
LabVIEW TM

Using External Code in LabVIEW

Using External Code in LabVIEW

April 2003 Edition
Part Number 370109B-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 61 2 9672 8846, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada (Calgary) 403 274 9391, Canada (Montreal) 514 288 5722, Canada (Ottawa) 613 233 5949,
Canada (Québec) 514 694 8521, Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530,
China 86 21 6555 7838, Czech Republic 420 2 2423 5774, Denmark 45 45 76 26 00,
Finland 385 0 9 725 725 11, France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427,
Hong Kong 2645 3186, India 91 80 51190000, Israel 972 0 3 6393737, Italy 39 02 413091,
Japan 81 3 5472 2970, Korea 82 02 3451 3400, Malaysia 603 9059 6711, Mexico 001 800 010 0793,
Netherlands 31 0 348 433 466, New Zealand 64 09 914 0488, Norway 47 0 32 27 73 00,
Poland 48 0 22 3390 150, Portugal 351 210 311 210, Russia 7 095 238 7139, Singapore 65 6 226 5886,
Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 0 8 587 895 00,
Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on the documentation, send email to techpubs@ni.com.

© 1993–2003 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
CVI™, LabVIEW™, National Instruments™, NI™, and ni.com™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v Using External Code in LabVIEW

Contents

About This Manual
Conventions ...xiii
Related Documentation..xiv

Chapter 1
Introduction

Calling Code in Various Platforms ..1-1
Characteristics of the Two Calling Approaches ..1-2

Details of the Call Library Function Node ..1-3
Details of a CIN...1-4

Using the Flatten To String Function ..1-4

Chapter 2
Shared Libraries (DLLs)

Configuring the Call Library Function Node ..2-1
Configuring for Multiple Thread Operation..2-2
Setting the Calling Convention ...2-3
Configuring Parameters...2-3

Configuring Return Type ..2-4
Adding and Deleting Parameters ..2-4
Editing Parameters ..2-4
Selecting the Parameter Type ...2-4

Calling Functions That Expect Other Data Types...2-8
Building a Shared Library (DLL) ..2-8

Task 1: Build the Function Prototype in LabVIEW..2-9
Task 2: Complete the .c File..2-11

Required Libraries...2-12
Task 3: Build a Library Project in an External IDE ..2-13

Microsoft Visual C++ 6.0 on 32-bit on Windows Platforms............2-13
Gnu C or C++ Compilers on Solaris or Linux..................................2-16
Metrowerks CodeWarrior on Mac OS ..2-17
Project Builder on Mac OS X ...2-17

Calling External APIs ..2-17
Common Pitfalls with the Call Library Function Node2-17

Incorrect Function Name ..2-18
Data Types ..2-19
Constants ...2-19
Calling Conventions..2-19

Contents

Using External Code in LabVIEW vi ni.com

Example 1: Call a Shared Library that You Built ... 2-20
Complete Configuration of the Call Library Function Node 2-20
Build the Front Panel .. 2-21
Complete the Block Diagram ... 2-21
Run the VI .. 2-22

Example 2: Call a Hardware Driver API .. 2-22
Configure the Call Library Function Node....................................... 2-23

Example 3: Call the Win32 API ... 2-24
Constants .. 2-26
Determining the Proper Library and Function Name....................... 2-28
Unicode Versions and ANSI Versions of Functions 2-28
Configuring a Call to the Win32 API... 2-29

Additional Windows Examples of LabVIEW Calls to DLLs 2-30
Debugging DLLs and Calls to DLLs... 2-31

Troubleshooting the Call Library Function Node... 2-31
Troubleshooting your DLL ... 2-32
Troubleshooting Checklist .. 2-34

Module Definition Files .. 2-36
Array and String Options... 2-37

Arrays of Numeric Data .. 2-37
String Data .. 2-38
Array and String Tip ... 2-40

Chapter 3
CINs

Supported Languages .. 3-1
Mac OS X.. 3-1
Mac OS Classic ... 3-2
Microsoft Windows... 3-2
Solaris and Linux .. 3-2

Resolving Multithreading Issues ... 3-2
Making LabVIEW Recognize a CIN as Thread Safe 3-3
Using C Code that is Thread Safe ... 3-3

Creating a CIN... 3-4
Step 1. Set Up Input and Output Terminals for the CIN................................. 3-4

Input-Output Terminals .. 3-5
Output-Only Terminals... 3-6

Step 2. Wire the Inputs and Outputs to the CIN ... 3-6
Step 3. Create a .c File .. 3-7
Step 4. Compile the CIN Source Code ... 3-9

Mac OS X ... 3-9
Mac OS Classic .. 3-10
Microsoft Windows .. 3-15

Contents

© National Instruments Corporation vii Using External Code in LabVIEW

Solaris 2.x..3-17
Linux ...3-18
gcc Compiler ...3-18

Step 5. Load the CIN Object Code..3-19
LabVIEW Manager Routines ..3-19

Pointers as Parameters...3-20
Debugging External Code..3-22

DbgPrintf ...3-22
Windows..3-22
UNIX ...3-24

Chapter 4
Programming Issues for CINs

Passing Parameters ..4-1
Parameters in the CIN .c File ..4-1

Passing Fixed-Size Data to CINs...4-2
Scalar Numerics...4-2
Scalar Booleans ...4-2
Refnums...4-2
Clusters of Scalars ...4-2
Return Value for CIN Routines...4-3
Examples with Scalars...4-3

Passing Variably-Sized Data to CINs ..4-7
Alignment Considerations ...4-7
Arrays and Strings ...4-8
Paths ..4-8
Clusters Containing Variably-Sized Data ...4-8
Resizing Arrays and Strings ..4-9
Examples with Variably Sized Data..4-9

Manager Overview ..4-18
Data Types ...4-18

Scalar ...4-19
char ..4-21
Dynamic ..4-21
Memory-Related..4-23
Constants ...4-23

Memory Manager ..4-23
Memory Allocation ...4-24
Memory Zones...4-25

File Manager ..4-28
Identifying Files and Directories ...4-29
Path Specifications ..4-29

Contents

Using External Code in LabVIEW viii ni.com

File Descriptors ... 4-32
File Refnums ... 4-32

Support Manager ... 4-32

Chapter 5
Advanced Applications

CIN Routines ... 5-1
Data Spaces and Code Resources.. 5-1
One Reference to the CIN in a Single VI .. 5-3

Loading a VI ... 5-3
Unloading a VI.. 5-4
Loading a New Resource into the CIN ... 5-4
Compiling a VI.. 5-4
Running a VI ... 5-5
Saving a VI.. 5-5
Aborting a VI .. 5-5

Multiple References to the Same CIN in a Single VI ... 5-6
Multiple References to the Same CIN in Different VIs .. 5-7

Single-Threaded Operating Systems... 5-7
Multithreaded Operating Systems... 5-8

Code Globals and CIN Data Space Globals .. 5-9
Code Globals and CIN Data Space Globals Examples................................... 5-10

Using Code Globals.. 5-11
Using CIN Data Space Globals .. 5-12

Chapter 6
Function Descriptions

Memory Manager Functions ... 6-1
File Manager Functions... 6-2

Permissions for Files and Directories ... 6-2
File Manager Functions and Operations ... 6-3

Support Manager Functions .. 6-6
Mathematical Operations .. 6-8

Individual Function Descriptions .. 6-9
Abs .. 6-10
ASCIITime.. 6-11
AZCheckHandle/DSCheckHandle.. 6-12
AZCheckPtr/DSCheckPtr ... 6-13
AZCopyHandle/DSCopyHandle... 6-14
AZDisposeHandle/DSDisposeHandle .. 6-15
AZDisposePtr/DSDisposePtr .. 6-16
AZGetHandleSize/DSGetHandleSize... 6-17

Contents

© National Instruments Corporation ix Using External Code in LabVIEW

AZHeapCheck/DSHeapCheck ..6-18
AZHLock...6-19
AZHNoPurge...6-20
AZHPurge..6-21
AZHUnlock ...6-22
AZMaxMem/DSMaxMem..6-23
AZMemStats/DSMemStats ...6-24
AZNewHandle/DSNewHandle ...6-25
AZNewHClr/DSNewHClr ..6-26
AZNewPClr/DSNewPClr..6-27
AZNewPtr/DSNewPtr ...6-28
AZRecoverHandle/DSRecoverHandle..6-29
AZSetHandleSize/DSSetHandleSize ..6-30
AZSetHSzClr/DSSetHSzClr ...6-31
BinSearch ..6-32
BlockCmp..6-33
Cat4Chrs ..6-34
ClearMem ..6-35
CPStrBuf..6-36
CPStrCmp..6-37
CPStrIndex ..6-38
CPStrInsert ..6-39
CPStrLen ...6-40
CPStrRemove ..6-41
CPStrReplace...6-42
CPStrSize...6-43
CToPStr ...6-44
DateCString ...6-45
DateToSecs..6-46
FAddPath...6-47
FAppendName...6-48
FAppPath...6-49
FArrToPath..6-50
FCopy ..6-51
FCreate ..6-52
FCreateAlways ..6-55
FDepth ...6-58
FDestroyPath ...6-59
FDirName ..6-60
FDisposeRefNum ..6-61
FEmptyPath ...6-62
FExists ...6-63
FFlattenPath...6-64
FFlush ..6-65

Contents

Using External Code in LabVIEW x ni.com

FGetAccessRights ... 6-66
FGetDefGroup .. 6-67
FGetEOF ... 6-68
FGetInfo .. 6-69
FGetPathType ... 6-71
FGetVolInfo .. 6-72
FileNameCmp ... 6-73
FileNameIndCmp.. 6-74
FileNameNCmp .. 6-75
FIsAPath.. 6-76
FIsAPathOfType ... 6-77
FIsAPathOrNotAPath ... 6-78
FIsARefNum... 6-79
FIsEmptyPath.. 6-80
FListDir ... 6-81
FLockOrUnlockRange .. 6-83
FMakePath .. 6-85
FMClose.. 6-86
FMOpen .. 6-87
FMove ... 6-90
FMRead... 6-91
FMSeek ... 6-92
FMTell .. 6-93
FMWrite.. 6-94
FName... 6-95
FNamePtr .. 6-96
FNewDir.. 6-97
FNewRefNum ... 6-98
FNotAPath .. 6-99
FPathCmp.. 6-100
FPathCpy... 6-101
FPathToArr ... 6-102
FPathToAZString.. 6-103
FPathToDSString .. 6-104
FPathToPath.. 6-105
FRefNumToFD ... 6-106
FRefNumToPath ... 6-107
FRelPath.. 6-108
FRemove ... 6-109
FSetAccessRights.. 6-110
FSetEOF.. 6-111
FSetInfo... 6-112
FSetPathType .. 6-114
FStrFitsPat... 6-115

Contents

© National Instruments Corporation xi Using External Code in LabVIEW

FStringToPath..6-116
FTextToPath ..6-117
FUnFlattenPath..6-118
FVolName ...6-119
GetALong ..6-120
HexChar...6-121
Hi16 ...6-122
HiByte..6-123
HiNibble ..6-124
IsAlpha ..6-125
IsDigit ..6-126
IsLower..6-127
IsUpper ..6-128
Lo16...6-129
LoByte ...6-130
Long...6-131
LoNibble..6-132
LStrBuf ..6-133
LStrCmp ..6-134
LStrLen..6-135
LToPStr ...6-136
Max..6-137
MilliSecs..6-138
Min ..6-139
MoveBlock ..6-140
NumericArrayResize ...6-141
Occur ...6-143
Offset ...6-144
Pin..6-145
PostLVUserEvent ..6-146
PPStrCaseCmp ..6-147
PPStrCmp ..6-148
Printf ..6-149
PStrBuf ..6-152
PStrCaseCmp...6-153
PStrCat...6-154
PStrCmp ..6-155
PStrCpy..6-156
PStrLen ..6-157
PStrNCpy...6-158
PToCStr ...6-159
PToLStr ...6-160
QSort..6-161
RandomGen...6-162

Contents

Using External Code in LabVIEW xii ni.com

SecsToDate ... 6-163
SetALong .. 6-164
SetCINArraySize .. 6-165
StrCat .. 6-166
StrCmp .. 6-167
StrCpy ... 6-168
StrLen.. 6-169
StrNCaseCmp.. 6-170
StrNCmp ... 6-171
StrNCpy .. 6-172
SwapBlock .. 6-173
TimeCString.. 6-174
TimeInSecs.. 6-175
ToLower.. 6-176
ToUpper .. 6-177
Unused .. 6-178
Word.. 6-179

Appendix A
Technical Support and Professional Services

Glossary

© National Instruments Corporation xiii Using External Code in LabVIEW

About This Manual

This manual describes the Call Library Function Node and the Code
Interface Node (CIN). The Call Library Function Node and the CIN are
the LabVIEW programming objects you use to call compiled code from
text-based programming languages. This manual includes reference
information about libraries of functions, memory and file manipulation
routines, and diagnostic routines that you can use with calls to external
code.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

About This Manual

Using External Code in LabVIEW xiv ni.com

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

Related Documentation
The following documents contain information that you might find helpful
as you read this manual:

• LabVIEW User Manual

• LabVIEW Help

• Using LabVIEW with TCP/IP and UDP Application Note

• Using Apple Events and the PPC Toolbox to Communicate with
LabVIEW Applications on the Macintosh Application Note

• Using LabVIEW to Create Multithreaded VIs for Maximum
Performance and Reliability Application Note

Sun users also might find the following document helpful:

• Sun Workshop CD-ROM, Sun Microsystems, Inc., U.S.A.

Linux users also might find the following document helpful:

• The GNU C Compiler Reference Manual, Free Software Foundation,
1989–2000.

Windows users also might find the following documents helpful:

• Microsoft Windows documentation set, Microsoft Corporation,
Redmond, WA, 1992–1995

• Microsoft Windows Programmer’s Reference, Microsoft Corporation,
Redmond, WA, 1992–1995

• Win32 Programmer’s Reference, Microsoft Corporation,
Redmond, WA, 1992–1995

• Microsoft Visual C++ CD-ROM, Microsoft Corporation,
Redmond, WA, 1997

© National Instruments Corporation 1-1 Using External Code in LabVIEW

1
Introduction

This manual discusses the following methods used in LabVIEW to call
code written in other languages:

• Using platform-specific protocols.

• Using the Call Library Function Node to call the following types of
shared libraries:

– Dynamic Link Libraries (DLL) in Windows

– Code Fragments on Mac OS

– Shared Libraries on UNIX

• Creating a Code Interface Node (CIN) to call code written specifically
to link to VIs.

Notes To convert an instrument driver written in LabWindows™/CVI™, select
Tools»Instrumentation»Import CVI Instrument Driver to open the Select a CVI
Function Panel file dialog box. In the Select a CVI Function Panel file dialog box,
you select the function panel file to convert. After you select a front panel file, the CVI
Function Panel Converter dialog box opens. You use the CVI Function Panel
Converter dialog box to complete the conversion of the front panel file. Refer to the
LabVIEW Help for more information about the CVI Function Panel Converter
dialog box.

Refer to cvilvsb.h in the cintools folder for information about creating a LabVIEW
CIN in LabWindows/CVI.

Calling Code in Various Platforms
This section describes the differences between running Windows and
UNIX applications from within your VIs and running Mac OS applications
from within your VIs.

(Windows and UNIX) Use the System Exec VI to run a command line from
your VI. The command line can include any parameters supported by
the application you want to launch.

Chapter 1 Introduction

Using External Code in LabVIEW 1-2 ni.com

If you can access the application through TCP/IP, you might be able to pass
data or commands to the application. Refer to the documentation for the
application for a description of its communication capability. If you are a
LabVIEW user, refer to the Using LabVIEW with TCP/IP and UDP
Application Note for more information about techniques for using
networking VIs to transfer information to other applications. You also can
use many ActiveX LabVIEW tools to communicate with other
applications.

(Mac OS) Use the AppleEvent VIs to send commands between applications
or to launch other applications. Apple events are a Mac-specific protocol
through which applications communicate with each other. If you are a
LabVIEW user, refer to the Using Apple Events and the PPC Toolbox to
Communicate with LabVIEW Applications on the Macintosh Application
Note for information about different methods for using AppleEvent VIs to
launch and control other applications.

Characteristics of the Two Calling Approaches

Note In most cases, a Call Library Function Node is easier to use than a CIN. Assuming
the underlying code is the same, the calling speed is the same whether you use a Call
Library Function Node or a CIN.

The LabVIEW Call Library Function Node and the CIN are block diagram
objects that link source code written in a conventional programming
language to LabVIEW. They appear on the block diagram as icons with
input and output terminals. Linking external code to LabVIEW includes the
following actions:

1. You compile the source code and link it to form executable code. If you
already have a compiled DLL, this step is not necessary.

2. LabVIEW calls the executable code when the Call Library Function
Node or CIN executes.

3. LabVIEW passes input data from the block diagram to the executable
code.

4. LabVIEW returns data from the executable code to the block diagram.

The LabVIEW compiler can generate code fast enough for most
programming tasks. Call CINs and shared libraries from LabVIEW to
accomplish tasks a text-based language can accomplish more easily, such
as time-critical tasks. Also use CINs and shared libraries for tasks you
cannot perform directly from the block diagram, such as calling system

Chapter 1 Introduction

© National Instruments Corporation 1-3 Using External Code in LabVIEW

routines for which no corresponding LabVIEW functions exist. CINs and
shared libraries also can link existing code to LabVIEW, although you
might need to modify the code so it uses the correct LabVIEW data types.

CINs and shared libraries execute synchronously, so LabVIEW cannot use
the execution thread used by these objects for any other tasks. When a VI
runs, LabVIEW monitors the user interface, including the menus and
keyboard. In multithreaded applications, LabVIEW uses a separate thread
for user interface tasks. In single-threaded applications, LabVIEW
switches between user interface tasks and running VIs.

When CIN or shared library object code executes, it takes control of its
execution thread. If an application has only a single thread of control, the
application waits until the object code returns. In single-threaded operating
systems such as Mac OS, CINs and shared libraries even prevent other
applications from running.

LabVIEW cannot interrupt object code that is running, so you cannot reset
a VI that is running a CIN or shared library until execution completes. If
you want to write a CIN or shared library that performs a long task, be
aware that LabVIEW cannot perform other tasks in the same thread while
these objects execute.

Details of the Call Library Function Node
You can call most standard shared libraries with the Call Library Function
Node. In Windows, these shared libraries are DLLs; on Mac OS, they are
Code Fragments; and on UNIX, they are Shared Libraries. The Call Library
Function Node includes a large number of data types and calling
conventions. You can use the Call Library Function Node to call functions
from most standard and custom-made libraries.

DLLs have the following advantages:

• You can change the DLL without changing any of the VIs that link to
the DLL, provided you do not modify the function prototypes.

• Practically all modern development environments provide support for
creating DLLs, while LabVIEW supports only a subset of
development environments for creating CINs.

The Call Library Function Node is most appropriate when you have
existing code you want to call, or if you are familiar with the process of
creating standard shared libraries. Because a library uses a format standard
among several development environments, you can use almost any
development environment to create a library that LabVIEW can call. Refer
to the documentation for your compiler to determine whether you can

Chapter 1 Introduction

Using External Code in LabVIEW 1-4 ni.com

create standard shared libraries. Refer to Chapter 2, Shared Libraries
(DLLs), for more information about the Call Library Function Node.

Details of a CIN
The CIN is a general method for calling C code from LabVIEW. You can
pass arbitrarily complex data structures to and from a CIN. In some cases,
you might have higher performance using CINs because data structures
pass to the CIN in the same format that they are stored in LabVIEW.

CINs have the following advantages:

• The CIN code is integrated into the code of the VI, so there is no extra
file to maintain when the VI is distributed.

• CINs provide certain special entry points, such as CINLoad, CINSave,
and so on.

In some cases, you might want a CIN to perform additional tasks at
certain execution times. For example, you might want to initialize data
structures at load time or free private data structures when the user
closes the VI containing the CIN. For these situations, you can write
routines that LabVIEW calls at predefined times or when the node
executes. Specifically, LabVIEW calls certain routines when the VI
containing the CIN is loaded, saved, closed, aborted, or compiled. You
generally use these routines in CINs that perform an ongoing task, such as
accumulating results from call to call, so you can allocate, initialize,
and deallocate resources at the correct time. Most CINs perform a
specific action at run-time only.

To create a CIN, you must be an experienced C developer. Also, because
CINs are tightly coupled with LabVIEW, restrictions exist about which
compilers you can use.

After you write your first CIN as described in this manual, writing new
CINs is relatively easy. The work involved in writing new CINs is mostly
in coding the algorithm because the interface to LabVIEW remains the
same, regardless of the development system.

Using the Flatten To String Function
The Flatten To String function takes LabView data and converts it into a
string. This string, when used in conjunction with the various
communication functions or I/O functions, can be stored in a file or
database or be sent to other computers.

Chapter 1 Introduction

© National Instruments Corporation 1-5 Using External Code in LabVIEW

The string created by the Flatten To String function is a LabVIEW string.
LabVIEW strings have a 4-byte number, which is a 32-bit, signed integer
data type, at the beginning of the string that specifies the length of the
string. Specifying the length of the string enables a LabVIEW string to
include NULL characters, such as the ASCII character zero (0). If a
LabVIEW string is passed to external code and used as a C string, NULL
characters embedded in the string might cause problems because C strings
are interpreted as terminating at the first NULL character.

To pass the flattened form of LabVIEW data to C code, convert the
flattened LabVIEW data from a binary string format to an alphanumeric
string format. For example, suppose your string consists of the following
five characters:

* character 35 (#)

* character 65 (A)

* character 0 (NULL)

* character 50 (2)

Complete the following steps to convert the preceding five characters from
a binary string format to an alphanumeric string format.

1. Convert the decimal values of the five characters into hexadecimal
values.

35d = 0x23
65d = 0x41
0d = 0x00
50d = 0x32
107d = 0x6B

2. Write down the actual alphanumeric characters for the hexadecimal
values and include only a single NULL value at the end.

* character 50 (2)

* character 51 (3)

* character 52 (4)

* character 49 (1)

* character 48 (0)

* character 48 (0)

* character 51 (3)

* character 50 (2)

* character 54 (6)

* character 66 (B)

* character 0 (NULL)

Chapter 1 Introduction

Using External Code in LabVIEW 1-6 ni.com

Converting from a binary string format to an alphanumeric string format
doubles the size of the string. However, converting to an alphanumeric
format preserves the information in the string when you use the string in an
environment where you have to replace LabVIEW strings with C strings.

© National Instruments Corporation 2-1 Using External Code in LabVIEW

2
Shared Libraries (DLLs)

This chapter describes how to call shared libraries from LabVIEW.

(Windows) A shared library is called a DLL. This manual uses DLL as a
generic abbreviation for shared library.

(Mac OS) A shared library is called a Code Fragment.

(UNIX) A shared library is called a Shared Library function.

You can use any language to write DLLs as long as the DLLs can be called
using one of the calling conventions LabVIEW supports, either stdcall
or C. Examples and troubleshooting information appear later in the chapter
to help you build and use DLLs and to successfully configure the Call
Library Function Node in LabVIEW. The general methods described here
for DLLs also apply to other types of shared libraries.

Refer to the examples\dll directory for examples of using shared
libraries.

Configuring the Call Library Function Node
Use the Call Library Function Node to directly call a 32-bit Windows DLL,
a Mac OS Code Fragment, or a UNIX Shared Library function.

Right-click the Call Library Function Node and select Configure from the
shortcut menu to open the Call Library Function dialog box, shown in
Figure 2-1. Use the Call Library Function dialog box to specify the
library, function, parameters, return value for the object, and calling
conventions in Windows. When you click OK in the Call Library
Function dialog box, LabVIEW updates the Call Library Function Node
according to your settings, displaying the correct number of terminals and
setting the terminals to the correct data types.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-2 ni.com

Figure 2-1. Call Library Function Dialog Box

As you configure parameters, the Function Prototype area displays the
C prototype for the function you are building. This area is a read-only
display.

Configuring for Multiple Thread Operation
In a multithreaded operating system, you can make multiple calls to a
DLL or shared library simultaneously. By default, all call library objects
run in the user interface thread. The control below the Browse button in the
Call Library Function dialog box reflects your selection of Run in UI
Thread or Reentrant.

Before you configure a Call Library Function Node to be reentrant, make
sure that multiple threads can call the function simultaneously. The
following characteristics are the basic characteristics of thread safe code in
a shared library:

• The code is thread safe when it does not store any global data, such as
global variables, files on disk, and so on.

• The code is thread safe when it does not access any hardware. In other
words, the code does not contain register-level programming.

• The code is thread safe when it does not make any calls to any
functions, shared libraries, or drivers that are not thread safe.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-3 Using External Code in LabVIEW

• The code is thread safe when it uses semaphores or mutexes to protect
access to global resources.

• The code is thread safe when it is called by only one non-reentrant VI.

Refer to the Execution Properties Page topic of the LabVIEW Help for
more information about reentrancy. Refer to the Using LabVIEW to Create
Multithreaded VIs for Maximum Performance and Reliability Application
Note for more information about multithreading in LabVIEW.

Setting the Calling Convention
Use the Calling Conventions pull-down menu in the Call Library
Function dialog box to select the calling convention for the function. The
default calling convention is C.

(Windows) You also can use the standard Windows calling convention,
stdcall.

Refer to the documentation for the DLL you want to call for the appropriate
calling conventions.

Configuring Parameters
This section discusses the return value and how to add parameters to the
Call Library Function Node.

Initially, the Call Library Function Node has no parameters and has a return
type of Void. The return type for the Call Library Function Node returns to
the right terminal of the top pair of terminals. If the return type is Void, the
top pair of terminals is unused. Each additional pair of terminals
corresponds to a parameter in the Parameter list of the Call Library
Function Node. To pass a value to the Call Library Function Node, wire to
the left terminal of a terminal pair. To read the value of a parameter after the
Call Library Function Node call, wire from the right terminal of a terminal
pair. Figure 2-2 shows a Call Library Function Node that has a return type
of Void, a string parameter, and a numeric parameter.

Figure 2-2. Call Library Function Node with Return Value of Void and Two Parameters

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-4 ni.com

Configuring Return Type
For return type, you can set Type to Void, Numeric, or String. Void is
only available for return type and is not available for parameters. Use Void
for the return type if your function does not return any values.

Even if the function you call returns a value, you can use Void for the return
type. When the function returns a value and you select Void as the return
type, the value returned by the function is ignored.

Refer to the Numeric section of this chapter for information about the
numeric parameter type and to the String section of this chapter for
information about the string parameter type.

Note If the function you are calling returns a data type not listed, choose a return data type
the same data size as the one returned by the function. For example, if the function returns
a char data type, use an 8-bit unsigned integer. A call to a function in a DLL cannot return
a pointer because there are no pointer types in LabVIEW. However, you can specify the
return type as an integer that is the same size as the pointer. LabVIEW then treats the
address as a simple integer, and you can pass it to future DLL calls.

Adding and Deleting Parameters
To add parameters to the Call Library Function Node, click the Add a
Parameter Before button or the Add a Parameter After button. To
remove a parameter, click the Delete this Parameter button.

Editing Parameters
Use the Parameter pull-down menu to select the return value or a
parameter for editing. When selected, you can edit the Parameter name to
something more descriptive, which makes it easier to switch between
parameters. The Parameter name does not affect the call, but it is
propagated to output wires. Also, you can edit all fields in the Parameter
section for the selected parameter.

Selecting the Parameter Type
Use the Type pull-down menu to indicate the type of each parameter. You
can select from the following parameter types:

• Numeric

• Array

• String

• Waveform

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-5 Using External Code in LabVIEW

• Digital Waveform

• Digital Table

• ActiveX

• Adapt to Type

After you select an item from the Type pull-down menu, you see more
items you can use to indicate details about the parameter and about how to
pass the data to the library function. The Call Library Function Node has a
number of different items for parameter types because of the variety of data
types required by different libraries. Refer to the documentation for the
library you call to determine which parameter types to use.

The following sections discuss the different parameter types available from
the Type pull-down menu.

(Windows) Refer to the examples\dll\data passing\Call Native
Code.llb for an example of using data types in shared libraries.

Numeric
For numeric data types, you must indicate the exact numeric type by using
the Data Type pull-down menu. You can choose from the following data
types:

• 8-, 16-, and 32-bit signed and unsigned integers

• 4-byte, single-precision numbers

• 8-byte, double-precision numbers

Note Extended-precision numbers and complex numbers can be passed by selecting
Adapt to Type from the Type pull-down menu. However, standard libraries generally do
not use extended-precision numbers and complex numbers.

Use the Pass pull-down menu to indicate whether you want to pass the
value or a pointer to the value.

Array
Use the Data Type pull-down menu to indicate the data type of the array.
You can choose from the same data types available for numeric parameters.
Refer to the Numeric section of this chapter for information about numeric
data types.

Specify the dimensions of the array in Dimensions.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-6 ni.com

Use the Array Format pull-down menu to make one of the following
choices:

• Array Data Pointer passes a one-dimensional pointer to the array
data.

• Array Handle passes a pointer to a pointer that points to a four-byte
value for each dimension, followed by the data.

• Array Handle Pointer passes a pointer to an array handle.

Caution Do not attempt to resize an array with system functions, such as realloc. Doing
so might crash your system. Instead, use one of the Code Interface Node (CIN) manager
functions, such as NumericArrayResize. Refer to Chapter 4, Programming Issues for
CINs, for information about CIN manager functions.

String
Use the String Format pull-down menu to indicate the string format. You
can choose from the following string formats:

• C String Pointer—a string followed by a null character

• Pascal String Pointer—a string preceded by a length byte

• String Handle—a pointer to a pointer to four bytes for length
information, followed by string data

• String Handle Pointer

Select a string format that the library function expects. Most standard
libraries expect either a C string or a Pascal string. If the library function
you are calling is written for LabVIEW, you might want to use the String
Handle format.

Caution Do not attempt to resize a string with system functions, such as realloc,
because your system might crash.

Waveform
When you call a shared library that includes a waveform data type, you do
not have to specify a numeric value from the Data Type pull-down menu;
the default is 8-byte double. However, you must specify a Dimension.
If the Parameter is a single waveform, specify a Dimension of 0. If the
Parameter is an array of waveforms, specify a Dimension of 1. LabVIEW
does not support an array of waveforms greater than 1D.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-7 Using External Code in LabVIEW

Digital Waveform
Specify a Dimension of 0 if the Parameter is a single digital waveform.
Specify a Dimension of 1 if the Parameter is an array of digital
waveforms. LabVIEW does not support an array of digital waveforms
greater than 1D.

Digital Table
Specify a Dimension of 0 if the Parameter is a single digital table. Specify
a Dimension of 1 if the Parameter is an array of digital tables. LabVIEW
does not support an array of digital tables greater than 1D.

Note Waveforms, digital waveforms, and digital tables can be passed through shared
libraries but accessing the data inside the shared libraries is not supported at this time.

ActiveX
Select one of the following items from the Data Type pull-down menu:

• ActiveX Variant Pointer passes a pointer to ActiveX data.

• IDispatch* Pointer passes a pointer to the IDispatch interface of an
ActiveX Automation server.

• IUnknown Pointer passes a pointer to the IUnknown interface of an
ActiveX Automation server.

Adapt to Type
Use Adapt to Type to pass arbitrary LabVIEW data types to DLLs in the
same way they are passed to a CIN. The arbitrary LabVIEW data types are
passed to DLLs in the following ways:

• Scalars are passed by reference. A pointer to the scalar is passed to
the library.

• Arrays and strings are passed according to the Data Format setting.
You can choose from the following Data Format settings:

– Handles by Value passes the handle to the library. The handle is
not NULL.

– Pointers to Handles passes a pointer to the handle to the library.
If the handle is NULL, treat the handle as an empty string or array.
To set a value when the handle is NULL, you must allocate a new
handle.

• Clusters are passed by reference.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-8 ni.com

• Scalar elements in arrays or clusters are in line. For example, a
cluster containing a numeric is passed as a pointer to a structure
containing a numeric.

• Clusters within arrays are in line.

• Strings and arrays within clusters are referenced by a handle.

Note When one or more of the parameters of the function you want to call in a DLL are
of types that do not exist in LabVIEW, ensure that each parameter is passed to the function
in a way that allows the DLL to correctly interpret the data. Create a skeleton .c file from
the current configuration of the Call Library Function Node. By viewing the .c file, you
can determine whether LabVIEW will pass the data in a manner compatible with the DLL
function. You then can make any necessary adjustments. Refer to the Task 2: Complete the
.c File section of this chapter for information about creating a skeleton .c file.

Calling Functions That Expect Other Data Types
You might encounter a function that expects a data type LabVIEW does not
use. For example, you cannot use the Call Library Function Node to pass
an arbitrary cluster or array of nonnumeric data. If you need to call a
function that expects other data types, use one of the following methods:

• Depending on the data type, you might be able to pass the data by
creating a string or array of bytes that contains a binary image of the
data you want to send. You can create binary data by typecasting data
elements to strings and concatenating them.

• Write a library function that accepts data types that LabVIEW does
use. Use parameters the library function expects to build the data
structures. Call the library function.

• Write a CIN that can accept arbitrary data structures. Refer to
Chapter 3, CINs, for more information about writing CINs.

Building a Shared Library (DLL)
Building external code libraries to call from LabVIEW consists of the
following basic tasks:

• Task 1: Build the Function Prototype in LabVIEW

• Task 2: Complete the .c File

• Task 3: Build a Library Project in an External IDE

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-9 Using External Code in LabVIEW

This section uses a simple shared library example to describe the three
basic tasks for building external code libraries to call from LabVIEW.

In the Example 1: Call a Shared Library that You Built section, you call the
shared library that you build here.

Task 1: Build the Function Prototype in LabVIEW
To build a function prototype for your shared library, you must build a
prototype in LabVIEW and then fill in all the details of your code. When
you allow LabVIEW to generate this C source code, you help ensure that
the basic syntax of the code in your shared library is valid. The prototype
source file you create is a.c file and contains C declarations for the
parameters you want to pass.

Complete the following steps to build your prototype source file,
myshared.c.

1. Create a new VI named Array Average.

2. Place a Call Library Function Node on the block diagram.

3. Right-click the Call Library Function Node icon and select Configure
from the shortcut menu to open the Call Library Function dialog box.

4. Leave the Library Name or Path field empty.

Note Use the Library Name or Path field to specify the shared library the Call Library
Function Node calls. For this example, you provide the file path in the Example 1: Call a
Shared Library that You Built section.

5. Enter the following general specifications:

a. Type avg_num in the Function Name field.

b. Select C from the Calling Conventions pull-down menu.

6. Define the return value using the following specifications:

a. Change the default name in the Parameter field from return
type to the more descriptive name error.

b. Select Numeric from the Type pull-down menu.

c. Select Signed 32-bit Integer from the Data Type pull-down
menu.

7. Define the a parameter using the following specifications:

a. Click the Add Parameter After button.

b. Replace the default name arg1 in the Parameter field with the
precise name, a.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-10 ni.com

c. Select Array from the Type pull-down menu.

d. Select 4-byte Single from the Data Type pull-down menu.

e. Select Array Data Pointer from the Array Format pull-down
menu.

Note The Array and String Options section describes the available settings for arrays and
strings in the Call Library Function Node icon.

8. Define the size parameter using the following specifications:

a. Click the Add Parameter After button.

b. Replace the default name arg2 in the Parameter field with the
precise name, size.

c. Select Numeric from the Type pull-down menu.

d. Select Signed 32-bit Integer from the Data Type pull-down
menu.

e. Select Value from the Pass pull-down menu.

