combinations lead to different filter banks. Sometimes Gy(z) and G(z)
work well, but Hy(z) and H;(z) might not; refer to Figure 10-7 and
Figure 10-8. One way to make this process easier is to limit the
selections to a subset. The most effective approach is to require Gy(z)
and G(z), and thereby H(z) and H,(z), to be orthogonal, as described by
Equation 10-11.

These constraints reduce the filter bank design to one filter design. Once
you select Gy(z), you can find the other filters. The constraints imposed by
Equation 10-11 guarantee that both filter banks have the same performance
and provide other advantages, as well. For example, many applications
demonstrate that the lack of orthogonality complicates quantization and bit
allocation between bands, eliminating the conservation of energy.

To achieve Equation 10-11, let
G(z) = 2 "Go(—z ) (10-12)
which implies that g;[n] is the alternating flip of gy[#]

(81101, g1[11, 81121, ...) = (8o[N], =go[N =11, g[N =21, ...)
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Equation 10-12 implies that, for orthogonal wavelets and filter banks,
-N -1
Hy(z) = 2 Gylz )

where you use the relation in Equation 10-3. Consequently, Equation 10-7
can be written as

Py(z) = ZiNGo(Z)Go(Zil)

If G()(Z)G()(Z_l) P(z), then

2

P

N N
z plnle?®" = Zgo[n]e"‘”" (10-13)
n=-N

n=0

which implies that P(z) is non-negative.

Similar to biorthogonal cases, the selection of Py(z) in orthogonal cases is
dominated by maximum flat and equiripple halfband filters. However,
because of constraints imposed by Equation 10-13, Py(z) must be the
time-shifted, non-negative function P(z). Although the maximum flat filter
in Equation 10-9 ensures this requirement, special care must be taken when
Py(z) is an equiripple halfband filter.

Figure 10-9 plots the third-order Daubechies filter banks and wavelets. It is
derived from the same maximum flat filter as that depicted in Figure 10-6.

Scaling Function b other 'Wavelets
- 0o
1.00- 1.00-
0.50- 0.00-
0.00- -1.00-
-0.50- 1 1 1 1 1 y 200 1 1 1 1 1 1
oo 10 20 30 40 B0 6O oo 10 20 30 40 50 EO
g0[n] glln]
1.00- 1.00-
0.50- { I 0&0- [
EI.EIEI-[ ------------ [-- - IJ.I:IIJ—'-----I-----JI ----- 1 --------- ]
-0.50~ I | | I . 050 I 1 [ 1 i
a 1 2 3 4 ] a 1 2 3 4 ]

© National Instruments Corporation

Figure 10-9. Third-Order Daubechies Filter Banks and Wavelets
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In Figure 10-9, Gy(z) contains three zeros at ® = 7 and all zeros inside the
unit circle, therefore possessing minimum phase. Because of the
orthogonality, its dual filter bank has the same convergence property.
Compared to the B-spline cases in Figures 10-7 and 10-8, the third-order
Daubechies wavelet and scaling function is not as smooth as that of Gy(z)
and G(z) in Figure 10-7 but is much smoother than that of Hy(z) and H,(z)
in Figure 10-8.

2D Signal Processing

The preceding sections introduced two-channel PR filter banks for
1D signal processing. In fact, you also can use two-channel PR filter banks
for 2D signals, as shown in Figure 10-10.

Rows Columns

I high-high
G1(2) 2
: high-low

Figure 10-10. 2D Signal Processing

As shown in Figure 10-10, when using two-channel PR filter banks for 2D
signals, you process rows first and then columns. Consequently, one 2D
array splits into the following four 2D sub-arrays:

e Jow-low

* low-high
*  high-low
e high-high

Each sub-array is a quarter the size of the original 2D signal.

Figure 10-11 illustrates 2D image decomposition by two-channel PR filter
banks.
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Original Image Reconstuction

Data Usage (%]
[ 9322 || 026

||l 652 0.00
Idle...

low-low low-high

Remaining Data

| P S

extension

ﬁ spmmetric

Diata

high-low high-high

Cloze

Figure 10-11. 2D Image Decomposition

In Figure 10-11, the original 128-by-128 2D array is decomposed into four
64 x 64 sub-arrays. The total size of the four sub-arrays is the same as the
original 2D array. For example, the total number of elements in the four
sub-arrays is 16,384, which equals 128 x 128. However, if you select the
filters properly, you can make sub-arrays such that the majority elements
are small enough to be neglected. Consequently, you can use a fraction of
the entire wavelet transform coefficients to recover the original image and
achieve data compression. In this example, you use the largest 25% wavelet
transform coefficients to rebuild the original image. Among them, the
majority, 93.22%, are from the low-low sub-array. The remaining three
sub-arrays contain limited information. If you repeat the wavelet transform
to the low-low sub-array, you can further reduce the compression rate.
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Wavelet Packets

The discrete wavelet transform is usually computed by the filter banks. As
shown by Figure 10-3, applying the filter bank we can split a signal into an
approximation (lowpass) sequence and a detail (highpass) sequence,
respectively. The approximation sequence is then further split into
second-level approximation and detail sequences, and the process is
repeated. Consequently, the set of sequences containing detail information
constitutes the wavelet coefficients, or the discrete wavelet transform.

Obviously, the approach described above is not the only way of performing
decomposition based on filter banks. For example, you can not only split
the approximation sequence but also split the detail sequence. The process
is depicted by Figure 10-12, in which the path of each sequence is
described by a string composed of 0 or 1. Zero represents passing a lowpass
filter GO(z) (approximation). One represents passing a highpass filter G1(z)
(detail). The decomposition scheme described in Figure 10-12 is
commonly named wavelet packet decomposition.

—» 111
11

1 —» 110
—» 101

10
—»100

—» 011
01

—010
0 —»001

00

—» 000

Figure 10-12. Wavelet Packet Decomposition Tree at Level Three
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You can consider the wavelet packet method as a generalization of wavelet
decomposition that offers a richer signal analysis. Based on Figure 10-12,
you can represent a signal by many different sets of sequences, such as
(1, 01, 001, 000), (1, 00, 010, 011), or (000, 001, 010, 011, 100, 101, 110,
111). For a given number of levels k, the number of different decomposition
schemes is given by the following equation.

P(k) = P(k=1)"+1 P(l) = 1

Each of these different decomposition schemes offers a particular way of
coding signals, preserving global energy, and reconstructing features.
Then, we can select the most suitable decomposition of a given signal with
respect to an entropy-based criterion. Table 10-1 lists the entropy types
available in the Signal Processing Toolset.

Table 10-1. Entropy Types Available in the Signal Processing Toolset

Type Description

Shannon —Zsz[i]logsz[i]

Threshold exceed a threshold €

Norm the concentration in / ” 1<P<?2

Log Energy 2.
Zlogs [7]

Stein’s Unbiased Risk Estimate (SURE) Z{E[i] —NJ[i]+ min(sz([i], pz))}
where E[i] = 1 if |s[i]| > p and O elsewhere,
N[i] = 1if |s[i]| £ p and O elsewhere
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Wavelet Analysis Applications

This chapter describes the 1D and 2D Wavelet Transform examples, the
Wavelet Packet example, and how to design a wavelet and filter bank to
meet your application needs.

With the wavelet transform examples, you can apply wavelet transform to
1D and 2D signals, perform wavelet packet analysis, and design wavelets
without using any programming. Although you can use these examples
without understanding the fundamentals of wavelets and filter banks, you
should review Chapter 9, The Fundamentals of Wavelet Analysis, and
Chapter 10, Wavelet Analysis by Discrete Filter Banks, before running the
examples. Review those two chapters to help you attain the best results.

Opening the Wavelet Analysis Examples

The wavelet transform and wavelet packet examples reside on the

SPT palette, shown in Figure 11-1. Select Start»Programs»National
Instruments»Signal Processing Toolset»>NI SPT Start-Up to open the
SPT palette. On the SPT palette, click the 1D Wavelet Transform icon,
the 2D Wavelet Transform icon, or the Wavelet Packet icon.

[ ] ]
ser|\ A [ Bl %X

1 1D Wavelet Transform 2 2D Wavelet Transform 3 Wavelet Packet

Figure 11-1. SPT Palette

Refer to the Accessing Example Application Source Code section of
Chapter 1, Signal Processing Toolset Overview, for information about
accessing the source code for the wavelet analysis examples.
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1D Wavelet Transform

You can use the 1D Wavelet Transform example to compute the wavelet
packet for 1D test data. A wavelet packet is a generalized wavelet
composition. Refer to the Wavelet Packets section of Chapter 10, Wavelet
Analysis by Discrete Filter Banks, for more information about wavelet
packets. You also can use the 1D Wavelet Transform example to test a
wavelet and filter bank of your own design.

When you click the 1D Wavelet Transform icon on the SPT palette,

the 1D Wavelet Transform front panel, shown in Figure 11-2, and the
Wavelets and Filters front panel, shown in Figure 11-3, open. Refer to the
Selecting the Wavelet section for more information about the Wavelets and
Filters front panel.

The 1D Wavelet Transform front panel includes four plots. The upper plot
displays the original signal. The other three plots display the wavelet
transform results for different tree paths.
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Wavelets and Filters

A T

Figure 11-3. Wavelets and Filters Front Panel

Using the 1D Wavelet Transform Example

Complete the following steps to use the 1D Wavelet Transform example to
compute the wavelet packet for 1D test data.

Load the test data.

Select the wavelet.

Specify the extension type.
Specify the tree path.
Specify the display method.

AN S ol e

Save the wavelet transform results.
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The following sections describe the preceding steps and the 1D Wavelet
Transform example front panel controls and indicators. You also can select
Help»Show Context Help or press <Ctrl-H> for more information about
controls and indicators.

Loading the Test Data

You can choose to analyze one of the example data files supplied with the
Signal Processing Toolset or your own data file. Your data file must be
either a one-column or one-row spreadsheet text file.

Complete the following steps to load your test data.

1. Select File»Load»Data File to open the Choose spreadsheet file
to read dialog box.

2. Navigate to the location of the data file you want to analyze.

Select the data file you want to analyze and click the Open button or
double-click the data file name.

Selecting the Wavelet

You can choose to use wavelets supplied with the Signal Processing
Toolset or wavelets from your own data file, or you can design wavelets
with the Wavelets Designer. Your wavelet file must contain the filter
coefficients of Gy(z), G(z), Hy(z), and H,(z) in four lines consecutively.
You can create your data file with the Wavelets Designer or another
application. Refer to the Wavelets Designer section for information about
the Wavelets Designer.

Complete the following steps to load a wavelet from your own data file.

1. Select File»Load»Wavelet to open the Choose file to read
dialog box.

2. Navigate to the location of the data file containing the filter coefficients
of the wavelet you want to load.

3. Select the data file you want to load and click the Open button or
double-click the data file name.

Use the Wavelet control to select a wavelet supplied with the Signal
Processing Toolset.
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The wavelets are stored with the global variables Analysis Filters and
Synthesis Filters. The mother wavelet, scaling functions, and filter
coefficients for the global variables are displayed by the following Wavelets
and Filters front panel indicators, shown in Figure 11-3:

* Analysis Scaling displays the scaling function of the wavelet
transform.

e Analysis Wavelet displays the mother wavelet of the wavelet
transform.

*  Analysis Lowpass displays the coefficients of the analysis lowpass

filter Gy(z2).

*  Analysis Highpass displays the coefficients of the analysis highpass
filter G,(z).

*  Synthesis Scaling displays the scaling function of the inverse wavelet
transform.

*  Synthesis Wavelet displays the mother wavelet of the inverse wavelet
transform.

*  Synthesis Lowpass displays the coefficients of the synthesis lowpass
filter Hy(z).

*  Synthesis Highpass displays the coefficients of the synthesis highpass
filter H,(2).

Use the Refinement control on the Wavelets and Filters front panel, shown
in Figure 11-3, to specify how many levels to go through to compute the
wavelet and scaling function. A proper wavelet usually converges after four
or five levels.

Use the Swap control on the 1D Wavelet Transform front panel, shown in
Figure 11-2, to specify whether the analysis filter is swapped with the
synthesis filter. The Swap control allows you to select a better combination
of analysis parameters for your application. Usually, the filter with the
smoother time waveform is chosen as the synthesis filter.

Specifying the Extension Type

Use the Extension control on the 1D Wavelet Transform front panel,
shown in Figure 11-2, to specify the padding method for the data. You can
choose from the following padding methods:

e Zero padding adds zeros at the beginning and end of the original data.

e Symmetric symmetrically folds the original signal at the beginning
and end.

e Periodic treats the original data as a periodic signal.
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*  Spline (default) symmetrically folds the original signal at the
beginning and end and then smooths with spline.

The number of points padded at either the beginning or end of the original
signal is determined by the following equation.

L[Maximum(NO, N+ I]J
2

where N, is the number of coefficients of filter Gy(z), and N, is the number
of coefficients of filter G(2).