9. Define the avg parameter using the following specifications:

a. Click the Add Parameter After button.

b. Replace the default name arg3 in the Parameter field with the
precise name, avg.

c. Select Numeric from the Type pull-down menu.

d. Select 4-byte Single from the Data Type pull-down menu.

e. Select Pointer to Value from the Pass pull-down menu.

10. Check that the Function Prototype field displays the return value and
three parameters in the correct order, as follows:

long avg_num(float *a, long size, float *avg);

Note The syntax you see in the Function Prototype field is technically correct. However,
the .c file that LabVIEW generates in the next section is more precise because the first
parameter appears as float a[].

11. Click the OK button to save your settings and close the dialog box.

12. Notice how the Call Library Function Node icon updates to reflect
your settings.

13. Right-click the Call Library Function Node icon and select Create .c
file from the shortcut menu.

14. Save the file as myshared.c.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-11 Using External Code in LabVIEW

Note In this example, you use a .c source file. When you work with C++ libraries, change
the extension of the source file to .cpp.

Preventing C++ Name Decoration
When you build shared libraries for C++, you must prevent the C++
compiler from decorating the function names in the final object code. To
do this, wrap the function declaration in an extern "C" clause, as shown
in the following prototype:

extern "C" {

long MyDLLFunction(long nInput, unsigned long nOutput,

void *arg1);

}

long MyDLLFunction(long nInput, unsigned long nOutput,

void *arg1)

{

/* Insert Code Here */

}

Note If you disable C++ decoration of a function, the compiler cannot create polymorphic
versions of the function.

Task 2: Complete the .c File
The Call Library Function Node generates the following source code
skeleton in myshared.c:

/* Call Library Source File */

#include "extcode.h"

long avg_num(float a[], long size, float *avg);

long avg_num(float a[], long size, float *avg)

{

/* Insert Code Here */

}

Replace the /* Insert Code Here */ spacer with the following
function code, making sure to place the code within the pair of curly braces:

int i;

float sum = 0;

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-12 ni.com

if(a != NULL)

{

for(i=0; i < size; i++)

sum = sum + a[i];

}

else

return (1);

*avg = sum / size;

return (0);

Required Libraries
This simple example requires no header files. When you build more
complex shared libraries, you must include header files for all related
libraries. For example, a Windows shared library project might need to
include windows.h. In another instance, a project might need to include
extcode.h, the header file for the set of LabVIEW manager functions that
perform simple and complex operations, ranging from low-level byte
manipulation to routines for sorting data and managing memory.

When you want to use the LabVIEW manager functions inside your shared
library, you must include the following LabVIEW library files in your
compiled project:

• labview.lib for Visual C++

• labview.sym.lib for Symantec

• labview.export.stub for Metrowerks CodeWarrior

The preceding LabVIEW library files appear in the cintools directory of
your LabVIEW installation. Specifically, you need the LabVIEW manager
functions if you intend to do any of the following tasks:

• Allocate, free, or resize arrays, strings, or other data structures that are
passed into or out of your library from LabVIEW.

• Work with LabVIEW Path data types.

• Work with file refnums inside your library.

• Use any of the Support Manager functions.

Refer to Chapter 6, Function Descriptions, for more information about the
manager functions.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-13 Using External Code in LabVIEW

Task 3: Build a Library Project in an External IDE
The process of building a library project is specific to each integrated
development environment (IDE) and each operating system. This section
describes the following compiler/platform combinations that you can use
to build shared libraries to use in LabVIEW:

• Microsoft Visual C++ on Windows

• Gnu C/C++ on UNIX

• Metrowerks CodeWarrior on Mac Classic

• Apple’s Project Builder for Mac OS X

Microsoft Visual C++ 6.0 on 32-bit on Windows
Platforms
This section discusses how to set up a project that compiles myshared.c
and generates myshared.dll.

Adding the DLL Export Keyword
You must explicitly export each function from your DLL to make it
available to LabVIEW. For this example, you should use the _declspec
(dllexport) keyword to export the avg_num function. _declspec
(dllexport) is a Microsoft-specific extension to the C or C++ language.
By declaring the dllexport keyword, you eliminate the need for a module
definition file. Refer to the Module Definition Files section of this chapter
for information about module definition files.

Open myshared.c and insert the _declspec(dllexport) keyword in
front of the code for avg_num. This function also has a declaration
statement, and you must place the keyword in front of the declaration, too.

The following excerpt shows the two places in myshared.c that require
the _declspec(dllexport) keyword:

_declspec(dllexport) long avg_num(float a[],

long size, float *avg);

_declspec(dllexport) long avg_num(float a,

long size, float *avg)

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-14 ni.com

Setting Up the Project
You set up your project in the Microsoft Visual C++ integrated
development environment. Complete the following steps to set up a project
for myshared.c.

1. Select File»New and select Win32 Dynamic Link Library (DLL) in
the listbox on the Projects tab, as shown in Figure 2-3.

2. Click the OK button.

Note You do not use Microsoft Foundation Classes (MFC) in this example. However, if
you want to use these object classes in a project, you can select MFC AppWizard (dll) at
this point, instead of selecting Win32 Dynamic Link Library. Then, copy the code from
the myshared.c source file and place it into the skeleton source code file that the MFC
AppWizard generates.

Figure 2-3. Creating a Project in Visual C++

3. Select An empty DLL project when prompted to choose the type of
DLL that you want to create.

4. Click the Finish button to finish creating your project and return to the
Visual C++ workspace.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-15 Using External Code in LabVIEW

5. Select Add to Project»Files from the Project menu and add the
myshared.c source file.

Note When you want to use the LabVIEW manager functions in a Windows DLL, you
also must add labview.lib to your project. The cintools directory of your LabVIEW
installation contains this .lib file.

6. Select Project»Settings and click the C++ tab of the Project Settings
dialog box and make the following settings:

a. Select Code Generation from the Category pull-down menu.

b. Set the Struct member alignment control to 1 Byte for this
example and for all configurations.

c. Select Debug Multithreaded DLL from the Use run-time
library pull-down menu to apply the Win32 Debug configuration,
as shown in Figure 2-4.

Figure 2-4. Setting the Use run-time library Control, Microsoft Visual C++

You have the option to choose the Win32 Release configuration,
instead. In that case, you select Multithreaded DLL in the Use
run-time library control.

7. Select Build»Build myshared.dll to cause Visual C/C++ to build a
DLL and place it in either the Debug or Release output directory,
depending on which configuration option you selected in step 6c.

In the Example 1: Call a Shared Library that You Built section, you call this
DLL from LabVIEW.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-16 ni.com

Gnu C or C++ Compilers on Solaris or Linux
Use the following command to compile the myshared.c source file that
you completed in the Task 2: Complete the .c File section:

gcc -fPIC -shared -o <output name> <source file>

The –fPIC option instructs GCC to produce position-independent code,
which is suitable for shared libraries. The -shared option specifies that the
output should be a shared library file.

Note Some versions of the Gnu linker do not produce suitable output for shared libraries.
The –fno-gnu-linker instructs GCC to use the system linker rather than the Gnu linker.
The output name is normally a file with a .so extension on Solaris and Linux.

Reducing Symbol Scope
By default, all symbols (functions and global variables) defined in your
code are available. It is sometimes desirable for your library to distinguish
between those symbols that should be accessed by external objects and
those that are for internal use only. Use a mapfile to make these
distinctions. The mapfile is a text document that the linker takes as input
and uses to determine, among other things, which symbols should be
exported.

Use the following basic syntax for a mapfile, where <library file> is
the name of the output file:

<library file> {

global:

[Symbol for global scope 1];

[Symbol for global scope 2];

...

local:

[Symbols for local scope 1]; or “*”

...

};

Under the global and local sections, list all of the symbols that you want to
be available globally or locally, respectively. Each section is optional, but
remember that all symbols are global by default. In the local section, you
can choose to use the “*” wildcard rather than listing individual symbols.
This wildcard means, “any symbol not already defined as global” and
allows you to easily make symbol definitions in terms of symbols to be
exported rather than symbols to be reduced in scope.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-17 Using External Code in LabVIEW

After you create the mapfile, save it and instruct the linker to use it by
appending -M <mapfile> to the gcc command-line argument list.

Metrowerks CodeWarrior on Mac OS
Create a shared library using the process that the Metrowerks
documentation describes. To use this shared library with LabVIEW, you
must set struct alignment to 68k in the PPC Processor settings panel.
Be sure to export the function(s) that you want to call from LabVIEW.

Project Builder on Mac OS X
Create a framework using the process described in the Project Builder
documentation. You must include the -malign-natural setting in the
Other C Compiler Flags section of the GCC Compiler Settings. If you
want to call functions in LabVIEW from your framework, you need to link
against liblvexports.a, located in cintools/Mach-O.

Calling External APIs
You might need to access external APIs from within LabVIEW code. Most
often, you access external APIs to obtain functionality that the operating
system provides. Normally, you can use the LabVIEW Call Library
Function Node to accomplish this goal. You must provide the following
information to the Call Library Function Node excess external APIs from
within Labview Code:

• Function name as it appears in the library

• Function prototype

• Library or module in which the function resides

• Calling conventions of the function

• Thread-safe status of the function

Common Pitfalls with the Call Library Function Node
The function reference documentation for any API should provide most of
the information that the Call Library Function Node requires. However,
you should keep in mind the common errors listed in this section.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-18 ni.com

Incorrect Function Name
Your library call can fail when the name of the function as it appears in the
library is different than is expected. Usually this error occurs due to
function name redefinition, or to function name decoration, as in the
following examples:

• Redefinition—This pitfall appears when an API manufacturer uses a
define mechanism, such as #define directive in ANSI C, to define an
abstracted function name to one of many functions present in the
library, based on some external condition such as language or debug
mode. In such cases, you can look in the header (.h) file for the API to
determine whether a #define directive redefined the name of a
function you want to use.

• Function Name Decoration—This pitfall appears when certain
functions have their names decorated when they are linked. A typical
C compiler tracks name decoration, and when it looks for a function in
a shared library, it recognizes the decorated name. However, because
LabVIEW is not a C compiler, it does not recognize decorated names.
If you suspect that function name decoration is causing difficulty,
inspect the shared library’s exported functions.

Note If the function name that appears in the function prototype section has characters
such as @ appended to it, the function was decorated when the DLL was built. This is most
common with C++ compilers.

In LabVIEW, the Function Name control in the Call Library
Function dialog box is a pull-down list where you can access a list of
all functions within the library you have selected. In addition, most
operating systems have a utility you can use to view a library’s exports,
for example, QuickView on the Windows operating system and the nm
command on most UNIX systems.

Note (Windows and Mac) If the Function Name list contains entries but the function you
want to call does not appear in the list, the most likely reason is that the function has not
been exported. Refer to the documentation for your compiler for information about how to
mark functions for export. (UNIX) The Function Name list always appears as an empty list.
You must enter the name of the function you want to call.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-19 Using External Code in LabVIEW

Data Types
Your library call can fail when you do not use the correct data types.
LabVIEW only supports basic numeric data types and C strings. Also, you
can select Adapt to Type from the Type pull-down menu of the Call
Library Function dialog box and direct LabVIEW to pass its own internal
data types for a given parameter. You might encounter the following
specific problems:

• Non-Standard Data Type Definitions—Frequently, other APIs use
non-standard definitions for data types. For example, instead of using
char, short, and long, the Windows API uses BYTE, WORD, and
DWORD. If an API that you are using makes use of such data types, you
need to find the equivalent basic C data type so that you can properly
configure the Call Library Function Node. The Example 3: Call the
Win32 API section presents an example of this process.

• Structure and Class Data Types—Some APIs have structure and, in
the case of C++, class data types. LabVIEW cannot use these data
types. If you need to use a function that has a structure or class as an
argument, you should write a CIN or shared library wrapper function
that takes as inputs the data types that LabVIEW supports and that
appropriately packages them before LabVIEW calls the desired
function.

(Windows) Refer to the examples\dll\data passing\Call Native
Code.llb for an example of using data types in shared libraries.

Constants
Your library call can fail when your external code uses identifiers in place
of constants. Many APIs define identifiers for constants to make the code
easier to read. LabVIEW must receive the actual value of the constant
rather than the identifier that a particular API uses. Constants are usually
numeric, but they might also be strings or other values. To identify all
constants, inspect the header file for the API to find the definitions. The
definition might either be in #define statements or in enumerations,
which use the enum keyword. The Constants section presents an example
of this identification process.

Calling Conventions
Your library call can fail when certain operating systems use calling
conventions other than the C calling convention and the Standard
(__stdcall) calling convention. The calling convention defines how data
is passed to a function and how clean up occurs after the function call is

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-20 ni.com

complete. The documentation for the API should say which calling
convention(s) you must use. The Standard (__stdcall) calling
convention is also known as the WINAPI convention, or the Pascal
convention.

Use of calling conventions other than the C or Standard calling conventions
frequently causes the failure of library calls in LabVIEW because those
other calling conventions use an incompatible method for maintaining the
stack.

Example 1: Call a Shared Library that You Built
This section describes the tasks necessary to complete the Array Average
VI you started building in the Building a Shared Library (DLL) section so
the VI can call the avg_num function in myshared.dll. (UNIX) The shared
library file has a .so or .sl extension. The following tasks must be
completed before the Array Average VI can call the avg_num function in
myshared.dll:

• Complete configuration of the Call Library Function Node.

• Build the front panel.

• Complete the block diagram.

Complete Configuration of the Call Library Function
Node
Complete the following steps to complete the configuration of the Call
Library Function Node.

1. Open the Array Average VI block diagram.

2. Right-click the Call Library Function Node and select Configure from
the shortcut menu to open the Call Library Function dialog box.

3. Click the Browse button to open the Select a library dialog box.

4. Navigate to the location of your myshared.dll file.

5. Select myshared.dll and click the Open button. The file path to
myshared.dll appears in the Library Name or Path field. The
Library Name or Path field is the shared library that the Call Library
Function Node calls.

Note To make the reference to your shared library platform independent, use .* for the
file extension.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-21 Using External Code in LabVIEW

Build the Front Panel
Complete the following steps to create the front panel of the Array
Average VI.

1. Place an Array control on the front panel and label it Array.

2. Place a Numeric Control in the array shell and resize the array to
contain four elements.

3. Right-click the Array control and select Reprensentation»Single
Precision from the shortcut menu.

4. Place a Numeric Indicator on the front panel and label it Avg Value
to display the result of your averaging calculation.

5. Right-click the Avg Value indicator and select
Reprensentation»Single Precision from the shortcut menu.

6. Place a Numeric Indicator on the front panel and label it Error to
display any errors that your VI generates.

7. Right-click the Error indicator and select Reprensentation»Long
from the shortcut menu.

Figure 2-5 shows the Array Average VI front panel.

Figure 2-5. Array Average VI Front Panel

Complete the Block Diagram
Complete the following steps to complete the block diagram of the Array
Average VI.

1. Wire Array to the a input of the Call Library Function Node.

2. Place an Array Size function on the block diagram.

3. Wire Array to the input of the Array Size function.

4. Wire the Array Size function output to the size input of the Call
Library Function Node.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-22 ni.com

5. Right-click the avg input of the Call Library Function Node and select
Create»Constant from the shortcut menu. Set the constant value to
zero.

6. Wire the avg output of the Call Library Function Node to Avg Value.

7. Wire the error output of the Call Library Function Node to Error.

Figure 2-6 shows the completed Array Average block diagram.

Figure 2-6. Array Average VI Block Diagram

Run the VI
On the front panel, enter values in Array and run the VI to calculate the
average of those values. Save your work and close the VI.

If your DLL returns incorrect results or crashes, verify the data types and
wiring to see if you wired the wrong type of information. If you require
further help, several sections in this chapter present troubleshooting tips
and pitfalls to avoid.

Example 2: Call a Hardware Driver API
You might want to access an API associated with hardware you have
purchased. In this example, you call a hypothetical interface card for a
databus called X-bus.

Note You do not need to use the Call Library Function Node to gain access to the APIs of
National Instruments hardware. All National Instruments products come with LabVIEW
interfaces.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-23 Using External Code in LabVIEW

Configure the Call Library Function Node
The X-bus interface card comes with a software driver for your operating
system. The X-bus documentation provides the following standard
information:

• A listing of all functions you can use to access the hardware

• Description of the shared library file xbus.dll that contains these
functions

• Instructions on including a header file xbus.h

Note Although LabVIEW does not permit you to include such header files, you can open
header files and extract information about function prototypes and constants.

• A statement about the Standard (__stdcall) calling convention that
the X-bus library uses

One of the functions you want to use with this hypothetical hardware is
XBusRead16, which reads a 16-bit integer from a certain address. The
documentation describes XBusRead16 as follows:

Given the preceding information from the X-bus documentation, complete
the following steps to configure the LabVIEW Call Library Function Node.

1. Create a new VI named Read Data.

2. Place a Call Library Function Node on the block diagram.

3. Right-click the Call Library Function Node object and select
Configure from the shortcut menu.

4. Make the following settings in the Call Library Function dialog box:

a. Enter XbusRead16, in the Function Name control.

b. Select stdcall (WINAPI) from the Calling Conventions
pull-down menu.

c. Select Numeric from the Type pull-down menu for return type.

d. Select Signed 32-bit Integer from the Data Type pull-down
menu for return type.

e. Add a parameter and name it offset.

long XBusRead16(unsigned long offset, short* data);

Puts 16 bits from the register at “offset” into the memory location
pointed to by “data.” Returns 1 if successful, or 0 if it fails.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-24 ni.com

f. Select Numeric from the Type pull-down menu.

g. Select Unsigned 32-bit Integer from the Data Type pull-down
menu.

h. Add a parameter and name it data.

i. Select Numeric from the Type pull-down menu.

j. Select Signed 16-bit Integer from the Data Type pull-down
menu

k. Select Point to Value from the Pass pull-down menu.

5. Inspect the function prototype that appears in the Function Prototype
field. If the prototype you see does not match the definition of the
function in the API you are calling, you must change your settings in
the Call Library Function dialog box.

Place a Numeric Control, Numeric Indicator, and Round LED indicator
on the front panel. Label the control and indicators and complete the block
diagram as shown in Figure 2-7.

Figure 2-7. Read Data VI Front Panel and Block Diagram

Example 3: Call the Win32 API
You might want to access the 32-bit Windows platform API (Win32 API).
In Win32 environments, various DLLs permit your application to interact
with the operating system and with the graphical user interface. Because
the API offers thousands of functions, programmers must rely on the
documentation for the Microsoft Software Development Kit (SDK).
Microsoft Visual Studio products give you access to the SDK
documentation. You also can access this information at the Microsoft
Developer Network (MSDN) Web site on the Internet.

Note Instead of using the Windows DLL as described in this example, you could easily
create this message box in LabVIEW.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-25 Using External Code in LabVIEW

In this example, you call the Windows MessageBox function, a function
which illustrates several of the typical complexities of the Win32 API.
MessageBox is a simple SDK function that presents a small dialog box
with a message, and has the following prototype:

int MessageBox(HWND hWnd, // handle to owner window

LPCTSTR lpText, // text in message box

LPCTSTR lpCaption, // message box title

UINT uType // message box style);

Notice the non-standard data types, such as HWND and LPCTSTR. The
Win32 API uses hundreds of data types in the SDK, and very few of them
are standard C data types. However, many of the non-standard data types
are merely aliases for standard C data types. The API uses the aliases to
identify the context of a particular data type. Table 2-1 lists the data types
in the preceding prototype and the corresponding standard C data types:

To properly call the MessageBox function in LabVIEW, you need to
identify the equivalent LabVIEW data types, which you can usually infer
from the C data types. Mapping LPCTSTR and UINT to LabVIEW is
straightforward: LPCTSTR is a C String and UINT is a U32.

Mapping HWND is more complex. Table 2-1 lists HWND as a double pointer
to an integer. However, inspection of the function shows that MessageBox
uses HWND merely as a reference number that identifies the owner of the
window. Because of this fact, you do not need to know the integer value for
which the HWND is a handle. Instead, you need to know the value of the
HWND variable itself. Because it is a double pointer, and hence a pointer, you
can be treat it as a 32-bit unsigned integer, or in LabVIEW terms, a U32.
Handles such as HWND are common in the Win32 SDK. In LabVIEW, you
are almost always interested in the handle itself and not the data to which it
points. Therefore, you can usually treat handles as U32. Handle names
always begin with the letter H in the Win32 API.

Table 2-1. Mapping Win32 Data Types to Standard C Data Types

WIN32 SDK Data Type Basic C Data Type

HWND int **

LPCTSTR const char *

UINT unsigned int

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-26 ni.com

If the SDK documentation does not make clear what C data type
corresponds to a Win32 type, search windef.h for the appropriate
#define or typedef statement.

Table 2-2 lists the Win32 SDK data types from Table 2-1 and their
corresponding LabVIEW data types.

(Windows) Refer to the examples\dll\data passing\Call Native
Code.llb for a list of more Win32 API data types.

Constants
This section presents methods for finding the numerical values of constants
in the Win32 API, using MessageBox constants as examples. Table 2-3
lists selected constants for MessageBox.

In Visual Studio, programmers do not use the actual values of constants.
In LabVIEW, however, you need to pass the actual numeric value of the
constant to the function. You find these values in the header files that come
with the SDK. The SDK online documentation normally lists the relevant

Table 2-2. Mapping Win32 Data Types to LabVIEW Data Types

WIN32 SDK Data Type LabVIEW Data Type

HWND uInt32

LPCTSTR CStr (C string pointer)

UINT uInt32

Table 2-3. Selected Constants for MessageBox

Constant Description

MB_ABORTRETRYIGNORE An Abort, Retry, Ignore message box.

MB_CANCELTRYCONTINUE A Cancel, Try Again, Continue message box in Windows 2000.
An alternative to MB_ABORTRETRYIGNORE.

MB_HELP A Help button to add to a message box for
Windows 2000/XP/Me/2000, Windows NT 4.0 and later. The
system sends a WM_HELP message to the owner whenever the user
clicks the Help button or presses <F1>.

MB_OK A message box with an OK button. This is the default
message box.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-27 Using External Code in LabVIEW

header file at the bottom of the help topic for a given function. For
MessageBox, the SDK online documentation has the following statement:

Header: Declared in winuser.h

The header file named in the preceding statement usually declares the
constants. Searching through that header file, you should be able to find a
#define statement or an enumeration that assigns the constant text a value.
winuser.h defines values for some of the MessageBox constants as
follows:

#define MB_OK 0x00000000L

#define MB_ABORTRETRYIGNORE 0x00000002L

#define MB_ICONWARNING MB_ICONEXCLAMATION

Thus, MB_OK has the decimal value 0. MB_ABORTRETRYIGNORE has the
decimal value 2. MB_ICONWARNING is defined as MB_ICONEXCLAMATION.
Elsewhere in winuser.h you find the following statement defining
MB_ICONEXCLAMATION:

#define MB_ICONEXCLAMATION 0x00000030L

A hexadecimal value of 30 translates to a decimal value of 48.

Tips Keep in mind that constants in the SDK often are used in bitfields. A bitfield is
usually a single integer in which each bit controls a certain property. The uType parameter
in MessageBox is an example of a bitfield. Often, you can combine multiple constants in
order to set multiple properties through one parameter. In order to combine these constants,
you use a bit-wise OR operation (|). For example, to set the MessageBox to have a
warning icon and the buttons Abort, Retry, and Ignore, you pass the following value of
uType to MessageBox:

MB_ABORTRETRYIGNORE | MB_ICONEXCLAMATION = 0x32

In LabVIEW, you combine multiple constants by wiring integer types to the OR operator,
as shown in Figure 2-8.

Figure 2-8. Combining Function Constants in LabVIEW

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-28 ni.com

Determining the Proper Library and Function Name
Before you can configure the call to the Win32 API, you must identify the
DLL that contains MessageBox and the specific name of MessageBox
within the DLL. Refer to the description of MessageBox in the
documentation that comes with your SDK or search for “MessageBox” on
the Microsoft Web site. A Requirements section follows the function
description for MessageBox and contains the following information:

“Requirements:

Windows NT: Requires version 3.1 or later.

Windows: Requires Windows 98 or later.

Windows CE: Requires version 1.0 or later.

Header: Declared in winuser.h.

Import Library: Use user32.lib.

Unicode: Implemented as Unicode and ANSI versions on
Windows and Windows NT.”

The Import Library line names the static library user32.lib that you need
to link to in order to build a program in the C language. Every static library
in the SDK has a dynamic counterpart that has the same file name but a
.dll extension instead of a .lib extension. The DLL contains the actual
implementation of the desired function. So, in this case, you know that
user32.dll contains MessageBox.

Unicode Versions and ANSI Versions of Functions
MessageBox uses two string arguments. The SDK implements two
versions of functions that use string arguments, a Unicode version and an
ANSI version. One of the items in the Requirements section of the
MessageBox documentation says, “Unicode: Implemented as Unicode and
ANSI version on Windows and Windows NT.” You can distinguish the two
versions in the DLL because each has a W (Unicode) or an A (ANSI)
appended to the end of the function name. winuser.h contains the
following code:

#ifdef UNICODE

#define MessageBox MessageBoxW

#else

#define MessageBox MessageBoxA

#endif // !UNICODE

The preceding code defines MessageBox to be either MessageBoxA or
MessageBoxW, depending on whether the application is a Unicode

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-29 Using External Code in LabVIEW

application. In effect, a MessageBox function does not exist in
user32.dll. Instead, user32.dll contains a function MessageBoxA
and a function MessageBoxW. In most cases in LabVIEW, you use the
ANSI version of the function because the LabVIEW strings are based on
ANSI, not Unicode. For this example, you use the MessageBoxA function.

Configuring a Call to the Win32 API
Now that you are familiar with many aspects of the Win32 API, you can
configure a LabVIEW Call Library Function Node to call the MessageBox
function. Remember that you must use the Standard (__stdcall) calling
convention in calls to any function in the Windows SDK.

Figure 2-9 shows a correctly configured instance of the Call Library
Function Node. Make your Call Library Function dialog box match the
settings in the graphic. Refer to the Task 1: Build the Function Prototype in
LabVIEW section of this chapter for a separate example that teaches you
how to configure controls for the Call Library Function Node.

Figure 2-9. Configuring the Call Library Function Node to Call the Win32 API

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-30 ni.com

Figure 2-10 shows the block for a VI designed to call the Win32 API.
Configure your block diagram to match Figure 2-10.

Figure 2-10. Block Diagram for a Call to the Win32 API

The VI generates the message box shown in Figure 2-11.

Figure 2-11. Running a LabVIEW Call to the Win32 API

Additional Windows Examples of LabVIEW Calls to DLLs
(Windows) The following examples can help you learn more about calling
DLLs from LabVIEW.

• The Call DLL VI located in examples\dll\data passing\Call
Native Code.llb allows you to browse examples of C and C++
external code data types and how they interface with LabVIEW.

• The Play Sound VI located in the examples\dll\sound\
playsnd.llb\Play Sound.vi directory lets you play Windows
.WAV sound files on your computer from LabVIEW, if you have a
sound card with Windows sound drivers installed on your system.

• If you do not have a sound, card you can generate a sound in your PC
speaker by calling the MessageBeep function in User32.DLL.
The function prototype is as follows:

VOID MessageBeep(UINT uType);

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-31 Using External Code in LabVIEW

• The Hostname VI located in the examples\dll\hostname\
hostname.vi directory returns the host name of your computer,
demonstrating how to use LabVIEW string handles.

• You can programmatically position your cursor anywhere on your
monitor using the SetCursorPos function in User32.DLL. The
function prototype is as follows:

BOOL SetCursorPos(INT x, INT y);

x and y are the coordinates you want, referenced from the upper left
corner of the screen. The return value is TRUE if the function was
successful and FALSE if it was unsuccessful. Remember that the value
returned is type BOOL, which is defined in the Win32 API as a 32-bit
signed integer with values 0 = FALSE and 1 = TRUE.

Debugging DLLs and Calls to DLLs
When you debug your LabVIEW calls to DLLs, you must be prepared to
trace problems in the DLL you are calling and in your implementation of
the Call Library Function Node in LabVIEW.

Troubleshooting the Call Library Function Node
When your LabVIEW calls to DLLs generate errors, check for the
following problems in your use of the Call Library Function Node.

• Make sure the path to the DLL file is correct.

• Make sure the version of your DLL matches the version of LabVIEW,
for example, a 16-bit DLL instead of a 32-bit LabVIEW DLL.

• If LabVIEW gives you the error message function not found in
library, double-check your spelling of the name of the function you
want to call. Remember that function names are case sensitive. Also,
be sure that your compiler has not decorated the function. Refer to the
Preventing C++ Name Decoration section of this chapter for
information about name decoration.

• If you receive an error message that a secondary DLL cannot be found,
yet you properly specified the path to the primary DLL in the Call
Library Function Node, the primary DLL needs additional functions
from one or more other DLLs. You need to find the other DLLs and
place them in the same directory as the DLL that needs them or in a
directory that is in the search path. Refer to KnowledgeBase document
1F39A18U, LabVIEW Error Message: A Secondary DLL Cannot Be
Found, at ni.com for more information about finding missing DLLs.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-32 ni.com

• If your VI crashes, make sure that you are passing exactly the
parameters that the function in the DLL expects. For example, make
sure that you are passing an int16 and not an int32 when the
function expects int16. Check for errors in the code of the DLL, such
as dereferencing a null pointer. Also, confirm that you are using the
correct calling convention, __stdcall or C.

• Make sure all the parameters are defined to be passed by the correct
method, such as value or pointer.

• If you receive a memory.cpp error message, the cause is almost
always an error in the code of the DLL, such as writing past the end of
the memory allocated for an array. Notice that these kinds of crashes
might or might not occur at the time the DLL call actually executes on
the block diagram.

Refer to the Troubleshooting your DLL and the Troubleshooting Checklist
sections of this chapter for more information about troubleshooting calls to
DLLs.

Troubleshooting your DLL
Check for the following problems in your DLL when LabVIEW calls to
DLLs generate errors:

• Remember that you need to declare the function with the _declspec
(dllexport) keyword in the header file and the source code, or
define it in the exports section of the module definition file.

• When you use the _declspec (dllexport) keyword and you are
also using the __stdcall calling convention, you must declare the
DLL function name in the EXPORTS section of the module definition
(.def) file. In the absence of a .def file, __stdcall might truncate
function names in an unpredictable pattern, so the actual function
name is unavailable to applications that call the DLL.

• When a function has not been properly exported, you must recompile
the DLL. Before recompiling, you must close all applications and VIs
that might make use of the DLL. Otherwise, the recompile will fail
because the DLL is still in memory. Most compilers warn you when
the DLL is in use by an application.

• After you confirm the name of the function, and after you confirm
proper export of the function, find out whether you have used the C or
C++ compiler on the code. If you have used the C++ compiler, the
names of the functions in the DLL are altered by a process called name
mangling. The easiest way to correct name mangling is to enclose the

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-33 Using External Code in LabVIEW

declarations of the functions you want to export in your header file
with the extern "C" statement, as shown in the following example
code:

extern "C"

{

/* your function prototypes here */

}

• Try to debug your DLL by using the source level debugger provided
with your compiler. Using the debugger of your compiler, you can set
breakpoints, step through your code, watch the values of the variables,
and so on. Debugging using conventional tools can be extremely
beneficial. Refer to the appropriate manual for your compiler for more
information about debugging.

• Calling the DLL from another C program is also another way to debug
your DLL. By calling the DLL from another C program, you have a
means of testing your DLL independent of LabVIEW, thus helping
you to identify any problems, sooner.

• When calling a LabVIEW DLL that passes a 2D array, you must first
declare the handler variable and initialize the variable to NULL, as
shown in the following C code:

main ()

{

/* Labview data handler variable for the array */

TD1Hd1 myArray = NULL;

.

.

.

/* Call to the Labview DLL function */

DLLFunctionalCall (&myAray) ;

.

.

.

}

If you do not initialize the handler variable to NULL, the code produces
a General Protection Fault when you call the DLL.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-34 ni.com

Refer to the Troubleshooting the Call Library Function Node and the
Troubleshooting Checklist sections of this chapter for more
information about troubleshooting calls to DLLs.

Troubleshooting Checklist
Complete the following checklist to eliminate many potential problems
from LabVIEW VIs that call DLLs.

❑ The Call Library Function Node uses the proper calling convention
(C or __stdcall).

❑ The version of your DLL matches the version of LabVIEW.

❑ Call Library Function Node has the correct path to the DLL.

❑ DLLs providing secondary DLLs additional functions are in the same
directory as the DLL needing the additional functions or are in a
directory that is in the search path.

❑ The Call Library Function Node has the correct spelling, syntax, and
case sensitivity for the function name that you are calling. Otherwise,
the error message Function not found in library appears.

❑ Data is wired to the input terminals of all the parameters of the Call
Library Function Node that you are passing to a DLL function. Also,
check that the Library Function Node is properly configured for all
input parameters.

❑ Return types and data types of arguments for functions in the Call
Library Function Node exactly match the data types your function
uses. Erroneous data type assignments can cause crashes.

❑ The Call Library Function Node passes arguments to the function in
the correct order.

❑ Resizing of arrays and concatenation of strings can take place only
under the following conditions:

– Only when the Call Library Function Node passes a LabVIEW
Array Handle or LabVIEW String Handle

– Only when you add labview.lib to a Visual C++ project,
labview.export.stub to a CodeWarrior project, and
labview.sym.lib to a Symantec project

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-35 Using External Code in LabVIEW

Caution Never resize arrays or concatenate strings using the arguments passed directly to
a function. Remember, the parameters you pass are LabVIEW data. Changing array or
string sizes might result in a crash by overwriting other data stored in LabVIEW memory.

❑ The Call Library Function Node passes strings of the correct type to a
function: C string pointers, Pascal string pointers, or the LabVIEW
string handles. The Windows API requires the C-style string pointer.

❑ All parameters are defined to be passed by the correct method, such as
value or pointer.

❑ Pascal strings do not exceed 255 characters in length.

❑ Remember that C strings are NULL terminated. If your DLL function
returns numeric data in a binary string format, for example, through
GPIB or the serial port, it might return NULL values as part of the data
string.

❑ For arrays or strings of data, always pass a buffer or array that is large
enough to hold any results that the function places in the buffer.
However, if you are passing them as LabVIEW handles, use CIN
functions to resize them under Visual C++, CodeWarrior, or Symantec
compilers.

❑ When you are using __stdcall, list DLL functions in the EXPORTS
section of the module definition file.

❑ DLL functions that other applications call appear in the module
definition file EXPORTS section, or you include the _declspec
(dllexport) keyword in the function declaration.

❑ When you use a C++ compiler, export functions with the extern
"C"{} statement in your header file in order to prevent name
mangling.

❑ For a DLL that you have written, never recompile the DLL while the
DLL is loaded into memory by another application, for example, by
your VI. Before recompiling a DLL, make sure that all applications
making use of the DLL are unloaded from memory. This ensures that
the DLL itself is not loaded into memory during a recompile. The DLL
might fail to rebuild correctly if you forget this point and your compiler
does not warn you.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-36 ni.com

❑ Test the DLL with another program to ensure that the function and the
DLL behave correctly. Testing it with the debugger of your compiler
or a simple C program in which you can call a function in a DLL can
help you identify whether possible difficulties are inherent to the DLL
or are related to LabVIEW.