Specifying the Tree Path

Enter a value in Tree Path on the 1D Wavelet Transform front panel,
shown in Figure 11-2, to specify a path for the wavelet packet. The Tree
Path value must be a string composed of O or 1, where O represents passing
a lowpass filter Gy(z) and 1 represents passing a highpass filter G(z).
Figure 11-4 illustrates an example tree path.

G2} >y 2] >

-»-—[
i

Figure 11-4. Example of Tree Path

You can define any tree path for your application. Figure 11-5 illustrates the
full path for a three-level decomposition.
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—» 111
11

1 —» 110
—» 101

—» 100

—» 011
01

—» 010
0 —» 001

00

—» 000

Figure 11-5. Full Path of a Three-Level Perfect Reconstruction Tree

For example, you can decompose the signal X as 0, 100, 101, and 11. Then,
you use those coefficients to reconstruct the original signal with synthesis
filter banks, as shown in Figure 11-6.

— 11
1
—» 101 ——
X(2) 10 _ | X(2)
——» 100 |
>0

Figure 11-6. Wavelet Packet

In this case, although you do not follow the ordinary wavelet
decomposition scheme discussed in the earlier chapters, you can still
fully recover the original signal X, if the coefficients are not altered. This
generalized wavelet decomposition is called a wavelet packet and offers
a wider range of possibilities for signal processing.

You should let your application determine the tree path you specify. One
common technique used to determine the tree path is called entropy-based
criterion. In entropy-based criterion, you check each node of the
decomposition tree and quantify the information. Then, you continue to
decompose those nodes that contain more information.
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Specifying the Display Method

The plot below Tree Path on the 1D Wavelet Transform front panel, as
shown in Figure 11-2, displays the wavelet transform result for that path.
You can display the result as either a waveform or a histogram. Select
View»Show Waveform or Show Histogram to specify the display
method.

Saving the Wavelet Transform Result

Click the Save button above the wavelet transform result plot on the 1D
Wavelet Transform front panel, shown in Figure 11-2, to save that
particular result as a text file. You can use the wavelet transform result to
fully reconstruct the original signal.

2D Wavelet Transform

As discussed in Chapter 10, Wavelet Analysis by Discrete Filter Banks, by
applying wavelet transform, you can break one image into four subimages:
low-low, low-high, high-low, and high-high. With the 2D Wavelet
Transform example, you can apply 2D wavelet transform to an image and
use part of the subimage data to reconstruct the image.

When you click the 2D Wavelet Transform icon on the SPT palette,
shown in Figure 11-1, the 2D Wavelet Transform front panel opens.
Figure 11-7 shows the 2D Wavelet Transform front panel with a data file
already loaded.
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File Toals Windows Help

: 2D Wavelet Transform - irisflower.bmp
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Figure 11-7. 2D Wavelet Transform Front Panel

Using the 2D Wavelet Transform Example

Signal Processing Toolset User Manual 11-10

Complete the following steps to use the 2D Wavelet Transform example to
apply 2D wavelet transform to an image and then reconstruct the image.

1. Load the image.

2. Select a wavelet.

3. Specify the extension type used for reconstruction.

4. Specify the data percentage used for reconstruction.

The following sections describe the preceding steps and the 2D Wavelet
Transform example front panel controls and indicators. You also can select

Help»Show Context Help or press <Ctrl-H> for more information about
controls and indicators.

ni.com
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Loading the Image
Your image file should be a . bmp file.

Complete the following steps to load an image.

1. Select FilexLoad»BMP image to open the Select a BMP file to open
dialog box.

2. Navigate to the location of the image file you want to analyze.

Select the image file you want to analyze and click the Open button or
double-click the image file name.

Selecting a Wavelet

Refer to the 1D Wavelet Transform section for information about selecting
a wavelet.

Specifying the Extension Type

Use the Extension control on the 2D Wavelet Transform front panel,
shown in Figure 11-7, to specify the padding method for the data. Refer to
the 1D Wavelet Transform section for information about specifying an
extension.

Specifying the Data Percentage Used for
Reconstruction

Use the Used coeffs control on the 2D Wavelet Transform front panel,
shown in Figure 11-7, to specify the data percentage used for
reconstruction. The value of Used coeffs represents the percentage of the
largest wavelet coefficients used from all the subimages to restore the
image.

Using the Zoom Control

The zoom control on the 2D Wavelet Transform front panel, shown in
Figure 11-7, is located above each image display and is represented by the
magnifying glass icon. Use the zoom control to zoom in on the front panel
images. Clicking the zoom control opens a new window containing the
image. Resizing the new window resizes the image.
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Wavelet Packet

You can use the Wavelet Packet example to compute the wavelet packet for
1D test data. A wavelet packet is a generalized wavelet composition. Refer
to the Wavelet Packets section of Chapter 10, Wavelet Analysis
Applications, for more information about wavelet packets.

When you click the Wavelet Packet icon on the SPT palette, shown in
Figure 11-1, the Wavelet Packet front panel, shown in Figure 11-8, opens.

= Wavelet Packet - No Data W= B3
File Tools ‘Windows Help

Analyzed Signal Zoom
2000.0-

Amplitude

00~ [ [ [ [ [ [ [ i
0.0 5000 1.0k 1.5k 20k 25k 30k 35k 4.0k
Timne:

@i Node Coefficients Entropy: §0.00E+0

Amplitude

A1 ] [ [ [ i
0.0 50.0 100.0 150.0 200.0 2520 4

Time
Entropy Type Wavelet Swap _ﬂ of Levels Dizplay Mode
:J shannon :J dbl2 C ‘) ¥ Best Tree :J 3 :J node path

Figure 11-8. Wavelet Packet Front Panel

The Wavelet Packet front panel includes the following plots:
e Analyzed Signal displays the original signal.

*  Node Coefficients displays the decomposition coefficients of the node
you select in the plot on the right.

*  The plot on the right displays the tree structure of the wavelet packet
decomposition.
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Using the Wavelet Packet Example

Complete the following steps to use the Wavelet Packet example to
compute the wavelet packet for 1D test data.

Load the test data.

Select the wavelet.

Specify the extension type.

Specify the method to compute entropy.

Specify the number of levels.

AN T e

Operate on a tree node.

The following sections describe the preceding steps and the Wavelet Packet
example front panel controls and indicators. You also can select
Help»Show Context Help or press <Ctrl-H> for more information about
controls and indicators.

Loading the Test Data

You can choose to analyze your own data file or one of the example data
files supplied with the Signal Processing Toolset. Your data file must be
either a one-column or one-row spreadsheet text file. Refer to the

1D Wavelet Transform section for more information about loading

test data.

Selecting the Wavelet

Refer to the 1D Wavelet Transform section for information about selecting
a wavelet.

Specifying the Extension Type

Refer to the 1D Wavelet Transform section for information about
specifying the extension type.

Specifying the Method to Compute Entropy

Use the Entropy Type control on the Wavelet Packet front panel, shown
in Figure 11-8, to specify the method to compute the entropies of the
wavelet packets. Refer to the Wavelet Packets section of Chapter 10,
Wavelet Analysis by Discrete Filter Banks, for information about selecting
the entropy type.
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Specifying the Number of Levels

Use the # of Levels control on the Wavelet Packet front panel, shown in
Figure 11-8, to specify the number of levels of the wavelet packet
decomposition.

Operating On a Tree Node

Click the node in the right-hand plot on the Wavelet Packet front panel,
shown in Figure 11-8, on which you want to operate to open a shortcut
menu. You can choose from the following shortcut menu items:

*  Split Node decomposes the wavelet packet.
*  Join Node reconstructs the wavelet packet.

* Read Node reads the coefficients and entropy of the selected node.
Selecting Read Node highlights the node and displays its coefficients
and entropy in the Node Coefficients graph and the Entropy indicator
on the front panel.

Specifying the Display Mode

Use the Display Mode control on the Wavelet Packet front panel, shown
in Figure 11-8, to specify how to display the tree structure of the wavelet
packet decomposition. You can choose from the following display modes:

* node path displays the path of the node. 1 denotes highpass filtering.
0 denotes lowpass filtering. For example, 110 denotes a three-level
decomposition. The decomposition process specified by 110 is
highpass-highpass-lowpass.

*  (depth, pos) displays the level index and the node index at its level of
a node. For example, (3, 4) is the fourth node at level three.

e entropy displays the entropy of the node.

Drawing the Best Tree

Place a checkmark in the Best Tree checkbox on the Wavelet Packet front
panel, shown in Figure 11-8, to compute from entropy-based criteria the
most suitable decomposition tree for the signal. Remove the checkmark
from the Best Tree checkbox to perform a full tree decomposition.

Signal Processing Toolset User Manual 11-14 ni.com



Chapter 11 Wavelet Analysis Applications

Wavelets Designer

With the Wavelets Designer, you can design the filters G(z) and Hy(2),
which can be used to derive G(z) and H,(z). The mother wavelet and the
scaling function can then be computed by Gy(2), G(2), Hy(z), and H,(z).
Refer to Chapter 10, Wavelet Analysis by Discrete Filter Banks, for more
information about the wavelet and filter banks.

Opening the Wavelets Designer Front Panel

You can open the Wavelets Designer front panel, shown in Figure 11-9,
from the front panels of the 1D Wavelet Transform example, the 2D
Wavelet Transform example, and the Wavelet Packet example. You can
use the following methods to open the Wavelets Designer front panel:

*  Select Tools»Wavelet Designer when using the 1D Wavelet
Transform example.

*  Select Tools»Show Wavelet Designer when using the 2D Wavelet
Transform and Wavelet Packet examples.

¢ Click in the Wavelet control and select user defined from the shortcut
menu.

Refer to the Accessing Example Application Source Code section of
Chapter 1, Signal Processing Toolset Overview, for information about
accessing the source code for the Wavelets Designer.

Wavelets Designer Front Panel Displays

The upper plot on the Wavelets Designer front panel, shown in Figure 11-9,
displays the frequency response of Gy(z) and G,(z).

The lower plot on the Wavelets Designer front panel, shown in Figure 11-9,
illustrates the zero distribution of G(z) and Hy(z). Because all the zeros are
symmetrical with respect to the x-axis, only the upper half of the plane is
displayed. The © symbol represents the zeros in Gy(z), and the x symbol
represents the zeros in Hy(z). To select a zero, place the cursor on the zero
that you want to choose and click the left mouse button. This switches the
zeros from Gy(z) to Hy(z) and vice versa. If two zeros are too close to
choose, use the Zoom Tool on the graph palette to zoom in on the zeros
until you can identify the them. Refer to the Digital Filter Design Front
Panels section of Chapter 12, Digital Filter Design Application, for
information about the Zoom Tool and the graph palette.
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Figure 11-9. Wavelets Designer

Designing Wavelets

Figure 11-10 illustrates the wavelet design process. Figure 11-9 shows the

Wavelets Designer controls to use when
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Figure 11-10. Design Procedure for Wavelets and Filter Banks

Complete the following steps to design wavelets.

1.

3.

© National Instruments Corporation

Select the type of filter bank.
2. Find the product of G(z) and Hy(z), Py(z).
Factorize Py(z) into Gy(z) and Hy(2).
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The following sections describe each of the steps in the wavelet design
process and the Wavelets Designer front panel controls you use to complete
the steps. You also can select Help»Show Context Help or press <Ctrl-H>
for more information about front panel controls and indicators.

Selecting the Type of Filter Bank

Use the Filter Bank control on the Wavelets Designer front panel, shown
in Figure 11-9 as step 1, to select the filter bank type. You can choose from
two types of wavelets and filter banks, Orthogonal (default) and
Biorthogonal. The orthogonal filters and wavelets are easier to design
because they involve fewer parameters, but the orthogonal filter banks
cannot be linear phase.

Finding the Product Py(z)

Py(z) denotes the product of Gy(z) and Hy(z), as shown in the following
equation.

Py(2) = Gy(2)H(2)

Use the Py(z) control, shown in Figure 11-9 as step 2, to specify the Py(z)
type. When Filter Bank is set to Orthogonal, you can set Py(z) to either
Maxflat (default), for a maximum flat filter, or to Positive Equiripple. When
Filter Bank is set to Biorthogonal, you can set Py(z) to Maxflat (default),
General Equiripple, or Positive Equiripple.

Because all filters in the Wavelets Designer act as real-valued finite impulse
response (FIR) filters, the zeros of Py(z), Gy(z), and Hy(z) are symmetrical
in the z-plane. This implies that for any zero z;, there always exists z;*. If z;
is complex, as shown in Figure 11-11, you only need to deal with half of
the z-plane. Once you select z;, the Wavelets Designer automatically
includes its complex conjugate z;*.
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\

Figure 11-11. Non-Negative Equiripple Halfband Filter

The maximum flat filter has the form given by the following equation.

Pyz) = (1+2 )7 0()

The maximum flat filter differs from the Butterworth filter. The maximum
flat filter has good frequency attenuation but wider transition band. The
parameter p is controlled by the zero pairs at  control on the Wavelets
Designer front panel, shown in Figure 11-9. O(z) is a 2p — 2 order
polynomial, which you can uniquely determine if p is decided. Therefore,
the total number of coefficients of Py(z) is 4p — 1. For maximum flat filters,
there are multiple zeros at z = 0. Use the zeros at T control to determine
how many zeros at z = 0.

The equiripple is further divided into the general equiripple and positive
equiripple filters. However, you can select only positive equiripple filters
for orthogonal filter banks. Although both are halfband filters, the sum of
the normalized passband and stopband frequencies equals 0.5, the Fourier
transform of the positive equiripple filter py[n] is always real and
non-negative, as shown in Figure 11-11.

Two parameters are associated with equiripple filters, # of taps

and passband, as shown in Figure 11-12. Use the # of taps control to
define the number of coefficients of Py(z). Because Py(z) is a type I FIR
filter, the length of Py(z) must be 4p — 1, where p =2, 3, .... Use the
passband control to define the normalized cutoff frequency of Py(z),
which must be less than 0.5.

© National Instruments Corporation 11-19 Signal Processing Toolset User Manual



Chapter 11

Wavelet Analysis Applications

Filter P[z]
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Figure 11-12. Equiripple Filter

Factorizing Py(2) into Gy(2) and Hy(2)

Once you determine P((z), you must factorize it into the lowpass filters,
Gy(2) and Hy(z). Use Type of GO(z) and HO(z), shown in Figure 11-9 as
step 3, to accomplish the factorization. The combination of Gy(z) and Hy(z)
is not unique. For a given Py(z), you have the following four choices for
Go(z) and Hy(2):

* Linear Phase—Any zero and its reciprocal must belong to the same
filter as shown in Figure 11-13. This selection is only available when
the filter is biorthogonal.

e Minimum Phase—Gj(z) contains all the zeros inside the unit circle as
shown in Figure 11-14. When Py(z) is maximum flat and Gy(z) is
minimum phase, the resulting wavelets are traditionally known as
Daubechies wavelets.

*  B-Spline—This choice is only available when the filter is biorthogonal
and maximum flat. In this case

Gy(z) = (1+z " Hy@) = 1+ 0

where k is specified with the zeros at 7 control. p is decided by the
zeros at 7 control. Figure 11-15 shows an example of B-Spline
factorization.

e Arbitrary—No specific constraints are associated with this filter.
Figure 11-16 shows an example of arbitrary factorization.

After you decide the type of Gy(z) and Hy(z), the Wavelets Designer
automatically computes the constraints. For example, once you select a
zero, the reciprocal of the zero is automatically included if you choose
G(z) for linear phase. Figure 11-10 summarizes all possible design
combinations provided by the Wavelets Designer.
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@ Note The conditions for linear phase and orthogonality are contradictory. In general,

you cannot achieve linear phase and orthogonality simultaneously.

The Wavelets Designer also provides the following additional utilities:

*  Select File»Load»Design Spec to load a saved design file.

e Select File»Save»Wavelet to save the designed analysis filter
coefficients and synthesis filter coefficients in a text file.

Select File»Save»Design Spec to save your design information in a
binary file.

e  Select Windows»Show Filter Coef to display a table listing the
designed analysis and synthesis filter coefficients.
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*  Select Windows»Show Wavelets to open the Wavelets and Filters
front panel, shown in Figure 11-3. Refer to the /D Wavelet Transform
section for information about the Wavelets and Filters front panel.

To assist you with testing your own applications, the Wavelets Designer
saves the filter coefficients as the following global variables in the Wavelet
Design Globals VI:

*  Analysis Filter Coefficients contains coefficients Gy(z) and G;(2).
*  Synthesis Filter Coefficients contains coefficients Hy(z) and H(z).
These variables simultaneously change as you change the design. If you

incorporate those parameters into your own application, you can see the
effect of the different design.

© National Instruments Corporation 11-23 Signal Processing Toolset User Manual



Part V

Digital Filter Design

This section of the manual describes the Digital Filter Design (DFD)
application. Refer to the works of Jackson [13], Oppenheim and Schafer
[19], Parks and Burrus [20], Parks and McClellan [21] [22], and Williams
and Taylor [37] for more information about the theory and algorithms
implemented in the DFD application.

»  Chapter 12, Digital Filter Design Application, describes the
DFD application used to design infinite impulse response (IIR)
and finite impulse response (FIR) digital filters.

e Chapter 13, IIR and FIR Implementation, describes the filter
implementation equations for IIR and FIR filtering and the format of
the IIR and FIR filter coefficient files.
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Digital Filter Design Application

This chapter describes the Digital Filter Design (DFD) application,
including all required filter coefficient forms and implementation
equations. The DFD application provides complete filter design and
analysis tools you can use to design digital filters to meet your precise filter
specifications. You can graphically design infinite impulse response (IIR)
and finite impulse response (FIR) digital filters, interactively review filter
responses, save your filter design work, and load your design work from
previous sessions.

You can save digital-filter coefficients for later implementation from
within LabVIEW and LabWindows/CVI. Also, you can call Windows
DFD dynamic link libraries (DLLs) from other applications, or other
applications can load the filter-coefficient files directly.

If you have a National Instruments data acquisition (DAQ) device, you can
perform real-world filter testing in the DFD application. You can view the
time waveforms or the spectra of the input signal and the filtered signal
while you simultaneously redesign your digital filters.
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Figure 12-1 illustrates the interaction between the DFD application and
related applications.

Digital Filter Design Application |—>| Data Acquisition and Filtering I
A

Save maTI Save

A

\ 4 \4
Filter Specification Files|| Filter Coefficient Files |

\J
| LabviEW | |LabWindows/cvi| | Windows DLL |

Figure 12-1. Conceptual Overview of the Digital Filter Design Application

Main Menu

Select Start»Programs»National Instruments»Signal Processing
Toolset»NI Digital Filter Design to open the Main Menu dialog box,
shown in Figure 12-2.

£* Main Menu

:' Qpen
| FIR Filter Design
Pole-Zera Placement
Arbitrary FIR Filter Design - Get Infa...

Load Spec. .. ' | Preferences. .. ' | it '

Figure 12-2. DFD Main Menu
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Opening the Filter Design Front Panels

From the Main Menu dialog box, you can open any one of the following
digital filter design front panels:

*  C(Classical IIR Filter Design
*  C(Classical FIR Filter Design
*  Pole-Zero Placement

*  Arbitrary FIR Filter Design.

Refer to the Digital Filter Design Front Panels section for more
information about each design front panel.

Directly Loading a Filter Specification File

Click the Load Spec button in the Main Menu dialog box to load a
previously designed filter specification file directly from the Main Menu
dialog box. The DFD application prompts you to select the filter
specification file that you saved during previous design work. After you
select the file, you can open the appropriate design front panel for that
specification file. Then, resume work on an ongoing design project.

Editing the DFD Preferences

Click the Preferences button in the Main Menu dialog box to customize
your DFD application preferences. You can edit your DFD application
preferences for future design sessions.

Getting Information about the DFD Application

Click the Get Info button in the Main Menu dialog box to get information
about the entire DFD application or an individual filter design application.

Quitting the DFD Application

Click the Quit button in the Main Menu dialog box to quit the
DFD application.
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Digital Filter Design Front Panels

When you double-click one of the four design selections in the Main Menu
dialog box, the DFD application loads and runs the selected design front
panel. You can use these design front panels to design IIR or FIR filters,
save your design work and filter coefficients, or load previous filter
designs.

After designing your filter, you can move from the design front panels to
the Analysis of Filter Design front panel to view various frequency domain
and time domain filter responses. You can save these responses to text
files for use in other applications. You also can perform real-world testing
of your filter designs by moving to the DAQ and Filter front panel, which
performs data acquisition and filtering in parallel with your filter designing.
Refer to the Analysis of Filter Design Front Panel and the DAQ and Filter
Front Panel sections for more information about these two front panels.

Common Controls and Features

The following sections describe the controls and features of the
DFD application. Figure 12-3 shows the Classical IIR Filter Design front
panel, which is representative of the filter design front panels.

File Cperate ‘Window Help

{% Classical IIR Design

maghitude

HATIOHAL
INSTRUTIENTS

& |l oy B

pazzhand resp .’—)l -5.0000
passhandfren  £}{1300.000  £)]2600 000
stopband atten ,'_)l -40.0000
stopband freq .'.)l 1500.000 .'—/,l 3000.000
zampling rate f-/} 8000.00

type .’—)l bandpass

g J Elliptic
1 1 1 1
1000.00 2000.00 3000.00 4000.00 filter order |3
frequency [Hz)
message
_ frequency maghitude
<J/0.0000 nf

Figure 12-3. Classical IIR Filter Design Front Panel
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Saving Filter Specifications

Select File»Save Spec to save all your specifications for the present filter
design front panel. The DFD application prompts you for the name of the
filter-specification file to save. Name your specification files appropriately
for a given filter design. For example, if you design a lowpass IIR filter,
name the file lowpass.iir or lowpl.iir if this design is the first of
many lowpass IIR designs.

Table 12-1 lists suggested filename extensions for the four filter design
front panels. These names have no effect on how the DFD application
interprets the file contents.

Table 12-1. Suggested DFD Filename Extensions

Design Front Panel Filename
Classical IIR Design filename.iir
Classical FIR Design filename.fir
Pole-Zero Placement filename.pz
Arbitrary FIR Design filename.arb

Loading Filter Specifications

Select File»Load Spec to load a filter specification file into the present
filter design front panel. The DFD application prompts you for the location
of the filter specification file to load. If the selected specification file is the
same type design as the present design front panel, the DFD application
loads the specification from the selected file into the present design front
panel for viewing, editing, or analysis.

If you designed the selected specification file in a different design front
panel than the present front panel, the DFD application prompts you to
open the appropriate design front panel for that specification file. For
example, if you are using the Pole-Zero Placement front panel and you load
a specification file saved in the Classical FIR Design front panel, the DFD
application prompts you to open the Classical FIR Design front panel to
resume work on the loaded filter specifications.

Saving Filter Coefficients

Select File»Save Coeff to save your filter coefficients to a file. The DFD
application first prompts you for the format, either text or log, of the
coefficient file.
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Click the text button to select the text format. The text format allows you
to view or print the coefficient file or to use the coefficients in other
non-LabVIEW filtering applications.

Click the log button to select the log format for LabVIEW-only filtering
applications. However, LabVIEW filtering utilities read both
text-formatted and log-formatted coefficient files.

After you select the format of the coefficient file, the DFD application
prompts you for the name of the filter coefficient file to save. Name your
coefficient files appropriately for a given filter design. For example, if
you save bandpass IIR filter coefficients, name the file bpiir. txt or
bpiir.log, depending on the coefficient file type.

Analyzing Filter Designs

Select File»Analysis to analyze your filter design. The DFD application
loads and runs the Analysis of Filter Design front panel. From this analysis
front panel, you can view the filter magnitude response, phase response,
impulse response, step response, and pole-zero plot. You also can view and
print full-screen plots of each response. From the full-screen views, you
can save the analysis results to a text file. Refer to the Analysis of Filter
Design Front Panel section for more information about analyzing filter
designs.

Testing Filter Designs

If you have a National Instruments DAQ device, you can test the present
filter design on real-world signals by selecting FilexDAQ and Filter. The
DFD application loads and runs the DAQ and Filter front panel. From this
front panel, you can configure your DAQ device and then acquire real
signals. The acquired data passes through the currently designed filter, and
the DFD application plots the input and output waveforms and spectrums.

You also can test your filter designs using a built-in simulated function
generator. Select FilexDAQ and Filter and configure the DAQ source to
simulated DAQ. You then can click the Function Generator button on the
DAQ and Filter front panel to view and edit settings that include signal
type, frequency, amplitude, and noise level.

Refer to the DAQ and Filter Front Panel section for more information
about the DAQ and Filter front panel.
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Transferring Filter Designs

You can transfer some filter design specifications from one design front
panel to another. For example, you can configure your passband and
stopband requirements while you design an FIR filter and find the IIR filter
that meets your design specifications. Not all design front panels can share
specifications. Table 12-2 shows the transfers you can perform and the
corresponding command path.

Table 12-2. Filter Specification Transfers

Design Transfer Command Path

Filter specs from the Classical IIR to the | File»Xfer Classical FIR
Classical FIR

Filter specs from the Classical FIR to the | File»Xfer Classical IIR
Classical IIR

Poles and zeros from Classical IIR to the | File»Xfer Pole Zero
Pole-Zero Placement

Returning to the Main Menu

Select FilexMain Menu to return to the Main Menu dialog box.

Panning and Zooming Options

The graphs on the filter design front panels include the plot legend and
graph palette. Use the controls on the plot legend and graph palette to pan
the display area of a graph and zoom in and out of graph sections.

Figure 12-4 shows a graph and its plot legend and graph palette.
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Figure 12-4. Graph with Plot Legend and Graph Palette
Plot Legend

Use the plot legend, shown in Figure 12-5, to pan the display of the graph.