Module Definition Files
In the Building a Shared Library (DLL) section, you configured LabVIEW
to use the C calling convention in the .c source file you built with the Call
Library Function Node. In contrast, you use the __stdcall calling
convention when you call the Win32 API. When you build a shared library
(DLL) with __stdcall, you normally use a module definition (.def) file
to export the functions in your DLL. In the absence of a .def file,
__stdcall might truncate function names in an unpredictable pattern, so
the actual function name would be unavailable to applications that call the
DLL.

You can associate a .def file with a DLL. The .def file contains the
statements for defining a DLL, such as the name of the DLL and the
functions that it exports, as shown in the following example code:

LIBRARY myshared

EXPORTS

avg_num

The preceding code example demonstrates the following key requirements
for .def files:

• The only mandatory entries in the .def files are the LIBRARY
statement and the EXPORT statement.

• The LIBRARY statement must be the first statement in the file.

• The name you specify in the LIBRARY statement identifies the library
in the import library of the DLL.

• The names you specify in the EXPORTS statement identify the
functions that the DLL exports.

Note Instead of a .def file, many Windows programmers use the LINK option in Project
Settings of the Visual C++ compiler to obtain equivalent command-line options for most
module definition statements.

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-37 Using External Code in LabVIEW

Array and String Options
This section reviews important concepts regarding array and string data in
the Call Library Function Node.

(Windows) Refer to the examples\dll\data passing\Call Native
Code.llb for an example of using arrays and strings in shared libraries.

Arrays of Numeric Data
Arrays of numeric data can be comprised of any type of integers or floating
point numbers with single (4-byte) or double (8-byte) precision. When you
pass an array of data to a DLL function, you can pass the data as an Array
Data Pointer, as a LabVIEW Array Handle, or as a LabVIEW Array Handle
Pointer.

Array Data Pointers have the following characteristics whether you pass the
Array Data Pointers in the Windows API or in another API.

• You can set the number of dimensions in the array, but you must not
include information about the size of the array dimension(s). Instead,
you must pass the size of the array dimension(s) information to your
DLL in a separate variable.

• Never resize an array or perform operations that might change the
length of the array data passed from LabVIEW. Resizing might cause
a crash because the pointer sent is not an allocated block but points into
the middle of an allocated block.

• To return an array of data, you should allocate an array of sufficient
size in LabVIEW, pass the array to your function, and have this array
act as the buffer. If the data takes less space, you can return the correct
size as a separate parameter and then, on the calling diagram, use array
subset to extract the valid data.

Remember that the Windows API does not use LabVIEW array handles, so
with functions that are part of the Windows API you can use only Array
Data Pointers.

If you pass the array data as a LabVIEW Array Handle, you can use
LabVIEW CIN functions to resize the array. In order to call LabVIEW CIN
functions, your compile must include the correct LabVIEW library file,
which is located within the LabVIEW cintools directory. Table 2-4 lists
different compilers and the correct LabVIEW library file to use with the
compiler.

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-38 ni.com

String Data
The types of your string pointers must match the types of string pointers
that your function uses, or errors occur. The Call Library Function Node
offers the following choices:

• C String Pointer is a pointer to the string, followed by a NULL
character. Most Win32 API functions use this C-style string pointer.

• Pascal String Pointer is a pointer to the string, preceded by a length
byte.

• LabVIEW String Handle is a pointer to a pointer to the string,
preceded by four bytes of length information.

• LabVIEW String Handle Pointer is a pointer to a handle for a string,
preceded by four bytes of length information.

You can think of a string as an array of characters. Assembling the
characters in order forms a string. LabVIEW stores a string in a special
format in which the first four bytes of the array of characters form a 32-bit
signed integer that stores how many characters appear in the string. Thus,
a string with n characters requires n + 4 bytes to store in memory. For
example, in Figure 2-12, the string text contains four characters.

Figure 2-12. LabVIEW String Format

When LabVIEW stores the string, the first four bytes contain the value 4 as
a 32-bit signed number, and each of the following four bytes contains a
character of the string. The advantage of this type of string storage is that
NULL characters are allowed in the string. Strings are virtually unlimited
in length, up to 231 characters. This method of string storage is illustrated
in Figure 2-12. If you pass a LabVIEW String Handle from the Call Library

Table 2-4. Compilers and the LabVIEW Library File Used with Each Compiler

Compiler LabVIEW Library File

CodeWarrior labview.export.stub

Symantec labview.sym.lib

Visual C++ labview.lib

\04 t e x t

String Length String Data

\00 \00 \00

Chapter 2 Shared Libraries (DLLs)

© National Instruments Corporation 2-39 Using External Code in LabVIEW

Function Node to the DLL, then you can use the LabVIEW CIN functions,
such as DSSetHandleSize, to resize the LabVIEW String Handle.

Remember, you must add the correct LabVIEW library file to your project.
Refer to Table 2-4 for a list of LabVIEW library files and the compilers
with which they are used.

The Pascal string format is nearly identical to the LabVIEW string format,
but instead of storing the length of the string as a 32-bit signed integer, the
string length is stored as an 8-bit unsigned integer. Storing the string length
as an 8-bit unsigned integer limits the length of a Pascal-style string to
255 characters. A Pascal string that is n characters long will require
n + 1 bytes of memory to store. Figure 2-13 illustrates a Pascal string.

Figure 2-13. Pascal String Format

C strings are probably the type of strings you will deal with most
commonly. The similarities between the C-style string and normal numeric
arrays in C becomes much more clear when you see that C strings are
declared as char *, where char is typically an 8-bit unsigned integer.
Unlike LabVIEW and Pascal strings, C strings do not contain any
information that directly gives the length of the string. Instead, C strings use
a special character called the NULL character to indicate the end of the
string. NULL is defined to have a value of zero in the ASCII character set.
Notice that NULL is the number zero and not the character “0.” Thus, in
C, a string containing n characters requires n + 1 bytes of memory to store:
n bytes for the characters in the string and one additional byte for the NULL
termination character. Figure 2-14 illustrates how a C-style string is stored
in memory.

Figure 2-14. C String Format

\04 t e x t

String
Length

String Data

t e x t

String Data

\00

NULL
Character

Chapter 2 Shared Libraries (DLLs)

Using External Code in LabVIEW 2-40 ni.com

The advantage of C-style strings is that they are limited in size only by
available memory. However, if you are acquiring data from an instrument
that returns numeric data as a binary string, as is common with serial or
GPIB instruments, values of zero in the string are possible. If you treat the
string as a C-style string, your program incorrectly assumes that the end of
the string has been reached, when in fact your instrument is returning a
numeric value of zero. For binary data that might contain NULL values,
consider using an array of 8-bit unsigned integers.

Observe the following guidelines when passing string data to a DLL.

• Never resize a string, concatenate a string, or perform operations that
might increase the length of string data passed from LabVIEW if you
are using the C or Pascal string pointers.

• If you must return data as a string, allocate a string of the appropriate
length in LabVIEW and pass this string into the DLL to act as a buffer.

• If you pass a LabVIEW String Handle from the Call Library Function
Node to the DLL, you can use the LabVIEW CIN functions, such as
DSSetHandleSize, to resize the LabVIEW string handle.

In order to call LabVIEW CIN functions, your compile must include
the correct LabVIEW library file, which is located within the
LabVIEW cintools directory. Table 2-4 lists different compilers and
the correct LabVIEW library file to use with the compiler.

Array and String Tip
When you are not passing LabVIEW handles and your DLL function must
create an array, resize an array, or resize a string of data, you should break
the DLL function into the following two DLL functions:

• Determine the number of elements that the array requires or the length
of the string to be returned. Have the first DLL function return the
desired size to LabVIEW.

• In LabVIEW, initialize an array or string with default values and pass
this array to the second DLL function in your DLL, which actually
places the data into the array. If you are working with string-based
instrument control, it might be easier to pass an array of 8-bit integers
than C strings because of the possibility of having NULL values in the
string.

When you are passing a LabVIEW Array Handle or LabVIEW String
Handle from the Call Library Function Node to your DLL, you can use
the LabVIEW CIN functions to resize or create an array or string.
Refer to the Required Libraries section of this chapter for more
information about CIN functions.

© National Instruments Corporation 3-1 Using External Code in LabVIEW

3
CINs

This chapter discusses the LabVIEW Code Interface Node (CIN), which is
a block diagram node that links C/C++ source code to LabVIEW.

Notes It is technically possible to write CINs in a language other than C or C++ if the CIN
entry points, such as CINRun, CINLoad, and so on, are declared as extern "C". However,
National Instruments recommends using a shared library (DLL) rather than a CIN if you
want to use a language other than C or C++. Refer to Chapter 2, Shared Libraries (DLLs),
for information about DLLs.

LabVIEW does not support the creation of external subroutines. If you want to share code
among multiple CINs, use DLLs. Refer to Chapter 2, Shared Libraries (DLLs), for
information about shared libraries.

Supported Languages
The interface for CINs supports a variety of compilers, although not all
compilers can create code in the correct executable format.

External code must be compiled as a form of executable appropriate for a
specific platform. The code must be relocatable because LabVIEW loads
external code into the same memory space as the main application.

Mac OS X
You can create CINs with the Project Builder development environment,
available free from Apple Computer, Inc.

Although it is possible to create a CIN using Metrowerks Codewarrior,
National Instruments currently does not provide any support for this
compiler.

Refer to the Mac OS X subsection of the Step 4. Compile the CIN Source
Code section of this chapter for information about creating a CIN with
Project Builder.

Chapter 3 CINs

Using External Code in LabVIEW 3-2 ni.com

Mac OS Classic
You can create CINs with compilers from the two major C compiler
vendors.

• Metrowerks CodeWarrior from Metrowerks Corporation of
Austin, TX

• Macintosh Programmer’s Workshop (MPW) from Apple Computer,
Inc. of Cupertino, CA

Refer to the Mac OS Classic subsection of the Step 4. Compile the CIN
Source Code section of this chapter for information about creating a CIN
using these compilers.

Microsoft Windows
LabVIEW for Windows supports CINs created with the following
compilers:

• Microsoft Visual C++

• Symantec C

Refer to the Microsoft Windows subsection of the Step 4. Compile the
CIN Source Code section of this chapter for information about creating
a CIN using these compilers.

Solaris and Linux
The default compiler for Solaris is gcc. If gcc is not installed, cc becomes
the default compiler for Solaris. The only supported compiler for Linux
is gcc.

Refer to the Solaris 2.x and Linux subsections of the Step 4. Compile the
CIN Source Code section of this chapter for information about creating a
CIN on Solaris and Linux.

Resolving Multithreading Issues
You must resolve the following issues to make multithreaded CINs:

• Make LabVIEW recognize your CIN as being multithreaded.

• Use C code that is completely multithread safe.

Chapter 3 CINs

© National Instruments Corporation 3-3 Using External Code in LabVIEW

Making LabVIEW Recognize a CIN as Thread Safe
The CIN node on the block diagram is orange if you have not set the node
to be thread safe. A thread safe node is yellow. Complete the following
steps to make LabVIEW recognize a CIN node as thread safe.

1. Add the CINProperties function to your CIN code in the prototypes
section of your .c source file, as shown in the following example code:

CIN MgErr CINProperties(int32 prop, void *data);

2. Add the following function statement to the functions section of your
.c source file:

CIN MgErr CINProperties(int32 prop, void *data)

{

switch (prop) {

case kCINIsReentrant:

*(Bool32 *)data = TRUE;

return noErr;

}

return mgNotSupported;

}

Using C Code that is Thread Safe
The CINProperties function only labels your CIN as being safe to run
from multiple threads. Whether the CIN is actually thread safe depends
entirely upon what C code has been written. For information about what
makes C code safe or unsafe to be run from multiple threads
simultaneously, please consult C programming documentation. The
following characteristics are the basic characteristics of thread safe code in
a CIN.

• The code is thread safe when it does not store any unprotected global
data, such as global variables, files on disk, and so on.

• The code is thread safe when it does not access any hardware. In other
words, the code does not contain register-level programming.

• The code is thread safe when it does not make any calls to any
functions, shared libraries, or drivers that are not thread safe.

• The code is thread safe when it uses semaphores or mutexes to protect
access to global resources.

• The CIN call is thread safe when only one non-reentrant VI calls
the CIN.

Chapter 3 CINs

Using External Code in LabVIEW 3-4 ni.com

• The CIN call is thread safe when the code does not access any global
resources through CIN housekeeping routines, such as CINInit,
CINAbort, CINDispose, and others.

Creating a CIN
Complete the following general steps to create a CIN.

1. Describe in LabVIEW the data you want to pass to the CIN.

2. Write and compile the code for the CIN using one of the supported
programming languages.

3. Run a utility that puts the compiled code into a format LabVIEW can
use.

4. Instruct LabVIEW to load the CIN.

If you run the VI after completing the preceding steps and the block
diagram needs to execute the CIN, LabVIEW calls the CIN object code and
passes any data wired to the CIN. If you save the VI after loading the code,
LabVIEW saves the CIN object code along with the VI, so LabVIEW no
longer needs the original code to execute the CIN. You can update your CIN
object code with new versions at any time.

The examples\CINs directory contains all of the examples used in this
manual. The names of the directories in the examples\CINs directory
correspond to the CIN name in the examples.

Complete the following specific steps to create a CIN.

1. Set up input and output terminals for the CIN.

2. Wire the inputs and outputs to the CIN.

3. Create a .c file.

4. Compile the CIN source code.

5. Load the CIN object code.

The following sections discuss each of the preceding steps.

Step 1. Set Up Input and Output Terminals for the CIN
Place a CIN on a block diagram.

A CIN has terminals with which you can indicate which data passes to and
from a CIN. Initially, the CIN has one set of terminals, and you can pass a
single value to and from the CIN. To add additional terminals, you can

Chapter 3 CINs

© National Instruments Corporation 3-5 Using External Code in LabVIEW

resize the node, or right-click the node and select Add Parameter from the
shortcut menu.

Figure 3-1 shows how to resize the CIN to add parameters.

Figure 3-1. Resizing a CIN

Each pair of terminals corresponds to a parameter LabVIEW passes to the
CIN. The two types of terminal pairs are input-output and output-only.

Input-Output Terminals
By default, a terminal pair is input-output. The left terminal is the input
terminal. The right terminal is the output terminal. For example, the CIN in
Figure 3-2 has a single terminal pair with a 32-bit signed integer control
wired to the input terminal and a 32-bit signed integer indicator wired to the
output terminal.

Figure 3-2. CIN with a Control and Indicator Wired to the Terminal Pair

When the VI calls the CIN, the only argument LabVIEW passes to the CIN
object code is a pointer to the value of the 32-bit signed integer input. When
the CIN completes, LabVIEW then passes the value referenced by the
pointer to the 32-bit signed integer indicator. When you wire controls and
indicators to the input terminal and the output terminal of a terminal pair,
LabVIEW assumes the CIN can modify the data passed. If another node on
the block diagram needs the input value, LabVIEW might have to copy the
input data before passing it to the CIN.

The CIN in Figure 3-3 has a 32-bit signed integer control wired to the input
terminal but no indicator wired to the output terminal.

Figure 3-3. CIN with Only a Control Wired to the Terminal Pair

Chapter 3 CINs

Using External Code in LabVIEW 3-6 ni.com

If you do not wire an indicator to the output terminal of a terminal pair,
LabVIEW assumes the CIN does not modify the value you pass to it. If
another node on the block diagram uses the input data, LabVIEW does
not copy the data. The source code should not modify the value passed into
the input terminal of a terminal pair if you do not wire the output terminal.
If the CIN does modify the input value, nodes connected to the input
terminal wire might receive the modified data.

Output-Only Terminals
If you use a terminal pair only to return a value, make it an output-only
terminal pair by resizing the CIN, right-clicking the terminal pair, and
selecting Output Only from the shortcut menu. If a terminal pair is
output-only, the input terminal is gray, as shown Figure 3-4.

Figure 3-4. CIN with an Output-Only Terminal Pair

For output-only terminals, LabVIEW creates storage space for a return
value and passes the value by reference to the CIN, the same way it passes
values for input-output terminal pairs. If you do not wire a control to the
left terminal, LabVIEW determines the type of the output parameter by
checking the type of the indicator wired to the output terminal. This can
be ambiguous if you wire the output to two destinations that have different
data types. To solve this problem, wire a control to the input terminal of the
terminal pair as shown in Figure 3-4. In this case, the output terminal takes
on the same data type as the input terminal. LabVIEW uses the input data
type only to determine the data type for the output terminal. The CIN does
not use or affect the data of the input wire.

To remove a pair of terminals from a CIN, right-click the terminal you
want to remove and select Remove Parameter from the shortcut menu.
LabVIEW disconnects wires connected to the deleted terminal pair. Wires
connected to terminal pairs below the deleted pair remain attached to those
terminals and stretch to adjust to the terminals’ new positions.

Step 2. Wire the Inputs and Outputs to the CIN
Connect wires to all the terminal pairs on the CIN to specify the data
you want to pass to the CIN and the data you want to receive from the
CIN. The order of terminal pairs on the CIN corresponds to the order
in which parameters are passed to the code. You can use any
LabVIEW data types as CIN parameters, so you can pass arbitrarily

Chapter 3 CINs

© National Instruments Corporation 3-7 Using External Code in LabVIEW

complex hierarchical data structures, such as arrays containing clusters that
can in turn contain other arrays or clusters to a CIN. Refer to the Passing
Parameters section of Chapter 4, Programming Issues for CINs, for
information about how LabVIEW passes parameters of specific data types
to CINs.

Step 3. Create a .c File
Right-click the CIN and select Create .c File from the shortcut menu to
create a .c file in the style of the C programming language. The .c file
describes the routines you must write and the data types for parameters that
pass to the CIN.

For example, a call to a CIN takes a 32-bit signed integer as an input and
returns a 32-bit signed integer as an output, as shown in Figure 3-5.

Figure 3-5. CIN with 32-bit Signed Integer Input and 32-Bit Signed Integer Output

The following code excerpt is the initial .c file for the CIN in Figure 3-5:

/* CIN source file */

#include "extcode.h"

MgErr CINRun(int32 *numIn, int32 *numOut);

MgErr CINRun(int32 *numIn, int32 *numOut) {

/* Insert code here */

return noErr;

}

You can write eight routines for the CIN in Figure 3-5. The CINRun routine
is required and the others are optional. If an optional routine is not present,
LabVIEW uses a default routine when building the CIN.

The preceding.c file is a template in which you must write C code.
The extcode.h file, which is in the cintools directory in LabVIEW, is
automatically included because it defines basic data types and a number of
routines that can be used by CINs. extcode.h also defines some constants
and types whose definitions might conflict with the definitions of system
header files. The cintools directory also contains hosttype.h, which
resolves the differences between definitions in extcode.h and definitions

Chapter 3 CINs

Using External Code in LabVIEW 3-8 ni.com

in system header files. hosttype.h also includes many of the common
header files for a given platform.

Always use #include "extcode.h" at the beginning of your source
code. If your code needs to make system calls, also use #include
"hosttype.h" immediately after #include "extcode.h" and then
include your system header files. hosttype.h includes only a subset of
the .h files for a given operating system. If the .h file you need is not
included in hosttype.h, you can include it in the .c file for your CIN
after you include hosttype.h.

LabVIEW calls the CINRun routine when it is time for the node to
execute. CINRun receives the input and output values as parameters. The
other routines, CINLoad, CINSave, CINUnload, CINAbort, CINInit,
CINDispose, and CINProperties, are housekeeping routines. The
housekeeping routines are called at specific times so you can take care of
specialized tasks with your CIN. For example, LabVIEW calls CINLoad
when it first loads a VI. If you need to accomplish a special task when your
VI loads, put the code for that task in the CINLoad routine. The following
example code shows how to put the code for a task in the CINLoad routine:

CIN MgErr CINLoad(RsrcFile reserved) {

Unused (reserved);

/* Insert code here */

return noErr;

}

In general, you only need to write the CINRun routine. Use the other
routines when you have special initialization needs, such as when your CIN
must maintain some information across calls and you want to preallocate or
initialize global state information. The following example code shows how
to fill out the CINRun routine in the .c file for the CIN in Figure 3-5 to
multiply a number by two:

CIN MgErr CINRun(int32 *num_in, int32 *num_out) {

*num_out = *num_in * 2;

return noErr;

}

Refer to the Passing Parameters section of Chapter 4, Programming Issues
for CINs, for information and examples about how LabVIEW passes data
to a CIN.

Chapter 3 CINs

© National Instruments Corporation 3-9 Using External Code in LabVIEW

Step 4. Compile the CIN Source Code
You must compile the source code for the CIN as a LabVIEW subroutine
(.lsb) file. After you compile your C/C++ code in one of the compilers
that LabVIEW supports, you use a LabVIEW utility that puts the object
code into the .lsb format.

Because the compiling process is often complex, LabVIEW includes
utilities that simplify the process. These utilities take a simple specification
for a CIN and create object code you can load into LabVIEW. The specific
utility you use depends on the platform and compiler you use. Refer to the
following sections for more information about compiling on your platform.

Note The LabVIEW Base Development system can use existing .lsb files but cannot
create new .lsb files. You can create .lsb files in the LabVIEW Full and Professional
Development Systems.

Mac OS X
CINs compiled for LabVIEW on Mac OS Classic are not compatible with
LabVIEW on Mac OS X. You must compile CINs into the Mach-O binary
format and use the natural alignment of data in your compiler settings to
rebuild the CINs you created in Mac OS Classic.

LabVIEW includes a template to help you build CINs using the Project
Builder development environment from Apple Computer, Inc. It is possible
to build a CIN with Metrowerks CodeWarrior, but LabVIEW does not
provide a template or instructions.

Project Builder
To set up a CIN project for Mac OS X, you must first install the CIN
template into Project Builder.

Install the CIN template into Project Builder by dragging the LabVIEW
Templates folder from the LabVIEW/cintools/Project Builder
Files directory into the Project Templates folder in the
/Developer/ProjectBuilder Extras directory.

Chapter 3 CINs

Using External Code in LabVIEW 3-10 ni.com

Complete the following steps to create a new CIN project.

1. Open Project Builder and select File»New Project.

2. Select LabVIEW Templates»CIN and specify a name and location
for the project.

3. Add source code by selecting Project»Add Files.

4. Build a .lsb file. LabVIEW places the .lsb file next to the project
file.

The LabVIEW CIN template specifies the location of the cintools
directory in the LabVIEW directory. Project Builder assumes that you
installed LabVIEW in the Applications directory. Complete the
following steps if LabVIEW is not installed in the Applications
directory.

1. Select Target Settings»Expert View and change the LABVIEW_PATH
variable to the path to the LabVIEW directory.

2. Select Target Settings»Search Path and change the Libraries
Search Path so it specifies the cintools/Mach-O folder in the
LabVIEW directory.

3. On the Files tab, press Command-I and select the
liblabviewcin.a file in the External Frameworks and Libraries
section.

4. Click the Set Path button and locate the liblabviewcin.a file in the
cintools/Mach-O folder in the LabVIEW directory.

5. On the Files tab, press Command-I and select the liblvexports.a
file in the External Frameworks and Libraries section.

6. Click the Set Path button and locate the liblvexports.a file in the
cintools/Mach-O folder in the LabVIEW directory.

The ReadMe (Project Builder).rtf file located in the
cintools/Project Builder Files directory also includes
information about how to install the CIN template into Project Builder and
how to create a new CIN project.

Mac OS Classic
LabVIEW for Mac OS Classic uses shared libraries as a resource for
customized code. To prepare the code for LabVIEW, use the separate
utilities lvsbutil.app for Metrowerks CodeWarrior and
lvsbutil.tool for the Macintosh Programmer’s Workshop. These
utilities are included with LabVIEW in the cintools folder.

Chapter 3 CINs

© National Instruments Corporation 3-11 Using External Code in LabVIEW

LabVIEW header files are compatible with Metrowerks CodeWarrior and
Macintosh Programmer’s Workshop. Header files might need modification
for other environments. Always use the latest Universal headers containing
definitions for Mac OS Classic compilers.

Metrowerks CodeWarrior for Mac OS Classic
To set up your CIN project, use the project stationery in the
cintools:Metrowerks Files:Project Stationery:LabVIEW

CIN MWPPC folder.

The folder contains a template for new CINs with most of the settings you
need. Refer to the Read Me file in the Project Stationery folder for
more information.

To create a CIN for Mac OS Classic, you need your source files and
CINLib.ppc.mwerks in your CodeWarrior project. LabVIEW installs
CINLib.ppc.mwerks in the cintools:Metrowerks Files:PPC
Libraries folder.

If you call any routines within LabVIEW, such as DSSetHandleSize()
or SetCINArraySize(), you also need the labview.export.stub file.
LabVIEW installs labview.export.stub in the cintools:PowerPC
Libraries folder.

If you call any routines from a system shared library, you must add the
appropriate shared library interface file to your project.

When building a CIN using CodeWarrior for PPC, you can set many of
the preferences to whatever you want. However, other preferences must be
set to specific values to correctly create a CIN. If you do not use the project
stationery, make sure you set the following preferences in the CodeWarrior
Preferences dialog box:

• Clear the Prefix File (using MacHeaders does not work).

• Set Struct Alignment to 68K.

• Clear all the Entry Point fields.

• Set Export Symbols to Use .exp file and place a copy of the file
projectName.exp from your cintools:Metrowerks
Files:PPC Libraries folder in the same folder as your
CodeWarrior project. Rename projectName.exp to
projectName.exp, where projectName is the name of the project
file. CodeWarrior looks in this file to determine what symbols
your CIN exports. LabVIEW needs these to link to your CIN.

Chapter 3 CINs

Using External Code in LabVIEW 3-12 ni.com

• Set Project Type to Shared Library. Set the file name to
cinName.tmp, where cinName is the name of your CIN.

• Set Type to .tmp.

• Set Creator to LVsb.

• Add your cintools folder to the list of access paths.

Select Project»Make to build the CIN.

When you successfully build the cinName.tmp file, use the
lvsbutil.app application to create the cinName.lsb file.

In the file selection dialog box, make sure the For Power PC box is
checked. Select any other options you want for your CIN, and then select
your cinName.tmp file. LabVIEW creates cinName.lsb in the same
folder as cinName.tmp.

Macintosh Programmer’s Workshop
You can use Macintosh Programmer’s Workshop (MPW) to build CINs
for Mac OS Classic. The following scripts are available for the MPW
environment to help you build CINs.

• CINMake uses a simplified form of a makefile you provide. You can
run it every time you need to rebuild your CIN.

• LVMakeMake is similar to the lvmkmf (LabVIEW Make Makefile)
script available for building CINs on UNIX. This script builds a
skeletal but complete makefile you can then customize and use with
the MPW make tool.

You must have one makefile for each CIN. Name the makefile by
appending .lvm to the CIN name to indicate that it is a LabVIEW
makefile. The makefile should resemble the following pseudocode.
Make sure that each Dir command ends with the colon character (:).

• name = name is the Name for the code and indicates the base name
for your CIN. The source code for your CIN should be in name.c. The
code created by the makefile is placed in a new LabVIEW subroutine
(.lsb) file, name.lsb.

• type = type is the type of external code you want to create. For
CINs, use a type of CIN.

• codeDir = codeDir: is the complete pathname to the folder
containing the .c file used for the CIN.

• cinToolsDir = cinToolsDir: is the complete pathname to the
LabVIEW cintools:MPW folder.

Chapter 3 CINs

© National Instruments Corporation 3-13 Using External Code in LabVIEW

• LVMVers = 2 is the version of CINMake script reading this .lvm file.

• inclDir = -i inclDir: is optional and is the complete or partial
pathname to a folder containing any additional .h files.

• otherPPCObjFiles = otherPPCObjFiles is optional and is the
list of additional object files, files with a .o extension, your code
needs to compile. Separate the names of files with spaces.

• ShLibs = sharedLibraryNames is optional and is a list of the
link-time copies of import libraries with which the CIN must be
linked. Each should be a complete path to the file. Separate the names
with spaces.

• ShLibMaps = sharedLibMappings is optional and is the
command-line arguments to the MakePEF tool that indicate the
mapping between the name of each link-time import library and the
run-time name of that import library. These usually look similar to the
following example code:

-librename libA.xcoff=libA

-librename libB.xcoff=libB

Only the file names are needed, not entire paths.

You must adjust the —Dir names to reflect your own file system hierarchy.

Modify your MPW command search path by appending the
cintools:MPW folder to the default search path. This search path is
defined by the MPW Shell variable commands, as shown in the following
example code:

set commands "{commands}","<pathname to directory of

cinToolsDir>"

Go to the MPW Worksheet and enter the following commands, setting your
current folder to the CIN folder.

Directory <pathname to directory of your CIN>

Run the LabVIEW CINMake script, shown in the following example code:

CINMake <name of your CIN>

If CINMake does not find a .lvm file in the current folder, it builds a
file named cinName.lvm and prompts you for necessary information.
If CINMake finds cinName.lvm but it does not have the line
LVMVers = 2, MPW saves the .lvm file in cinName.lvm.old and
updates the cinName.lvm file to be compatible with the new version of
CINMake.

Chapter 3 CINs

Using External Code in LabVIEW 3-14 ni.com

The format of the CINMake command is shown in the following example
code, with optional parameters listed in brackets:

CINMake [-MakeOpts “opts”] [-RShell] [-dbg] [-noDelete]

<name of your CIN>

-MakeOpts opts specifies extra options to pass
to make.

-Rshell The Rshell option to CINMake causes
the make commands to execute in
ToolServer rather than in the MPW Shell.
Having the make commands execute in
ToolServer is useful if you want to be able
to issue other MPW commands before the
make commands have been completed,
for example, if the CIN takes a long time
to compile.

-dbg If this argument is specified, CINMake
prints statements describing what it does.

-noDelete If this argument is specified, CINMake
does not delete temporary files used when
making the CIN.

You can use LVMakeMake to build an MPW makefile that you can then
customize. You should only have to run LVMakeMake once for each CIN.
You can modify the resulting makefile by adding the proper header file
dependencies or by adding other object files to be linked into your CIN.
The format of a LVMakeMake command is shown in the following example
code, with optional parameters listed in brackets:

LVMakeMake [-o makeFile] <name of your CIN>.make

-o makeFile indicates the name of the
output makefile. If this argument is not
specified, LVMakeMake writes to
standard output.

For example, to build a Mac OS Classic makefile for a CIN named myCIN,
use the following command:

LVMakeMake myCIN > myCIN.ppc.make

creates the makefile

Chapter 3 CINs

© National Instruments Corporation 3-15 Using External Code in LabVIEW

You then can use the MPW make tool to build your CIN, as shown in the
following commands:

make -f myCIN.ppc.make> myCIN.makeout

creates the build commands

myCIN.makeout

executes the build commands

Load the .lsb file that this application creates into your LabVIEW CIN.

Microsoft Windows
To build CINs for LabVIEW for Windows, use the Microsoft Visual C++
or Symantec C compilers.

Visual C++ IDE
Complete the following steps to build CINs using the Visual C++
integrated development environment (IDE).

1. Select File»New to create a new DLL project.

2. Select Win32 Dynamic-Link Library as the project type. You can
name your project whatever you want.

3. Select An empty DLL project when prompted to choose the type of
DLL that you want to create and click Finish.

4. Select Project»Add To Project»Files and navigate to your .c file.
Select your .c file and click the Open button to add the .c file to the
project.

5. Select Project»Add To Project»Files to add CIN objects and libraries
to the project. Select cin.obj, labview.lib, lvsb.lib, and
lvsbmain.def from the Cintools subdirectory. You need these files
to build a CIN.

6. Select Project»Settings and change Settings For to All
Configurations. Click the C/C++ tab and set the category to
Preprocessor. Add the path to your Cintools directory in the
Additional include directories field.

7. Select Project»Settings and change Settings For to All
Configurations. Click the C/C++ tab and set the category to Code
Generation. Select the Struct member alignment tab and select 1
byte.

8. Choose a run-time library. Select Project»Settings and change
Settings for to All Configurations. Select the C/C++ tab and set the
category to Code Generation. Select Multithreaded DLL in the Use
run-time library control.

Chapter 3 CINs

Using External Code in LabVIEW 3-16 ni.com

9. Make a custom build command to run lvsbutil. Select
Project»Settings and change Settings for to All Configurations.
Select the Custom Build tab and change the Commands field as
follows, with the code all on a single line:

<your path to cintools>\lvsbutil “$(TargetName)” -d

"$(WkspDir)\$(OutDir)"

Change the Output fields to $(OutDir)$(TargetName).lsb.

10. (For Visual C++.NET compiler only) Add
<CINTOOLSDIR>\lvsbmain.def to the Linker»Input»Module
Definition File field.

11. Click the File View tab in the Work Space window.

12. Open your .c file and replace /* Insert code here */ with your
code.

13. Select Build»Build projectName.dll, where projectName is the name
of your project.

Visual C++ Command Line
This section describes using command line tools in Windows to build
CINs.

1. Add a CINTOOLSDIR definition to your list of user environment
variables.

(Windows 2000/NT/XP) You can edit this list with the System control
panel accessory. For example, if you installed LabVIEW for Windows
in c:\Program Files\National Instruments\LabVIEW x.x,
the CIN tools directory should be c:\Program Files\National
Instruments\LabVIEW x.x\cintools, where x.x is the
LabVIEW version number. In this instance, you would add the
following line to the user environment variables using the System
control panel:

CINTOOLSDIR = c:\Program Files\National

Instruments\LabVIEW x.x\cintools

(Windows Me/98) Modify your AUTOEXEC.BAT to set CINTOOLSDIR to
the correct value.

2. Build a .lvm file (LabVIEW Makefile) for your CIN. You must
specify the following items:

• name is the name of your CIN, for example, mult.

• type is CIN.

• !include $(CINTOOLSDIR)\ntlvsb.mak

Chapter 3 CINs

© National Instruments Corporation 3-17 Using External Code in LabVIEW

To define additional include paths for a CIN you must add a
CINCLUDES line to the .lvm file, as shown in the following example
code:

CINCLUDE = -Ipathnames

You must include the -I argument on the line. pathnames is the
directory where you look for other includes.

If your CIN uses extra object files, you can specify the objFiles
option. You do not need to specify the codeDir parameter because the
code for the CIN must be in the same directory as the makefile. You do
not need to specify the wcDir parameter because the CIN tools can
determine the location of the compiler.

You can compile the CIN code using the following command, where
mult is the makefile name:

nmake /f mult.lvm

If you want to use standard C or Windows libraries, define the symbol
cinLibraries. For example, to use standard C functions in the
previous example, you could use the following .lvm file:

name = mult

type = CIN

cinLibraries=libc.lib

!include $(CINTOOLSDIR)\ntlvsb.mak

To include multiple libraries, separate the list of library names
with spaces.

Symantec C
Building CINs using Symantec C is similar to building CINs for Visual
C++ Command Line. However, you should use smake instead of nmake
on your .lvm file.

Solaris 2.x
LabVIEW for Solaris 2.x uses external code compiled in a shared library
format. To prepare this library for LabVIEW, use the LabVIEW utility
lvsbutil. lvsbutil is in the cintools folder.

The default compiler for Solaris is gcc. If gcc is not installed, cc becomes
the default compiler for Solaris.

Chapter 3 CINs

Using External Code in LabVIEW 3-18 ni.com

Linux
The only supported compiler for Linux is gcc.

gcc Compiler
Create a makefile using the shell script lvmkmf (LabVIEW Make
Makefile), which creates a makefile for a given CIN. Use the standard
make command to make the CIN code. In addition to compiling the CIN,
the makefile puts the code in a form LabVIEW can use.

The format for the lvmkmf command is shown in the following example
code, with optional parameters listed in brackets.

lvmkmf [-o Makefile] LVSBName

LVSBName is the name of the CIN you want to build. If LVSBName is foo,
the compiler assumes the source is foo.c and names the output file
foo.lsb.

-o is the name of the makefile lvmkmf creates. If you do not specify this
argument, the makefile name default is Makefile.

The created makefile will be similar to the following example code.

Note In the following example code, entries in parentheses correspond to the Solaris cc
compiler. Also, replace xx in lvxx with the LabVIEW version number, for example, lv70.

#

This Makefile was generated automatically by lvmkmf.

#

CC=gcc (CC=cc)

LD=gcc (LD=ld)

LDFLAGS=-shared (LDFLAGS=-G)

XFLAGS=-fPIC (XFLAGS=-K PIC)

CINDIR=/usr/local/lvxx/cintools

CFLAGS=-I$(CINDIR) $(XFLAGS)

CINLIB=$(CINDIR)/libcin.a

MAKEGLUE=$(CINDIR)/makeglueSVR4.awk

AS=as

Chapter 3 CINs

© National Instruments Corporation 3-19 Using External Code in LabVIEW

The makefile produced assumes the cin.o, libcin.a, and lvsbutil
files are in certain locations. If these assumptions are incorrect, you can edit
the makefile to correct the pathnames.

Step 5. Load the CIN Object Code
To load the code resource, right-click the node and select Load Code
Resource from the shortcut menu. Select the .lsb file you created in the
Step 4. Compile the CIN Source Code section.

LabVIEW loads your object code into memory and links the code to the
current front panel or block diagram. After you save the VI, the file
containing the object code does not need to be resident on the computer
running LabVIEW for the VI to run.

If you modify the source code, you can load the new version of the object
code using the Load Code Resource shortcut menu item. The file
containing the object code for the CIN must have an extension of .lsb.

There is no limit to the number of CINs per block diagram.

LabVIEW Manager Routines
LabVIEW has a suite of routines that you can call from CINs. This suite of
routines performs user-specified routines using the appropriate instructions
for a given platform. These routines, which manage the functions of a
specific operating system, are grouped into the following categories:

• Memory manager

• File manager

• Support manager

External code written using the managers is portable, that is, you can
compile it without modification on any platform that supports LabVIEW.
This portability has the following advantages:

• The LabVIEW application is built on top of the managers. Except for
the managers, the LabVIEW source code is identical across platforms.

• The analysis VIs are built mainly from CINs. The source code for these
CINs is the same for all platforms.

Refer to the Manager Overview section of Chapter 4, Programming Issues
for CINs, for more information about the memory manager, the file
manager, and the support manager.

Chapter 3 CINs

Using External Code in LabVIEW 3-20 ni.com

Refer to Chapter 6, Function Descriptions, for descriptions of functions or
file manager data structures.

Note When you call the LabVIEW manager functions from a DLL, use #include
extcode.h in any files that use manager functions and link to labview.lib. Set the
structure alignment of the compiler to 1 byte. Some of the manager functions, such as
SetCINArraySize, are CIN-specific, and you cannot call them from a DLL.

Pointers as Parameters
Some manager functions have a parameter that is a pointer.
These parameter type descriptions are identified by a trailing asterisk,
such as the ph parameter AZCopyHandle/DSCopyHandle allocating and
releasing function, or are type defined as such, such as the name parameter
of the FNamePtr function. In most cases, the manager function writes a
value to pre-allocated memory. In some cases, such as FStrFitsPath or
GetALong, the function reads a value from the memory location, so you
do not have to pre-allocate memory for a return value.

The following functions have parameters that return a value for which you
must pre-allocate memory.

AZMemStats FNamePtr

AZCopyHandle/DSCopyHandle FNewRefNum

DateToSecs FPathToArr

DSMemStats FPathToAZString

FCreate FPathToDString

FCreateAlways FPathToPath

FFlattenPath FRefNumToFD

FGetAccessRights FStringToPath

FGetEOF FTextToPath

FGetInfo FUnflattenPath

FGetPathType GetAlong

FMOpen SetALong

FMRead RandomGen

Chapter 3 CINs

© National Instruments Corporation 3-21 Using External Code in LabVIEW

You must allocate space for this return value. The following examples
illustrate incorrect and correct ways to call one of these functions from
within a generic function foo.

Incorrect example:

foo(Path path) {

PStr p; /* an uninitialized pointer */

File *fd; /* an uninitialized pointer */

MgErr err;

err = FNamePtr(path, p);

err = FMOpen(fd, path, openReadOnly

denyWriteOnly);

}

In the incorrect example, p is a pointer to a Pascal string, but the pointer is
not initialized to point to any allocated buffer. FNamePtr expects its caller
to pass a pointer to an allocated space and writes the name of the file
referred to by path into that space. Even if the pointer does not point to
a valid place, FNamePtr writes its results there, with unpredictable
consequences. Similarly, FMOpen writes its results to the space to which fd
points, which is not a valid place because fd is uninitialized.

Correct example:

foo(Path path) {

Str255 buf; /* allocated buffer of 256 chars */

File fd;

MgErr err;

err = FNamePtr(path, buf);

err = FMOpen(&fd, path, openReadOnly,

denyWriteOnly);

}

In the correct example, buf contains space for the maximum-sized Pascal
string, whose address is passed to FNamePtr. fd is a local variable
(allocated space) for a file descriptor.

FMTell SecsToDate

FMWrite NumericArrayResize

Chapter 3 CINs

Using External Code in LabVIEW 3-22 ni.com

Debugging External Code
LabVIEW has a debugging window you can use with external code to
display information at run time. You can open the window, display
arbitrary print statements, and close the window from any CIN.

To create this debugging window, use the DbgPrintf function. The format
for DbgPrintf is similar to the format of the SPrintf function, described
in Chapter 6, Function Descriptions. DbgPrintf takes a variable number
of arguments, where the first argument is a C format string.

DbgPrintf
syntax int32 DbgPrintf(CStr cfmt, ..);

The first time you call DbgPrintf, LabVIEW opens a window to display
the text you pass to the function. Subsequent calls to DbgPrintf append
new data as new lines in the window. You do not need to pass in the new
line character to the function. If you call DbgPrintf with NULL instead of
a format string, LabVIEW closes the debugging window. You cannot
position or change the size of the window.

The following examples show how to use DbgPrintf.

DbgPrintf(""); /* print an empty line, opening

the window if necessary */

DbgPrintf("%H", var1); /* print the contents of an

LStrHandle (LabVIEW string),

opening the window if necessary

*/

DbgPrintf(NULL); /* close the debugging window

*/

Windows
Windows supports source-level debugging of CINs using Microsoft’s
Visual C environment.

Complete the following steps to debug CINs in Windows.

1. Modify your CIN to set a debugger trap. You must do this to force
Visual C to load your debugging symbols. The trap call must be
done after the CIN is in memory. The easiest way to do this is to place
it in the CINLoad procedure. After the debugging symbols are loaded,

Chapter 3 CINs

© National Instruments Corporation 3-23 Using External Code in LabVIEW

you can set normal debug points inside Visual C. Windows Me/98
has a single method of setting a debugger trap, while
Windows 2000/NT/XP can use the Windows Me/98 method or
another.

The method common to Windows is to insert a debugger break using
an in-line assembly command, as shown in the following code:

_asm int 3;

Adding this to CINLoad gives you the following code:

CIN MgErr CINLoad(RsrcFile reserved)

{

Unused(reserved);

_asm int 3;

return noErr;

}

When the debugger trap is hit, Visual C++ invokes a debug window
highlighting that line.

In Windows 2000/NT/XP, you can use the DebugBreak function. The
DebugBreak function exists in Windows Me/98 but does not produce
suitable results for debugging CINs. To use DebugBreak, include
<windows.h> at the top of your file and place the call where you
want to break, as shown in the following example code:

#include <windows.h>

CIN MgErr CINLoad(RsrcFile reserved)

{

Unused(reserved);

DebugBreak();

return noErr;

}

When that line runs, you will be in assembly. Step out of that function
to get to the point of the DebugBreak call.

2. Rebuild your CIN with debugging symbols.

If you built your CIN from the command line, add the following lines
to the .lvm file of your CIN to add debug information to the CIN:

DEBUG = 1

cinLibraries = Kernel32.lib

Chapter 3 CINs

Using External Code in LabVIEW 3-24 ni.com

If you built your CIN using the IDE, build a debug version of the DLL.
Select Projects»Settings, the Debug tab, and the General category.
Enter your LabVIEW executable in Executable for debug session.

3. Run LabVIEW.

If you built your CIN from the command line, start LabVIEW
normally. When the debugger trap is run, a the following message
appears:

A Breakpoint has been reached. Click OK to terminate

application. Click CANCEL to debug the application.

Click the Cancel button to launch the debugger, which attaches to
LabVIEW, searches for the DLLs, then asks for the source file of
your CIN. Point it to your source file, and the debugger loads the
CIN source code. You then can debug your code.

If you built your CIN using the IDE, open your CIN project and
click the GO button. Visual C launches LabVIEW.

UNIX
On UNIX, you can use standard C printf calls or the DbgPrintf
function described in the previous section. You also can use gdb, the Gnu
debugger, to debug the CIN. You must load the VI that contains the CIN
before you add breakpoints. The CIN is not loaded until the VI is loaded.

© National Instruments Corporation 4-1 Using External Code in LabVIEW

4
Programming Issues for CINs

This chapter describes the data structures LabVIEW uses when passing data to a CIN and
describes the function libraries, or managers, that you can use in external code modules.
The function libraries include the memory manager, the file manager, and the support
manager.

Passing Parameters
LabVIEW passes parameters to the CINRun routine. The parameters correspond to each of
the wires connected to the CIN. You can pass any data type to a CIN you can construct in
LabVIEW. CINs do not have a limit to the number of parameters you can pass to and from
them.

Parameters in the CIN .c File
When you right-click a CIN on a block diagram and select Create .c File from the shortcut
menu, LabVIEW creates a .c file in which you can enter your CIN code. The CINRun
function and its prototype are given. CINRun function parameters correspond to the data types
being passed to the CIN on the block diagram.

The .c file created is a standard C file, except LabVIEW gives the data types unambiguous
names. C does not define the size of low-level data types, for example, the int data type
might correspond to a 16-bit integer for one compiler and a 32-bit integer for another
compiler. The .c file uses names that are explicit about data type size, such as int16, int32,
float32, and so on. In the cintools directory, LabVIEW includes a header file,
extcode.h, that contains type definitions that associate LabVIEW data types with the
corresponding data type for the supported compilers of each platform.

extcode.h defines some constants and types whose definitions might conflict with the
definitions of system header files. The cintools directory also contains hosttype.h,
which resolves the differences between definitions in extcode.h and definitions in system
header files. hosttype.h also includes many of the common header files for a given
platform

Note Always use #include "extcode.h" at the beginning of your source code. If your
code needs to make system calls, also use #include "hosttype.h" immediately after
#include "extcode.h", and then include your system header files. hosttype.h
includes only a subset of the .h files for a given operating system. If the .h file you need

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-2 ni.com

is not included in hosttype.h, you can include it in the .c file for your CIN after you
include hosttype.h.

If you write a CIN that accepts a single 32-bit signed integer, the .c file indicates the CINRun
routine is passed as int32 by reference. extcode.h defines an int32 to the appropriate data
type for the LabVIEW-supported compiler you use. Therefore, you can use the int32 data
type in external code you write.

Passing Fixed-Size Data to CINs
As described in the Creating a CIN section of Chapter 3, CINs, you can designate terminals
on the CIN as either input-output or output-only. Regardless of the designation, LabVIEW
passes data by reference to the CIN. When modifying a parameter value, follow the rules for
each kind of terminal in the Creating a CIN section of Chapter 3, CINs. LabVIEW passes
parameters to the CINRun routines in the same order as you wire data to the CIN. The first
terminal pair corresponds to the first parameter. The last terminal pair corresponds to the last
parameter.

Scalar Numerics
LabVIEW passes numeric data types to CINs by passing a pointer to the data as an argument.
In C, this means LabVIEW passes a pointer to the numeric data as an argument to the CIN.
Arrays of numerics are described in the Arrays and Strings section.

Scalar Booleans
LabVIEW stores Boolean data types in memory as 8-bit integers. If any bit of the integer is 1,
the Boolean data type is TRUE. Otherwise, the Boolean data type is FALSE. LabVIEW
passes Boolean data types to CINs with the same conventions it uses for numerics.

Note In LabVIEW 4.x and earlier, Boolean data types were stored as 16-bit integers. If the
high bit of the integer was 1, it was TRUE. Otherwise, the Boolean data type was FALSE.

Refnums
LabVIEW treats a refnum the same way as a scalar number and passes refnums with the same
conventions it uses for numbers.

Clusters of Scalars
For a cluster, LabVIEW passes a pointer to a structure containing the elements of the cluster.
LabVIEW stores fixed-size values directly as components inside of the structure. If a cluster
component is another cluster, LabVIEW stores the component cluster value as a component
of the main cluster.

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-3 Using External Code in LabVIEW

Return Value for CIN Routines
The names of the CIN routines are prefaced in the header file with the words CIN MgErr, as
shown in the following example code:

CIN MgErr CINRun(...);

The LabVIEW header file extcode.h defines the word CIN to be either Pascal or nothing,
depending on the platform. Prefacing a function with the word Pascal causes some
C compilers to use Pascal calling conventions instead of C calling conventions to generate the
code for the routine.

LabVIEW uses standard C calling conventions, so the header file declares the word CIN to be
equivalent to nothing.

The MgErr data type is a LabVIEW data type corresponding to a set of error codes the
manager routines return. If you call a manager routine that returns an error, you can either
handle the error or return the error so LabVIEW can handle it. If you can handle the errors
that occur, return the error code noErr.

After calling a CIN routine, LabVIEW checks the MgErr value to determine whether an error
occurred. If an error occurs, LabVIEW aborts the VI containing the CIN. If the VI is a subVI,
LabVIEW aborts the VI containing the subVI. Aborting the running VI enables LabVIEW to
handle conditions when a VI runs out of memory. By aborting the running VI, LabVIEW can
possibly free enough memory to continue running correctly.

Examples with Scalars
The following examples describe how to create CINs that work with scalar data types. Refer
to Chapter 3, CINs, for more information about creating CINs.

Creating a CIN That Multiplies Two Numbers
Complete the following steps to create a CIN that takes two single-precision floating-point
numbers and returns their product.

1. Place the CIN on the block diagram.

2. Add two input and output terminals to the CIN.

3. Place two single-precision numeric controls and one single-precision numeric indicator
on the front panel. Wire the node as shown in Figure 4-1. A*B is wired to an output-only
terminal pair.

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-4 ni.com

Figure 4-1. mult.vi Block Diagram

4. Save the VI as mult.vi.

5. Right-click the CIN and select Create .c File. LabVIEW prompts you to select a name
and a storage location for a .c file.

6. Name the file mult.c. LabVIEW creates the following.c file:

/*

 * CIN source file

 */

#include "extcode.h"

CIN MgErr CINRun (float32 *A, float32 *B,

float32 *A_B);

CIN MgErr CINRun (float32 *A, float32 *B,

float32 *A_B) {

/* ENTER YOUR CODE HERE */

return noErr;

}

The preceding.c file contains a prototype and a template for the CINRun routine of the
CIN. LabVIEW calls the CINRun routine when the CIN executes. In this example,
LabVIEW passes CINRun the addresses of the three 32-bit floating-point numbers. The
parameters are listed left to right in the same order as they are wired to the CIN, that is,
top to bottom. Thus, A, B, and A_B are pointers to A, B, and A*B, respectively.

As described in the Parameters in the CIN .c File section, the float32 data type is not
a standard C data type. For most C compilers, the float32 data type corresponds to the
float data type. However, this might not be true in all cases because the C standard does
not define the sizes for the various data types. You can use these LabVIEW data types in
your code because extcode.h associates these data types with the corresponding C data
type for the compiler you are using. In addition to defining LabVIEW data types,
extcode.h also prototypes LabVIEW routines you can access. Refer to the Manager
Overview section of this chapter for descriptions of these data types and routines.

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-5 Using External Code in LabVIEW

7. Fill in the code for the CINRun routine for this multiplication example. You do not have
to use the variable names LabVIEW gives you in CINRun. You can change the variable
names to increase the readability of the code. Replace /* ENTER YOUR CODE HERE */
in the .c file with the following example code:

CIN MgErr CINRun (float32 *A, float32 *B,

float32 *A_B);

{

*A_B = *A * *B;

return noErr;

}

CINRun multiplies the values to which A and B refer and stores the results in the location
to which A_B refers. It is important that CIN routines return an error code so LabVIEW
knows whether the CIN encountered any fatal problems and handles the error correctly.

If you return a value other than noErr, LabVIEW stops running the VI.

8. Compile the source code and convert it into a form LabVIEW can use. The following
sections summarize the steps for each of the supported compilers. Refer to the Step 4.
Compile the CIN Source Code section of Chapter 3, CINs, for more information about
completing this step on your platform.

(Macintosh Programmer’s Workshop) Create a file named mult.lvm. Make sure the name
variable is set to mult. Build mult.lvm.

(Metrowerks CodeWarrior) Create a new project and place mult.c in it. Build mult.lsb.

(Microsoft Visual C++ Compiler Command Line and Symantec C for Windows) Create a file
named mult.lvm. Make sure the name variable is set to mult. Build mult.lvm.

(Microsoft Visual C++ Compiler IDE for Windows) Create a project.

(UNIX Compilers) Create a makefile using the shell script lvmkmf in the cintools
directory. For this example, enter the following command:

lvmkmf mult

The preceding command creates a file called Makefile. After running lvmkmf, enter the
standard make command, which uses Makefile to create a file called mult.lsb. You
can load mult.lsb into the CIN in LabVIEW.

9. Right-click the node and select Load Code Resource. Select mult.lsb, the object code
file you created.

You should be able to run the VI. If you save the VI, LabVIEW saves the CIN object code
along with the VI.

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-6 ni.com

Comparing Two Numbers, Producing a Boolean Scalar
This example shows only the block diagram and the code. Complete the following steps to
create a CIN that compares two single-precision numbers.

1. Follow the instructions in the Creating a CIN section of Chapter 3, CINs, to create the
CIN. Figure 4-2 shows the block diagram for this CIN.

Figure 4-2. aequalb.vi Block Diagram

2. Save the VI as aequalb.vi.

3. Create a .c file for the CIN and name it aequalb.c. LabVIEW creates the
following.c file:

/*

 * CIN source file

 */

#include "extcode.h"

CIN MgErr CINRun(float32 *A, float32 *B,

LVBoolean *compare);

CIN MgErr CINRun(float32 *A, float32 *B,

LVBoolean *compare) {

if (*A == *B)

*compare = LVTRUE;

else

*compare= LVFALSE;

return noErr;

}

If the first number is greater than the second one, the return value is TRUE. Otherwise,
the return value is FALSE.

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-7 Using External Code in LabVIEW

Passing Variably-Sized Data to CINs
LabVIEW dynamically allocates memory for arrays and strings. If a string or array needs
more space to hold new data, its current location might not offer enough contiguous space to
hold the resulting string or array. LabVIEW might have to move the data to a location that
offers more space.

To accommodate the relocation of memory, LabVIEW uses handles to refer to the storage
location of variably-sized data. A handle is a pointer to a pointer to the desired data.
LabVIEW uses handles instead of simple pointers because handles allow LabVIEW to move
the data without invalidating references from your code to the data. If LabVIEW moves
the data, LabVIEW updates the intermediate pointer to reflect the new location. If you use the
handle, references to the data go through the intermediate pointer, which always reflects the
correct location of the data. Refer to the Using Pointers and Handles in Memory Zones
section of this chapter for information about handles. Refer to Chapter 6, Function
Descriptions, for descriptions of specific handle functions.

Alignment Considerations
When a CIN returns variably sized data, you need to adjust the size of the handle that
references the array. You can adjust the handle size using the memory manager routine
DSSetHandleSize. If the data is stored in the application zone, you can use the
AZSetHandleSize routine to adjust the handle size. Both the DSSetHandleSize routine
and the AZSetHandleSize routine work. However, it is difficult to calculate the size
correctly in a platform-independent manner because some platforms have special
requirements about how you align and pad memory.

Instead of using XXSetHandleSize, use the LabVIEW routines that take this alignment into
account when resizing handles. You can use the SetCINArraySize routine to resize a string
or an array of arbitrary data type. Refer to the Resizing Arrays and Strings section of this
chapter for information about resizing arrays.

The following examples highlight alignment differences for various platforms.

• In Windows, a one-dimensional array of double-precision, floating-point numbers is
stored in a handle. The first four bytes describe the number of elements in the array. These
four bytes are followed by the 8-byte elements that make up the array.

In Solaris and Mac OS X, double-precision, floating-point numbers must be aligned to
8-byte boundaries—the 4-byte value is followed by four bytes of padding. This padding
makes sure the array data falls on 8-byte boundaries.

• In a three-dimensional array of clusters, each cluster contains a double-precision,
floating-point number and a 4-byte integer. As in the previous example, Solaris stores this
array in a handle. The first 12 bytes contain the number of pages, rows, and columns in
the array. These dimension fields are followed by four bytes of filler, which ensures the

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-8 ni.com

first double-precision number is on an 8-byte boundary, and then the data. Each element
contains eight bytes for the double-precision number, followed by four bytes for the
integer. Each cluster is followed by four bytes of padding, which makes sure the next
element is properly aligned.

You can use SetCINArraySize and NumericArrayResize to solve the preceding
problems. Refer to Chapter 6, Function Descriptions, for information about the
SetCINArraySize and NumericArrayResize functions.

Arrays and Strings
LabVIEW passes arrays by handle, as described in the Alignment Considerations section.
For an n-dimensional array, the handle begins with n 4-byte values describing the number of
values stored in a given dimension of the array. Thus, for a one-dimensional array, the first
four bytes indicate the number of elements in the array. For a two-dimensional array, the first
four bytes indicate the number of rows. The second four bytes indicate the number of
columns. These dimension fields can be followed by filler and then the actual data.
Each element can also have padding to meet alignment requirements.

LabVIEW stores strings and Boolean arrays in memory as one-dimensional arrays of 8-bit
unsigned integers. Refer to the Using the Flatten To String Function section of Chapter 1,
Introduction, for information about using the Flatten to String function to convert LabVIEW
data into a string.

Note LabVIEW 4.x stored Boolean arrays in memory as a series of bits packed to
the nearest 16-bit integer. LabVIEW 4.x ignored unused bits in the last 16-bit integer.
LabVIEW 4.x ordered the bits from left to right. That is, the most significant bit (MSB)
is index 0. As with other arrays, a 4-byte dimension size preceded Boolean arrays.
The dimension size for LabVIEW 4.x Boolean arrays indicates the number of valid bits
contained in the array.

Paths
The exact structure for Path data types is subject to change in future versions of LabVIEW.
A Path is a dynamic data structure LabVIEW passes the same way it passes arrays.
LabVIEW stores the data for Paths in an application zone handle. Refer to Chapter 6,
Function Descriptions, for information about the functions that manipulate Paths.

Clusters Containing Variably-Sized Data
For cluster arguments, LabVIEW passes a pointer to a structure containing the elements of
the cluster. LabVIEW stores scalar values directly as components inside the structure. If a
component is another cluster, LabVIEW stores the component cluster value as a component
of the main cluster. If a component is an array or string, LabVIEW stores a handle to the array
or string component in the structure.

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-9 Using External Code in LabVIEW

Resizing Arrays and Strings
To resize return arrays and strings you pass to a CIN, use the LabVIEW SetCINArraySize
routine. Pass to the SetCINArraySize function the handle you want to resize, information
describing the data structure, and the desired size of the array or handle. SetCINArraySize
takes into account any padding and alignment needed for the data structure. However,
SetCINArraySize does not update the dimension fields in the array. If you successfully
resize the array, you need to update the dimension fields to correctly reflect the number of
elements in the array.

You can resize numeric arrays more easily with NumericArrayResize. Pass to the
NumericArrayResize function the array you want to resize, a description of the data
structure, and information about the new size of the array.

Consider the following issues when you resize arrays of variably-sized data, such as arrays of
strings, with the SetCINArraySize or NumericArrayResize routines.

• If the new size of the array is smaller, LabVIEW disposes of the handles used by the
disposed element. Neither SetCINArraySize nor NumericArrayResize sets the
dimension field of the array. You must set the dimension field of the array in your code
after the function call.

• If the new size of the array is larger, LabVIEW does not automatically create the handles
for the new elements. You have to create these handles after the function returns.

Refer to Chapter 6, Function Descriptions, for more information about the
SetCINArraySize and NumericArrayResize routines.

Examples with Variably Sized Data
The following examples describe how to create CINs that work with variably-sized data types.
Refer to Chapter 3, CINs, for more information about creating CINs.

Concatenating Two Strings
In this example, the CIN concatenates two strings and uses an input-output terminal. The top
left terminal of the CIN takes in the first string as an input parameter to the CIN. The top right
terminal of the CIN returns the result of the concatenation. This example shows only the
diagram and the code.

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-10 ni.com

Complete the following steps to create the CIN.

1. To create the CIN, follow the instructions in the Creating a CIN section of Chapter 3,
CINs. Figure 4-3 shows the block diagram for this CIN.

Figure 4-3. lstrcat.vi Block Diagram

2. Save the VI as lstrcat.vi.

3. Create a .c file for the CIN and name it lstrcat.c. LabVIEW creates the following
.c file:

/*

 * CIN source file

 */

#include "extcode.h"

CIN MgErr CINRun(

LStrHandle var1,

LStrHandle var2);

CIN MgErr CINRun(

LStrHandle var1,

LStrHandle var2) {

/* ENTER YOUR CODE HERE */

return noErr;

}

4. Fill in the CINRun function with the following example code:

CIN MgErr CINRun(

LStrHandle strh1,

LStrHandle strh2) {

int32 size1, size2, newSize;

MgErr err;

size1 = LStrLen(*strh1);

size2 = LStrLen(*strh2);

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-11 Using External Code in LabVIEW

newSize = size1 + size2;

if(err = NumericArrayResize(uB, 1L,

(UHandle*)&strh1, newSize))

goto out;

/* append the data from the second string to

first string */

MoveBlock(LStrBuf(*strh2),

LStrBuf(*strh1)+size1, size2);

/* update the dimension (length) of the

first string */

LStrLen(*strh1) = newSize;

out:

return err;

}

In this example, CINRun is the only routine that performs substantial operations. CINRun
concatenates the contents of strh2 to the end of strh1, with the resulting string stored in
strh1. Before performing the concatenation, NumericArrayResize resizes strh1 to hold
the additional data.

If NumericArrayResize fails, it returns a non-zero value of type MgErr. In this example,
NumericArrayResize could fail if LabVIEW does not have enough memory to resize the
string. Returning the error code gives LabVIEW a chance to handle the error. If CINRun
reports an error, LabVIEW aborts the calling VIs. Aborting the VIs might free up enough
memory so LabVIEW can continue running.

After resizing the string handle, MoveBlock copies the second string to the end of the first
string. MoveBlock is a support manager routine that moves blocks of data. Finally, this
example sets the size of the first string to the length of the concatenated string.

Computing the Cross Product of Two Two-Dimensional Arrays
In this example, the CIN accepts two two-dimensional arrays and computes the cross product
of the arrays. The CIN returns the cross product in a third parameter and a Boolean value as
a fourth parameter. The Boolean parameter is TRUE if the number of columns in the first
matrix is not equal to the number of rows in the second matrix. This example shows only the
front panel, block diagram, and source code.

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-12 ni.com

Complete the following steps to create the CIN.

1. Follow the instructions in the Creating a CIN section of Chapter 3, CINs, to create the
CIN. Figure 4-4 shows the front panel for this VI.

Figure 4-4. cross.vi Front Panel

Figure 4-5 shows the block diagram for this VI.

Figure 4-5. cross.vi Block Diagram

2. Save the VI as cross.vi.

3. Create the .c file for the CIN and save it as cross.c. The following code is the source
code for cross.c with the CINRun routine added.

/*

 * CIN source file

 */

#include "extcode.h"

#define ParamNumber 2

/* The return parameter is parameter 2 */

#define NumDimensions 2

/* 2D Array */

/*

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-13 Using External Code in LabVIEW

 * typedefs

 */

typedef struct {

int32 dimSizes[2];

float64 arg1[1];

} TD1;

typedef TD1 **TD1Hdl;

CIN MgErr CINRun(TD1Hdl A, TD1Hdl B, TD1HdlAxB, LVBoolean *error);

CIN MgErr CINRun(TD1Hdl A, TD1Hdl B, TD1Hdl AxB, LVBoolean *error){

int32 i,j,k,l;

int32 rows, cols;

float64 *aElmtp, *bElmtp, *resultElmtp;

MgErr err = noErr;

int32 newNumElmts;

if ((k = (*A)–>dimSizes[1]) !=(*B)–>dimSizes[0]) {

*error = LVTRUE;

goto out;

}

*error = LVFALSE;

rows = (*A)–>dimSizes[0];

/* number of rows in A and result */

cols = (*B)–>dimSizes[1];

/* number of cols in B and result */

newNumElmts = rows * cols;

if (err = SetCINArraySize((UHandle)AxB,

ParamNumber, newNumElmts))

goto out;

(*AxB)–>dimSizes[0] = rows;

(*AxB)–>dimSizes[1] = cols;

aElmtp = (*A)–>arg1;

bElmtp = (*B)–>arg1;

resultElmtp = (*AxB)–>arg1;

for (i=0; i<rows; i++)

for (j=0; j<cols; j++) {

*resultElmtp = 0;

for (l=0; l<k; l++)

*resultElmtp += aElmtp[i*k + l] *

bElmtp[l*cols + j];

resultElmtp++;

}

out:

return err;

}

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-14 ni.com

In this example, CINRun is the only routine performing substantial operations. CINRun
cross-multiplies the two-dimensional arrays A and B. LabVIEW stores the resulting array in
resulth. If the number of columns in A is not equal to the number of rows in B, CINRun sets
*error to LVTRUE to inform the calling diagram of invalid data.

SetCINArraySize, the LabVIEW routine that accounts for alignment and padding
requirements, resizes the array. The two-dimensional array data structure is the same as the
one-dimensional array data structure, except the 2D array has two dimension fields instead of
one. The two dimensions indicate the number of rows and the number of columns in the array,
respectively. The data is declared as a one-dimensional C-style array. LabVIEW stores data
row by row, as shown in Figure 4-6.

Figure 4-6. LabVIEW Data Storage

For an array with r rows and c columns, you can access the element at row i and column j,
as shown in the following code:

value = (*arrayh)–>arg1[i*c + j];

Working with Clusters
In this example, the CIN takes an array of clusters and a single cluster as inputs. The clusters
contain a 16-bit signed integer and a string.The top terminal of the CIN is an input-output
terminal. The top terminal takes the array of clusters as an input and returns the new array of
clusters as an output.

In addition to the new array of clusters, the CIN returns a Boolean parameter and a 32-bit
signed integer. If the single cluster is already present in the array of clusters, the CIN sets the
Boolean parameter to TRUE. If the Boolean parameter is TRUE, the CIN returns in the 32-bit
integer output the position the single cluster occupies in the array of clusters.

c columns

r rows

0,0
1,0

0,1
1,1

0, c–1
1, c–1

r–1,0 r–1,1 r–1,c–1
… …

…
…
…
…

…

in memory

dimSizes arg1
[0] [1] [0] [1] [c–1] [c] [c+1] [r+c–1]

r c 0,0 0,1 0,c–1 1,0 1,1 r–1,c–1

… …
… …

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-15 Using External Code in LabVIEW

If the single cluster is not present in the array of clusters, the CIN adds it to the array, sets the
Boolean output to FALSE, and returns through the 32-bit integer output the position the single
cluster now occupies in the new array of clusters.

This example shows only the front panel, block diagram, and source code. Complete the
following steps to create the CIN.

1. Follow the instructions in the Creating a CIN section of Chapter 3, CINs, to create the
CIN. Figure 4-7 shows the front panel for this VI.

Figure 4-7. tblsrch.vi Front Panel

Figure 4-8 shows the block diagram for this VI.

Figure 4-8. tblsrch.vi Block Diagram

2. Save the VI as tblsrch.vi.

3. Create the .c file and save it as tblsrch.c. The following code is the source code for
tblsrch.c with the CINRun routine added.

/*

 * CIN source file

 */

#include "extcode.h"

#define ParamNumber 0

/* The array parameter is parameter 0 */

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-16 ni.com

/*

 * typedefs

 */

typedef struct {

int16 number;

LStrHandle string;

} TD2;

typedef struct {

int32 dimSize;

TD2 arg1[1];

} TD1;

typedef TD1 **TD1Hdl;

CIN MgErr CINRun(

TD1Hdl clusterTableh,

TD2 *elementp,

LVBoolean *presentp,

int32 *positionp);

CIN MgErr CINRun(

TD1Hdl clusterTableh,

TD2 *elementp,

LVBoolean *presentp,

int32 *positionp) {

int32 size,i;

MgErr err=noErr;

TD2 *tmpp;

LStrHandle newStringh;

TD2 *newElementp;

int32 newNumElements;

size = (*clusterTableh)–>dimSize;

tmpp = (*clusterTableh)–>arg1;

*positionp = –1;

*presentp = LVFALSE;

for(i=0; i<size; i++) {

if(tmpp–>number == elementp–>number)

if(LStrCmp(*(tmpp–>string),

*(elementp–>string)) == 0)

break;

tmpp++;

}

if(i<size) {

*positionp = i;

*presentp = LVTRUE;

goto out;

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-17 Using External Code in LabVIEW

}

/* DSCopyHandle will allocate a new handle since this is

NULL */

newStringh = NULL;

if(err = DSCopyHandle(&newStringh,elementp->string))

goto out;

newNumElements = size+1;

if(err = SetCINArraySize((UHandle)clusterTableh,

ParamNumber,newNumElements)) {

DSDisposeHandle(newStringh);

goto out;

}

(*clusterTableh)–>dimSize = size+1;

newElementp = &((*clusterTableh)–>arg1[size]);

newElementp–>number = elementp–>number;

newElementp–>string = newStringh;

*positionp = size;

out:

return err;

}

In this example, CINRun is the only routine performing substantial operations. CINRun first
searches through the table to see if the single cluster is present. CINRun then compares string
components using the LabVIEW routine LStrCmp. If CINRun finds the single cluster, the
routine returns the position the single cluster occupies in the array of clusters.

If the routine does not find the single cluster in the array of clusters, the CIN adds a new
element to the array of clusters. The memory manager routine DSCopyHandle creates a new
handle containing the same string as the one in the single cluster you passed to the CIN.
CINRun increases the size of the array of clusters using SetCINArraySize and fills the last
position in the new array of clusters with a copy of the single cluster you passed to the CIN.
If the SetCINArraySize call fails, the CIN returns the error code returned by the manager.
If the CIN is unable to resize the array, LabVIEW disposes of the duplicate string handle.

Refer to Chapter 6, Function Descriptions, for information about CINRun, LStrCmp,
DSCopyHandle, and SetCINArraySize.