Lol

|a-: HH{ £ 4 J_'f{l.' yy

1 Lock X 3 Scale Format X 5 Autoscale Y
2 Autoscale X 4 LockY 6 Scale Format Y

Figure 12-5. Plot Legend

The plot legend contains the following controls:

¢ Lock button—-click the Lock button next to the desired autoscale
button to autoscale that particular scale continuously.

¢ Autoscale X button—click the Autoscale X button to autoscale the
x-data of the graph.
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*  Scale Format buttons—click the Scale Format buttons for run-time
control over the format of the x-scale and y-scale markers. When you
click a Scale Format button, a menu appears. From the shortcut menu,
you can choose the Format, Precision, and Mapping Mode of the
graph.

*  Autoscale Y button—click the Autoscale Y button to autoscale the
y-data of the graph.

Graph Palette
Use the graph palette, shown in Figure 12-6, to zoom in and out of graph
sections.

1 Plus 2 Panning Tool 3 Zoom Tool

Figure 12-6. Graph Palette

The graph palette contains the following controls:

*  Plus button—click the Plus button to place the graph in operate mode.
In operate mode, you can click in the graph to move the cursors.

*  Zoom Tool—<lick the Zoom Tool to open the Zoom palette, shown
in Figure 12-7.

Figure 12-7. Zoom Palette
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The top row of the Zoom palette contains the following buttons from
left to right:

—  Zoom by rectangle
—  Zoom by rectangle, with zooming restricted to x-data
—  Zoom by rectangle, with zooming restricted to y-data

After choosing your zooming method, you can zoom in on a section of
the graph by dragging a selection rectangle around that section.

The bottom row of the Zoom palette contains the following buttons
from left to right:

— Undo last zoom resets the graph to its previous setting.

—  Zoom in about a point allows you to zoom in on a specific point.
If you click and hold the mouse button on a specific point, the
graph continuously zooms in until you release the mouse button.
Press <Shift> and click the mouse button to zoom in the opposite
direction.

—  Zoom out about a point allows you to zoom out on a specific
point. If you click and hold the mouse button on a specific point,
the graph continuously zooms out until you release the mouse
button. Press <Shift> and click the mouse button to zoom in the
opposite direction.

e Click the Panning Tool to switch to a mode in which you can scroll
the visible data by clicking and dragging sections of the graph.

Graph Cursors

The graphs on the Classical IIR and Classical FIR design front panels have
movable cursors. Figure 12-8 shows two cursors on a graph. When the
graph is in operate mode, you can move a cursor by clicking on it and
dragging it with the Operating Tool.
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Figure 12-8. Example of Two Cursors on a Graph

You also can click the direction diamonds on the Cursor Movement
control on the cursor legend to move selected cursors in the specified
direction. You select cursors by first moving them on the graph with the
Operating Tool. To make the cursor legend visible, right-click the graph
and select Visible Items»Cursor Legend.

Classical IIR Filter Design

Figure 12-9 shows the Classical IIR Design front panel. This front panel
includes a graphical interface with the magnitude versus frequency cursors
and plot on the left side and a text-based interface with digital controls

on the right side.
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Classical IIR Design
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Figure 12-9. Classical IIR Design Front Panel

Use this front panel to design classical IIR digital filters. These filters
include the classic types of lowpass, highpass, bandpass, and bandstop, as
well as the classic designs of Butterworth, Chebyshev, Inverse Chebyshey,
and Elliptic.

To design classical IIR filters, adjust the filter specifications. The
passband and stopband requirements define a filter specification. You

can define these requirements by using either the text-based interface or
the cursors in the magnitude versus frequency graph. As you use the mouse
to click and drag the cursors, the panel updates the text-based entries.
Similarly, as you enter new specifications in the text-base interface, the
panel updates the cursors.

The lower passband frequency fp;, upper passband frequency fp,, and the
passband response Gp define the passband specification. For the bandpass
filter, the passband ranges from fp; to fp,. The passband is the region in the
frequency domain with a response near 1.0. Gp is the minimum allowable
passband gain or filter magnitude response. In Figure 12-9, the passband is
specified as having a minimum gain of —5 dB between the frequencies of
fp1 =1,900 Hz and fp, = 2,600 Hz.
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The following ranges define the passband:

lowpass 0<f<fp,

highpaSS fP1 Sfsfsump/z

bandpass Py Sf<fp,

bandstop 0<f<fpi. P2 <f<fsamp”2
where Jp1 is passband frequency 1

Jp> s passband frequency 2
fsamp 18 the sampling rate

The lower stopband frequencies fs; and fs, and the stopband attenuation
Gs define the stopband specification. For the bandpass filter, the stopband
ranges from 0.0, DC to the lower stopband frequency fs;, and from the
upper stopband frequency fs, to half of the sampling rate, or the Nyquist
rate. The stopband is the region in the frequency domain with a response
near 0.0. Gs is the minimum acceptable stopband attenuation or filter
magnitude response.

In Figure 12-9, the stopband specification has a minimum attenuation of
—40 dB between the frequencies of 0 and f5; = 1,500 Hz and between the
frequencies of fs, = 3,000 Hz and 4,000 Hz.

The following ranges define the stopband:

lowpass IS1 ST famp” 2

highpass 0<f<fs,

bandpass 0<f<fsys [2<f< foamp”2
bandstop fs<f<2

where /51 1s passband frequency 1

f55 1s passband frequency 2
Jfsamp 18 the sampling rate

The Classical IIR Design front panel estimates the minimum filter order
required for the selected type and design to meet or exceed the modified
filter specifications. The DFD application automatically computes other
appropriate filter parameters and designs, and plots the IIR filter. You see
immediate graphical feedback to help you determine whether the filter
meets your specifications.
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Classical IIR Design Front Panel Controls

and Displays

Use the Classical IIR Design front panel File menu to complete the
following tasks:

*  Save your filter specifications and coefficients.

*  Load filter designs from previous work.

*  Open the Analysis or DAQ and Filter front panels.

*  Transfer the IIR design specifications to the Classical FIR Design front
panel.

e Transfer the poles and zeros to the Pole-Zero Placement front panel.

¢ Return to the Main Menu dialog box.

Magnitude-Frequency Plot

The graph in Figure 12-9 plots the frequency response H(f) as magnitude
of the designed digital filter. The magnitude, or y-axis, is in linear or
decibel units, depending on how you set the dB/linear button. The
frequency, or x-axis, is in hertz. The full scale ranges from 0.0 to Nyquist,
or half the sampling rate.

Cursors

When you move the blue cursors, you control the passband response,
or horizontal lines, and the passband frequencies, or vertical lines.

When you move the red cursors, you control the stopband attenuation,
or horizontal lines, and the stopband frequencies, or vertical lines.

These cursors represent the filter design specifications for the selected
classical IIR filter. In the passband, the filter has a gain greater than or equal
to the specified passband response. In the stopband, the filter has a gain less
than or equal to the specified stopband attenuation.

dB/Linear Button

Use the dB/linear button to control the display units, either dB or linear,
of all magnitude and gain controls and displays. The magnitude and gain
controls and displays include the y-axis of the magnitude versus frequency
plot, the passband response, the stopband attenuation, and the magnitude
tracking cursor.
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Frequency and Magnitude Indicators

The frequency and magnitude indicators display the location of the
square, transparent tracking cursor. This cursor is locked to the frequency
response H(f), so moving this cursor updates the frequency and magnitude
digital displays with data points from H(f).

Text-Based Interface

You can enter the complete filter specifications using the text-based portion
of the Classical IIR Design front panel, which is the right-hand side of the
front panel, shown in Figure 12-9.

Use passband resp to define the minimum gain in the passband.
The horizontal blue cursor line represents this response in the magnitude
versus frequency plot.

In the passband, the filter gain is guaranteed to be at least as high as
the specified passband response (Gp). That is, |H(f)| = Gp.

When type is set to bandpass or bandstop, use the first value in passband
freq to define one frequency edge of the passband. In the magnitude versus
frequency plot, the left-hand vertical blue cursor line represents the first
value in passband freq. Use the second value in passband freq to define
the second frequency edge of the passband. In the magnitude versus
frequency plot, the right-hand vertical blue cursor line represents the
second value in passband freq.

Use stopband atten to define the minimum attenuation in the stopband.
In the magnitude versus frequency plot, the horizontal red cursor line
represents stopband atten.

In the stopband, the filter gain is guaranteed to be no higher than the
specified stopband attenuation (Gs). That is, |H(f)| < Gs.

When type is set to bandpass or bandstop, use the first value in stopband
freq to define one frequency edge of the stopband. In the magnitude versus
frequency plot, the left vertical red cursor line represents the first value in
stopband freq. Use the second value in stopband freq to define the
second frequency edge of the stopband. In the magnitude versus frequency
plot, the right vertical red cursor line represents the second value in
stopband freq.
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Sampling Rate Control

Use the sampling rate control to specify the sampling rate in samples per
second, hertz.

Type Control
Use the type control to specify one of the following filter types:

e Lowpass

e Highpass
e Bandpass
e Bandstop

Design Control

Use the design control to specify one of the following filter design
algorithms:

*  Butterworth

¢ Chebyshev

e Inverse Chebyshev
*  Elliptic

Filter Order Indicator

The filter order indicator displays the estimated filter order of the classical
IIR filter. The DFD application automatically estimates the filter order as
the lowest possible order that meets or exceeds the desired filter
specifications.

Message Window

The message window displays errors that occur during the IIR design
procedure. These errors occur when the filter specifications are inconsistent
with the chosen filter type.

Classical FIR Design

Figure 12-10 shows the Classical FIR Design front panel. This front panel
functions similarly to the Classical IIR Design front panel. The front panel
includes a graphical interface with the magnitude versus frequency cursors
and plot on the left side and a text-based interface with digital controls on
the right side.
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{% Classical FIR Design
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Figure 12-10. Classical FIR Design Front Panel

Use the Classical FIR Design front panel to design classical FIR digital
filters. These filters include the classic types of lowpass, highpass,
bandpass, and bandstop and use the Parks-McClellan equiripple FIR filter
design algorithm.

To design classical FIR filters, adjust the desired filter specifications. The
passband and stopband requirements define a filter specification. You can
define these requirements by using either the text-based interface or the
cursors in the magnitude versus frequency graph. As you use the mouse to
click and drag the cursors, the text entries update. Similarly, as you enter
new specifications in the text-based interface, the cursors update.

The lower passband frequency fp,, upper passband frequency fp,, and the
passband response Gp define the passband specification. For the bandpass
filter, the passband ranges from fp; to fp,. The passband is the region in the
frequency domain with a response near 1.0. Gp is the minimum allowable
passband gain or filter magnitude response.

In Figure 12-10, the passband specification is a minimum gain of —5 dB
between the frequencies of fp; = 1,900 Hz and fp, = 2,600 Hz.
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The following ranges define the passband:

lowpass 0<f<fp,

highpass fpl stfsamp/z

bandpass i<f<fp,

bandstop 0<f<fp\, P2 <f<famp”2
where fp1 is passband frequency 1

Jp> is passband frequency 2
Jfsamp 18 the sampling rate

The stopband frequencies fs; and fs, and the stopband attenuation Gs define
the stopband specification. For the bandpass filter, the stopband ranges
from 0.0, DC to the lower stopband frequency fs;, and from the upper
stopband frequency fs, to half of the sampling rate, or Nyquist.

The stopband is the region in the frequency domain with a response

near 0.0. Gs is the minimum acceptable stopband attenuation or filter
magnitude response.

In Figure 12-10, the stopband specification has a minimum attenuation
of —40 dB between the frequencies of 0 and fs; = 1,500 Hz and between the
frequencies of fs, = 3,000 Hz and 4,000 Hz.

The following ranges define the stopband:

lowpass 1SS fsamp” 2

highpass 0<f<fs,

bandpass 0<f<fsy, fs2 <[ famp”2
bandstop fssf<2

where fs1 is passband frequency 1

f55 is passband frequency 2
JPsamp 18 the sampling rate

The Classical FIR Design front panel estimates the minimal filter order
required for the selected type and design to meet or exceed the modified
filter specifications. The DFD application automatically computes other
appropriate filter parameters and designs, and plots the FIR filter. You see
immediate graphical feedback to help you determine whether the filter
meets your specifications.
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Classical FIR Design Front Panel Controls
and Displays

The Classical FIR Design front panel controls and displays are similar to
those on the Classical IIR Design front panel but with two exceptions. The
Classical FIR Design front panel has a minimize filter order checkbox but
does not have a design control.

Use the minimize filter order checkbox to specify whether the DFD
application minimizes the estimated filter order. If you place a checkmark
in the minimize filter order checkbox, the DFD application iteratively
adjusts the filter order until it finds the minimum order that meets or
exceeds the filter specifications. If you do not place a checkmark in the
minimize filter order checkbox, the DFD application uses a fast formula
to estimate the filter order to meet or exceed the desired filter
specifications.

Use the Classical FIR Design front panel File menu to complete the
following tasks:

»  Save your filter specifications and coefficients.
*  Load filter designs from previous work.
*  Open the Analysis or the DAQ and Filter front panels.

*  Transfer the FIR design specifications to the Classical IIR Design front
panel.

*  Return to the Main Menu dialog box.

Refer to the Classical IIR Design Front Panel Controls and Displays
section for information about the same controls and displays on the
Classical FIR Design front panel.

Pole-Zero Placement Filter Design

Figure 12-11 shows the Pole-Zero Placement filter design front panel.
The front panel includes a graphical interface with the z-plane pole and
zero cursors and the magnitude versus frequency plot on the left side and a
text-based interface with digital controls on the right side.
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Figure 12-11. Pole-Zero Placement Filter Design Front Panel

Use the Pole-Zero Placement filter design front panel to design IIR digital
filters by manipulating the filter poles and zeros in the z-plane. The poles
and zeros initially could have originated from classical IIR designs. Use
this front panel to move existing poles and zeros directly on the z-plane
plot. You can add and delete poles and zeros and accurately control their
important characteristics.

You can describe the poles and zeros by using either the text-based
interface or the cursors in the z-plane plot. As you use the mouse to click
and drag the cursors, the text entries update. Similarly, as you enter new
specifications in the text entries, the pole and zero cursors update.

The following specifications describe pole-zero filter designs:
*  Pole and zero locations in the z-plane

e Characteristics of each pole and zero

e Gain

e Sampling rate

Any change in these parameters corresponds to a change in the filter
coefficients. The DFD application matches the poles and zeros and
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creates stable second-order stages for IIR filter coefficients. The DFD
application then uses these coefficients to compute the filter magnitude
response. For immediate graphical feedback to your pole-zero filter
designs, the magnitude versus frequency plot updates automatically when
you change the poles or zeros.

Pole-Zero Placement Front Panel Controls and
Displays

Use the Pole-Zero Placement front panel File menu to complete the
following tasks:

»  Save your filter specifications and coefficients.

*  Load filter designs from previous work.

*  Open the Analysis or the DAQ and Filter front panels.

*  Return to the Main Menu dialog box.

Z-Plane Plot

In the z-plane plot, you can move each pole, represented by a red X,
anywhere within the unit circle along and above the x-axis. You can move
each zero, represented by a blue o, anywhere along and above the x-axis.

Click the delete selected button to delete the selected pole or zero.
Click poles and zeros to select them.

Click the add pole button to add a pole to the z-plane. The new pole is
located at the origin.

Click the add zero button to add a zero to the z-plane. The new zero is
located at the origin.

Coordinates Control

Use the coordinates control to specify how the DFD application displays
the poles and zeros, either in rectangular or polar coordinates.

Array of Zeros in Rectangular Coordinates

The Zeros section of the Pole-Zero Placement front panel, shown in
Figure 12-11, is the array of zeros in rectangular coordinates indicator.
The complex value of each zero represents its rectangular position on

the z-plane. The integer, 3, in the upper-left box is the index of the
displayed zero. By changing this index value, you can display a particular
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zero of the array of zeros. When you select a particular zero in the z-plane
plot, the DFD application sets the index value of the array to the selected
ZEero.

If you place a checkmark in the real checkbox, the zero becomes purely
real and is limited to real-axis movement.

When you place a checkmark in the Ip checkbox, the zero has linear phase.
If the zero is not real or on the unit circle, the DFD application matches it
with another zero at a radius of 1/, where r is the radius of the original zero.
The radius is the distance from the origin. Linear-phase zeros are important
in linear-phase FIR filters. If your z-plane plot contains only zeros and all
the zeros have linear phase, the FIR filter you designed has an overall linear
phase response.

If you place a checkmark in the uc checkbox, the zero must be located on
the unit circle with a radius of 1.0 The zero is limited to movement along
the unit circle.

The order control specifies the order of the zero or the number of actual
zeros at this location in the z-plane.

An M™-order zero at z = b has a z-transform of H(z) = (z — b)M.

Array of Poles in Rectangular Coordinates

The Poles section of the Pole-Zero Placement front panel, shown in
Figure 12-11, is the array of poles in rectangular coordinates.

The complex value of each pole represents its rectangular position on

the z-plane. The integer O in the upper-left box is the index of the displayed
pole. By changing this index value, you can display a particular pole of the
array of poles. When you select a particular pole in the z-plane plot, the
DFD application sets the index value of the array to the selected pole.

Whether poles are real is the only special characteristic that applies to
poles. If you place a checkmark in the real checkbox, the pole becomes
purely real and is limited to real-axis movement.

The order text control specifies the pole order or the number of actual poles
at this location in the z-plane.

An M™-order pole at z = a has a z-transform of H(z) = (z — a)™.

If you change the coordinates to polar, the DFD application displays the
poles and zeros in polar coordinates, as shown in Figure 12-12.
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Figure 12-12. Array of Zeros and Poles in Polar Coordinates

Magnitude-Frequency Plot

The magnitude versus frequency graph in Figure 12-11 plots the frequency
response, H(f), and magnitude of the designed digital filter. The
magnitude, y-axis, is in linear or decibel units, depending on how you set
the linear/dB button in the upper-left corner of the graph. The frequency,
x-axis, is in hertz. The full scale ranges from 0.0 to Nyquist, or half the
sampling rate.

Sampling Rate Control

Use the sampling rate control to specify the sampling rate in samples per
second, hertz.

Gain Control

Use the gain control to specify the gain constant for the designed filter.
Increasing gain increases the overall gain of the designed filter. Setting
the Normalize to ON adjusts the filter gain so that the maximum response
is 1.0, 0 dB. If you set Normalize to ON, you cannot adjust the gain control
manually. Setting the Normalize to OFF allows you to manually adjust the
gain control but does not guarantee a maximum response of 1.0.

Arbitrary FIR Design

Figure 12-13 shows the Arbitrary FIR Design front panel. The front panel
includes a graphical interface with the magnitude versus frequency cursors
and plot on the left side and a text-based interface with digital controls on
the right side.
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Figure 12-13. Arbitrary FIR Design Front Panel

Use the Arbitrary FIR Design front panel to design arbitrary-magnitude
FIR digital filters. Enter or modify the array magnitude response points,
frequency and magnitude. From these points, the DFD application forms
a desired magnitude response that covers the entire frequency

range from 0.0 to Nyquist, or half the sampling rate. The DFD application
then processes this desired response, along with the filter order, and uses
the Parks-McClellan algorithm to design an optimal equiripple FIR filter.
The Parks-McClellan algorithm minimizes the difference between the
desired and the actual filter response across the entire frequency range.

To design arbitrary-magnitude FIR filters, enter or modify the desired
frequency-magnitude points and choose an interpolation type to generate
the desired response between your specified points. The DFD application
automatically designs and plots the equiripple FIR filter. You receive
immediate graphical feedback to help you determine whether the filter
meets your specifications.
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Arbitrary FIR Filter Design Front Panel
Controls and Displays

Use the Arbitrary FIR Design front panel File menu to complete the
following tasks:

* Save your filter specifications and coefficients.

*  Load filter designs from previous work.

*  Open the Analysis or the DAQ and Filter front panels.
*  Return to the Main Menu dialog box.

Magnitude versus Frequency Graph

The magnitude versus frequency graph in Figure 12-13 plots the desired
and actual magnitude response of the designed FIR filter. The magnitude,
y-axis, is in linear or decibel units, depending on how you set the linear/dB
button in the upper-left corner of the graph. The frequency, x-axis, is in
hertz. The full scale ranges from 0.0 to Nyquist, or half the sampling rate.

Linear/dB Button

Use the linear/dB button to control the display units, either linear or dB, of
all magnitude and gain controls and displays. These controls and displays
include the y-axis of the magnitude versus frequency plot, passband
response, stopband attenuation, and the magnitude tracking cursor.

# Points Control

Use # points to specify the number of frequency-magnitude

points the DFD application uses to create the desired filter
magnitude-response. Reducing the value of # points deletes points from
the end of the frequency-magnitude array. Increasing the value of # points
inserts the additional number of points to the right of the selected point.

Multiple Select Checkbox

Place a checkmark in the multiple select checkbox to select more than one
frequency-magnitude point on the response graph. Clicking a selected point
removes that point from the selection list.

Interpolation Control

Use the interpolation control to select the type of interpolation the
DFD application uses to generate the desired response from the array of
frequency-magnitude points. Choose linear interp to create flat filters,
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such as lowpass, highpass, bandpass, and bandstop. Choose spline interp
to create smoothly varying filters.

Ins Button

Click the ins button to insert a frequency-magnitude point between the
selected point and the next point. If the selected point is the last point in
the frequency-magnitude array, the DFD application inserts the new point
between the last two points of the array. The DFD application inserts new
points halfway along the line connecting the two outer points.

Del Button

Click the del button to delete the selected frequency-magnitude points.
The DFD application deletes all selected points.

Selected Points Indicator

The selected points indicator displays the selected frequency-magnitude
points. You can select points on the magnitude versus frequency graph by
clicking the point. You also can select points directly from the
frequency-magnitude array by clicking the circle to the right of each point.

Array of Frequency-Magnitude Points

The right side of the Arbitrary FIR Design front panel displays the array
of frequency-magnitude points the DFD application uses to construct the
desired filter magnitude response. The DFD application forms the desired
filter response by interpolating between these points.

The frequency of each point is in hertz. The magnitude is in linear or
decibel units of gain, depending on the setting of the linear/dB button
in the upper-left corner of the magnitude versus frequency graph.

You can select points in this array by clicking the circle to the right of each
point. Then, you can click the del button to delete the selected points. To
move selected points, click the desired direction diamond in the cursor
movement control in the lower-right corner of the magnitude versus
frequency graph.

Filter Order Control

Use filter order to specify the total number of coefficients in the digital
FIR filter.
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Ripple Indicator

The ripple indicator displays the largest absolute error, linear, between
the desired and actual filter responses.

Message Window

The message window displays errors that occurred during the FIR
design procedure.

Locked Frequencies Checkbox

Place a checkmark in the locked frequencies checkbox to lock the present
frequency values of the frequency-magnitude points. If you place a
checkmark in this checkbox, you can alter only the magnitude, the y-value,
of the frequency-magnitude points.

Uniform Spacing Checkbox

Place a checkmark in the uniform spacing checkbox to space the
frequency values of the frequency-magnitude points. The DFD application
spaces the frequency-magnitude points uniformly from 0.0 to half the
sampling rate, inclusive. Before spacing the frequency-magnitude points,
the DFD application displays a dialog box. Click the Uniform Spacing
button to continue and the Cancel button to cancel the spacing operation.

Sort by Frequency Button

Click the sort by frequency button to sort the frequency-magnitude points
in both the response graph and the array by ascending frequency. The value
of each frequency-magnitude point remains unchanged. Only the order of
the points can change.

© National Instruments Corporation 12-27 Signal Processing Toolset User Manual



Chapter 12 Digital Filter Design Application

Import from File Button

Click the import from file button to import frequency-magnitude points
from a text file. The imported file format consists of the following
tab-delimited columns:

Ist line: sampling rate  dB/linear setting (O for linear, 1 for dB)
2nd line: frequency 1 magnitude 1

3rd line: frequency 2 magnitude 2

4th line: frequency 3 magnitude 3

last line: last frequency last magnitude

For example, a file with five frequency-magnitude points appears as

8000.0 1
0.0 -60.0
1000.0 -40.0
2000.0 -20.0
3000.0 0.0
4000.0 -60.0

Sampling Rate Control

Use the sampling rate control to specify the sampling rate in samples per
second, hertz.

Analysis of Filter Design Front Panel

Select File»Analysis from a filter design front panel toolbar to open the
Analysis of Filter Design front panel, shown in Figure 12-14. Use the
Analysis of Filter Design front panel to complete the following tasks:

*  View the filter magnitude response, phase response, impulse response,
step response, and pole-zero plot.

e View and print full-screen plots of each response.

*  Save the analysis results in the full-screen views to text files.

The Analysis of Filter Design front panel uses the particular filter design
specified in the filter design front panel from which it is opened to compute
the various filter responses. You also can choose any of the four filter
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designs to analyze with the Design Analyzed control on the Analysis of
Filter Design front panel, shown in Figure 12-14. The Analysis of Filter
Design front panel uses the filter parameters from the selected filter design.
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Figure 12-14. Analysis of Filter Design Front Panel

Use the File menu to complete the following tasks:

e Load filter designs from previous work.

*  Open the DAQ and Filter front panel.

* Qo to the filter design front panel specified in Design Analyzed.
*  Return to the Main Menu dialog box.

© National Instruments Corporation 12-29 Signal Processing Toolset User Manual



Chapter 12

Digital Filter Design Application

Design Analyzed Control

Use the Design Analyzed control to select the filter control to analyze.
Select File»Goto Design to load and run the filter design front panel
selected with the Design Analyzed control. If you continue to modify the
same filter design that the DFD application is analyzing, the application
recomputes all filter responses.

Analysis Displays

Each of the five filter plots has a zoom box control in the upper-right
corner. Click the zoom box to display a full-screen version of the plot.
You can change the units in the full-screen versions of the following plots:

e Magnitude Response—you can change the units from linear
to decibel.

e  Phase Response—you can change the units from radians to degrees.