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-18 ni.com

Manager Overview
LabVIEW has a large number of external functions that you can use to perform simple and
complex operations. These functions, organized into libraries called managers, range from
low-level byte manipulation to routines for sorting data and managing memory. All manager
routines described in this chapter are platform-independent. If you use the manager routines,
you can create external code that works on all platforms that LabVIEW supports. LabVIEW
contains the following manager functions:

• Memory manager

• File manager

• Support manager

To achieve platform independence, data types should not depend on the peculiarities of
various compilers. For example, the C language does not define the size of an integer. Without
an explicit definition of the size of each data type, you have difficulty creating code that works
identically across multiple compilers. LabVIEW managers use data types that explicitly
indicate the size of the data type. For example, if a routine requires a 4-byte integer as a
parameter, you define the parameter as an int32. The managers define data types in terms of
the fundamental data types for each compiler. Thus, on one compiler, the managers might
define an int32 as an int, while on another compiler, the managers might define an int32
as a long int. When you write external code, use the manager data types instead of the host
computer data types so your code is more portable and has fewer errors.

The remainder of this chapter discusses data types and the individual manager functions.

Data Types
Manager data types include the following data types:

• Scalar

• Char

• Dynamic

• Memory-related

• Constants

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-19 Using External Code in LabVIEW

Scalar
Scalar data types include Boolean and numeric.

Boolean
External code modules work with two kinds of Boolean scalars—those existing in LabVIEW
block diagrams and those passing to and from manager routines. The manager routines use a
conventional Boolean form where 0 is FALSE and 1 is TRUE. This conventional Boolean
form is called a Bool32 and is stored as a 32-bit value.

LabVIEW block diagrams store Boolean scalars as 8-bit values. The value is 0 if FALSE and
1 if TRUE. This Boolean form is called an LVBoolean.

The Table 4-1 describes the two forms of Boolean scalars.

Numeric
The managers support 8-, 16-, and 32-bit signed and unsigned integers. For floating-point
numbers, LabVIEW supports the single, double, and extended floating-point data types.

LabVIEW supports complex numbers containing two floating-point numbers, with different
complex numeric types for each of the floating-point data types.

Table 4-1. Boolean Scalars

Name Description

Bool32 32-bit integer, 0 if FALSE, 1 if TRUE

LVBoolean 8-bit integer, 0 if FALSE, 1 if TRUE

Table 4-2. Floating-Point Data Types Supported by LabVIEW

Type Description

Single 32-bit

Double 64-bit

Extended At least 80-bit

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-20 ni.com

LabVIEW supports the following basic data types for numbers:

• Signed integers

– int8 8-bit integer

– int16 16-bit integer

– int32 32-bit integer

• Unsigned integers

– uInt8 8-bit integer

– uInt16 16-bit integer

– uInt32 32-bit integer

• Floating-point numbers

– float32 32-bit floating-point number

– float64 64-bit floating-point number

– floatExt extended-precision floating-point number

Table 4-3 explains how various platforms store extended-precision numbers.

Complex Numbers
The complex data types are structures with two floating-point components, re and im.
As with floating-point numbers, complex numbers can have 32-bit, 64-bit, and
extended-precision components. Table 4-4 contains the code for the type definitions for each
of these complex data types.

Table 4-3. Storage Format for Extended-Precision Numbers on Various Platforms

Platform Storage Format

Windows 80-bit structure with two int32 components, mhi and mlo, and an
int16 component, e

Mac OS 128-bit double-double format

Sun 128-bit floating-point numbers

Concurrent Same as float64

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-21 Using External Code in LabVIEW

char
The char data type is defined by C to be an 8-bit signed integer. LabVIEW defines an
unsigned char data type, with the following type definition:

typedef uInt8 uChar;

Dynamic
LabVIEW defines a number of data types you must allocate and deallocate dynamically.
Arrays, strings, and paths have data types you must allocate using memory manager and file
manager routines.

Arrays
LabVIEW supports arrays of any of the basic data types described in this section. You can
construct more complicated data types using clusters, which can in turn contain scalars,
arrays, and other clusters.

The first four bytes of a LabVIEW array indicate the number of elements in the array. The
elements of the array follow the length field. Refer to the Passing Parameters section of this
chapter for examples of manipulating arrays.

Strings
LabVIEW supports C- and Pascal-style strings, lists of strings, and LStr, a special string data
type you use for string parameters to external code modules. The support manager contains
routines for manipulating strings and converting them among the different types of strings.

Table 4-4. Code for Complex Numbers

Complex Number Type Code

32-bit typedef struct {

float32 re, im;

} cmplx64;

64-bit typedef struct {

float64 re, im;

} cmplx128;

Extended-precision typedef struct {

floatExt re, im;

} cmplxExt;

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-22 ni.com

C-Style Strings (CStr)
A C-style string (CStr) is a series of zero or more unsigned characters, terminated by a zero.
C strings have no effective length limit. Most manager routines use C strings, unless you
specify otherwise. The following code is the type definition for a C string.

typedef uChar *CStr;

Pascal-Style Strings (PStr)
A Pascal-style string (PStr) is a series of unsigned characters. The value of the first character
indicates the length of the string. A PStr can have a range of 0 to 255 characters. The
following code is the type definition for a Pascal string.

typedef uChar Str255[256], Str31[32],

*StringPtr,

**StringHandle;

typedef uChar *PStr;

LabVIEW Strings (LStr)
The first four bytes of a LabVIEW string (LStr) indicate the length of the string. The
specified number of characters follow the length of the string. LStr is the string data type
used by LabVIEW block diagrams. The following code is the type definition for a LStr
string.

typedef struct {

int32 cnt;

/* number of bytes that follow */

uChar str[1];

/* cnt bytes */

} LStr, *LStrPtr, **LStrHandle;

Concatenated Pascal String (CPStr)
Many algorithms require manipulation of lists of strings. Arrays of strings are usually the
most convenient representation for lists. However, arrays of strings can place a burden on the
memory manager because of the large number of dynamic objects it must manage. To make
working with lists more efficient, LabVIEW supports the concatenated Pascal string (CPStr)
data type, which is a list of Pascal-style strings concatenated into a single block of memory.
Using the CPStr data structure, you can use support manager routines to create and
manipulate lists.

The following code is the type definition for a CPStr string.

typedef struct {

int32 cnt;

/* number of pascal strings that follow */

uChar str[1];

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-23 Using External Code in LabVIEW

/* cnt concatenated pascal strings */

} CPStr, *CPStrPtr, **CPStrHandle;

Paths
A path (pathname) indicates the location of a file or directory in a file system. LabVIEW has
a separate data type for a path, represented as Path, which the file manager defines in a
platform-independent manner. The actual data type for a path is private to the file manager
and subject to change. You can create and manipulate Path data types using file manager
routines.

Memory-Related
LabVIEW uses pointers and handles to reference dynamically allocated memory. The
memory-related data types have the following type definitions:

typedef uChar *UPtr;

typedef uChar **UHandle;

Refer to Chapter 6, Function Descriptions, for information about the use of memory-related
data types with functions.

Constants
The managers define the following constant for use with external code modules.

NULL 0(uInt32)

The following constants define the possible values of the Bool32 data type.

FALSE 0 (int32)

TRUE 1 (int32)

The following constants define the possible values of the LVBoolean data type.

LVFALSE 0 (uInt8)

LVTRUE 1 (uInt8)

Memory Manager
Most applications need routines for allocating and deallocating memory on request. The
memory manager is a set of platform-independent routines you can use to dynamically
allocate, manipulate, and deallocate memory. The LabVIEW memory manager supports
dynamic allocation of both nonrelocatable and relocatable blocks, using pointers and handles.

If you need to perform dynamic memory allocation or manipulation from external code
modules, use the memory manager. If your external code operates on data types other than

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-24 ni.com

scalars, you should understand how LabVIEW manages memory and know which utilities
manipulate data.

The following code shows how the memory manager defines generic handle and pointer data
types.

typedef uChar *UPtr;

typedef uChar **UHandle;

Memory Allocation
Applications use the following types of memory allocation:

• Static

• Dynamic

Note You can allocate memory using malloc inside a CIN. However, assign the pointer
that results from the malloc call to a variable that is local to the CIN code rather than to a
variable passed from the LabVIEW block diagram. Use the LabVIEW memory manager
functions if you want to create or resize memory associated with a variable passed from the
LabVIEW block diagram.

Static Memory Allocation
With static memory allocation, the compiler determines memory requirements when you
create an application. When you launch the application, LabVIEW creates memory for the
known global memory requirements of the application. The memory LabVIEW creates
remains allocated while the application runs. Static memory allocation is simple to work with
because the compiler handles all the details.

However, static memory allocation cannot address the memory management requirements of
most real-world applications because you cannot determine most memory requirements until
run time. Also, statically declared memory might result in larger memory requirements
because the memory is allocated for the duration of the application.

Dynamic Memory Allocation
With dynamic memory allocation, you reserve memory when you need it and free memory
when you are no longer using it. Dynamic allocation requires more work than static memory
allocation because you have to determine memory requirements and allocate and deallocate
memory as necessary.

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-25 Using External Code in LabVIEW

The LabVIEW memory manager supports the following methods of dynamic memory
allocation:

• Using pointers to allocate memory

• Using handles to allocate memory

Using Pointers for Dynamic Memory Allocation
The more conventional method uses pointers to allocate memory. With pointers, you request
a block of memory of a certain size. The routine returns the address of the block of memory
to your CIN. When you no longer need the block of memory, you call a routine to free the
block of memory. You can use the block of memory to store data. You reference the data
stored in the block of memory by using the address the manager routine returned when you
created the pointer. You can make copies of the pointer and use them in multiple places in
your application to refer to the same data.

Pointers in the LabVIEW memory manager are nonrelocatable, which means the manager
never moves the memory block to which a pointer refers while that memory is allocated for a
pointer. Because other references to the memory block do not become out of date, not moving
the memory block allocated to a pointer avoids problems that occur when you need to change
the amount of memory allocated to a pointer. If you need more memory, sufficient memory
might not exist to expand the memory space of the pointer without moving the memory block
to a new location. If an application had multiple references to the pointer, moving the memory
block to a new location causes problems because each pointer refers to the old memory
address of the data. Using invalid pointers can cause severe problems.

Using Handles for Dynamic Memory Allocation
A second form of memory allocation uses handles. As with pointers, when you allocate
memory using handles, you request a block of memory of a certain size. The memory
manager allocates the memory and adds the address of the memory block to a list of master
pointers. The memory manager returns a handle that is a pointer to the master pointer. If you
reallocate a handle and it moves to another address, the memory manager updates the master
pointer to refer to the new address. If you look up the correct address using the handle, you
access the correct data.

Use handles to perform most memory allocation in LabVIEW. Pointers are available because
in some cases they are more convenient and simpler to use.

Memory Zones
LabVIEW's memory manager interface can distinguish between the following distinct
sections, called zones:

• Data space (DS)

• Application zone (AZ)

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-26 ni.com

LabVIEW uses the data space (DS) zone only to hold VI execution data. LabVIEW uses the
application zone (AZ) to hold all other data. Most memory manager functions have
two corresponding routines, one for each of the two zones. Routines that operate on the data
space zone begin with DS. Routines for the application zone begin with AZ.

Currently, the two zones are actually one zone, but this might change in future releases of
LabVIEW. Therefore, you should write applications as if the two zones actually exist.

External code modules work almost exclusively with data created in the DS zone, although
exceptions exist. In most cases, use the DS routines when you need to work with dynamically
allocated memory.

All data passed to or from a CIN is allocated in the DS zone, except for Path, which uses
AZ handles. You should only use file manager functions, not the AZ memory manager
routines, to manipulate Path. Thus, your CINs should use the DS memory routines when
working with parameters passed from the block diagram. The only exceptions to this rule are
handles created using the SizeHandle function, which allocates handles in the application
zone. If you pass a handle created using the SizeHandle function to a CIN, your CIN should
use AZ routines to work with the handle.

Using Pointers and Handles in Memory Zones
Most memory manager functions have a DS routine and an AZ routine. In this section,
XXFunctionName refers to a function in a general context, where XX can be either DS or AZ.
When a difference exists between the two zones, the specific function name is given.

Create a handle using XXNewHandle, with which you specify the size of the memory block.
Create a pointer using XXNewPtr. XXNewHandleClr and XXNewPClr are variations that
create the memory block and set it to all zeros.

When you are finished with the handle or pointer, release it using XXDisposeHandle or
XXDisposePtr.

If you need to resize an existing handle, use the XXSetHandleSize routine, which
determines the size of an existing handle. Because pointers are not relocatable, you cannot
resize them.

A handle is a pointer to a pointer. In other words, a handle is the address of an address. The
second pointer, or address, is a master pointer, which means it is maintained by the memory
manager. Languages that support pointers provide operators for accessing data by its address.
With a handle, you use this operator twice—once to get to the master pointer, and a second
time to get to the actual data.

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-27 Using External Code in LabVIEW

While operating within a single call of a CIN node, an AZ handle does not move unless you
specifically resize it. In this context, you do not need to lock or unlock handles. If your CIN
maintains an AZ handle across different calls of the same CIN (an asynchronous CIN), the
AZ handle might be relocated between calls. AZHLock and AZHUnlock might be useful if you
do not want the handle to relocate. A DS handle moves only when you resize it.

Additional routines make it easy to copy and concatenate handles and pointers to other
handles, check the validity of handles and pointers, and copy or move blocks of memory from
one place to another.

Simple Example of Using Pointers and Handles in Memory Zones
This simple example demonstrates how to work with pointers and handles in C.

The following code shows how to work with a pointer to an int32.

int32 *myInt32P;

myInt32P = (int32 *)DSNewPtr(sizeof(int32));

*myInt32P = 5;

x = *myInt32P + 7;

...

DSDisposePtr(myInt32P);

The first line declares the variable myInt32P as a pointer to, or the address of, a 32-bit signed
integer. The first line does not actually allocate memory for the int32. The first line creates
memory for an address and associates the name myInt32P with that address. The P at the end
of the variable name is a convention used in this example to indicate the variable is a pointer.

The second line creates a block of memory in the data space large enough to hold a single
32-bit signed integer and sets myInt32P to refer to this memory block.

The third line places the value 5 in the memory location to which myInt32P refers.
The * operator refers to the value in the address location.

The fourth line sets x equal to the value at address myInt32P plus 7.

The last line frees the pointer.

The following code is the same example using handles instead of pointers.

int32 **myInt32H;

myInt32H =(int32**)DSNewHandle(sizeof(int32));

**myInt32H = 5;

x = **myInt32H + 7;

...

DSDisposeHandle(myInt32H);

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-28 ni.com

The first line declares the variable myInt32H as a handle to a 32-bit signed integer. Strictly
speaking, the first line declares myInt32H as a pointer to a pointer to an int32. As with the
previous example, the first line does not allocate memory for the int32. The first line creates
memory for an address and associates the name myInt32H with that address. The H at the end
of the variable name is a convention used in this example to indicate the variable is a handle.

The second line creates a block of memory in the data space large enough to hold a single
int32. DSNewHandle places the address of the memory block as an entry in the master
pointer list and returns the address of the master pointer entry. Finally, the second line sets
myInt32H to refer to the master pointer.

The third line places the value 5 in the memory location to which myInt32H refers. Because
myInt32H is a handle, you use the * operator twice to get to the data.

The fourth line sets x equal to the value referenced by myInt32H plus 7.

The last line frees the handle.

This example shows only the simplest aspects of how to work with pointers and handles in C.
Other examples throughout this manual show different aspects of using pointers and handles.
Refer to a C manual for a list of other operators you can use with pointers and for more
information about how to work with pointers.

File Manager
The file manager supports routines for opening and creating files, reading data from and
writing data to files, and closing files. In addition, you can manipulate the end-of-file mark of
a file and position the current read or write mark to an arbitrary position in the file. You also
can move, copy, and rename files, determine and set file characteristics, and delete files.

The file manager contains a number of routines for directories, with which you can create and
delete directories. You also can determine and set directory characteristics and obtain a list of
a directory's contents.

LabVIEW supports concurrent access to the same file, so you can have a file open for both
reading and writing simultaneously. When you open a file, you can indicate whether you want
the file to be read from and written to concurrently. You also can lock a range of the file, if
you need to make sure a range is nonvolatile at a given time.

The file manager also provides many routines for manipulating paths, or path names, in a
platform-independent manner. The file manager supports the creation of path descriptions,
which are either relative to a specific location or absolute, that is, the full path. With file
manager routines you can create and compare paths, determine characteristics of paths, and
convert a path between platform-specific descriptions and the platform-independent form.

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-29 Using External Code in LabVIEW

Applications that manipulate files can use the functions in the file manager. The file manager
routines support basic file operations such as creating, opening, and closing files, writing data
to files, and reading data from files. In addition, you can use file manager routines to create
directories, determine characteristics of files and directories, and copy files. File manager
routines use a LabVIEW data type for file path names, called Paths, that indicates a file or
directory path independent of the platform. You can translate a Path to and from the
conventional format a host platform uses for describing a file pathname. Refer to the File
Manager section of this chapter for more information about the file manager.

Identifying Files and Directories
When you perform operations on files and directories, you need to identify the target of the
operation. The platforms LabVIEW supports use a hierarchical file system, meaning files are
stored in directories, possibly nested several levels deep. These hierarchical file systems
support the connection of multiple discrete storage media, called volumes. For example,
DOS-based systems support multiple drives connected to the system. For most of these
hierarchical file systems, you must include the volume name to specify the location of a file.
On other systems, such as UNIX, you do not need to specify the volume name because the
physical implementation of the file system is hidden from the user.

How you identify a target depends upon whether the target is an open or closed file. If a target
is a closed file or a directory, specify the target using the path of the target. The path describes
the volume containing the target, the directories between the top level and the target, and the
name of the target. If the target is an open file, use a file descriptor to specify that LabVIEW
should perform an operation on the open file. The file descriptor is an identifier the file
manager associates with the file when you open it. When you close the file, the file manager
dissociates the file descriptor from the file.

Path Specifications
LabVIEW uses the following types of file path specifications:

• Conventional

• Empty

• LabVIEW specifications

Conventional
All platforms have a method for describing the paths for files and directories. These path
specifications are similar, but they are usually incompatible from one platform to another. You
usually specify a path as a series of names separated by separator characters. Typically, the
first name is the top level of the hierarchical specification of the path. The last name is the file
or directory the path identifies.

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-30 ni.com

A path can be one of the following types:

• Relative path

• Absolute path

A relative path describes the location of a file or directory relative to an arbitrary location in
the file system. An absolute path describes the location of a file or directory starting from the
top level of the file system.

A path does not necessarily go from the top of the hierarchy down to the target. You can often
use a platform-specific tag in place of a name that indicates the path should go up a level from
the current location.

(UNIX) You specify the path of a file or directory as a series of names separated by the slash
(/) character. If the path is an absolute path, you begin the specification with a slash.
Indicate the path should move up a level using two periods in a row (..). Thus, the following
path specifies a file README relative to the top level of the file system.

/usr/home/gregg/myapps/README

The following paths are two relative paths to the same file.

gregg/myapps/README relative to /usr/home

../myapps/README relative to a directory inside of the gregg directory

(Windows) You separate names in a path with a backslash (\) character. If the path is an
absolute path, you begin the specification with a drive designation, followed by a colon (:),
followed by the backslash. Indicate the path should move up a level using two periods in a
row (..). Thus, the following path specifies a file README relative to the top level of the file
system, on a drive named C.

C:\HOME\GREGG\MYAPPS\README

The following paths are two relative paths to the same file.

GREGG\MYAPPS\README relative to the HOME directory

..\MYAPPS\README relative to a directory inside of the GREGG directory

(Mac OS) You separate names in a path with the colon (:) character. If the path is an absolute
path, you begin the specification with the name of the volume containing the file. If an
absolute path consists of only one name, that is, it specifies a volume, the path must end with
a colon. If the path is a relative path, it begins with a colon. The colon is optional for a relative
path consisting of only one name. Indicate the path should move up a level using two colons
in a row (::). Thus, the following path specifies a file README relative to the top level of the
file system, on a drive named Hard Drive.

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-31 Using External Code in LabVIEW

Hard Drive:Home:Gregg:MyApps:README

The following paths are two relative paths to the same file.

:Gregg:MyApps:README relative to the Home directory

::MyApps:README relative to a directory inside of the Gregg directory

Empty
You can define a path with no names, called an empty path. An empty path is either absolute
or relative. The empty absolute path is the highest point you can specify in the file hierarchy.
The empty relative path is a path relative to an arbitrary location in the file system to itself.

(UNIX) A slash (/) represents the empty absolute path. The slash specifies the root of the file
hierarchy. A period (.) represents the empty relative path.

(Windows) You represent the empty absolute path as an empty string. The empty absolute path
specifies the set of all volumes on the system. A period (.) represents the empty relative path.

(Mac OS) The empty absolute path is represented as an empty string. The absolute path
specifies the set of all volumes on the system. A colon (:) represents the empty relative path.

LabVIEW
In LabVIEW, you specify a path using a special LabVIEW data type, represented as Path.
The exact structure of the Path data type is private to the file manager. You create and
manipulate the Path data type using file manager routines.

A Path is a dynamic data structure. Just as you use memory manager routines to allocate and
deallocate handles and pointers, you use file manager routines to create and deallocate a
Path. Just as with handles, declaring a Path variable does not actually create a Path. Before
you can use the Path to manipulate a file, you must dynamically allocate the Path using file
manager routines. When you are finished using the Path variable, you should release the
Path using file manager routines.

In addition to providing routines for the creation and elimination of a Path, the file manager
provides routines for comparing, duplicating, determining Path characteristics, and
converting Path to and from other formats, such as the platform-specific format for the
system on which LabVIEW is running.

Chapter 4 Programming Issues for CINs

Using External Code in LabVIEW 4-32 ni.com

File Descriptors
When you open a file, LabVIEW returns a file descriptor associated with the file. A file
descriptor is a data type LabVIEW uses to identify open files. All operations performed on an
open file use the file descriptor to identify the file.

A file descriptor is valid only while the file is open. If you close the file, the file descriptor is
no longer associated with the file. If you open the file again, the new file descriptor is most
likely different from the previous file descriptor.

File Refnums
In the file manager, LabVIEW accesses open files using file descriptors. However, on the
front panel and block diagram, LabVIEW accesses open files using file refnums. A file
refnum contains a file descriptor for use by the file manager and additional information used
by LabVIEW.

LabVIEW specifies file refnums using the LVRefNum data type, the exact structure of which
is private to the file manager. To pass references to open files into or out of a CIN, convert file
refnums to file descriptors and convert file descriptors to file refnums, using the functions
described in Chapter 6, Function Descriptions.

Support Manager
The support manager contains a collection of constants, macros, basic data types, and
functions, such for bit or byte manipulation of data, string manipulation, mathematical
operations, sorting, searching, and determining the current time and date.

The string functions contain much of the functionality of the string libraries supplied with
standard C compilers, such as string concatenation and formatting. You can use variations of
many of these functions with LabVIEW strings, Pascal strings, and C strings. Table 4-5
describes the different string types.

With the utility functions, you can sort and search on arbitrary data types, using quicksort and
binary search algorithms.

Table 4-5. String Types and Their Descriptions

String Type Description

LabVIEW 4-byte length field followed by data, generally stored in a handle

Pascal 1-byte length field followed by data

C data terminated by a null character

Chapter 4 Programming Issues for CINs

© National Instruments Corporation 4-33 Using External Code in LabVIEW

The support manager also contains transcendental functions for many complex and extended
floating-point operations.

Certain routines specify time as a data structure. The following example code illustrates
specifying time as a data structure.

typedef struct {

int32 sec;/* 0:59 */

int32 min;/* 0:59 */

int32 hour;/* 0:23 */

int32 mday;/* day of the month, 1:31 */

int32 mon;/* month of the year, 1:12 */

int32 year;/* year, 1904:2040 */

int32 wday;/* day of the week, 1:7 for Sun:Sat */

int32 yday;/* day of year (julian date), 1:366 */

int32 isdst;/* 1 if daylight savings time */

} DateRec;

© National Instruments Corporation 5-1 Using External Code in LabVIEW

5
Advanced Applications

This chapter describes several options needed only in advanced
applications, including how to use the CINInit, CINDispose, CINAbort,
CINLoad, CINUnload, CINSave, and CINProperties routines. This
chapter also describes how global data works within CIN source code and
how Windows users can call a DLL from a CIN.

CIN Routines
A CIN consists of several routines. The routines are described by the .c file
LabVIEW creates when you right-click the CIN on the block diagram and
select Create .c File from the shortcut menu. Previous chapters have
described only the CINRun routine. Other routines include CINLoad,
CINInit, CINAbort, CINSave, CINDispose, CINUnload, and
CINProperties.

For most CINs, you need to write only the CINRun routine. The other
routines are supplied mainly for special initialization needs, such as when
your CIN is going to maintain information across calls and you want to
preallocate or initialize global state information.

If you want to preallocate or initialize global state information, you need to
understand more of how LabVIEW manages data and CINs, as described
in the following sections.

Data Spaces and Code Resources
When you create a CIN, you compile your source into an object code file
and load the code into the CIN. After the object code is loaded into the CIN,
LabVIEW loads a copy of the code resource into memory and attaches it to
the CIN. When you save the VI, the code resource is saved along with the
VI as an attached component. Because the code resource is saved along
with the VI as an attached component, the original object code file is no
longer needed.

When LabVIEW loads a VI, it allocates a data space for that VI. A data
space is a block of data storage memory. LabVIEW uses the data space to

Chapter 5 Advanced Applications

Using External Code in LabVIEW 5-2 ni.com

store information such as the values in shift registers. If the VI is reentrant,
LabVIEW allocates a data space for each usage of the VI. Refer to the
LabVIEW Help for more information about reentrancy and other execution
properties.

Within your CIN code resource, you might have declared global data.
Global data includes variables declared outside of the scope of all routines
and variables declared as static variables within routines. LabVIEW
allocates space for this global data. As with the code itself, only one
instance of the global data is in memory. Regardless of how many nodes
reference the code resource and regardless of whether the surrounding VI
is reentrant, only one copy of the global variables is ever in memory and the
value of the global variables are consistent.

When you create a CIN, LabVIEW allocates a CIN data space strictly for
the use of the CIN. A CIN data space is a 4-byte storage location in the VI
data space(s). Each CIN can have one or more CIN data spaces reserved for
the CIN, depending on how many times the CIN appears in a VI or
collection of VIs. You can use this CIN data space to store global data on
a per data space basis, as described in the Code Globals and CIN Data
Space Globals section. Figure 5-1 shows a simple example of data storage
spaces for one CIN.

Figure 5-1. Data Storage Spaces for One CIN

A CIN references the code resource by name, using the name you specified
when you created the code resource. When you load a VI containing a CIN,
LabVIEW looks in memory to see if a code resource with the desired name
is already loaded. If a code resource with the desired name is already

VI Data Space Code Resource

Global Storage

(Code Globals)

(Data Space Globals)

4-byte CIN
Data Space

VI

Chapter 5 Advanced Applications

© National Instruments Corporation 5-3 Using External Code in LabVIEW

loaded into memory, LabVIEW links the CIN to that code resource for
execution purposes.

Linking the CIN to the code resource behaves the same way as links
between VIs and subVIs. When you try to reference a subVI and another
VI with the same name already exists in memory, LabVIEW references the
one already in memory instead of the one you selected. In the same way, if
you try to load references to two different code resources having the same
name, only one code resource is actually loaded into memory. Both
references to the code resources point to the same code. LabVIEW can
verify that a subVI call matches the subVI connector pane terminal.
However, LabVIEW cannot verify that your source code matches the
CIN call.

One Reference to the CIN in a Single VI
The following section describes the standard case in which you have a code
resource referenced by only one CIN and the VI containing the CIN is not
reentrant. Other cases have slightly more complicated behavior and are
described in later sections of this chapter.

Loading a VI
When you first load a VI, LabVIEW calls the CINLoad routines for any
CINs contained in that VI. By LabVIEW calling the CINLoad routines
when you first load a VI, you have a chance to load any file-based resources
at load time because LabVIEW calls this routine only when the VI is first
loaded. Refer to the Loading a New Resource into the CIN section of this
chapter for an exception to this rule. After LabVIEW calls the CINLoad
routine, it calls CINInit. Together, CINLoad and CINInit perform any
initialization you need before the VI runs.

LabVIEW calls CINLoad once for a given code resource, regardless of the
number of data spaces and the number of references to that code resource.
Because LabVIEW calls CINLoad once for a given code resource, you
should initialize code globals in CINLoad.

LabVIEW calls CINInit for a given code resource a total of one time
for each CIN data space multiplied by the number of references to the
code resource in the VI corresponding to that data space. If you want
to use CIN data space globals, initialize them in CINInit. Refer to the
Loading a New Resource into the CIN, Compiling a VI and the Code
Globals and CIN Data Space Globals sections of this chapter for more
information about CINInit and data space globals.

Chapter 5 Advanced Applications

Using External Code in LabVIEW 5-4 ni.com

Unloading a VI
When you close a VI front panel, LabVIEW checks whether any references
to the VI are in memory. If any references to the VI are in memory, the VI
code and data space remain in memory. When all references to a VI are
removed from memory and its front panel is not open, the VI is unloaded
from memory.

When a VI is unloaded from memory, LabVIEW calls the
CINDispose routine, giving you a chance to dispose of anything
you allocated earlier. CINDispose is called for each CINInit call. For
instance, if you used XXNewHandle in your CINInit routine, you should
use XXDisposeHandle in your CINDispose routine. LabVIEW calls
CINDispose for a code resource once for each individual CIN data space.

As the last reference to the code resource is removed from memory,
LabVIEW calls the CINUnload routine for that code resource once,
giving you the chance to dispose of anything allocated in CINLoad.
As with CINDispose and CINInit, CINUnload is called for each
CINLoad. For example, if you loaded some resources from a file
in CINLoad, you can free the memory those resources are using in
CINUnload. After LabVIEW calls CINUnload, the code resource
itself is unloaded from memory.

Loading a New Resource into the CIN
If you load a new code resource into a CIN, the old code resource is first
given a chance to dispose of anything it needs to dispose. LabVIEW calls
CINDispose for each CIN data space and each reference to the code
resource, followed by the CINUnload for the old resource.

After the calls to CINDispose and CINUnload, the new code resource is
given a chance to perform any initialization it needs to perform. LabVIEW
calls CINLoad for the new code resource. After LabVIEW calls CINLoad,
it calls the CINInit routine once for each data space and each reference to
the code resource.

Compiling a VI
When you compile a VI, LabVIEW recreates the VI data space, including
resetting all uninitialized shift registers to their default values. Also, your
CIN is given a chance to dispose or initialize any storage it manages.

Chapter 5 Advanced Applications

© National Instruments Corporation 5-5 Using External Code in LabVIEW

LabVIEW completes the following steps when compiling a VI and before
disposing of the current data space.

1. Calls the CINDispose routine for each reference to the code resource
within the VI(s) being compiled. Calling the CINDispose routine
gives the code resource a chance to dispose of any old results it is
managing.

2. Compiles the VI and creates a new data space for the VI(s) being
compiled. LabVIEW creates multiple data spaces for reentrant VIs.

3. Calls CINInit for each reference to the code resource within the
compiled VI(s). Calling CINInit gives the code resource a chance to
create or initialize any data it wants to manage.

Running a VI
Click the Run button in a VI to run the VI. When LabVIEW encounters a
Code Interface Node, it calls the CINRun routine for that node.

Saving a VI
When you save a VI, LabVIEW calls the CINSave routine for that VI.
Calling the CINSave routine gives you the chance to save any resources,
such as something you loaded in CINLoad. When you save a VI, LabVIEW
creates a new version of the file, even if you are saving the VI with the same
name. If the save is successful, LabVIEW deletes the old file and renames
the new file with the original name. Therefore, you need to save in
CINSave anything you expect to be able to load in CINLoad.

Aborting a VI
When you abort a VI, LabVIEW calls the CINAbort routine for every
reference to a code resource contained in the VI being aborted. LabVIEW
also calls the CINAbort routine of all actively running subVIs. If a CIN is
in a reentrant VI, CINAbort is called for each CIN data space, as well.
CINs in VIs not currently running are not notified by LabVIEW of the abort
event.

Note CINAbort only works if the VI containing the CIN is running. If a top level VI is
running and the program is aborted, CINAbort only works if the top level VI is currently
running the subVI in which the CIN is located. If the top level VI is running another subVI
in the hierarchy, CINAbort does not work.

Chapter 5 Advanced Applications

Using External Code in LabVIEW 5-6 ni.com

CINs are synchronous. Therefore, when a CIN begins execution, the CIN
takes control of its thread until execution is completed. If your version of
LabVIEW is single-threaded, you cannot abort the CIN because no other
LabVIEW tasks can run while a CIN executes.

Multiple References to the Same CIN in a Single VI
If you loaded the same code resource into multiple CINs, or if you
duplicated a given CIN, LabVIEW gives each reference to the code
resource a chance to perform initialization or deallocation. No matter how
many references you have in memory to a given code resource, LabVIEW
calls the CINLoad routine only once when the resource is first loaded into
memory, although it is also called if you load a new version of the resource.
When you unload the VI, LabVIEW calls CINUnload once.

After LabVIEW calls CINLoad, it calls CINInit once for each reference
to the CIN because the CIN data space for the CIN might need
initialization. Thus, if you have two CINs in the same VI and both reference
the same code, LabVIEW calls the CINLoad routine once and CINInit
twice. If you later load another VI referencing the same code resource,
LabVIEW calls CINInit again for the new version. Because LabVIEW
has already called CINLoad once for the code resource, it does not call
CINLoad again for this new reference.

LabVIEW calls CINDispose and CINAbort for each individual CIN data
space. LabVIEW calls CINSave only once, regardless of the number of
references to a given code resource within the VI you are saving.

Figure 5-2 shows an example of three CINs referencing the same code
resource.

Chapter 5 Advanced Applications

© National Instruments Corporation 5-7 Using External Code in LabVIEW

Figure 5-2. Three CINs Referencing the Same Code Resource

Multiple References to the Same CIN in Different VIs
Making multiple references to the same CIN in different VIs is different
for single-threaded operating systems than for mutlithreaded
operating systems.

Note Mac Classic is the only single-threaded operating system supported by LabVIEW

Single-Threaded Operating Systems
When you make a VI reentrant, LabVIEW creates a separate data space for
each instance of the VI. If you have a CIN data space in a reentrant VI and
you call the VI in seven places, LabVIEW allocates memory to store seven
CIN data spaces for the VI. Each of the CIN data spaces contains a unique
storage location for the CIN data space for that calling instance.

As with multiple instances of the same CIN, LabVIEW calls the CINInit,
CINDispose, and CINAbort routines for each individual CIN data space.

If you have a reentrant VI containing multiple copies of the same code
resource, LabVIEW calls the CINInit, CINDispose, and CINAbort
routines once for each use of the reentrant VI, multiplied by the number of
references to the code resource within that VI.

Global Storage

(Code Globals)

VI Data Space

4-byte CIN
Data Space

4-byte CIN
Data Space

4-byte CIN
Data Space

(Data Space Globals)

Code Resource

VI

Chapter 5 Advanced Applications

Using External Code in LabVIEW 5-8 ni.com

Figure 5-3 shows an example of three VIs referencing a reentrant VI
containing one CIN.

Figure 5-3. Three VIs Referencing a Reentrant VI Containing One CIN

Multithreaded Operating Systems
By default, CINs written in LabVIEW 5.0 or earlier run in a single thread,
the user interface thread. When you change a CIN to be reentrant, that is,
to run in multiple threads, more than one execution thread can call the CIN
at the same time. Add the following code to your .c file if you want a CIN
to run in the current execution thread of the block diagram.