* Impulse Response and Step Response—you can change the units from
seconds to samples.

At each full-screen view, you can save the response data to text files.

Magnitude Response Plot

Magnitude Response displays the magnitude of the filter response H(f)
as frequency varies from zero to half the sampling rate.

Phase Response Plot

Phase Response displays the phase of the filter response H(f) as frequency
varies from zero to the sampling rate.

Impulse Response Plot

Impulse Response displays the output of the digital filter when the input is
a unit sample sequence, such as 1, 0, 0, ... The input before the
unity sample is also zero.

Step Response Plot

Step Response displays the output of the digital filter when the input is a
unit step sequence, such as 1, 1, 1, ... The input samples before the step
sequence are defined as zero.

Signal Processing Toolset User Manual 12-30 ni.com



Chapter 12 Digital Filter Design Application

Z-Plane Plot

In the z-plane plot, each pole is represented by a red X, and each zero is
represented by a blue o.

H(z) for IIR Filters

H(z) is the z-transform of the designed digital filter. For an IIR filter, H(z)
can be represented by a product of fractions of second-order z-polynomials:

N, N
z
H(Z) = ﬁ
Dk(Z)
k=1
where N,(z) is the numerator for stage k

D, (z) is the denominator for stage k
N, is the number of second-order stages

You can view the N(z) and D(z) polynomials for other stages by
incrementing the index shown in the upper-left side of the H(z) display.

H(z) for FIR Filters

H(z) is the z-transform of the designed digital filter. You can scroll through
H(z) using the scroll bar. For an FIR filter, H(z) can be represented as a
polynomial in z7';

order—1

HE@) = Y b
j=0

where j=0,1,...,order-1,
hj represents the FIR filter coefficients, and
order is the number of FIR coefficients.

DAQ and Filter Front Panel

Select FilexDAQ and Filter from a filter design front panel toolbar to
access the DAQ and Filter front panel, shown in Figure 12-15. Use the
DAQ and Filter front panel to accomplish the following tasks:

*  Check the performance of your filter design on your own signals,
if you have a National Instruments DAQ device.
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e Check the performance of your filter design with a simulated signal.

*  Configure your DAQ device and acquire your own signals.

When filtering signals, the DAQ and Filter front panel uses the particular

set of filter coefficients specified in the filter design front panel from which
itis opened. The signal data passes through the designed filter, and the DFD
application plots the input and output waveforms and spectrums. You also
can use any of the four filter designs from the Filter Design control on the
DAQ and Filter front panel, shown in Figure 12-15. The DAQ and Filter

front panel uses the filter parameters from the selected design specification.
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Figure 12-15. DAQ and Filter Front Panel

File Menu

Use the File menu to complete the following tasks:

e Load and test filter designs from previous work.

*  Open the Analysis of Filter Design front panel.

* Qo to the filter design front panel specified by Filter Design.

e Return to the Main Menu dialog box.
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Filter Design Control

Use the Filter Design control to designate the filter design to use in
filtering the acquired signal. Select File»Goto Design to load and run the
filter design front panel selected with the Filter Design control.

0ff/On Switch

Use the off/on switch to specify whether you want the DFD to acquire
blocks continuously or on demand. Set the switch to on to continuously
acquire blocks of data. Set the switch to off to acquire data when the
Acquire Once button is clicked. The Acquire Once button only appears
when the switch is set to off.

Function Generator Button

If you select simulated DAQ in the source control on the DAQ Setup front
panel, shown in Figure 12-16, a built-in simulated function generator
provides signals to the DAQ and Filter front panel. On the DAQ and Filter
front panel, click the Function Generator button to view and edit settings,
including signal type, frequency, amplitude, and noise level.

Time Waveform/Spectrum Control

To change the view of a response plot, use the ring control above the plot.
Select either Time Waveform or Spectrum for the input acquired signal
or the output signal.

Sampling Rate Indicator

The actual sampling rate appears in the sampling rate indicator on the DAQ
and Filter front panel, shown in Figure 12-15.

DAQ Setup Button and DAQ Setup Front Panel

Click the DAQ Setup button on the DAQ and Filter front panel to open the
DAQ Setup front panel, shown in Figure 12-16. With the DAQ Setup front
panel, you can change the data acquisition settings, such as the device
number, number of samples to acquire, triggering parameters, or sampling
rate. You also can set the signal source to either DAQ Device or simulated
DAQ with the source control.
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This chapter describes the filter implementation equations for IIR and FIR
filtering and the format of the IIR and FIR filter coefficient files.

Infinite Impulse Response Filters

Infinite impulse response (IIR) filters are digital filters with impulse
responses that, theoretically, can be infinite in length or duration.
The general difference equation characterizing IIR filters is shown in
Equation 13-1.

N,-1 N,-1
1
Yi = a_o z bix;_; - z ai—k (13-1)
j=0 k=1

where N, is the number of forward coefficients b; and N,, is the number
of reverse coefficients a.

In most IR filter designs, coefficient a; is 1. The output sample at the
present sample index i consists of the sum of scaled present and past
inputs (x; and x;_; when j # 0) and scaled past outputs (y;_ ).

The response of the general IIR filter to an impulse where xy = 1 and x; =0
for all i # 0 is called the impulse response of the filter. The impulse response
of the filter described by Equation 13-1 has an infinite length for nonzero
coefficients. In practical filter applications, however, the impulse response
of stable IIR filters decays to near zero in a finite number of samples.

The advantage of digital IIR filters over finite impulse response (FIR) filters
is that IIR filters usually require fewer coefficients to perform similar
filtering operations. Therefore, IIR filters execute much faster and do not
require extra memory because they execute in place.

The disadvantage of IIR filters is that the phase response is nonlinear.
If the application does not require phase information, such as simple
signal monitoring, IIR filters might be appropriate. Use FIR filters for
applications that require linear phase responses.
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IIR filters are also known as recursive filters or autoregressive
moving-average (ARMA) filters. Refer to the works of Jackson [13],
Oppenheim and Schafer [19], Parks and Burrus [20], and Parks and
McClellan [21] [22] for more information about digital filter design.

Cascade-Form IIR Filtering

Filters implemented using the structure which Equation 13-1 directly
defines are known as direct-form IIR filters. Direct form implementations
often are sensitive to errors introduced by coefficient quantization and by
computational precision limits. Additionally, a filter designed to be
stable can become unstable with increasing coefficient length, which

is proportional to filter order.

You can obtain a less-sensitive structure by dividing the direct-form transfer
function into lower-order sections, or filter stages. The direct-form transfer
function of the filter given by Equation 13-1, with a, = 1, can be written as
a ratio of z transforms in Equation 13-2.
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When you factor Equation 13-2 into second-order sections, the transfer
function of the filter becomes a product of second-order filter functions:
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where N, = |_Na/2J is the largest integer less than or equal to N,/2 and

N, = N,. This new filter structure can be described as a cascade of
second-order filters, as shown in Figure 13-1.
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Figure 13-1. Cascaded Filter Stages

You can implement each second-order stage using the direct-form filter
equations:

ylil = box[il + b x[i— 1]+ byx[i—2]—a,y[i—1]-a,y[i—-2]
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Chapter 13 IR and FIR Implementation

The illustration in Figure 13-2 shows the graphical representation of these
direct-form equations.
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Figure 13-2. Direct Form Structure

For each stage, you must maintain two past inputs (x[i — 1], x[{ — 2]) and
two past outputs (y[i — 1], y[i — 2]).

A more efficient implementation of each second-order stage is known as
the direct-form II. You can implement each second-order stage using the
direct-form II filter equations:
s[i] = x[i] —as[i—1]1-a,s[i-2]
ylil = byslil +bys[i— 1]+ b,s[i—2]

The illustration in Figure 13-3 shows the graphical representation of these
direct-form II equations.
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s[i] by
x[il ylil

Figure 13-3. Direct Form Il Structure

Finite Impulse Response Filters

FIR filters are digital filters with finite impulse responses. FIR filters are
also known as nonrecursive filters, convolution filters, or moving-average
(MA) filters because you can express the output of an FIR filter as a finite
convolution:

n-1
i = Y iy (13-3)
k=0

where x; represents the input sequence to be filtered, y; represents the
output filtered sequence, and %, represents the FIR filter coefficients.
FIR filters have the following characteristics:

e They can be designed to have linear phase by ensuring coefficient
symmetry.

e They are always stable.

*  You can perform the filtering function using the convolution. A delay
generally is associated with the output sequence:

-1
delay = —2
elay 3

where n is the number of FIR filter coefficients.
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You design FIR filters by approximating a specified desired-frequency
response of a discrete-time system. The most common techniques
approximate the desired-magnitude response while maintaining a

linear-phase response.

Chapter 13 IR and FIR Implementation

Format of the Filter-Coefficient Text Files

When you save your filter coefficients to a text file, the DFD application
generates a readable text file that contains all the information you need to
implement the designed FIR or IIR digital filter. This section describes

the format for both FIR and IIR filter-coefficient files.

FIR-Coefficient File Format

Table 13-1 provides example FIR-coefficient text files and descriptions.

You can use Equation 13-3 directly to implement the FIR filter.

Table 13-1. FIR-Coefficient Text Files and Descriptions

Coefficient File Example Description
FIR filter coefficients type of file
Sampling rate sampling rate label
8.000000E+3 sampling rate in Hz
N filter order label
22 filter order
h[0..21] coefficients label
6.350871E-3 first coefficient, h[0]
-8.833535E-3 second coefficient, A[1]
—2.847674E-2
4.626607E-2
4.103986E-2
—1.114579E-1
—1.412791E-2
1.810791E-1
—5.984635E-2
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Table 13-1. FIR-Coefficient Text Files and Descriptions (Continued)

Coefficient File Example Description

—2.002337E-1

1.516199E-1

1.516199E-1

—2.002337E-1

—5.984635E-2

1.810791E-1

—1.412791E-2

—1.114579E-1

4.103986E-2

4.626607E-2

—2.847674E-2

—8.833535E-3

6.350871E-3 last coefficient, h[N — 1]

lIR Coefficient File Format

IIR coefficient files are slightly more complex than FIR coefficient files.
IIR filters are usually described by two sets of coefficients, a and b
coefficients. The total number of existing a coefficients equals M x S,
and the total number of existing b coefficients equals (M + 1) x S, where
M is the stage order, usually two, and S is the number of stages. An IR
filter with three second-order stages has two a coefficients per stage, for a
total of six a coefficients, and three b coefficients per stage, for a total of
nine b coefficients.

You can use Equation 13-1 to implement the IIR filter in cascade stages and
maintain two past inputs and two past outputs for each stage, or you can use
the direct form II equations and maintain two past internal states.

Table 13-2 provides example IIR-coefficient text files and descriptions.
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Table 13-2. 1IR-Coefficient Text Files and Descriptions

Coefficient File Example

Description

IR filter coefficients

coefficient type

Sampling rate

sampling rate label

8.000000E+3

sampling rate in Hz

Stage order

stage order label

2

order of each stage

Number of stages

number of stages label

3

number of stages

a coefficients

a coefficients label

6 number of coefficients
3.801467E-1 a for stage 1
8.754090E-1 a, for stage 1
—1.021050E-1 a, for stage 2
9.492741E-1 a, for stage 2
8.460304E-1 a, for stage 3
9.450986E-1 a, for stage 3

b coefficients

b coefficients label

9 number of b coefficients
1.514603E-2 b, for stage 1
0.000000E+0 b, for stage 1
1.514603E-2 b, for stage 1

1.000000E+0

b, for stage 2

6.618322E-1

b, for stage 2

1.000000E+0

b, for stage 2
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Table 13-2. |IR-Coefficient Text Files and Descriptions (Continued)

Coefficient File Example

Description

1.000000E+0

b, for stage 3

1.276187E+0

b, for stage 3

1.000000E+0

b, for stage 3
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Frequently Asked Questions

This appendix addresses some questions users frequently ask.

What is the difference between linear and quadratic JTFA methods?

This package includes both linear and quadratic methods. Linear JTFA
transforms include the following methods:

*  Gabor expansion, which is the inverse of short-time Fourier
transform (STFT)

*  STFT, which computes the Gabor coefficients
* Adaptive representation, which is the inverse of adaptive transform

*  Adaptive transform

Quadratic JTFA algorithms include the following methods:
*  STFT spectrogram

*  Wigner-Ville Distribution (WVD)

*  Pseudo Wigner-Ville Distribution (PWVD)

*  Cohen’s class

e Choi-Williams Distribution (CWD)

*  Cone-shaped distribution

*  Gabor spectrogram

*  Adaptive spectrogram

If you consider linear JTFA to be an evolved form of conventional Fourier
transform, then quadratic JTFA is the counterpart of the standard power
spectrum. The difference between using linear and quadratic JTFA
methods is that you can invert linear transform. As with fast-Fourier
transform (FFT), you can use the Gabor coefficients to reconstruct the
original signal. Linear transform is suitable for signal processing, such as
time-varying filtering.