CIN MgErr CINProperties(int32 mode, void *data)

{

switch (mode) {

case kCINIsReentrant:

*(Bool32 *)data = TRUE;

return noErr;

break;

}

return mgNotSupported;

}

Global Storage

(Code Globals)

Code Resource

My VI
Data Space 1

4-byte CIN
Data Space

(Data Space Globals)

My VI
Data Space 3

4-byte CIN
Data Space

(Data Space Globals)

My VI
Data Space 2

4-byte CIN
Data Space

(Data Space Globals)

Caller 1 Caller 2

My VI

Caller 3

Chapter 5 Advanced Applications

© National Instruments Corporation 5-9 Using External Code in LabVIEW

If you read and write a global or static variable, or call a non-reentrant
function within your CINs, keep the execution of those CINs in a single
thread. Even if a CIN is marked reentrant, the CIN functions other than
CINRun are called from the user interface thread. For example, CINInit
and CINDispose are never called from two different threads at the same
time. CINRun might be running when the user interface thread is calling
CINInit, CINAbort, or any of the other functions.

To be reentrant, the CIN must be safe to call CINRun from multiple threads
and safe to call any of the other CIN procedures and CINRun at the same
time. Other than CINRun, you do not need to protect any of the CIN
procedures from each other because calls to them are always in one thread.

Code Globals and CIN Data Space Globals
When you declare global or static local data within a CIN code resource,
LabVIEW allocates storage for that data. LabVIEW maintains your globals
across calls to various routines.

When you allocate a global in a CIN code resource, LabVIEW creates
storage for only one instance of the global, regardless of whether the VI is
reentrant or whether you have multiple references to the same code
resource in memory.

In some cases, you might want globals for each reference to the code
resource multiplied by the number of usages of the VI, if the VI is reentrant.
For each instance of one of these globals, LabVIEW allocates the CIN data
space for the use of the CIN. Within the CINInit, CINDispose,
CINAbort, and CINRun routines, you can call the GetDSStorage routine
to retrieve the value of the CIN data space for the current instance. You also
can call SetDSStorage to set the value of the CIN data space for this
instance. You can use the storage location set by SetDSStorage to store
any 4-byte quantity you want to have for each instance of one of these
globals. If you need more than four bytes of global data, store a handle or
pointer to a structure containing your globals.

Chapter 5 Advanced Applications

Using External Code in LabVIEW 5-10 ni.com

The following code examples show the exact syntax of the GetDSStorage
and SetDSStorage routines defined in extcode.h.

• int32 GetDSStorage(void);

This routine returns the value of the 4-byte quantity in the CIN data
space LabVIEW allocates for each CIN code resource, or for each use
of the surrounding VI, if the VI is reentrant. Call this routine only from
CINInit, CINDispose, CINAbort, or CINRun.

• int32 SetDSStorage(int32 newVal);

This routine sets the value of the 4-byte quantity in the CIN data space
LabVIEW allocates for each CIN use of that code resource, or the uses
of the surrounding VI, if the VI is reentrant. It returns the old value of
the 4-byte quantity in that CIN data space. Call this routine only from
CINInit, CINDispose, CINAbort, or CINRun.

Code Globals and CIN Data Space Globals Examples
The following examples illustrate the differences between code globals and
CIN data space globals. In both examples, the CIN takes a number and
returns the average of that number and the previous numbers passed to it,
as shown in Figure 5-4.

Figure 5-4. Averaging CIN

When you write your application, decide whether it is appropriate to use
code globals or data space globals. If you use code globals, calling the same
code resource from multiple CINs or different reentrant VIs affects the
same set of globals. In the code globals averaging example, the result
indicates the average of all values passed to the CIN.

If you use CIN data space globals, each CIN calling the same code resource
and each VI can have its own set of globals, if the VI is reentrant. In the
CIN data space globals averaging example, the results indicate the average
of values passed to a specific node for a specific data space.

If you have only one CIN referencing the code resource and the VI
containing that CIN is not reentrant, choose either method.

Chapter 5 Advanced Applications

© National Instruments Corporation 5-11 Using External Code in LabVIEW

Using Code Globals
The following code averages using code globals.

/*

 * CIN source file

 */

#include "extcode.h"

float64 gTotal;

int32 gNumElements;

CIN MgErr CINRun(float64 *new_num, float64 *avg);

CIN MgErr CINRun(float64 *new_num, float64 *avg)

{

gTotal += *new_num;

gNumElements++;

*avg = gTotal / gNumElements;

return noErr;

}

CIN MgErr CINLoad(RsrcFile rf)

{

gTotal=0;

gNumElements=0;

return noErr;

}

The variables are initialized in CINLoad. If the variables are dynamically
created, that is, if they are pointers or handles, you can allocate the memory
for the pointer or handle in CINLoad and deallocate it in CINUnload. You
can allocate and deallocate the memory using CINLoad and CINUnload
because CINLoad and CINUnload are called only once, regardless of the
number of references to the code resources and the number of data spaces.
This example does not use the UseDefaultCINLoad macro because this
.c file has a CINLoad function.

Chapter 5 Advanced Applications

Using External Code in LabVIEW 5-12 ni.com

Using CIN Data Space Globals
The following code uses CIN data space globals to perform the averaging.

/*

 * CIN source file

 */

#include "extcode.h"

typedef struct {

float64 total;

int32 numElements;

} dsGlobalStruct;

CIN MgErr CINInit() {

dsGlobalStruct **dsGlobals;

MgErr err = noErr;

if (!(dsGlobals = (dsGlobalStruct **)

DSNewHandle(sizeof(dsGlobalStruct))))

{

/* if 0, ran out of memory */

err = mFullErr;

goto out;

}

(*dsGlobals)–>numElements=0;

(*dsGlobals)–>total=0;

SetDSStorage((int32) dsGlobals);

out:

return err;

}

CIN MgErr CINDispose()

{

dsGlobalStruct **dsGlobals;

dsGlobals=(dsGlobalStruct **) GetDSStorage();

if (dsGlobals)

DSDisposeHandle(dsGlobals);

return noErr;

}

CIN MgErr CINRun(float64 *new_num, float64 *avg);

CIN MgErr CINRun(float64 *new_num, float64 *avg)

{

dsGlobalStruct **dsGlobals;

dsGlobals=(dsGlobalStruct **) GetDSStorage();

Chapter 5 Advanced Applications

© National Instruments Corporation 5-13 Using External Code in LabVIEW

if (dsGlobals) {

(*dsGlobals)–>total += *new_num;

(*dsGlobals)–>numElements++;

*avg = (*dsGlobals)–>total /

(*dsGlobals)–>numElements;

}

return noErr;

}

A handle for the global data is allocated in CINInit and stored in the CIN
data space storage using SetDSStorage. When LabVIEW calls the
CINInit, CINDispose, CINAbort, or CINRun routines, it makes sure
GetDSStorage and SetDSStorage return the 4-byte CIN data space
value for that node or CIN data space. When you want to access the data in
the CIN data space, use GetDSStorage to retrieve the handle and then
dereference the appropriate fields. Finally, use the CINDispose routine
you need to dispose of the handle.

© National Instruments Corporation 6-1 Using External Code in LabVIEW

6
Function Descriptions

This chapter describes the CIN functions you can use with LabVIEW. You
can use these functions to perform simple and complex operations. These
functions, organized into libraries called managers, range from low-level
byte manipulation to routines for sorting data and managing memory. All
CIN manager routines are platform-independent, so you can create CINs
that work on all platforms supported by LabVIEW.

Refer to the Manager Overview section of Chapter 4, Programming Issues
for CINs, for general information about the manager routines.

Memory Manager Functions
The memory manager functions can dynamically allocate, manipulate, and
release memory.

You can perform the following operations by using the functions listed.

• Handles and pointers, verifying

– AZCheckHandle/DSCheckHandle

– AZCheckPtr/DSCheckPtr

• Handles, allocating and releasing

– AZCopyHandle/DSCopyHandle

– SetCINArraySize

– NumericArrayResize

– AZDispose Handle/DSDisposeHandle

– AZGetHandleSize/DSGetHandleSize

– AZNewHandle/DSNewHandle

– AZNewHClr/DSNewHClr

– AZRecoverHandle/DSRecoverHandle

– AZSetHandleSize/DSSetHandleSize

– AZSetHSzClr/DSSetHSzClr

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-2 ni.com

• Handles, manipulating properties

– AZHLock

– AZHPurge

– AZHNoPurge

– AZHUnlock

• Memory utilities

– ClearMem

– MoveBlock

– SwapBlock

• Memory zone utilities

– AZHeapCheck/DSHeapCheck

– AZMaxMem/DSMaxMem

– AZMemStats/DSMemStats

• Pointers, allocating and releasing

– AZDisposePtr/DSDisposePtr

– AZNewPClr/DSNewPClr

– AZNewPtr/DSNewPtr

File Manager Functions
The file manager functions can create, open and close files, write data to
files, and read data from files. In addition, file manager routines can create
directories, determine characteristics of files and directories, and copy files.

The file manager defines the Path data type for use in describing paths to
files and directories. The data structure for the Path data type is private.
Use file manager routines to create and manipulate the Path data type.

Permissions for Files and Directories
The file manager uses the int32 data type to describe permissions for files
and directories. The manager uses only the least significant nine bits of the
int32.

(UNIX) The nine bits of permissions correspond exactly to nine UNIX
permission bits governing read, write, and execute permissions for user,
group, and others. Figure 6-1 shows permission bits in UNIX.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-3 Using External Code in LabVIEW

Figure 6-1. Permission Bits in UNIX

(Windows) Permissions are ignored for directories. For files, only bit 7 (the
UNIX user write permission bit) is used. If this bit is clear, the file is
read-only. Otherwise, you can write to the file.

(Mac OS) All nine bits are used for directories (folders). The bits which
control read, write, and execute permissions, respectively, in UNIX are
used to control See Files, Make Changes, and See Folders access rights,
respectively, in Mac OS.

File Manager Functions and Operations
You can perform the following operations by using the functions listed.

• Current position mark, positioning

– FMSeek

– FMTell

• Default access rights information, getting

– FGetDefGroup

• Directory contents, creating and determining

– FListDir

– FNewDir

• End-of-file mark, positioning

– FGetEOF

– FSetEOF

• File data to disk, flushing

– FFlush

User Group Others

Permission r w x r w x r w x

Bit 31 8 7 6 5 4 3 2 1 0

r–Read Permission
w–Write Permission
x–Execute Permission

…

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-4 ni.com

• File operations, performing basic

– FCreate

– FCreateAlways

– FMClose

– FMOpen

– FMRead

– FMWrite

• File range, locking

– FLockOrUnlockRange

• File refnums, manipulating

– FDisposeRefNum

– FlsARefNum

– FNewRefNum

– FRefNumToFD

– FRefNumToPath

• File, directory, and volume information determination

– FExists

– FGetAccessRights

– FGetInfo

– FGetVolInfo

– FSetAccessRights

– FSetInfo

• Filenames and patterns, matching

– FStrFitsPat

• Files and directories, moving and deleting

– FMove

– FRemove

• Files, copying

– FCopy

• Path type, determining

– FGetPathType

– FlsAPathOfType

– FSetPathType

Chapter 6 Function Descriptions

© National Instruments Corporation 6-5 Using External Code in LabVIEW

• Path, extracting information

– FDepth

– FDirName

– FName

– FNamePtr

– FVolName

• Paths, comparing

– FlsAPath

– FlsAPathOrNotAPath

– FlsEmptyPath

– FPathCmp

• Paths, converting to and from other representations

– FArrToPath

– FFlattenPath

– FPathToArr

– FPathToAZString

– FPathToDSString

– FStringToPath

– FTextToPath

– FUnFlattenPath

• Paths, creating

– FAddPath

– FAppendName

– FAppPath

– FEmptyPath

– FMakePath

– FNotAPath

– FRelPath

• Paths, disposing

– FDestroyPath

• Paths, duplicating

– FPathCpy

– FPathToPath

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-6 ni.com

Support Manager Functions
You can use the support manager functions for bit or byte manipulation of
data, string manipulation, mathematical operations, sorting, searching, and
determining the current time and date.

You can perform the following operations by using the functions listed.

• Byte manipulation operations

– Cat4Chrs

– GetALong

– Hi16

– HiByte

– HiNibble

– Lo16

– LoByte

– Long

– LoNibble

– Offset

– SetALong

– Word

• Mathematical operations

– Abs

– Max

– Min

– Pin

– RandomGen

• String manipulation

– BlockCmp

– CPStrBuf

– CPStrCmp

– CPStrIndex

– CPStrInsert

– CPStrLen

– CPStrRemove

Chapter 6 Function Descriptions

© National Instruments Corporation 6-7 Using External Code in LabVIEW

– CPStrReplace

– CPStrSize

– CToPStr

– FileNameCmp

– FileNameIndCmp

– FileNameNCmp

– FPrintf

– HexChar

– IsAlpha

– IsDigit

– IsLower

– IsUpper

– LStrBuf

– LStrCmp

– LStrLen

– LStrPrintf

– LToPStr

– PPrintf

– PPrintfp

– PPStrCaseCmp

– PPStrCmp

– PStrBuf

– PStrCaseCmp

– PStrCat

– PStrCmp

– PStrCpy

– PStrLen

– PStrNCpy

– PToCStr

– PToLStr

– SPrintF

– SPrintfp

– StrCat

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-8 ni.com

– StrCmp

– StrCpy

– StrLen

– StrNCaseCmp

– StrNCmp

– StrNCpy

– ToLower

– ToUpper

• Synchronization functions

– Occur

– PostLVUserEvent

• Utility functions

– BinSearch

– QSort

– Unused

• Time functions

– ASCIITime

– DateCString

– DateToSecs

– MilliSecs

– SecsToDate

– TimeCString

– TimeInSecs

Mathematical Operations
In addition to the mathematical operations in the preceding list, LabVIEW
supports a number of other mathematical functions. The following
functions are implemented as defined in The C Programming Language by
Brian W. Kernighan and Dennis M. Ritchie.

double atan(double);

double cos(double);

double exp(double);

double fabs(double);

double log(double);

double sin(double);

Chapter 6 Function Descriptions

© National Instruments Corporation 6-9 Using External Code in LabVIEW

double sqrt(double);

double tan(double);

double acos(double);

double asin(double);

double atan2(double, double);

double ceil(double);

double cosh(double);

double floor(double);

double fmod(double, double);

double frexp(double, int *);

double ldexp(double, int);

double log10(double);

double modf(double, double *);

double pow(double, double);

double sinh(double);

double tanh(double);

Individual Function Descriptions
The remainder of this chapter describes individual CIN functions you can
use with LabVIEW.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-10 ni.com

Abs
int32 Abs(n);

Purpose
Returns the absolute value of n, unless n is –231, in which case the function returns the number
unmodified.

Parameters

Name Type Description

n int32 int32 whose absolute value you want to
determine.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-11 Using External Code in LabVIEW

ASCIITime
CStr ASCIITime(secs);

Purpose
Returns a pointer to a string representing the date and time of day corresponding to t seconds
after January 1, 1904, 12:00 a.m., UT. This function uses the same date format as that returned
by the DateCString function using a mode of 2. The date is followed by a space. The time
is in the same format as that returned by the TimeCString function using a mode of 0. For
example, this function might return Tuesday, Dec 22, 1992 5:30. In SPARCstation, this
function accounts for international conventions for representing dates.

Parameters

Return Value
The date and time as a C string.

Name Type Description

secs uInt32 Seconds since January 1, 1904, 12:00 a.m.,
UT.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-12 ni.com

AZCheckHandle/DSCheckHandle
MgErr AZCheckHandle(h);
MgErr DSCheckHandle(h);

Purpose
Verifies that the specified handle is a handle. If it is not a handle, this function returns
mZoneErr.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mZoneErr Handle or pointer not in specified zone.

Name Type Description

h Uhandle Handle you want to verify.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-13 Using External Code in LabVIEW

AZCheckPtr/DSCheckPtr
MgErr AZCheckPtr(p);
MgErr DSCheckPtr(p);

Purpose
Verifies that the specified pointer is allocated with XXNewPtr or XXNewPClr. If it is not a
pointer, this function returns mZoneErr.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mZoneErr Handle or pointer not in specified zone.

Name Type Description

p UPtr Pointer you want to verify.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-14 ni.com

AZCopyHandle/DSCopyHandle
MgErr AZCopyHandle(void *ph, const void *hsrc)
MgErr DSCopyHandle(void *ph, const void *hsrc)

Purpose
Copies the data referenced by the handle hsrc into the handle pointed to by ph or a new handle
if ph points to NULL.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mFullErr Not enough memory to perform the operation.
mZoneErr Handle or pointer not in specified zone.

Name Type Description

ph UHandle* Pointer to the handle to copy the data into.
This must point to a valid handle or NULL. If
it points to NULL, a new handle is allocated.

hsrc UHandle The handle containing the data to copy.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-15 Using External Code in LabVIEW

AZDisposeHandle/DSDisposeHandle
MgErr AZDisposeHandle(h);
MgErr DSDisposeHandle(h);

Purpose
Releases the memory referenced by the specified handle.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mZoneErr Handle or pointer not in specified zone.

Name Type Description

h UHandle Handle you want to dispose of.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-16 ni.com

AZDisposePtr/DSDisposePtr
MgErr AZDisposePtr(p);
MgErr DSDisposePtr(p);

Purpose
Releases the memory referenced by the specified pointer.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mZoneErr Handle or pointer not in specified zone.

Name Type Description

p UPtr Pointer you want to dispose of.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-17 Using External Code in LabVIEW

AZGetHandleSize/DSGetHandleSize
int32 AZGetHandleSize(h);
int32 DSGetHandleSize(h);

Purpose
Returns the size of the block of memory referenced by the specified handle.

Parameters

Return Value
The size in bytes of the relocatable block referenced by the handle h. If an error occurs, this
function returns a negative number.

Name Type Description

h UHandle Handle whose size you want to determine.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-18 ni.com

AZHeapCheck/DSHeapCheck
int32 AZHeapCheck(Bool32 d);
int32 DSHeapCheck(Bool32 d);

Purpose
Verifies that the specified heap is not corrupt. This function returns 0 for an intact heap and a
nonzero value for a corrupt heap.

Parameters

Return Value
int32, which can contain the following errors:
noErr The heap is intact.
mCorruptErr The heap is corrupt.

Name Type Description

d Bool32 Heap you want to verify.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-19 Using External Code in LabVIEW

AZHLock
MgErr AZHLock(h);

Purpose
Locks the memory referenced by the application zone handle h so the memory cannot move.
This means the memory manager cannot move the block of memory to which the handle
refers.

Do not lock handles more than necessary. Locking handles interferes with efficient memory
management. Also, do not enlarge a locked handle.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mZoneErr Handle or pointer not in specified zone.

Name Type Description

h UHandle Application zone handle you want to lock.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-20 ni.com

AZHNoPurge
void AZHNoPurge(h);

Purpose
Marks the memory referenced by the application zone handle h as not purgative.

Parameters

Name Type Description

h UHandle Application zone handle you want to mark as
not purgative.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-21 Using External Code in LabVIEW

AZHPurge
void AZHPurge(h);

Purpose
Marks the memory referenced by the application zone handle h as purgative. This means that
in tight memory conditions the memory manager can perform an AZEmptyHandle on h. Use
AZReallocHandle to reuse a handle if the manager purges it.

If you mark a handle as purgative, check the handle before using it to determine whether it
has become an empty handle.

Parameters

Name Type Description

h UHandle Application zone handle you want to mark as
purgative.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-22 ni.com

AZHUnlock
MgErr AZHUnlock(h);

Purpose
Unlocks the memory referenced by the application zone handle h so it can be moved. This
means that the memory manager can move the block of memory to which the handle refers if
other memory operations need space.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mZoneErr Handle or pointer not in specified zone.

Name Type Description

h UHandle Application zone handle you want to unlock.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-23 Using External Code in LabVIEW

AZMaxMem/DSMaxMem
int32 AZMaxMem();
int32 DSMaxMem();

Purpose
Returns the size of the largest block of contiguous memory available for allocation.

Return Value
int32, the size of the largest block of contiguous memory available for allocation.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-24 ni.com

AZMemStats/DSMemStats
void AZMemStats(MemStatRec *msrp);
void DSMemStats(MemStatRec *msrp);

Purpose
Returns various statistics about the memory in a zone.

Parameters

The following code defines the MemStatRec structure:

typedef struct {

int32 totFreeSize, maxFreeSize, nFreeBlocks;

int32 totAllocSize, maxAllocSize;

int32 nPointers, nUnlockedHdls, nLockedHdls;

int32 reserved [4];

}

The free memory in a zone consists of a number of blocks of contiguous memory. In the
MemStatRec structure, totFreeSize is the sum of the sizes of the contiguous memory blocks.
maxFreeSize is the largest of the contiguous memory blocks, as returned by XXMaxMem.
nFreeBlocks is the number of the contiguous memory blocks.

Similarly, the allocated memory in a zone consists of a number of blocks of contiguous
memory. In the MemStatRec structure, totAllocSize is the sum of the sizes of the contiguous
memory blocks. maxAllocSize is the largest of the contiguous memory blocks.

Because there are three different varieties of allocated blocks, the numbers of blocks of each
type is returned separately. nPointers (int32) is the number of pointers. nUnlockedHdls
(int32) is the number of unlocked handles. nLockedHdls (int32) is the number of locked
handles. Add the values of nPointers, nUnlockedHdls, and nLockedHdls together to find
the total number of allocated blocks.

The four reserved fields are reserved for use by National Instruments.

Name Type Description

msrp MemStatRec Statistics about the zone’s free memory in a
MemStatRec structure. Refer to the Pointers
as Parameters section of Chapter 3, CINs,
for more information about using this
parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-25 Using External Code in LabVIEW

AZNewHandle/DSNewHandle
UHandle AZNewHandle(size);
UHandle DSNewHandle(size);

Purpose
Creates a new handle to a relocatable block of memory of the specified size. The routine
aligns all handles and pointers in DS to accommodate the largest possible data representations
for the platform in use.

Parameters

Return Value
A handle of the specified size. If an error occurs, this function returns NULL.

Name Type Description

size int32 Size, in bytes, of the handle you want to
create.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-26 ni.com

AZNewHClr/DSNewHClr
UHandle AZNewHClr(size);
UHandle DSNewHClr(size);

Purpose
Creates a new handle to a relocatable block of memory of the specified size and initializes the
memory to zero.

Parameters

Return Value
A handle of the specified size, where the block of memory is set to all zeros. If an error occurs,
this function returns NULL.

Name Type Description

size int32 Size, in bytes, of the handle you want to
create.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-27 Using External Code in LabVIEW

AZNewPClr/DSNewPClr
UPtr AZNewPClr(size);
UPtr DSNewPClr(size);

Purpose
Creates a new pointer to a non-relocatable block of memory of the specified size and
initializes the memory to zero.

Parameters

Return Value
A pointer to a block of size bytes filled with zeros. If an error occurs, this function returns
NULL.

Name Type Description

size int32 Size, in bytes, of the pointer you want to
create.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-28 ni.com

AZNewPtr/DSNewPtr
UPtr AZNewPtr(size);
UPtr DSNewPtr(size);

Purpose
Creates a new pointer to a non-relocatable block of memory of the specified size.

Parameters

Return Value
A pointer to a block of size bytes. If an error occurs, this function returns NULL.

Name Type Description

size int32 Size, in bytes, of the pointer you want to
create.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-29 Using External Code in LabVIEW

AZRecoverHandle/DSRecoverHandle
UHandle AZRecoverHandle(p);
UHandle DSRecoverHandle(p);

Purpose
Given a pointer to a block of memory that was originally declared as a handle, this function
returns a handle to the block of memory.

This function is useful when you have the address of a block of memory that you know is a
handle, and you need to get a true handle to the block of memory.

Parameters

Return Value

A handle to the block of memory to which p refers. If an error occurs, this function returns
NULL.

Name Type Description

p UPtr Pointer to a relocatable block of memory.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-30 ni.com

AZSetHandleSize/DSSetHandleSize
MgErr AZSetHandleSize(h, size);
MgErr DSSetHandleSize(h, size);

Purpose
Changes the size of the block of memory referenced by the specified handle.

While LabVIEW arrays are stored in DS handles, do not use this function to resize array
handles. Many platforms have memory alignment requirements that make it difficult to
determine the correct size for the resulting array. Instead, use either NumericArrayResize
or SetCINArraySize. Refer to the Resizing Arrays and Strings section of Chapter 4,
Programming Issues for CINs, for information about using NumericArrayResize and
SetCINArraySize. Do not use these functions on a locked handle.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mFullErr Not enough memory to perform the operation.
mZoneErr Handle or pointer not in specified zone.

Name Type Description

h UHandle Handle you want to resize.

size int32 New size, in bytes, of the handle.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-31 Using External Code in LabVIEW

AZSetHSzClr/DSSetHSzClr
MgErr AZSetHSzClr(h, size);
MgErr DSSetHSzClr(h, size);

Purpose
Changes the size of the block of memory referenced by the specified handle and sets any new
memory to zero. Do not use this function on a locked handle.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mFullErr Not enough memory to perform the operation.
mZoneErr Handle or pointer not in specified zone.

Name Type Description

h UHandle Handle you want to resize.

size int32 New size, in bytes, of the handle.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-32 ni.com

BinSearch
int32 BinSearch(arrayp, n, elmtSize, key, compareProcP);

Purpose
Searches an array of an arbitrary data type using the binary search algorithm. In addition to
passing the array you want to search to this routine, you also pass a comparison procedure that
this sort routine then uses to compare elements in the array.

The comparison routine should return a number less than zero if a is less than b, zero if a is
equal to b, and a number greater than zero if a is greater than b.

You should declare the comparison routine to have the following parameters and return type:

int32 compareProcP(UPtr a, UPtr b);

Parameters

Return Value
The position in the array where the data is found, with 0 being the first element of the array,
if it is found. If the data is not found, BinSearch returns –i–1, where i is the position where
key should be placed.

Name Type Description

arrayp UPtr Pointer to an array of data.

n int32 Number of elements in the array you want to
search.

elmtSize int32 Size in bytes of an array element.

key Uptr Pointer to the data for which you want to
search.

compareProcP ProcPtr Comparison routine you want BinSearch to
use to compare array elements. BinSearch
passes this routine the addresses of two
elements that it needs to compare.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-33 Using External Code in LabVIEW

BlockCmp
int32 BlockCmp(p1, p2, numBytes);

Purpose
Compares two blocks of memory to determine whether one is less than, equal to, or greater
than the other.

Parameters

Return Value
A negative number, zero, or a positive number if p1 is less than, equal to, or greater than p2,
respectively.

Name Type Description

p1 UPtr Pointer to a block of memory.

p2 UPtr Pointer to a block of memory.

numBytes int32 Number of bytes you want to compare.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-34 ni.com

Cat4Chrs
Macro

int32 Cat4Chrs(a,b,c,d);

Purpose
Constructs an int32 parameter from four uInt8 parameters, with the first parameter as the
high byte and the last parameter as the low byte.

Parameters

Return Value
The resulting int32.

Name Type Description

a uInt8 High order byte of the high word of the
resulting int32.

b uInt8 Low order byte of the high word of the
resulting int32.

c uInt8 High order byte of the low word of the
resulting int32.

d uInt8 Low order byte of the low word of the
resulting int32.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-35 Using External Code in LabVIEW

ClearMem
void ClearMem(p, size);

Purpose
Sets size bytes starting at the address referenced by p to 0.

Parameters

Name Type Description

p UPtr Pointer to block of memory you want to
clear.

size int32 Number of bytes you want to clear.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-36 ni.com

CPStrBuf
Macro

uChar *CPStrBuf(sp);

Purpose
Returns the address of the first string in a concatenated list of Pascal strings, that is, the
address of sp->str.

Parameters

Return Value
The address of the first string of the concatenated list of Pascal strings.

Name Type Description

sp CPStrPtr Pointer to a concatenated list of Pascal
strings.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-37 Using External Code in LabVIEW

CPStrCmp
int32 CPStrCmp(s1p, s2p);

Purpose
Lexically compares two concatenated lists of Pascal strings to determine whether one is less
than, equal to, or greater than the other. This comparison is case sensitive. The function
compares the lists as if they were one string.

Parameters

Return Value
<0, 0, or >0 if s1p is less than, equal to, or greater than s2p, respectively. Returns <0 if s1p is
an initial substring of s2p.

Name Type Description

s1p CPStrPtr Pointer to a concatenated list of Pascal
strings.

s2p CPStrPtr Pointer to a concatenated list of Pascal
strings.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-38 ni.com

CPStrIndex
PStr CPStrIndex(s1h, index);

Purpose
Returns a pointer to the Pascal string denoted by index in a list of strings. If index is greater
than or equal to the number of strings in the list, this function returns the pointer to the last
string.

Parameters

Return Value
A pointer to the specified Pascal string.

Name Type Description

s1h CPStrHandle Handle to a concatenated list of Pascal
strings.

index int32 Number of the string you want, with 0 as the
first string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-39 Using External Code in LabVIEW

CPStrInsert
MgErr CPStrInsert(s1h, s2, index);

Purpose
Inserts a new Pascal string before the index numbered Pascal string in a concatenated list of
Pascal strings. If index is greater than or equal to the number of strings in the list, this function
places the new string at the end of the list. The function resizes the list to make room for the
new string.

Parameters

Return Value
MgErr, which can contain the following error:
noErr No error.
mFullErr Insufficient memory.

Name Type Description

s1h CPStrHandle Handle to a concatenated list of Pascal
strings.

s2 PStr Pointer to a Pascal string.

index int32 Position you want the new Pascal string to
have in the list of Pascal strings, with 0 as the
first string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-40 ni.com

CPStrLen
Macro

int32 CPStrLen(sp);

Purpose
Returns the number of Pascal strings in a concatenated list of Pascal strings, that is, sp->cnt.
Use the CPStrSize function to get the total number of characters in the list.

Parameters

Return Value
The number of strings in the concatenated list of Pascal strings.

Name Type Description

sp CPStrPtr Pointer to a concatenated list of Pascal
strings.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-41 Using External Code in LabVIEW

CPStrRemove
void CPStrRemove(s1h, index);

Purpose
Removes a Pascal string from a list of Pascal strings. If index is greater than or equal to the
number of strings in the list, this function removes the last string. The function resizes the list
after removing the string.

Parameters

Name Type Description

s1h CPStrHandle Handle to a concatenated list of Pascal
strings.

index int32 Number of the string you want to remove,
with 0 as the first string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-42 ni.com

CPStrReplace
MgErr CPStrReplace(s1h, s2, index);

Purpose
Replaces a Pascal string in a concatenated list of Pascal strings with a new Pascal string.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mFullErr Insufficient memory.

Name Type Description

s1h CPStrHandle Handle to a concatenated list of Pascal
strings.

s2 PStr Pointer to a Pascal string.

index int32 Number of the string you want to replace,
with 0 as the first string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-43 Using External Code in LabVIEW

CPStrSize
int32 CPStrSize(sp);

Purpose
Returns the number of characters in a concatenated list of Pascal strings. Use the CPStrLen
function to get the number of Pascal strings in the concatenated list.

Parameters

Return Value
The number of characters in the concatenated list of Pascal strings.

Name Type Description

sp CPStrPtr Pointer to a concatenated list of Pascal
strings.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-44 ni.com

CToPStr
int32 CToPStr(cstr, pstr);

Purpose
Converts a C string to a Pascal string, even if the pointers cstr and pstr refer to the same
memory location. If the length of cstr is greater than 255 characters, this function converts
only the first 255 characters. The function assumes pstr is large enough to contain cstr.

Parameters

Return Value
The length of the string, truncated to a maximum of 255 characters.

Name Type Description

cstr CStr Pointer to a C string.

pstr PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-45 Using External Code in LabVIEW

DateCString
CStr DateCString(secs, fmt);

Purpose
Returns a pointer to a string representing the date corresponding to secs seconds after
January 1, 1904, 12:00 a.m., UT. In SPARCstation, this function accounts for international
conventions for representing dates.

Note This function was formerly called DateString.

Parameters

Return Value
The date as a C string.

Name Type Description

secs uInt32 Seconds since January 1, 1904, 12:00 a.m.,
UT.

fmt int32 Indicates the format of the returned date
string, using the following values:

• 0—Short date format, mm/dd/yy,
where mm is a number between 1
and 12 representing the current
month, dd is the current day of the
month (1 through 31), and yy is the
last two digits of the corresponding
year. For example, 12/31/92.

• 1—Long date format, dayName,
MonthName, DayOfMonth,

LongYear. For example,
Thursday, December 31,1992.

• 2—Abbreviated date format,
AbbrevDayName,

AbbrevMonthName,

DayOfMonth, LongYear.
For example, Thu, Dec 31,1992.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-46 ni.com

DateToSecs
uint32 DateToSecs(dateRecordP);

Purpose
Converts from a time described using the DateRec data structure to the number of seconds
since January 1, 1904, 12:00 a.m., UT.

Parameters

Return Value
The corresponding number of seconds since January 1, 1904, 12:00 a.m., UT.

Name Type Description

dateRecordP DateRec * Pointer to a DateRec structure.
DateToSecs stores the converted date in the
fields of the date structure referred to by
dateRecordP. Refer to the Pointers as
Parameters section of Chapter 3, CINs, for
more information about using this parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-47 Using External Code in LabVIEW

FAddPath
MgErr FAddPath(basePath, relPath, newPath);

Purpose
Creates an absolute path by appending a relative path to an absolute path. You can pass the
same path variable for the new path that you use for basePath or relPath. Therefore, you can
call this function in the following three ways:

• err = FAddPath(basePath, relPath, newPath);

/* the new path is returned in a third path variable */

• err = FAddPath(path, relPath, path);

/* the new path writes over the old base path */

• err = FAddPath(basepath, path, path);

/* the new path writes over the old relative path */

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
mFullErr Insufficient memory.

Name Type Description

basePath Path Absolute path to which you want to append a
relative path.

relPath Path Relative path you want to append to the
existing base path.

newPath Path Path returned by FAddPath.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-48 ni.com

FAppendName
MgErr FAppendName(path, name);

Purpose
Appends a file or directory name to an existing path.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
mFullErr Insufficient memory.

Name Type Description

path Path Base path to which you want to append a new
file or directory name. FAppendName returns
the resulting path in this parameter.

name PStr File or directory name you want to append to
the existing path.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-49 Using External Code in LabVIEW

FAppPath
MgErr FAppPath(p);

Purpose
Indicates the path to the LabVIEW application currently running.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
mFullErr Insufficient memory.
fNotFound File not found.
fIOErr Unspecified I/O error.

Name Type Description

p Path Path in which FAppPath stores the path to
the current application. p must already be an
allocated path.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-50 ni.com

FArrToPath
MgErr FArrToPath(arr, relative, path);

Purpose
Converts a one-dimensional LabVIEW array of strings to a path of the type specified by
relative. Each string in the array is converted in order into a component name of the resulting
path.

If no error occurs, path is set to a path whose component names are the strings in arr. If an
error occurs, path is set to the canonical invalid path.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
mFullErr Insufficient memory.

Name Type Description

arr UHandle DS handle containing the array of strings you
want to convert to a path.

relative Bool32 If TRUE, the resulting path is relative.
Otherwise, the resulting path is absolute.

path Path Path where FArrToPath stores the resulting
path. This path must already have been
allocated.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-51 Using External Code in LabVIEW

FCopy
MgErr FCopy(oldPath, newPath);

Purpose
Copies a file, preserving the type, creator, and access rights. The file to be copied must not be
open. If an error occurs, the new file is not created.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
fNotFound File not found.
fNoPerm Access was denied; the file, directory, or disk is locked or

protected.
fDiskFull Disk is full.
fDupPath The new file already exists.
fIsOpen The original file is open for writing.
fTMFOpen Too many files are open.
mFullErr Insufficient memory.
fIOErr Unspecified I/O error.

Name Type Description

oldPath Path Path of the file or directory you want to copy.

newPath Path Path, including filename, where you want to
store the new file.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-52 ni.com

FCreate
MgErr FCreate(fdp, path, permissions, openMode, denyMode, group);

Purpose
Creates a file with the name and location specified by path and with the specified
permissions, and opens it for writing and reading, as specified by openMode. If the file
already exists, the function returns an error.

You can use denyMode to control concurrent access to the file from within LabVIEW. You
can use the group parameter to assign the file to a UNIX group. In Windows or Mac OS,
group is ignored.

If the function creates the file, the resulting file descriptor is stored in the address referred to
by fdp. If an error occurs, the function stores 0 in the address referred to by fdp and returns
an error.

Note Before you call this function, make sure that you understand how to use the fdp
parameter. Refer to the Pointers as Parameters section of Chapter 3, CINs, for more
information about using the fdp parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-53 Using External Code in LabVIEW

Parameters

Name Type Description

fdp File * Address at which FCreate stores the file
descriptor for the new file. If FCreate fails,
it stores 0 in the address fdp. Refer to the
Pointers as Parameters section of Chapter 3,
CINs, for more information about using this
parameter.

path Path Path of the file you want to create.

permissions int32 Permissions to assign to the new file.

openMode int32 Access mode to use in opening the file.
The following values are defined in the file
extcode.h.

• openReadOnly—Open for reading.

• openWriteOnly—Open for writing.

• openReadWrite—Open for both
reading and writing.

denyMode int32 Mode that determines what level of
concurrent access to the file is allowed.
The following values are defined in the file
extcode.h.

• denyReadWrite—Prevents others
from reading from and writing to
the file while it is open.

• denyWriteOnly—Prevents others
from writing to the file only while it
is open.

• denyNeither—Allows others to
read from and write to the file while
it is open.

group PStr UNIX group you want to assign to the new
file.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-54 ni.com

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
fIsOpen File is already open for writing. This error is returned only in Mac

OS and Solaris. Windows returns fIOErr when the file is already
open for writing.

fNoPerm Access was denied because the file is locked or protected.
fDupPath A file of that name already exists.
fTMFOpen Too many files are open.
fIOErr Unspecified I/O error.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-55 Using External Code in LabVIEW

FCreateAlways
MgErr FCreateAlways(fdp, path, permissions, openMode, denyMode, group);

Purpose
Creates a file with the name and location specified by path and with the specified
permissions, and opens the file for writing and reading, as specified by openMode. If the file
already exists, this function opens and truncates the file.

You can use denyMode to control concurrent access to the file from within LabVIEW. You
can use the group parameter to assign the file to a UNIX group. In Windows or Mac OS,
group is ignored.

If the function creates the file, the resulting file descriptor is stored in the address referred to
by fdp. If an error occurs, the function stores 0 in the address referred to by fdp and returns
an error.

Note Before you call this function, make sure that you understand how to use the fdp
parameter. Refer to the Pointers as Parameters section of Chapter 3, CINs, for more
information about using the fdp parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-56 ni.com

Parameters

Name Type Description

fdp File * Address at which FCreateAlways stores
the file descriptor for the new file. If
FCreateAlways fails, it stores 0 in the
address fdp. Refer to the Pointers as
Parameters section of Chapter 3, CINs, for
more information about using this parameter.

path Path Path of the file you want to create.

permissions int32 Permissions to assign to the new file.

openMode int32 Access mode to use in opening the file.
The following values are defined in the file
extcode.h.

• openReadOnly—Open for reading.

• openWriteOnly—Open for writing.

• openReadWrite—Open for both
reading and writing.

denyMode int32 Mode that determines what level of
concurrent access to the file is allowed.
The following values are defined in the file
extcode.h.

• denyReadWrite—Prevents others
from reading from and writing to
the file while it is open.

• denyWriteOnly—Prevents others
from writing to the file only while it
is open.

• denyNeither—Allows others to
read from and write to the file while
it is open.

group PStr UNIX group you want to assign to the new
file.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-57 Using External Code in LabVIEW

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
fIsOpen File is already open for writing. This error is returned only in

Mac OS and Solaris. Windows returns fIOErr when the file is
already open for writing.

fNoPerm Access was denied because the file is locked or protected.
fDupPath A file of that name already exists.
fTMFOpen Too many files are open.
fIOErr Unspecified I/O error.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-58 ni.com

FDepth
int32 FDepth(path);

Purpose
Computes the depth, or number of component names, of a path.

Parameters

Return Value
int32, indicating the depth of the path, which can contain the following values:
–1 Badly formed path.
0 Path is the root directory.
1 Path is in the root directory.
2 Path is in a subdirectory of the root directory, one level from the

root directory.
n–1 Path is n–2 levels from the root directory.
N Path is n–1 levels from the root directory.

Name Type Description

path Path Path whose depth you want to determine.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-59 Using External Code in LabVIEW

FDestroyPath
void FDestroyPath(&pp);

Purpose
Release the memory of an allocated path and NULL the path pointer.

Parameters

Return Value
None.

Note This function replaces the older FDisposePath function. The older function is still
available, but its use is discouraged. By passing a pointer to the path instead of the path
directly, the FDestroyPath function can properly NULL out the path, thus preventing
double deallocation errors. The new function can also handle NULL paths, eliminating the
need to check for NULL prior to calling FDisposePath. A typical use of the new function
is illustrated by the following text:

Path p;

p = FNotAPath(NULL);

// insert code here that uses the path

FDestroyPath(&p);

// p == NULL at this point

Name Type Description

pp Path* A pointer to the path you want to deallocate.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-60 ni.com

FDirName
MgErr FDirName(path, dir);

Purpose
Creates a path for the parent directory of a specified path. You can pass the same path variable
for the parent path that you use for path. Therefore, you can call this function in the following
two ways:

• err = FDirName(path, dir);

/* the parent path is returned in a second path variable */

• err = FDirName(path, path);

/* the parent path writes over the existing path */

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.

Name Type Description

path Path Path whose parent path you want to
determine.

dir Path Parameter in which FDirName stores the
parent path.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-61 Using External Code in LabVIEW

FDisposeRefNum
MgErr FDisposeRefNum(refNum);

Purpose
Disposes of the specified file refNum.

Parameters

Return Value
MgErr, which can contain the following error:
noErr No error.
mgArgErr File refnum is not valid.

Name Type Description

refNum LVRefNum File refnum of which you want to dispose.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-62 ni.com

FEmptyPath
Path FEmptyPath(p);

Purpose
Makes an empty absolute path, which is not the same as disposing the path.

Parameters

Return Value
The resulting path; if p was not NULL, the return value is the same empty absolute path as p.
If an error occurs, this function returns NULL.

Name Type Description

p Path Path allocated by FEmptyPath. If NULL,
FEmptyPath allocates a new path and
returns the value. If p is a path, FEmptyPath
sets the existing path to an empty path and
returns the new p.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-63 Using External Code in LabVIEW

FExists
int32 FExists(path);

Purpose
Returns information about the specified file or directory. It returns less information than
FGetInfo, but it is much quicker on most platforms.

Parameters

Return Value
int32, which can contain the following values:
kFIsFile Specified item is a file.
kFIsFolder Specified item is a directory or folder.
kFNotExist Specified item does not exist.

Name Type Description

path Path Path of the file or directory about which you
want information.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-64 ni.com

FFlattenPath
int32 FFlattenPath(p, fp);

Purpose
Converts path into a flat form that you can use to write the path as information to a file. This
function stores the resulting flat path in a pre-allocated buffer and returns the number of bytes.

To determine the size needed for the flattened path, pass NULL for fp. The function returns the
necessary size without writing anything into the location pointed to by fp.

Parameters

Return Value
int32, indicating the number of bytes required to store the flattened path.

Name Type Description

path Path Path you want to flatten.

fp UPtr Address in which FFlattenPath stores the
resulting flattened path. If NULL,
FFlattenPath does not write anything to
this address, but does return the size that the
flattened path would require. Refer to the
Pointers as Parameters section of Chapter 3,
CINs, for more information about using this
parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-65 Using External Code in LabVIEW

FFlush
MgErr FFlush(fd);

Purpose
Writes any buffered data for the specified file out to the disk.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr Not a valid file descriptor.
fIOErr Unspecified I/O error.

Name Type Description

fd File File descriptor associated with the file.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-66 ni.com

FGetAccessRights
MgErr FGetAccessRights(path, owner, group, permPtr);

Purpose
Returns access rights information about the specified file or directory.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
fNotFound File not found.
fIOErr Unspecified I/O error.

Name Type Description

path Path Path of the file or directory about which you
want access rights information.

owner PStr Address at which FGetAccessRights
stores the owner of the file or directory.

group PStr Address at which FGetAccessRights
stores the group of the file or directory.

permPtr int32 * Address at which FGetAccessRights
stores the permissions of the file or directory.
Refer to the Pointers as Parameters section
of Chapter 3, CINs, for more information
about using this parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-67 Using External Code in LabVIEW

FGetDefGroup
LStrHandle FGetDefGroup(groupHandle);

Purpose
Gets the LabVIEW default group for a file or directory.

Parameters

Return Value
The resulting LStrHandle. If groupHandle was not NULL, the return value is the same
LStrHandle as groupHandle. If an error occurs, this function returns NULL.

Name Type Description

groupHandle LStrHandle Handle that represents the LabVIEW default
group for a file or directory. If groupHandle
is NULL, FGetDefGroup allocates a new
handle and returns the default group in it. If
groupHandle is a handle, FGetDefGroup
returns it, and groupHandle resizes to hold
the default group.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-68 ni.com

FGetEOF
MgErr FGetEOF(fd, sizep);

Purpose
Returns the size of the specified file.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr Not a valid file descriptor.
fIOErr Unspecified I/O error.

Name Type Description

fd File File descriptor associated with the file.

sizep int32 * Address at which FGetEOF stores the size of
the file in bytes. If an error occurs, *sizep is
undefined. Refer to the Pointers as
Parameters section of Chapter 3, CINs, for
more information about using this parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-69 Using External Code in LabVIEW

FGetInfo
MgErr FGetInfo(path, infop);

Purpose
Returns information about the specified file or directory.

Parameters

FInfoPtr is a data structure that defines the attributes of a file or directory. The following
code lists the file/directory information record, FInfoPtr.

typedef struct {

int32 type; * system specific file type--

0 for directories */

int32 creator; * system specific file

creator-- 0 for folders (on

Mac only)*/

int32 permissions; * system specific file access

rights */

int32 size; /* file size in bytes (data

fork on Mac) or entries in

directory*/

int32 rfSize; /* resource fork size (on Mac

only) */

uint32 cdate; /* creation date: seconds

since system reference time

*/

uint32 mdate; /* last modification date:

seconds since system ref time

*/

Name Type Description

path Path Path of the file or directory about which you
want information.

infop FInfoPtr Address where FGetInfo stores
information about the file or directory. If an
error occurs, infop is undefined. Refer to the
Pointers as Parameters section of Chapter 3,
CINs, for more information about using this
parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-70 ni.com

Bool32 folder; /* indicates whether path

refers to a folder */

Bool32 isInvisible; /* indicates whether file is

visible in File Dialog (on

Mac only)*/

Point location; /* system specific desktop

geographical location (on Mac

only)*/

Str255 owner; /* owner (in pascal string

form) of file or folder */

Str255 group; /* group (in pascal string

form) of file or folder */

} FInfoRec, *FInfoPtr;

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
fNotFound File not found.
fIOErr Unspecified I/O error.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-71 Using External Code in LabVIEW

FGetPathType
MgErr FGetPathType(path, typePtr)

Purpose
Returns the type, relative, absolute, or not a path, of a path.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.

Name Type Description

path Path Path whose type you want to determine.

typePtr int32 * Address at which FGetPathType stores
the type. *typePtr can have the following
values:

• fAbsPath—The path is absolute.

• fRelPath—The path is relative.

• fNotAPath—The path is the
canonical invalid path or an error
occurred.

Refer to the Pointers as Parameters section
of Chapter 3, CINs, for more information
about using this parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-72 ni.com

FGetVolInfo
MgErr FGetVolInfo(path, vinfo);

Purpose
Gets a path specification and information for the volume containing the specified file or
directory.

Parameters

The following code describes the volume information record, VInfoRec.

typedef struct {

uint32 size; /* size in bytes of a

volume */

uint32 used; /* number of bytes used on

volume */

uint32 free; /* number of bytes available

for use on volume */

} VInfoRec;

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
fIOErr Unspecified I/O error.

Name Type Description

path Path Path of a file or directory contained on the
volume from which you want to get
information. This path is overwritten with a
path specifying the volume containing the
specified file or directory. If an error occurs,
path is undefined.

vinfo VInfoRec * Address at which FgetVolInfo stores the
information about the volume. If an error
occurs, vinfo is undefined. Refer to the
Pointers as Parameters section of Chapter 3,
CINs, for more information about using this
parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-73 Using External Code in LabVIEW

FileNameCmp
Macro

int32 FileNameCmp(s1, s2);

Purpose
Lexically compares two file names to determine whether one is less than, equal to, or greater
than the other. This comparison uses the same case sensitivity as the file system, that is,
case-insensitive for Mac OS and Windows, case-sensitive for SPARCstation.

Parameters

Return Value
<0, 0, or >0 if s1 is less than, equal to, or greater than s2, respectively. Returns <0 if s1 is an
initial substring of s2.

Name Type Description

s1 PStr Pointer to a Pascal string.

s2 PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-74 ni.com

FileNameIndCmp
Macro

int32 FileNameIndCmp(s1p, s2p);

Purpose
Lexically compares two file names and determines whether one is less than, equal to, or
greater than the other. This comparison uses the same case sensitivity as the file system, that
is, case-insensitive for Mac OS and Windows, case-sensitive for SPARCstation. This function
is similar to FileNameCmp, except you pass the function handles to the string data instead of
pointers.

Parameters

Return Value
<0, 0, or >0 if s1p is less than, equal to, or greater than s2p, respectively. Returns <0 if s1p is
an initial substring of s2p.

Name Type Description

s1p PStr * Pointer to a Pascal string.

s2p PStr * Pointer to a Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-75 Using External Code in LabVIEW

FileNameNCmp
Macro

int32 FileNameNCmp(s1, s2, n);

Purpose
Lexically compares two file names to determine whether one is less than, equal to, or greater
than the other, limiting the comparison to n characters. This comparison uses the same case
sensitivity as the file system, that is, case-insensitive for Mac OS and Windows, case-sensitive
for SPARCstation.

Parameters

Return Value
<0, 0, or >0 if s1 is less than, equal to, or greater than s2, respectively. Returns <0 if s1 is an
initial substring of s2.

Name Type Description

s1 CStr Pointer to a C string.

s2 CStr Pointer to a C string.

n uInt32 Maximum number of characters you want to
compare.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-76 ni.com

FIsAPath
Bool32 FIsAPath(path);

Purpose
Determines whether path is a valid path.

Parameters

Return Value
Bool32, which can contain the following values:
TRUE Path is well formed and type is absolute or relative.
FALSE Path is not valid.

Name Type Description

path Path Path you want to verify.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-77 Using External Code in LabVIEW

FIsAPathOfType
Bool32 FIsAPathOfType(path, ofType);

Purpose
Determines whether a path is a valid path of the specified type, relative or absolute.

Parameters

Return Value
Bool32, which can contain the following values:
TRUE Path is well formed and type is identical to ofType.
FALSE Otherwise.

Name Type Description

path Path Path you want to compare to the specified
type.

ofType int32 Type you want to compare to the path’s type.
ofType can have the following values:

• fAbsPath—Compare the path’s
type to absolute.

• fRelPath—Compare the path’s
type to relative.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-78 ni.com

FIsAPathOrNotAPath
Bool32 FIsAPathOrNotAPath(path);

Purpose
Determines whether path is a valid path or the canonical invalid path.

Parameters

Return Value
Bool32, which can contain the following values:
TRUE Path is well formed and type is absolute, relative, or not a path.
FALSE Path is not valid.

Name Type Description

path Path Path you want to verify.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-79 Using External Code in LabVIEW

FIsARefNum
Bool32FIsARefNum(refNum);

Purpose
Determines whether refNum is a valid file refnum.

Parameters

Return Value
Bool32, which can contain the following values:
TRUE File refnum has been created and not yet disposed.
FALSE File refnum is not valid.

Name Type Description

refNum LVRefNum File refnum you want to verify.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-80 ni.com

FIsEmptyPath
Bool32 FIsEmptyPath(path);

Purpose
Determines whether path is a valid empty path.

Parameters

Return Value
Bool32, which can contain the following values:
TRUE Path is well formed and empty and type is absolute or relative.
FALSE Path is not a valid empty path.

Name Type Description

path Path Path you want to verify.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-81 Using External Code in LabVIEW

FListDir
MgErr FListDir(path, list, typeH);

Purpose
Determines the contents of a directory.

The function fills the AZ handle passed in list with a CPStr, where the cnt field specifies the
number of concatenated Pascal strings that follow in the str[] field. Refer to the Data Types
section of Chapter 4, Programming Issues for CINs, for a description of the CPStr data type.
If typeH is not NULL, the function fills the AZ handle passed in typeH with the file type
information for each file name or directory name stored in list.

Parameters

The following code shows the file type record.

typedef struct {

int32 flags;

int32 type;

} FileType;

Only the least significant four bits of flags contain useful information. The remaining bits
are reserved for use by LabVIEW. You can test these four bits using the following four masks:

#define kIsFile 0x01

#define kRecognizedType 0x02

Name Type Description

path Path Path of the directory whose contents you
want to determine.

list CPStrHandle Application zone handle in which FListDir
stores a series of concatenated Pascal strings,
preceded by a 4-byte integer field, cnt, that
indicates the number of items in the buffer.

typeH FileType Application zone handle in which FListDir
stores a series of FileType records. If
typeH is not NULL, FListDir stores one
FileType record in typeH for each Pascal
string in list. The nth FileType in typeH
denotes the file type information about the
file or directory named in the nth string in list.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-82 ni.com

#define kIsLink 0x04

#define kFIsInvisible 0x08

The kIsFile bit is set if the item described by the file type record is a file. Otherwise,
kIsFile is clear. The kRecognizedType bit is set if the item described is a file for which
you can determine a 4-character file type. Otherwise, kRecognizedType is clear. The
kIsLink bit is set if the item described is a UNIX link or Mac OS alias. Otherwise, kIsLink
is clear. The kFIsInvisible bit is set if the item described does not appear in a file dialog
box. Otherwise, kFIsInvisible is clear.

The value of type is defined only if the kRecognizedType bit is set in flags. In this case,
type is the 4-character file type of the file described by the file type record. This 4-character
file type is provided by the file system in Mac OS and is computed by examining the file name
extension on other systems.

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
fNotFound The directory was not found.
fNoPerm Access was denied; the file, directory, or disk is locked or

protected.
mFullErr Insufficient memory.
fIOErr Unspecified I/O error.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-83 Using External Code in LabVIEW

FLockOrUnlockRange
MgErr FLockOrUnlockRange(fd, mode, offset, count, lock);

Purpose
Locks or unlocks a section of a file.

Parameters

Name Type Description

fd File File descriptor associated with the file.

mode int32 Position in the file relative to which
FLockOrUnlockRange determines the first
byte to lock or unlock, using the following
values:

• fStart—The first byte to lock or
unlock is located offset bytes from
the start of the file. offset must be
greater than or equal to 0.

• fCurrent—The first byte to lock
or unlock is located offset bytes
from the current position mark.
offset can be positive, 0, or
negative.

• fEnd—The first byte to lock or
unlock is located offset bytes from
the end of the file. offset must be
less that or equal to 0.

offset int32 The position of the first byte to lock or
unlock. The position is the number of bytes
from the beginning of the file, the current
position mark, or the end of the file, as
determined by mode.

count int32 Number of bytes to lock or unlock starting at
the location specified by mode and offset.

lock Bool32 Indicates whether FLockOrUnlockRange
locks or unlocks a range of bytes. If TRUE the
function locks a range. If FALSE the function
unlocks a range.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-84 ni.com

Return Value
MgErr, which can contain the following error:
noErr No error.
fIOErr Unspecified I/O error.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-85 Using External Code in LabVIEW

FMakePath
Path FMakePath(path, type, [volume, directory, directory, ..., name,] NULL);

The brackets indicate that the volume, directory, and name parameters are optional.

Purpose
Creates a new path. If path is NULL, this function allocates and returns a new path. Otherwise,
path is set to the new path, and this function returns path. If an error occurs or path is not
specified correctly, the function returns NULL.

When you finish using a path, dispose of it using FDestroyPath.

Parameters

Return Value
The resulting path. If you specified path, the return value is the same as path. If an error
occurs, this function returns NULL.

Name Type Description

path Path Parameter in which FMakePath returns the
new path if path is not NULL.

type int32 Type of path you want to create.
If fAbsPath, the new path is absolute.
If fRelPath, the new path is relative.

volume PStr (Optional) Pascal string containing a legal
volume name. An empty string indicates to
go up a level in the path hierarchy. This
parameter is used only for absolute paths in
Mac OS or Windows.

directory PStr (Optional) Pascal string containing a legal
directory name. An empty string indicates to
go up a level in the path hierarchy.

name PStr (Optional) File or directory name. An empty
string indicates to go up a level in the path
hierarchy.

NULL PStr Marker indicating the end of the path.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-86 ni.com

FMClose
MgErr FMClose(fd);

Purpose
Closes the file associated with the file descriptor fd.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr Not a valid file descriptor.
fIOErr Unspecified I/O error.

Name Type Description

fd File File descriptor associated with the file you
want to close.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-87 Using External Code in LabVIEW

FMOpen
MgErr FMOpen(fdp, path, openMode, denyMode);

Purpose
Opens a file with the name and location specified by path for writing and reading, as specified
by openMode.

You can use denyMode to control concurrent access to the file from within LabVIEW.

If the function opens the file, the resulting file descriptor is stored in the address referred to
by fdp. If an error occurs, the function stores 0 in the address referred to by fdp and returns
an error.

Note Before you call this function, make sure that you understand how to use the fdp
parameter. Refer to the Pointers as Parameters section of Chapter 3, CINs, for more
information about using the fdp parameter.

Parameters

Name Type Description

fdp File * Address at which FMOpen stores the file
descriptor for the new file. If FMOpen fails,
it stores 0 in the address fdp. Refer to the
Pointers as Parameters section of Chapter 3,
CINs, for more information about using this
parameter.

path Path Path of the file you want to create.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-88 ni.com

openMode int32 Access mode to use in opening the file.
The following values are defined in the file
extcode.h.

• openReadOnly—Open for
reading.

• openWriteOnly—Open for
writing; file is not truncated (data is
not removed). In Mac OS, this mode
provides true write-only access to
files. In Windows or UNIX,
LabVIEW I/O functions are built in
the C standard I/O library, with
which you have write-only access to
a file only if you are truncating the
file or making the access
append-only. Therefore, this mode
actually allows both read and write
access to files in Windows or UNIX.

• openReadWrite—Open for both
reading and writing.

• openWriteOnlyTruncate—Open
for writing; truncates the file.

denyMode int32 Mode that determines what level of
concurrent access to the file is allowed.
The following values are defined in the file
extcode.h.

• denyReadWrite—Prevents others
from reading from and writing to
the file while it is open.

• denyWriteOnly—Prevents others
from writing to the file only while it
is open.

• denyNeither—Allows others to
read from and write to the file while
it is open.

Name Type Description

Chapter 6 Function Descriptions

© National Instruments Corporation 6-89 Using External Code in LabVIEW

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
fIsOpen File is already open for writing. This error is returned only in Mac

OS and Solaris. Windows returns fIOErr when the file is already
open for writing.

fNotFound File not found.
fTMFOpen Too many files are open.
fIOErr Unspecified I/O error.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-90 ni.com

FMove
MgErr FMove(oldPath, newPath);

Purpose
Moves a file or renames it if the new path indicates the file is to remain in the same directory.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
fNotFound File not found.
fNoPerm Access was denied; the file, directory, or disk is locked or

protected.
fDiskFull Disk is full.
fDupPath The new file already exists.
fIsOpen The original file is open for writing.
fTMFOpen Too many files are open.
mFullErr Insufficient memory.
fIOErr Unspecified I/O error.

Name Type Description

oldPath Path Path of the file or directory you want to
move.

newPath Path Path, including the name of the file or
directory, where you want to move the file or
directory.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-91 Using External Code in LabVIEW

FMRead
MgErr FMRead(fd, inCount, outCountp, buffer);

Purpose
Reads inCount bytes from the file specified by the file descriptor fd. The function starts from
the current position mark and reads the data into memory, starting at the address specified by
buffer. Refer to the FMSeek and FMTell functions in this chapter for more information about
the current position mark.

The function stores the actual number of bytes read in *outCountp. The number of bytes can
be less than inCount if the function encounters end-of-file before reading inCount bytes. The
number of bytes is zero if any other error occurs.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr Not a valid file descriptor or inCount < 0.
FEOF EOF encountered.
fIOErr Unspecified I/O error.

Name Type Description

fd File File descriptor associated with the file from
which you want to read.

inCount int32 Number of bytes you want to read.

outCountp int32 * Address at which FMRead stores the number
of bytes read. FMRead does not store any
value if NULL is passed. Refer to the Pointers
as Parameters section of Chapter 3, CINs,
for more information about using this
parameter.

buffer Uptr Address where FMRead stores the data.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-92 ni.com

FMSeek
MgErr FMSeek(fd, ofst, mode);

Purpose
Sets the current position mark for a file to the specified point, relative to the beginning of the
file, the current position in the file, or the end of the file. If an error occurs, the current position
mark does not move.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr The file descriptor is not valid.
fEOF Attempt to seek before the start or after the end of the file.
fIOErr Unspecified I/O error.

Name Type Description

fd File File descriptor associated with the file.

ofst int32 New position of the current position mark.
The position is the number of bytes from the
beginning of the file, the current position
mark, or the end of the file, as determined by
mode.

mode int32 Position in the file relative to which FMSeek
sets the current position mark for a file, using
the following values:

• fStart—Current position mark
moves to ofst bytes relative to the
start of the file. ofst must be greater
than or equal to 0.

• fCurrent—Current position mark
moves ofst bytes from the current
position mark. ofst can be positive,
0, or negative.

• fEnd—Current position mark
moves to ofst bytes from the end of
the file. ofst must be less than or
equal to 0.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-93 Using External Code in LabVIEW

FMTell
MgErr FMTell(fd, ofstp);

Purpose
Returns the position of the current position mark in the file.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr The file descriptor is not valid.
fIOErr Unspecified I/O error.

Name Type Description

fd File File descriptor associated with the file.

ofstp int32 * Address at which FMTell stores the position
of the current position mark, in terms of
bytes relative to the beginning of the file.
If an error occurs, ofstp is undefined. Refer
to the Pointers as Parameters section of
Chapter 3, CINs, for more information about
using this parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-94 ni.com

FMWrite
MgErr FMWrite(fd, inCount, outCountp, buffer);

Purpose

Writes inCount bytes from memory, starting at the address specified by buffer, to the file
specified by the file descriptor fd, starting from the current position mark. Refer to the
FMSeek and FMTell functions in this chapter for more information about the current position
mark.

The function stores the actual number of bytes written in *outCountp. The number of bytes
stored can be less than inCount if an fDiskFull error occurs before the function writes
inCount bytes. The number of bytes stored is zero if any other error occurs.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr Not a valid file descriptor or inCount < 0.
fDiskFull Out of space.
fNoPerm Access was denied.
fIOErr Unspecified I/O error.

Name Type Description

fd File File descriptor associated with the file from
which you want to write.

inCount int32 Number of bytes you want to write.

outCountp int32 * Address at which FMWrite stores the
number of bytes written. FMWrite does not
store any value if NULL is passed. Refer to the
Pointers as Parameters section of Chapter 3,
CINs, for more information about using this
parameter.

buffer Uptr Address of the data you want to write.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-95 Using External Code in LabVIEW

FName
MgErr FName(path, name);

Purpose
Copies the last component name of a specified path into a string handle and resizes the handle
as necessary.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr Badly formed path or path is root directory.
mFullErr Insufficient memory.

Name Type Description

path Path Path whose last component name you want
to determine.

name StringHandle Handle in which FName returns the last
component name as a Pascal string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-96 ni.com

FNamePtr
MgErr FNamePtr(path, name);

Purpose
Copies the last component name of a path to the address specified by name. This routine does
not allocate space for the returned data. Therefore, name must specify allocated memory of
sufficient size to hold the component name.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr Badly formed path or path is root directory.
mFullErr Insufficient memory.

Name Type Description

path Path Path whose last component name you want
to determine.

name PStr Address at which FNamePtr stores the last
component name as a Pascal string. This
address must specify allocated memory of
sufficient size to hold the name. Refer to the
Pointers as Parameters section of Chapter 3,
CINs, for more information about using this
parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-97 Using External Code in LabVIEW

FNewDir
MgErr FNewDir(path, permissions);

Purpose
Creates a new directory with the specified permissions. If an error occurs, the function does
not create the directory.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
fNoPerm Access was denied; the file, directory, or disk is locked or

protected.
fDupPath Directory already exists.
fIOErr Unspecified I/O error.

Name Type Description

path Path Path of the directory you want to create.

permissions int32 Permissions for the new directory.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-98 ni.com

FNewRefNum
MgErr FNewRefNum(path, fd, refNumPtr);

Purpose
Creates a new file refnum for an open file with the name and location specified by path and
the file descriptor fd.

If the file refnum is created, the resulting file refnum is stored in the address referred to by
refNumPtr. If an error occurs, NULL is stored in the address referred to by refNumPtr and
the error is returned.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
mFullErr Insufficient memory.

Name Type Description

path Path Path of the open file for which you want to
create a file refnum.

fd File File descriptor of the open file for which you
want to create a file refnum.

refNumPtr LVRefNum * Address at which FNewRefNum stores the
new file refnum. Refer to the Pointers as
Parameters section of Chapter 3, CINs, for
more information about using this parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-99 Using External Code in LabVIEW

FNotAPath
Path FNotAPath(p);

Purpose
Creates a path that is the canonical invalid path.

Parameters

Return Value
The resulting path. If p is not NULL, the return value is the same canonical invalid path as p.
If an error occurs, this function returns NULL.

Name Type Description

p Path Path allocated by FNotAPath. If NULL,
FNotAPath allocates a new canonical
invalid path and returns the value. If p is a
path, FNotAPath sets the existing path to the
canonical invalid path and returns the new p.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-100 ni.com

FPathCmp
int32 FPathCmp(lsp1, lsp2);

Purpose
Compares two paths.

Parameters

Return Value
int32, which can contain the following values:
–1 Paths are of different types. For example, one is absolute and the

other is relative.
0 Paths are identical.
n+1 Paths have the same first n components but are not identical.

Name Type Description

lsp1 Path First path you want to compare.

lsp2 Path Second path you want to compare.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-101 Using External Code in LabVIEW

FPathCpy
MgErr FPathCpy(dst, src);

Purpose
Duplicates the path specified by src and stores the resulting path in the existing path, dst.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.

Name Type Description

dst Path Path where FPathCpy places the resulting
duplicate path. This path must already have
been created.

src Path Path you want to duplicate.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-102 ni.com

FPathToArr
MgErr FPathToArr(path, relativePtr, arr);

Purpose
Converts a path to a one-dimensional LabVIEW array of strings and determines whether the
path is relative. Each component name of the path is converted in order into a string in the
resulting array.

If no error occurs, arr is set to an array of strings containing the component names of
path. If an error occurs, arr is set to an empty array.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr Badly formed path or unallocated array.
mFullErr Insufficient memory.

Name Type Description

path Path Path you want to convert to an array of
strings.

relativePtr Bool32 * Address at which to store a Boolean value
indicating whether the specified path is
relative. Refer to the Pointers as Parameters
section of Chapter 3, CINs, for more
information about using this parameter.

arr UHandle DS handle where FPathToArr stores the
resulting array of strings. This handle must
already have been allocated.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-103 Using External Code in LabVIEW

FPathToAZString
MgErr FPathToAZString(p, txt);

Purpose
Converts a path to an LStr and stores the string as an application zone handle. The LStr
contains the platform-specific syntax for the path.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
mFullErr Insufficient memory.
fIOErr Unspecified I/O error.

Name Type Description

p Path Path you want to convert to a string.

txt LstrHandle * Address at which FPathToAZString stores
the resulting string. If nonzero, the function
assumes it is a valid handle, resizes the
handle, fills in its value, and stores the handle
at the address referred to by txt. Refer to the
Pointers as Parameters section of Chapter 3,
CINs, for more information about using this
parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-104 ni.com

FPathToDSString
MgErr FPathToDSString(p, txt);

Purpose
Converts a path to an LStr and stores the string as a data space zone handle. The LStr
contains the platform-specific syntax for the path.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
mFullErr Insufficient memory.
fIOErr Unspecified I/O error.

Name Type Description

p Path Path you want to convert to a string.

txt LstrHandle * Address at which FPathToDSString stores
the resulting string. If nonzero, the function
assumes it is a valid handle, resizes the
handle, fills in its value, and stores the handle
at the address referred to by txt. Refer to the
Pointers as Parameters section of Chapter 3,
CINs, for more information about using this
parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-105 Using External Code in LabVIEW

FPathToPath
MgErr FPathToPath(p);

Purpose
Duplicates a path and returns the new path in the same variable.

Parameters

Return Value
MgErr, which can contain the following error:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.

Name Type Description

p Path * Address of the path you want to duplicate.
Variable to which FPathToPath returns the
resulting path. Refer to the Pointers as
Parameters section of Chapter 3, CINs, for
more information about using this parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-106 ni.com

FRefNumToFD
MgErr FRefNumToFD(refNum, fdp);

Purpose
Gets the file descriptor associated with the specified file refnum.

If no error occurs, the resulting file descriptor is stored in the address referred to by fdp. If an
error occurs, NULL is stored in the address referred to by fdp, and the error is returned.

Parameters

Return Value
MgErr, which can contain the following error:
noErr No error.
mgArgErr File refnum is not valid.

Name Type Description

refNum LVRefNum The file refnum whose associated file
descriptor you want to get.

fdp File * Address at which FRefNumToFD stores the
file descriptor associated with the specified
file refnum. Refer to the Pointers as
Parameters section of Chapter 3, CINs, for
more information about using this parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-107 Using External Code in LabVIEW

FRefNumToPath
MgErr FRefNumToPath(refNum, path);

Purpose
Gets the path associated with the specified file refnum and stores the resulting path in the
existing path.

If no error occurs, path is set to the path associated with the specified file refnum. If an error
occurs, path is set to the canonical invalid path.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
mFullErr Insufficient memory.

Name Type Description

refNum LVRefNum The file refnum whose associated path you
want to get.

path Path Path where FRefNumToPath stores the path
associated with the specified file refnum.
This path must already have been created.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-108 ni.com

FRelPath
MgErr FRelPath(startPath, endPath, relPath);

Purpose
Computes a relative path between two absolute paths. You can pass the same path variable for
the new path that you use for startPath or relPath. Therefore, you can call this function in
the following three ways:

• FRelPath(startPath, endPath, relPath);

/* the relative path is returned in a third path variable */

• FRelPath(startPath, endPath, startPath);

/* the new path writes over the old startPath */

• FRelPath(startPath, endPath, endPath);

/* the new path writes over the old endPath */

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
mFullErr Insufficient memory.