In general, the quadratic form is not reversible. You cannot restore the
original time waveform from the time-dependent spectrum. However,
quadratic JTFA describes the energy distribution of the signal in the joint
time-frequency domain, which is useful for signal analysis.
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Frequently Asked Questions

Which quadratic JTFA algorithms should I use?

Each quadratic JTFA algorithm has advantages and disadvantages.

You should select an algorithm that fits the application. Generally
speaking, no algorithm is superior to all others in all applications.

Table A-1 summarizes the advantages and disadvantages of all quadratic
algorithms provided in this package.

Table A-1. Quadratic JTFA Algorithms

Method

Resolution and
Crossterm Description

Speed

Adaptive spectrogram

extremely high resolution
when a signal is made up of
Gaussian pulses

no crossterms

non-negative

slow

CWD

less crossterm than PWVD

very slow

Cone-shaped distribution

less crossterm interference
than PWVD or CWD

slow

Gabor spectrogram

good resolution
robust

minor crossterms

moderate

PWVD

extremely high resolution
for a few types of signals

severe crossterms

fast

STFT spectrogram

poor resolution
robust

non-negative

fast

If the frequency contents of the analyzed signal do not change rapidly,
try the STFT spectrogram first. You can apply a relatively long window
function to obtain a good frequency resolution with tolerable time
resolution deterioration. Because the STFT spectrogram is fast, it is

suitable for online analysis.

The other algorithms generally have better joint time and frequency
resolution than the STFT spectrogram, but they require more computation

Signal Processing Toolset User Manual A-2

ni.com



Appendix A Frequently Asked Questions

time, which is only suitable for offline analysis. If you need a higher
resolution, use the third- or fourth-order Gabor spectrogram to reduce
crossterm interference and achieve faster processing speeds.

National Instruments recommends that you complete the following steps
when you analyze a signal:

1. Begin with the STFT and determine which analysis window is
best—wideband, mediumband, or narrowband.

2. If you are satisfied with the results, use STFT. If not, continue with
step 3.

3. If the STFT does not produce satisfactory results, try the Gabor
spectrogram. Regardless of the analysis window you use, as the order
increases, the Gabor spectrogram converges to the Wigner-Ville
Distribution. If the order is low, the type of the analysis window
influences the Gabor spectrogram, although the effect is not as large
as the effect type has on the STFT. Select your Gabor spectrogram
analysis window based on the window information obtained in step 1.

4. Increase the order until the crossterm interference is evident. For most
applications, an order of three to five is adequate.

5. Reduce the data block length and increase the freq. zoom to examine
detailed features.

Can I measure a signal’s energy point-to-point in the joint
time-frequency domain?

This question addresses a fundamental issue in the joint time-frequency
analysis area. Except for a few special cases, the answer is no. At this point,
scientists know that no algorithm can meaningfully measure a signal’s
energy point-to-point in the joint time-frequency domain.

Roughly speaking, the result, P(¢,w), of all quadratic JTFA algorithms
indicates a certain type of weighted average energy near the point (¢, f).
Some algorithms take the average over a larger area, such as the STFT
spectrogram. In this case, the time-frequency resolution is poor, but it is
always greater than or equal to zero. Some methods cause heavy weights
on a small number of points, such as the high-order Gabor spectrogram,
which yields better time-frequency resolution. In this case, some points
might approach negativity, which is not acceptable for certain applications.
In short, every algorithm has advantages and disadvantages.

Figure A-1 shows an STFT spectrogram with a test signal that contains
10 sine cycles at 10 Hz. Although the signal starts at # = 1 s and ends at

t =2 s, the STFT spectrogram clearly shows something before = 1 s and
after t = 2 s, as indicated by the arrows. The time-dependent spectrum
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indicates that the signal not only contains 10 Hz, but that it possesses a
certain bandwidth.
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Figure A-1. STFT Spectrogram (Hanning Window)

You can apply other methods to substantially suppress the energy outside
1 sto 2 s and 10 Hz, and achieve a near point-to-point measurement.
Figure A-2, shows the Gabor spectrogram. Most of the signal’s energy is
between 1 sto2 s and 10 Hz. As the order increases, the concentration also
increases, and you come closer to achieving a point-to-point measurement.
However, a higher order Gabor spectrogram produces negative values,
which can cause problems with the classical energy definition. The Gabor
spectrogram generally requires more computation time than the

STFT spectrogram.
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Figure A-2. Gabor Spectrogram (Order Four)

What can I do if the time-dependent spectrum only shows a line at DC?

If the analyzed signal is non-negative, such as an ECG or the stock index,
or if it contains a large DC offset, the resulting time-dependent spectrum is
dominated by a single line in the vicinity of DC. You might not be able to
see more interesting frequency patterns. To suppress the DC component,
you have to apply certain types of preprocessing. However, the methods for
removing the DC components, or detrending, are application dependent.
No general method works in all cases. Common techniques of detrending
include lowpass filtering and curve fitting. However, a more promising
technique is the wavelet transform. Refer to Part IV, Wavelet Analysis, for
information on wavelet-based detrending.

Can I use other software to plot the time-dependent spectrum?

Yes. Save the time-dependent spectrum to a text file. The resulting text file
contains only Z values and does not retain the time and frequency axis
information. The time and frequency axis can be determined as follows.

© National Instruments Corporation A-5 Signal Processing Toolset User Manual



Appendix A Frequently Asked Questions

When t0 and f0 are shown on the front panel of Offline Analyzer, the time
increment At is computed by the following equation:

time span
At = P

number of rows

and the frequency increment Af is determined by the following equation:

sampling frequency

Af =

2 X zoom factor X 128
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Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

*  Support—Online technical support resources include the following:

Self-Help Resources—For immediate answers and solutions,
visit our extensive library of technical support resources available
in English, Japanese, and Spanish at ni . com/support. These
resources are available for most products at no cost to registered
users and include software drivers and updates, a KnowledgeBase,
product manuals, step-by-step troubleshooting wizards, hardware
schematics and conformity documentation, example code,
tutorials and application notes, instrument drivers, discussion
forums, a measurement glossary, and so on.

Assisted Support Options—Contact NI engineers and other
measurement and automation professionals by visiting
ni.com/ask. Our online system helps you define your question
and connects you to the experts by phone, discussion forum,

or email.

e  Training—Visitni . com/custed for self-paced tutorials, videos, and
interactive CDs. You also can register for instructor-led, hands-on
courses at locations around the world.

*  System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni . com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni . com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.
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Glossary

Numbers/Symbols

%

1D

2D

A

alias term

alternating flip

analysis filter bank

basis

biorthogonal
filter bank

Butterworth filter

C

chirplet

constant Q analysis

© National Instruments Corporation G-1

Percent.

Infinity.

Pi.
One-dimensional.

Two-dimensional.

An image term in the frequency domain.

For a periodic sequence g[n] with a period N, the sequence (-1)"g[N — n]
is considered the alternating flip of g[n].

A filter bank that converts a signal from time domain into wavelet
domain.

A core or fundamental function.

A filter bank in which analysis and synthesis filter banks are orthogonal to
each other.

A special kind of filter in which the low-frequency asymptope is a constant.

A complex chirp function with Gaussian envelope.

Analysis in which the ratio between the center frequency and frequency
bandwidth is constant.
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CWD

D

Daubechies wavelet
and filter bank

dB

decimation filter
denoise

DFD

distortion term

DLL

E

equiripple filter

F

FFT

filter bank

finite impulse
response filter

FIR

Choi-Williams distribution.

Wavelet and filter bank that has a maximum number of zeros at 1. The
wavelet and filter bank was initially developed by Ingrid Daubechies.

Decibels. A logarithmic unit for measuring ratios of amplitude

levels. If the amplitudes are specified in terms of power, then

1dB = 10 xlog10(P/Pr) where P is the measured power and Pr

is the reference power. If the amplitudes are specified in terms of voltage,
then 1 dB = 20 x1og10(V/Vr) where V is the measured voltage

and Vr is the reference voltage.

The output of the filter does not preserve all points.
Remove the noise from the original signal.

Digital Filter Design.

A term that causes distortion in a filter output.

Dynamic Link Library.

A filter with equiripples in the passband and stopband.

Fast Fourier Transform, an efficient and fast method for calculating the
discrete Fourier transform. The number of samples must usually be a power
of two. The fast Fourier transform (or the discrete Fourier transform)
determines the amplitude and phase of the frequency components present
in a time domain digital signal.

A group of filters.

A filter without feedback that only contains zeros in the z-domain.

Finite impulse response.
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frame

G

Gaussian pulse

H

halfband filter

Hz

IEEE
IIR filters
image compression

inner product

JTFA

maximum flat filter
MB
mother wavelet

multicomponent signal

multiscale analysis

© National Instruments Corporation G-3

Glossary

Segment of time domain data.

A complex sinusoidal function with Gaussian envelope.

A filter with a cut-off frequency at half of the frequency band.

Hertz. Cycles per second.

Institute for Electrical and Electronic Engineers.
Infinite impulse response filters.
Using only part of the data to recover the original image.

A mathematical operation used to test the difference between two
functions.

Joint time-frequency analysis.

A type I filter that has a maximum number of zeros at 7.
Megabytes of memory.
An elementary wavelet.

A signal containing significant energy concentrated around more than one
distinct and separate frequency.

Analyzing a signal in several different scales.
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nonstationary signal

Nyquist rate

0

octave

orthogonal filter bank

oversampling rate

P

preemphasis

PWVD

S

sampling rate
signal discontinuity
spectral changes

spectral leakage

spectrogram

STFT

Signal whose frequency content changes within a captured frame.

Half the sampling rate.

Interval between two frequencies, one of which is twice the other. For
example, frequencies of 250 Hz and 500 Hz are one octave apart, as are
frequencies of 1 kHz and 2 kHz. See also third-octave.

A filter bank where both the analysis and synthesis filter banks are
orthogonal to themselves. It is a special case of biorthogonal filter banks.

Ratio between the number of Gabor coefficients and the number of test
samples.

Filtering before processing.

Pseudo Wigner-Ville Distribution.

Rate at which a continuous waveform is digitized.
The point where the first derivative does not exist.
Changes in the frequency content of a signal.

Phenomenon whereby the measured spectral energy appears to leak from
one frequency into other frequencies. It occurs when a sampled waveform
does not contain an integral number of cycles over the time period during
which it was sampled. To reduce spectral leakage, multiply the
time-domain waveform by the window function. See also window.

A display of the energy distribution of a signal with one axis being time and
the other being frequency.

Short-time Fourier Transform.
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string controls and
indicators

synthesis filter bank

T

temporal
third-octave
two-dimensional

type I filter

W

wavelet transform
wavelet-based detrend

window

WVD
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Glossary

Front panel objects used to manipulate and display, or input and output,
text.

A filter bank that transfers a signal from the wavelet domain into the time
domain.

Of or relating to time domain.
Ratio between two frequencies, equal to 2!3. See also octave.
Having two dimensions, such as an array with both rows and columns.

The filter coefficients are symmetric around the middle point.

A transform using wavelet as the elementary functions.
A method of detrend, which is achieved by wavelet transform.

Technique used to reduce spectral leakage by multiplying the time-domain
waveform by a window function. The process of windowing reduces the
amplitudes of discontinuities at the edges of a waveform, which reduces
spectral leakage. If the waveform contains an integral number of cycles,
there is no spectral leakage. See also spectral leakage.

Wigner-Ville Distribution.
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1D wavelet transform, 11-2
2D signal processing, 10-12
2D wavelet transform, 11-9

A

accessing example application source code, 1-4
adaptive representation, 4-2
adaptive spectrogram, 3-4, 4-12, A-2
equation for, 4-12
JTFA example, 5-5
adaptive transform, 4-2
algorithms
adaptive representation, 4-2
adaptive spectrogram, 4-12
adaptive transform, 4-2
Choi-Williams distribution (CWD), 4-9
Cohen’s class, 3-4, 4-8
cone-shaped distribution, 4-10
estimating number of complex sinusoids
minimum description length, 7-9
Gabor expansion, 4-1
Gabor spectrogram, 4-11
linear vs. quadratic, A-1
parameter estimation, 7-6
matrix pencil method, 7-9
Prony’s method, 7-9

Wigner-Ville distribution, 4-5
Analysis of Filter Design front panel,
12-6, 12-28
applications
DFD, 1-4, 12-1
accessing, 12-2
editing preferences, 12-3
loading filter specification files, 12-3
obtaining information about, 12-3
opening front panels, 12-3
quitting, 12-3
digital filter design, 1-4, 12-1
JTFA, 5-1
SRSA, 8-1
wavelet analysis, 11-1
1D wavelet transform, 11-2
2D wavelet transform, 11-9
wavelet packet, 11-12
Wavelets Designer, 11-15
Wavelets Designer front panel, 11-15
Wavelets Designer front panel (figure),
11-16
approaches to JTFA, 3-3
AR, 7-2,7-4,7-5
ARMA, 7-1,7-2
Atlas, L.E., B-3
auto-regressive and moving average. See ARMA
auto-regressive. See AR

point-to-point measurement of a signal, A-3

pseudo Wigner-Ville distribution
(PWVD), 4-5
selecting, A-2
SRSA, 7-1, 7-6
covariance, 7-6
PCAR, 7-7
STFT, 4-1
STFT spectrogram, 4-3
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block diagram
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Chen, D., B-2
Choi, H., B-1
Choi-Williams distribution, 3-4, A-2
equation for, 4-9
JTFA example, 5-6
Cohen, L., B-1
Cohen’s class, 3-4, 4-8
equation for, 4-8
cone-shaped distribution, 3-4, 4-10, A-2
equation for, 4-10
JTFA example, 5-7
contacting National Instruments, C-1
conventions used in this manual, xiv
covariance method, 7-6
crossterm interference, 3-4, 4-5, 4-9, 4-11
customer
education, C-1
professional services, C-1
technical support, C-1
CWD. See Choi-Williams distribution

D

damped sinusoids, 7-5
DAQ and Filter front panel, 12-6, 12-31
DAQ Setup front panel, 12-33
DC component, A-5
designing filters
Analysis of Filter Design front
panel, 12-28
arbitrary FIR, 12-23
front panel controls and
indicators, 12-25
classical FIR, 12-16
front panel controls and
indicators, 12-19
passband ranges, 12-18
stopband ranges, 12-18
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classical IIR, 12-11
front panel controls and
indicators, 12-14
passband ranges, 12-13
stopband ranges, 12-13
DAAQ and Filter front panel, 12-31
DAQ Setup front panel, 12-33
pole-zero placement, 12-19
front panel controls and
indicators, 12-21
specifications for, 12-20

DFD, 1-4, 12-1

accessing, 12-2
designing filters
arbitrary FIR, 12-23
classical FIR, 12-16
classical FIR passband ranges, 12-18
classical FIR stopband ranges, 12-18
classical IIR, 12-11
classical IIR passband ranges, 12-13
classical IIR stopband ranges, 12-13
pole-zero placement, 12-19
pole-zero placement
specifications, 12-20
editing preferences, 12-3
filter specifications
filename extensions (table), 12-5
transfers (table), 12-7
front panels, 12-4
Analysis of Filter Design,
12-6, 12-28
analyzing filter designs, 12-6
arbitrary FIR, 12-25
classical FIR, 12-19
classical IIR, 12-14
DAQ and Filter, 12-6, 12-31
DAQ Setup, 12-33
Function Generator, 12-6
graph cursors, 12-10
graph palette, 12-9
loading filter specifications, 12-5
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panning and zooming, 12-7
plot legend, 12-8
pole-zero placement, 12-21
returning to Main Menu dialog
box, 12-7
saving filter coefficients, 12-5
saving filter specifications, 12-5
testing filter designs, 12-6
transferring filter designs, 12-7
Zoom palette, 12-10
Zoom palette (figure), 12-9
interaction with related applications
(figure), 12-2
loading filter specification files, 12-3
Main Menu dialog box, 12-2
obtaining information about, 12-3
opening front panels, 12-3
quitting, 12-3
diagnostic resources, C-1
digital filter design. See DFD
distribution
Choi-Williams, 3-4
equation for, 4-9
JTFA example, 5-6
cone-shaped, 3-4
equation for, 4-10
JTFA example, 5-7
Wigner-Ville, 2-5, 3-4
equation for, 4-5
JTFA example, 5-6
documentation
conventions used in manual, xiv
online library, C-1
drivers
instrument, C-1
software, C-1
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E

entropy types (table), 10-15
equiripple filters, 11-19
positive, 11-19
estimating number of complex sinusoids, 7-9
example code, C-1
examples
DFD, 1-4, 12-1
accessing, 12-2
editing preferences, 12-3
loading filter specification files, 12-3
obtaining information about, 12-3
opening front panels, 12-3
quitting, 12-3
JTFA, 5-1, 5-2
adaptive spectrogram, 5-5
calculating mean instantaneous
frequency, 5-8
changing spectrogram display, 5-7
Choi-Williams distribution, 5-6
cone-shaped distribution, 5-7
detrending, 5-3
displaying data, 5-7
frequency zooming, 5-8
Gabor spectrogram, 5-5
loading data, 5-2
saving results, 5-9
selecting method, 5-3
setting sampling rate, 5-3
STFT spectrogram, 5-4
Wigner-Ville distribution, 5-6
SRSA, 8-1
wavelet analysis, 11-1
1D wavelet transform, 11-2
2D wavelet transform, 11-9
wavelet packet, 11-12
Wavelets Designer, 11-15
Wavelets Designer front panel, 11-15
Wavelets Designer front panel
(figure), 11-16
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filter banks
biorthogonal, 10-4
designing (figure), 11-17
discrete, 10-1
orthogonal, 10-10
relationship to wavelet transform
coefficients (figure), 10-4
two-channel perfect reconstruction, 10-1
relationship to wavelet
transform, 10-3
filters
equiripple, 11-19
general, 11-19
maximum flat, 11-19
Fourier transform, 2-2
compared to wavelet analysis, 9-6
frequently asked questions, A-1, C-1
Function Generator, 12-6, 12-33

G

Gabor expansion, 2-5, 3-4, 4-1

Gabor spectrogram, 2-8, 3-4, 4-11, A-2
detecting aneurysms, 2-10
earthquake engineering, 2-12
equation for, 4-11
JTFA Example, 5-5

Gabor, Dennis, 3-4

general equiripple filter, 11-19

graph palette, 12-9

H

help
professional services, C-1
technical support, C-1
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installing Signal Processing Toolset, 1-5
instrument drivers, C-1

J

joint time-frequency analysis. See JTFA
JTFA, 3-1
Advanced JTFA palette, 1-2
algorithms, 4-1
adaptive representation, 4-2
adaptive spectrogram, 4-12
adaptive transform, 4-2
Choi-Williams distribution
(CWD), 4-9
Cohen’s class, 3-4, 4-8
cone-shaped distribution, 4-10
Gabor expansion, 4-1
Gabor spectrogram, 4-11
linear, 4-1
pseudo Wigner-Ville distribution
(PWVD), 4-5
quadratic, 4-3, A-2
STFT, 4-1
STFT spectrogram, 4-3
Wigner-Ville distribution
(WVD), 4-5
applications, 5-1
approaches to, 3-3
Easy Level JTFA palette, 1-2
example, 5-1
adaptive spectrogram, 5-5
calculating mean instantaneous
frequency, 5-8
changing spectrogram display, 5-7
Choi-Williams distribution, 5-6
cone-shaped distribution, 5-7
detrending, 5-3
displaying data, 5-7
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frequency zooming, 5-8 N

Gabor spectrogram, 5-5

loading data, 5-2

saving results, 5-9

selecting method, 5-3

setting sampling rate, 5-3

STFT spectrogram, 5-4

Wigner-Ville distribution, 5-6
introduction to, 1-2

National Instruments
customer education, C-1
professional services, C-1
system integration services, C-1
technical support, C-1
worldwide offices, C-1

LabWindows/CVI, 1-2 0
need fOf, 3-1 online technical support, C-1
quadratic, 3-4 orthogonal filter banks, 10-10

Refnum JTFA palette, 1-2

P
K

palette
KnowledgeBase, C-1 Adv Sig Processing, 1-2
Advanced JTFA, 1-2
L Advanced SRSA, 1-3

Advanced Wavelet, 1-4

LabWindows/CVI Easy Level JTFA, 1-2
JTFA, 1-2 Easy Level SRSA, 1-3
SRSA, 1-3

Easy Level Wavelet, 1-4

wavelet analysis, 1-4 Refnum JTFA, 1-2
linear JTFA, 3-4 SPT

l%near JTFA algor.ithms, 4-1 JTFA, 5-1
linear vs. quadratic methods, A-1 SRSA. 8-1

wavelet analysis, 11-1
M Wavelet Packet, 1-4
parameter estimation
algorithms for, 7-6
matrix pencil method, 7-9
Prony’s method, 7-9
example, 8-1
PCAR, 7-7
phone technical support, C-1
plot legend, 12-8
point-to-point measurement, A-3
positive equiripple filter, 11-19

MA, 7-2

Marks, R.J., B-3

matrix pencil method, 7-9

maximum flat filter, 11-19

measuring signal energy, A-3

minimum length description algorithm, 7-9
model-based frequency analysis. See SRSA
Morris, J.M., B-2

moving average. See MA
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principle component auto-regressive method.
See PCAR

professional services, C-1

programming examples, C-1

Prony’s method, 7-9

pseudo Wigner-Ville distribution (PWVD),
4-5, A-2

Q

Qian, S., B-2
quadratic JTFA, 3-4

algorithms for, 4-3
quadratic vs. linear methods, A-1

R

Raz, S., B-3
references, B-1
residual equation, 5-6

S

saving time-dependent spectrums to a text
file, A-5
selecting an algorithm, A-2
short-time Fourier transform (STFT), 3-3, 4-1
signal energy measurements, A-3
Signal Generator, 8-3
Signal Processing Toolset
role in signal processing, 2-15
software drivers, C-1
source code
accessing examples, 1-4
spectrogram
adaptive
equation for, 4-12
JTFA example, 5-5
Gabor, 2-8, 3-4
equation for, 4-11
JTFA example, 5-5
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STFT, 3-4
equation for, 4-3
JTFA example, 5-4
SPT palette
JTFA, 5-1
SRSA, 8-1
wavelet analysis, 11-1
SRSA, 6-1
Advanced SRSA palette, 1-3
algorithms for, 7-1
covariance, 7-6
PCAR, 7-7
applying methods of, 6-6
comparing
FFT, 6-7
JTFA, 6-7
to wavelets, 6-7
damped sinusoids, 7-5
Easy Level SRSA palette, 1-3
examples, 8-1
introduction to, 1-2
LabWindows/CVI, 1-3
model coefficients, 7-3
models, 7-1
AR, 7-2,7-4,7-5
ARMA, 7-1,7-2
auto-regressive, 7-2
auto-regressive and moving
average, 7-1
MA, 7-2
moving average, 7-2
need for, 6-1
performing, 8-2
loading data, 8-3
selecting damped sinusoid estimation
method, 8-6
selecting SRSA method, 8-6
selecting window type, 8-6
setting number of complex
sinusoids, 8-5
setting sampling rate, 8-5
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using data from text files, 8-5
using synthetic data, 8-3
power spectra, 7-3
STFT
compared to wavelet analysis, 9-6
STFT spectrogram, 3-4, 4-3, A-2
equation for, 4-3
JTFA example, 5-4
super-resolution spectral analysis. See SRSA
support
technical, C-1
suppressing the DC component, A-5
Synthetic Data front panel, 8-3
system integration services, C-1
system requirements, 1-5

T

technical support, C-1
telephone technical support, C-1
time-dependent spectrum
plotting with other software, A-5
saving to a text file, A-5
time-frequency transform, 2-8
training
customer, C-1
transform, 2-1
Fourier, 2-2, 9-1
compared to wavelet analysis, 9-6
short-time Fourier, 3-3
time-frequency, 2-8
wavelet, 2-6
troubleshooting resources, C-1

two-channel perfect reconstruction filter
banks, 10-1

]

wavelet analysis
2D signal processing, 10-12
Advanced Wavelet palette, 1-4
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applications of, 9-9
denoise, 9-12
detecting discontinuity, 9-9
detrending, 9-11
multiscale analysis, 9-10
compared to Fourier transform, 9-6
computing frequency, 9-3
Easy Level Wavelet palette, 1-4
entropy types (table), 10-15
examples, 11-1
1D wavelet analysis, 11-2
2D wavelet transform, 11-9
using the 1D wavelet transform
example, 11-4
using the 2D wavelet transform
example, 11-10
wavelet packet, 11-12
Wavelets Designer, 11-15
Wavelets Designer front panel, 11-15
Wavelets Designer front panel
(figure), 11-16
filter banks
biorthogonal filter, 10-4
orthogonal, 10-10
two-channel perfect
reconstruction, 10-1
fundamentals of, 9-1
introduction to, 1-3
LabWindows/CVI, 1-4
performance issues, 9-13
procedure for (figure), 9-5
relationship of wavelet transform
coefficients to filter banks
(figure), 10-4
relationship to two-channel perfect
reconstruction filter banks, 10-3
SPT palette, 11-1
using discrete filter banks, 10-1
Wavelet Packet palette, 1-4
wavelet packets, 10-14
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wavelet packets, 10-14
example, 11-12
wavelet transform, 2-6
wavelets
designing (figure), 11-17
designing, procedure for, 11-17
factorizing Py(z) into Gy(z) and Hy(z),
11-20
finding the product Py(z), 11-18
selecting filter bank type, 11-18
using the Wavelets Designer
(figure), 11-16
examples
using the wavelet packet
example, 11-13
Wavelets Designer, 11-15
additional utilities, 11-22
front panel (figure), 11-16
opening front panel, 11-15
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