Name Type Description

startPath Path Absolute path from which you want the
relative path to be computed.

endPath Path Absolute path to which you want the relative
path to be computed.

relPath Path Path returned by fAddPath.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-109 Using External Code in LabVIEW

FRemove
MgErr FRemove(path);

Purpose
Deletes a file or a directory. If an error occurs, this function does not remove the file or
directory.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
fNotFound File not found.
fNoPerm Access was denied; the file, directory, or disk is locked or

protected.
fIsOpen File is open or directory is not empty.
fIOErr Unspecified I/O error.

Name Type Description

path Path Path of the file or directory you want to
delete.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-110 ni.com

FSetAccessRights
MgErr FSetAccessRights(path, owner, group, permPtr);

Purpose
Sets access rights information for the specified file or directory. If an error occurs, no
information changes.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
fNotFound File not found.
fIOErr Unspecified I/O error.

Name Type Description

path Path Path of the file or directory for which you
want to set access rights information.

owner PStr New owner that FSetAccessRights sets
for the file or directory if owner is not NULL.

group PStr New group that FSetAccessRights sets
for the file or directory if group is not NULL.

permPtr int32 * Address of new permissions that
FSetAccessRights sets for the file or
directory if permPtr is not NULL.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-111 Using External Code in LabVIEW

FSetEOF
MgErr FSetEOF(fd, size);

Purpose
Sets the size of the specified file. If an error occurs, the file size does not change.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr Not a valid file descriptor or size < 0.
fDiskFull Disk is full.
fNoPerm Access was denied; the file already exists or the disk is locked or

protected.
fIOErr Unspecified I/O error.

Name Type Description

fd File File descriptor associated with the file.

size int32 * New file size in bytes.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-112 ni.com

FSetInfo
MgErr FSetInfo(path, infop);

Purpose
Sets information for the specified file or directory. If an error occurs, no information changes.

Parameters

FInfoPtr is a data structure that defines the attributes of a file or directory. The following
code lists the file/directory information record, FInfoPtr.

typedef struct {

int32 type; * system specific file type--

0 for directories */

int32 creator; * system specific file

creator-- 0 for folders (on

Mac only)*/

int32 permissions; * system specific file access

rights */

int32 size; /* file size in bytes (data

fork on Mac) or entries in

directory*/

int32 rfSize; /* resource fork size (on Mac

only) */

uint32 cdate; /* creation date: seconds

since system reference time

*/

uint32 mdate; /* last modification date:

seconds since system ref time

*/

Bool32 folder; /* indicates whether path

refers to a folder */

Name Type Description

path Path Path of the file or directory for which you
want to set information.

infop FInfoPtr Address of information FSetInfo sets for
the file or directory.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-113 Using External Code in LabVIEW

Bool32 isInvisible; /* indicates whether file is

visible in File Dialog (on

Mac only)*/

Point location; /* system specific desktop

geographical location (on Mac

only)*/

Str255 owner; /* owner (in pascal string

form) of file or folder */

Str255 group; /* group (in pascal string

form) of file or folder */

} FInfoRec, *FInfoPtr;

Return Value
MgErr, which can contain the following errors:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.
fNotFound File not found.
fIOErr Unspecified I/O error.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-114 ni.com

FSetPathType
MgErr FSetPathType(path, type);

Purpose
Changes the type of a path, which must be a valid path, to the specified type, relative or
absolute.

Parameters

Return Value
MgErr, which can contain the following error:
noErr No error.
mgArgErr Badly formed path or invalid type.

Name Type Description

path Path Path whose type you want to change.

type int32 New type you want the path to have. type can
have the following values:

• fAbsPath—The path is absolute.

• fRelPath—The path is relative.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-115 Using External Code in LabVIEW

FStrFitsPat
Bool32FStrFitsPat(pat, str, pLen, sLen);

Purpose
Determines whether a file name, str, matches a pattern, pat.

Parameters

Return Value
Bool32, which can contain the following values:
TRUE File name fits the pattern.
FALSE File name does not match the pattern.

Name Type Description

pat uChar * Pattern (string) to which filename is to be
compared. The following characters have
special meanings in the pattern.

\ is literal, not treated as having a special
meaning. A single backslash at the end of pat
is the same as two backslashes.

? matches any one character.

* matches zero or more characters.

str uChar * File name (string) to compare to pattern.

pLen int32 Number of characters in pat.

sLen int32 Number of characters in str.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-116 ni.com

FStringToPath
MgErr FStringToPath(text, p);

Purpose
Creates a path from an LStr. The LStr contains the platform-specific syntax for a path.

Parameters

Return Value
MgErr, which can contain the following error:
noErr No error.
mFullErr Insufficient memory.

Name Type Description

text LstrHandle String that contains the path in
platform-specific syntax.

p Path * Address at which FstringToPath stores
the resulting path. If nonzero, the function
assumes it is a valid path, resizes the path,
and fills in its value. If NULL, the function
creates a new path, fills in its value, and
stores the path at the address referred to by p.
Refer to the Pointers as Parameters section
of Chapter 3, CINs, for more information
about using this parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-117 Using External Code in LabVIEW

FTextToPath
MgErr FTextToPath(text, tlen, *p);

Purpose
Creates a path from a string at the address text that represents a path in the platform-specific
syntax for a path.

Parameters

Return Value
MgErr, which can contain the following error:
noErr No error.
mFullErr Insufficient memory.

Name Type Description

text UPtr String that contains the path in
platform-specific syntax.

tlen int32 Number of characters in text.

p Path * Address at which FTextToPath stores the
resulting path. If nonzero, the function
assumes it is a valid path, resizes the path,
and fills in its value. If NULL, the function
creates a new path, fills in its value, and
stores the path at the address referred to by p.
Refer to the Pointers as Parameters section
of Chapter 3, CINs, for more information
about using this parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-118 ni.com

FUnFlattenPath
int32 FUnFlattenPath(fp, pPtr);

Purpose
Converts a flattened path, created using FFlattenPath, into a path.

Parameters

Return Value
Number of bytes the function interpreted as a path.

Name Type Description

fp UPtr Pointer to the flattened path you want to
convert to a path.

pPtr Path * Address at which FUnFlattenPath stores
the resulting path. Refer to the Pointers as
Parameters section of Chapter 3, CINs, for
more information about using this parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-119 Using External Code in LabVIEW

FVolName
MgErr FVolName(path, vol);

Purpose
Creates a path for the volume of an absolute path by removing all but the first component
name from path. You can pass the same path variable for the volume path that you use for
path. Therefore, you can call this function in the following two ways:

• err = FVolName(path, vol);

/* the parent path is returned in a second path variable */

• err = FVolName(path, path);

/* the parent path writes over the existing path */

Parameters

Return Value
MgErr, which can contain the following error:
noErr No error.
mgArgErr A bad argument was passed to the function. Verify the path.

Name Type Description

path Path Path whose volume path you want to
determine.

vol Path Parameter in which FVolName stores the
volume path.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-120 ni.com

GetALong
Macro

int32 GetALong(p);

Purpose
Retrieves an int32 from a void pointer. In SPARCstation, this function can retrieve an
int32 at any address, even if the int32 is not long word aligned.

Parameters

Return Value
int32 stored at the specified address.

Name Type Description

p void * Address from which you want to read an
int32.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-121 Using External Code in LabVIEW

HexChar
int32 HexChar(n);

Purpose
Returns the ASCII character in hex that represents the specified value n, 0 ≤ n ≤ 15.

Parameters

Return Value
The corresponding ASCII hex character. If n is out of range, the function returns the ASCII
character corresponding to n modulo 16.

Name Type Description

n int32 Decimal value between 0 and 15.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-122 ni.com

Hi16
Macro

int16 Hi16(x);

Purpose
Returns the high order int16 of an int32.

Parameters

Name Type Description

x int32 int32 for which you want to determine the
high int16.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-123 Using External Code in LabVIEW

HiByte
Macro

int8 HiByte(x);

Purpose
Returns the high order int8 of an int16.

Parameters

Name Type Description

x int16 int16 for which you want to determine the
high int8.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-124 ni.com

HiNibble
Macro

uInt8 HiNibble(x);

Purpose
Returns the value stored in the high four bits of an uInt8.

Parameters

Name Type Description

x uInt8 uInt8 whose high four bits you want to
extract.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-125 Using External Code in LabVIEW

IsAlpha
Bool32 IsAlpha(c);

Purpose
Returns TRUE if the character c is a lowercase or uppercase letter, that is, in the set a to z or
A to Z. In SPARCstation, this function also returns TRUE for international characters, such as
à, á, Ä, and so on.

Parameters

Return Value
Bool32, which can contain the following values:
TRUE The character is alphabetic.
FALSE Otherwise.

Name Type Description

c uChar Character you want to analyze.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-126 ni.com

IsDigit
Bool32 IsDigit(c);

Purpose
Returns TRUE if the character c is between 0 and 9.

Parameters

Return Value
Bool32, which can contain the following values:
TRUE Character is a numerical digit.
FALSE Otherwise.

Name Type Description

c uChar Character you want to analyze.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-127 Using External Code in LabVIEW

IsLower
Bool32 IsLower(c);

Purpose
Returns TRUE if the character c is a lowercase letter, that is, in the set a to z. In SPARCstation,
this function also returns TRUE for lowercase international characters, such as ó, ö, and so on.

Parameters

Return Value
Bool32, which can contain the following values:
TRUE Character is a lowercase letter.
FALSE Otherwise.

Name Type Description

c uChar Character you want to analyze.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-128 ni.com

IsUpper
Bool32 IsUpper(c);

Purpose
Returns TRUE if the character c is between an uppercase letter, that is, in the set A to Z. In
SPARCstation, this function also returns TRUE for uppercase international characters, such as
Ó, Ä, and so on.

Parameters

Return Value
Bool32, which can contain the following values:
TRUE Character is an uppercase letter.
FALSE Otherwise.

Name Type Description

c uChar Character you want to analyze.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-129 Using External Code in LabVIEW

Lo16
Macro

int16 Lo16(x);

Purpose
Returns the low order int16 of an int32.

Parameters

Name Type Description

x int32 int32 for which you want to determine the
low int16.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-130 ni.com

LoByte
Macro

int8 LoByte(x);

Purpose
Returns the low order int8 of an int16.

Parameters

Name Type Description

x int16 int16 for which you want to determine the
low int8.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-131 Using External Code in LabVIEW

Long
Macro

int32 Long(hi, lo);

Purpose
Creates an int32 from two int16 parameters.

Parameters

Return Value
The resulting int32.

Name Type Description

hi int16 High int16 for the resulting int32.

lo int16 Low int16 for the resulting int32.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-132 ni.com

LoNibble
Macro

uInt8 LoNibble(x);

Purpose
Returns the value stored in the low four bits of an uInt8.

Parameters

Name Type Description

x uInt8 uInt8 whose low four bits you want to
extract.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-133 Using External Code in LabVIEW

LStrBuf
Macro

uChar *LStrBuf(s);

Purpose
Returns the address of the string data of a long Pascal string, that is, the address of s->str.

Parameters

Return Value
The address of the string data of the long Pascal string.

Name Type Description

s LStrPtr Pointer to a long Pascal string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-134 ni.com

LStrCmp
LStrPtr LStrCmp(l1p, l2p);

Purpose
Lexically compares two long Pascal strings to determine whether one is less than, equal to, or
greater than the other. This comparison is case sensitive.

Parameters

Return Value
<0, 0, or >0 if l1p is less than, equal to, or greater than l2p, respectively. Returns <0 if l1p is
an initial substring of l2p.

Name Type Description

l1p LStrPtr Pointer to a long Pascal string.

l2p LStrPtr Pointer to a long Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-135 Using External Code in LabVIEW

LStrLen
Macro

int32 LStrLen(s);

Purpose
Returns the length of a long Pascal string, that is, s->cnt.

Parameters

Return Value
The number of characters in the long Pascal string.

Name Type Description

s LStrPtr Pointer to a long Pascal string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-136 ni.com

LToPStr
int32 LToPStr(lstrp, pstr);

Purpose
Converts a long Pascal string to a Pascal string. If the long Pascal string is more than
255 characters, this function converts only the first 255 characters. The function works even
if the pointers lstrp and pstr refer to the same memory location. The function assumes pstr
is large enough to contain lstrp.

Parameters

Return Value
The length of the string, truncated to a maximum of 255 characters.

Name Type Description

lstrp LStrPtr Pointer to a long Pascal string.

pstr PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-137 Using External Code in LabVIEW

Max
int32 Max(n,m);

Purpose
Returns the maximum of two int32 parameters.

Parameters

Name Type Description

n, m int32 int32 parameters whose maximum value
you want to determine.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-138 ni.com

MilliSecs
uint32 MilliSecs();

Return Value
The time in milliseconds since an undefined system time. The actual resolution of this timer
is system dependent.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-139 Using External Code in LabVIEW

Min
int32 Min(n,m);

Purpose
Returns the minimum of two int32 parameters.

Parameters

Name Type Description

n, m int32 int32 parameters whose minimum value
you want to determine.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-140 ni.com

MoveBlock
void MoveBlock(ps, pd, size);

Purpose
Moves size bytes from one address to another. The source and destination memory blocks can
overlap.

Parameters

Name Type Description

ps UPtr Pointer to source.

pd UPtr Pointer to destination.

size int32 Number of bytes you want to move.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-141 Using External Code in LabVIEW

NumericArrayResize
MgErr NumericArrayResize (int32 typeCode, int32 numDims, Uhandle *dataHP,

int32 totalNewSize)

Purpose
Resizes a data handle that refers to a numeric array. This routine also accounts for alignment
issues. It does not set the array dimension field. If *dataHP is NULL, LabVIEW allocates a
new array handle in *dataHP.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
MFullErr Not enough memory to perform the operation.
mZoneErr Handle or pointer not in specified zone.

Possible Values for this Type Code Input

Name Type Description

typeCode int32 Data type for the array you want to resize.

numDims int32 Number of dimensions in the data structure
to which the handle refers.

*dataHP UHandle Pointer to the handle you want to resize.

totalNewSize int32 New number of elements to which the handle
should refer.

Data Type Type Code (numbers in hexadecimal)

8-bit integer 01 or iB

16-bit integer 02 or iW

32-bit integer 03 or iL

8-bit unsigned integer 05 or uB

16-bit unsigned integer 06 or uW

32-bit unsigned integer 07 or uL

Single-precision, floating-point number 09 or fs

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-142 ni.com

Double-precision, floating-point number 0A or fD

Extended-precision, floating-point number 0B or fX

Complex single-precision, floating-point
number

0C or cS

Complex double-precision, floating-point
number

0D or cD

Complex extended-precision,
floating-point number

0E or cX

Data Type Type Code (numbers in hexadecimal)

Chapter 6 Function Descriptions

© National Instruments Corporation 6-143 Using External Code in LabVIEW

Occur
MgErr Occur(Ocurrence o);

Purpose
Triggers the specified occurrence. All block diagrams that are waiting for this occurrence stop
waiting.

Parameters

Return Value
MgErr, which can contain the following error:
noErr No error.
mgArgErr Not a valid user event.

Name Type Description

o Occurrence Occurrence refnum you want to trigger.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-144 ni.com

Offset
Macro

int16 Offset(type, field);

Purpose
Returns the offset of the specified field within the structure called type.

Parameters

Return Value
An offset as an int16.

Name Type Description

type — Structure that contains field.

field — Field whose offset you want to determine.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-145 Using External Code in LabVIEW

Pin
int32 Pin(i, low, high);

Purpose
Returns i coerced to fall within the range from low to high inclusive.

Parameters

Return Value
i coerced to the specified range.

Name Type Description

i int32 Value you want to coerce to the specified
range.

low int32 Low value of the range to which you want to
coerce i.

high int32 High value of the range to which you want to
coerce i.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-146 ni.com

PostLVUserEvent
MgErr PostLVUserEvent(LVUserEventRef ref, void *data);

Purpose
Posts the given user event. The event and associated data are queued for all event structures
registered for the event.

Parameters

Return Value
MgErr, which can contain the following error:
noErr No error.
mgArgErr Not a valid user event.

Name Type Description

ref LVUserEventRef Event refnum for the event for which you
want to post data.

data void* Address of the data to post. The data must
match the type used to create the user event.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-147 Using External Code in LabVIEW

PPStrCaseCmp
int32 PPStrCaseCmp(s1p, s2p);

Purpose
Lexically compares two Pascal strings and determines whether one is less than, equal to, or
greater than the other. This comparison ignores differences in case. This function is similar to
PStrCaseCmp, except you pass the function handles to the string data instead of pointers.

Parameters

Return Value
<0, 0, or >0 if s1p is less than, equal to, or greater than s2p, respectively. Returns <0 if s1p is
an initial substring of s2p.

Name Type Description

s1p PStr * Pointer to a Pascal string.

s2p PStr * Pointer to a Pascal string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-148 ni.com

PPStrCmp
int32 PPStrCmp(s1p, s2p);

Purpose
Lexically compares two Pascal strings and determines whether one is less than, equal to, or
greater than the other. This comparison is case sensitive. This function is similar to PStrCmp,
except you pass the function handles to the string data instead of pointers.

Parameters

Return Value
<0, 0, or >0 if s1p is less than, equal to, or greater than s2p, respectively. Returns <0 if s1p is
an initial substring of s2p.

Name Type Description

s1p PStr * Pointer to a Pascal string.

s2p PStr * Pointer to a Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-149 Using External Code in LabVIEW

Printf
SPrintf, SPrintfp, PPrintf, PPrintfp, FPrintf, LStrPrintf

int32 SPrintf(CStr destCSt, CStr cfmt, ...);
int32 SPrintfp(CStr destCSt, PStr pfmt, ...);
int32 PPrintf(PStr destPSt, CStr cfmt, ...);
int32 PPrintfp(PStr destPSt, PStr pfmt, ...);
int32 FPrintf(File destFile, CStr cfmt, ...);
MgErr LStrPrintf(LStrHandle destLsh, CStr cfmt,...);

Purpose
These functions format data into an ASCII format to a specified destination. A format string
describes the desired conversions. These functions take a variable number of arguments. Each
argument follows the format string paired with a conversion specification embedded in the
format string. The second parameter, cfmt or pfmt, must be cast appropriately to either type
CStr or PStr.

SPrintf and SPrintfp
SPrintf prints to a C string, just like the C library function sprintf. sprintf returns the
actual character count and appends a NULL byte to the end of the destination C string.

SPrintfp is the same as SPrintf, except the format string is a Pascal string instead of
a C string. As with SPrintf, SPrintfp appends a NULL byte to the end of the destination
C string.

If you pass NULL for destCStr, SPrintf and SPrintfp do not write data to memory.
SPrintf and SPrintfp return the number of characters required to contain the resulting
data, not including the terminating NULL character.

PPrintf and PPrintfp
PPrintf prints to a Pascal string with a maximum of 255 characters. PPrintf sets the length
byte of the Pascal string to reflect the size of the resulting string. PPrintf does not append a
NULL byte to the end of the string.

PPrintfp is the same as PPrintf, except the format string is a Pascal string instead of a
C string. As with PPrintf, PPrintfp sets the length byte of the Pascal string to reflect the
size of the resulting string.

FPrintf
FPrintf prints to a file specified by the refnum in fd. FPrintf does not embed a length
count or a terminating NULL character in the data written to the file.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-150 ni.com

LStrPrintf
LStrPrintf prints to a LabVIEW string specified by destLsh. Because the string is a handle
that might be resized, LStrPrintf can return memory errors just as DSSetHandleSize
does.

Special Chracters
These functions accept the following special characters:
\b Backspace
\f Form feed
\n New line, which inserts the system-dependent end-of-line char(s);

for example, CR on Mac OS, NL on UNIX, CRNL on DOS)
\r Carriage return
\s Space
\t Tab
%% Percentage character (to print %)

Formats
These functions accept the following formats:
%[-] Left-justifies what is printed; if not specified, the data is

right-justified.
[field size] Indicates the minimum width of the field to print into. If not

specified, the default is 0. If less than the specified number of
characters are in the data to print, the function pads with spaces on
the left if you specified -. Otherwise, the function pads on the
right.

[.precision] Sets the precision for floating-point numbers, that is, the number
of characters after the decimal place. For strings, this specifies the
maximum number of characters to print.

[argument size] Indicates the data size for an argument. It applies only to the d, o,
u, and x conversion specifiers. By default, the conversion for one
of the specifiers is from a 16-bit integer. The flag l causes this
conversion to convert the data so the function assumes the data is
a 32-bit integer value.

[conversion] You can precede any of the numeric conversion characters (x, o,
d, u, b, e, f) by {cc} to indicate that the number is passed by
reference. cc can be iB, iW,..., cX, depending on the
corresponding numeric type. If cc is an asterisk (*), the numeric
type (iB through cX) is an int16 in the argument list.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-151 Using External Code in LabVIEW

Conversion Specifiers
These functions use the conversion specifiers listed and described in Table 6-1.

Table 6-1. Conversion Specifiers and Descriptions

Conversion
Specifier Description

b Binary integer

c Character

d Decimal integer

e, E Single-precision, floating-point number in scientific notation

f Single-precision, floating-point number

F Double-precision, floating-point number

g, G Double-precision floating-point number in scientific notation

H String handle (LStrHandle)

o Octal integer

p Pascal string (PStr)

P Long Pascal string (LStrPtr)

q Point (passed by value) as %d,%d representing horizontal,
vertical coordinates

Q Point (passed by value) as hv(%d,%d) representing horizontal,
vertical coordinates

r Rectangle (passed by reference) as %d,%d,%d,%d representing top,
left, bottom, right coordinates

R Rectangle (passed by reference) as tlbr(%d,%d,%d,%d)
representing top, left, bottom, right coordinates

s C String (null-terminated)

u Unsigned decimal integer

x Hex integer

z Path

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-152 ni.com

PStrBuf
Macro

uChar *PStrBuf(s);

Purpose
Returns the address of the string data of a Pascal string, that is, the address following the
length byte.

Parameters

Name Type Description

s PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-153 Using External Code in LabVIEW

PStrCaseCmp
int32 PStrCaseCmp(s1, s2);

Purpose
Lexically compares two Pascal strings to determine whether one is less than, equal to, or
greater than the other. This comparison ignores differences in case.

Parameters

Return Value
<0, 0, or >0 if s1 is less than, equal to, or greater than s2, respectively. Returns <0 if s1 is an
initial substring of s2.

Name Type Description

s1 PStr Pointer to a Pascal string.

s2 PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-154 ni.com

PStrCat
int32 PStrCat(s1, s2);

Purpose
Concatenates a Pascal string, s2, to the end of another Pascal string, s1, and returns the result
in s1. This function assumes s1 is large enough to contain the resulting string. If the resulting
string is larger than 255 characters, the function limits the resulting string to 255 characters.

Parameters

Return Value
The length of the resulting string.

Name Type Description

s1 PStr Pointer to a Pascal string.

s2 PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-155 Using External Code in LabVIEW

PStrCmp
int32 PStrCmp(s1, s2);

Purpose
Lexically compares two Pascal strings to determine whether one is less than, equal to, or
greater than the other. This comparison is case sensitive.

Parameters

Return Value
<0, 0, or >0 if s1 is less than, equal to, or greater than s2, respectively. Returns <0 if s1 is an
initial substring of s2.

Name Type Description

s1 PStr Pointer to a Pascal string.

s2 PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-156 ni.com

PStrCpy
PStr PStrCpy(dst, src);

Purpose
Copies the Pascal string src to the Pascal string dst. This function assumes dst is large enough
to contain src.

Parameters

Return Value
A copy of the destination Pascal string pointer.

Name Type Description

dst PStr Pointer to a Pascal string.

src PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-157 Using External Code in LabVIEW

PStrLen
Macro

uInt8 PStrLen(s);

Purpose
Returns the length of a Pascal string, that is, the value at the first byte at the specified address.

Parameters

Name Type Description

s PStr Pointer to a Pascal string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-158 ni.com

PStrNCpy
PStr PStrNCpy(dst, src, n);

Purpose
Copies the Pascal string src to the Pascal string dst. If the source string is greater than n, this
function copies only n bytes. The function assumes dst is large enough to contain src.

Parameters

Return Value
A copy of the destination Pascal string pointer.

Name Type Description

dst PStr Pointer to a Pascal string.

src PStr Pointer to a Pascal string.

n int32 Maximum number of bytes you want to copy,
including the length byte.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-159 Using External Code in LabVIEW

PToCStr
int32 PToCStr(pstr, cstr);

Purpose
Converts a Pascal string to a C string. This function works even if the pointers pstr and cstr
refer to the same memory location. The function assumes cstr is large enough to contain pstr.

Parameters

Return Value
The length of the string.

Name Type Description

pstr PStr Pointer to a Pascal string.

cstr CStr Pointer to a C string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-160 ni.com

PToLStr
int32 PToLStr(pstr, lstrp);

Purpose
Converts a Pascal string to a long Pascal string. This function works even if the pointers pstr
and lstrp refer to the same memory location. The function assumes lstrp is large enough to
contain pstr.

Parameters

Return Value
The length of the string.

Name Type Description

pstr PStr Pointer to a Pascal string.

lstrp LStrPtr Pointer to a long Pascal string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-161 Using External Code in LabVIEW

QSort
void QSort(arrayp, n, elmtSize, compareProcP());

Purpose
Sorts an array of an arbitrary data type using the QuickSort algorithm. In addition to passing
the array you want to sort to this routine, you also pass a comparison procedure that this sort
routine then uses to compare elements in the array.

The comparison routine should return a number less than zero if a is less than b, zero if a is
equal to b, and a number greater than zero if a is greater than b.

You should declare the comparison routine to have the following parameters and return type:

int32 compareProcP(UPtr a, UPtr b);

Parameters

Name Type Description

arrayp UPtr Pointer to an array of data.

n int32 Number of elements in the array you want to
sort.

elmtSize int32 Size in bytes of an array element.

compareProcP CompareProcPtr Comparison routine you want QSort to use
to compare array elements. QSort passes
this routine the addresses of two elements
that it needs to compare.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-162 ni.com

RandomGen
void RandomGen(xp);

Purpose
Generates a random number between 0 and 1 and stores it at xp.

Parameters

Name Type Description

xp float64 * Location to store the resulting
double-precision floating-point random
number. Refer to the Pointers as Parameters
section of Chapter 3, CINs, for more
information about using this parameter.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-163 Using External Code in LabVIEW

SecsToDate
void SecsToDate(secs, dateRecordP);

Purpose
Converts the seconds since January 1, 1904, 12:00 a.m., UT into a data structure containing
numerical information about the date, including the year (1904 through 2040), the month
(1 through 12), the day of the year (1 through 366), the day of the month (1 through 31), the
day of the week (1 through 7), the hour (0 through 23), the minute (0 through 59), and the
second (0 through 59), and a value indicating whether the time specified uses daylight savings
time.

Parameters

Name Type Description

secs uInt32 Seconds since January 1, 1904, 12:00 a.m.,
UT.

dateRecordP DateRec * Pointer to a DateRec structure.
SecsToDate stores the converted date in
the fields of the date structure referred to by
dateRecordP. Refer to the Pointers as
Parameters section of Chapter 3, CINs, for
more information about using this parameter.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-164 ni.com

SetALong
Macro

void SetALong(p,x);

Purpose
Stores an int32 at the address specified by a void pointer. In SPARCstation, this function can
retrieve an int32 at any address, even if it is not long word aligned.

Parameters

Name Type Description

p void * Address at which you want to store an
int32. Refer to the Pointers as Parameters
section of Chapter 3, CINs, for more
information about using this parameter.

x int32 Value you want to store at the specified
address.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-165 Using External Code in LabVIEW

SetCINArraySize
MgErr SetCINArraySize (Uhandle dataH, int32 paramNum, int32 newNumElmts)

Purpose
Resizes a data handle based on the data structure of an argument that you pass to the CIN.
This function does not set the array dimension field.

Parameters

Return Value
MgErr, which can contain the following errors:
noErr No error.
MFullErr Not enough memory to perform the operation.
mZoneErr Handle or pointer not in specified zone.

Name Type Description

dataH UHandle Handle you want to resize.

paramNum int32 Number for this parameter in the argument
list to the CIN.

newNumElmts int32 New number of elements to which the handle
refers.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-166 ni.com

StrCat
int32 StrCat(s1, s2);

Purpose
Concatenates a C string, s2, to the end of another C string, s1, returning the result in s1.
This function assumes s1 is large enough to contain the resulting string.

Parameters

Return Value
The length of the resulting string.

Name Type Description

s1 CStr Pointer to a C string.

s2 CStr Pointer to a C string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-167 Using External Code in LabVIEW

StrCmp
int32 StrCmp(s1, s2);

Purpose
Lexically compares two strings to determine whether one is less than, equal to, or greater than
the other.

Parameters

Return Value
<0, 0, or >0 if s1 is less than, equal to, or greater than s2, respectively. Returns <0 if s1 is an
initial substring of s2.

Name Type Description

s1 CStr Pointer to a C string.

s2 CStr Pointer to a C string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-168 ni.com

StrCpy
CStr StrCpy(dst, src);

Purpose
Copies the C string src to the C string dst. This function assumes dst is large enough to
contain src.

Parameters

Return Value
A copy of the destination C string pointer.

Name Type Description

dst CStr Pointer to a C string.

src CStr Pointer to a C string.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-169 Using External Code in LabVIEW

StrLen
int32 StrLen(s);

Purpose
Returns the length of a C string.

Parameters

Return Value
The number of characters in the C string, not including the NULL terminating character.

Name Type Description

s CStr Pointer to a C string.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-170 ni.com

StrNCaseCmp
int32 StrNCaseCmp(s1, s2, n);

Purpose
Lexically compares two strings to determine whether one is less than, equal to, or greater than
the other, limiting the comparison to n characters. This comparison ignores differences in
case.

Parameters

Return Value
<0, 0, or >0 if s1 is less than, equal to, or greater than s2, respectively. Returns <0 if s1 is an
initial substring of s2.

Name Type Description

s1 CStr Pointer to a C string.

s2 CStr Pointer to a C string.

n uInt32 Maximum number of characters you want to
compare.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-171 Using External Code in LabVIEW

StrNCmp
int32 StrNCmp(s1, s2, n);

Purpose
Lexically compares two strings to determine whether one is less than, equal to, or greater than
the other, limiting the comparison to n characters.

Parameters

Return Value
<0, 0, or >0 if s1 is less than, equal to, or greater than s2, respectively. Returns <0 if s1 is an
initial substring of s2.

Name Type Description

s1 CStr Pointer to a C string.

s2 CStr Pointer to a C string.

n uInt32 Maximum number of characters you want to
compare.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-172 ni.com

StrNCpy
CStr StrNCpy(dst, src, n);

Purpose
Copies the C string src to the C string dst. If the source string is less than n characters,
the function pads the destination with NULL characters. If the source string is greater than n,
only n characters are copied. This function assumes dst is large enough to contain src.

Parameters

Return Value
A copy of the destination C string pointer.

Name Type Description

dst CStr Pointer to a C string.

src CStr Pointer to a C string.

n int32 Maximum number of characters you want to
copy.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-173 Using External Code in LabVIEW

SwapBlock
void SwapBlock(ps, pd, size);

Purpose
Swaps size bytes between the section of memory referred to by ps and pd. The source and
destination memory blocks should not overlap.

Parameters

Name Type Description

ps UPtr Pointer to source.

pd UPtr Pointer to destination.

size int32 Number of bytes you want to move.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-174 ni.com

TimeCString
CStr TimeCString(secs, fmt);

Purpose
Returns a pointer to a string representing the time of day corresponding to t seconds after
January 1, 1904, 12:00 a.m., UT. In SPARCstation, this function accounts for international
conventions for representing dates.

Note This function was formerly called TimeString.

Parameters

Return Value
The time as a C string.

Name Type Description

secs uInt32 Seconds since January 1, 1904, 12:00 a.m.,
UT.

fmt int32 Indicates the format of the returned time
string, using the following values:

• 0—hh:mm format, where hh is the
hour (0 through 23, with 0 as
midnight), and the mm is the minute
(0 through 59).

• 1—hh:mm:ss format, where hh
is the hour, mm is the minute
(0 through 59), and ss is the second
(0 through 59).

Chapter 6 Function Descriptions

© National Instruments Corporation 6-175 Using External Code in LabVIEW

TimeInSecs
uint32 TimeInSecs();

Return Value
The current date and time in seconds relative to January 1, 1904, 12:00 a.m., UT.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-176 ni.com

ToLower
uChar ToLower(c);

Purpose
Returns the lowercase value of c if c is an uppercase alphabetic character. Otherwise, this
function returns c unmodified. In SPARCstation, this function also works for international
characters (Ä to ä, and so on).

Parameters

Return Value
The lowercase value of c.

Name Type Description

c int32 Character you want to analyze.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-177 Using External Code in LabVIEW

ToUpper
uChar ToUpper(c);

Purpose
Returns the uppercase value of c if c is a lowercase alphabetic character. Otherwise, this
function returns c unmodified. In SPARCstation, this function also works for international
characters (ä to Ä, and so on).

Parameters

Return Value
The uppercase value of c.

Name Type Description

c int32 Character you want to analyze.

Chapter 6 Function Descriptions

Using External Code in LabVIEW 6-178 ni.com

Unused
Macro

void Unused(x)

Purpose
Indicates that a function parameter or local variable is not used by that function. This is useful
for suppressing compiler warnings for many compilers. This macro does not use a semicolon.

Parameters

Name Type Description

x — Unused parameter or local variable.

Chapter 6 Function Descriptions

© National Instruments Corporation 6-179 Using External Code in LabVIEW

Word
Macro

int16 Word(hi, lo);

Purpose
Creates an int16 from two int8 parameters.

Parameters

Return Value
The resulting int16.

Name Type Description

hi int8 High int8 for the resulting int16.

lo int8 Low int8 for the resulting int16.

© National Instruments Corporation A-1 Using External Code in LabVIEW

A
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources include the following:

– Self-Help Resources—For immediate answers and solutions,
visit our extensive library of technical support resources available
in English, Japanese, and Spanish at ni.com/support. These
resources are available for most products at no cost to registered
users and include software drivers and updates, a KnowledgeBase,
product manuals, step-by-step troubleshooting wizards,
conformity documentation, example code, tutorials and
application notes, instrument drivers, discussion forums,
a measurement glossary, and so on.

– Assisted Support Options—Contact NI engineers and other
measurement and automation professionals by visiting
ni.com/support. Our online system helps you define your
question and connects you to the experts by phone, discussion
forum, or email.

• Training—Visit ni.com/custed for self-paced tutorials, videos, and
interactive CDs. You also can register for instructor-led, hands-on
courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation G-1 Using External Code in LabVIEW

Glossary

A

ANSI American National Standards Institute.

application zone See AZ (application zone).

asynchronous
execution

Mode in which multiple processes share processor time, one executing
while the others, for example, wait for interrupts, as while performing
device I/O or waiting for a clock tick.

AZ (application zone) Memory allocation section that holds all data in a VI except execution
data.

B

Bundle node Function that creates clusters from various types of elements.

C

C string (CStr) A series of zero or more unsigned characters, terminated by a zero,
used in the C programming language.

CIN source code Original, uncompiled text code. See also object code;
Code Interface Node.

Code Interface Node Special block diagram node through which you can link conventional,
text-based code to a VI.

code resource Resource containing executable machine code. You link code
resources to LabVIEW through a CIN.

concatenated Pascal string
(CPStr)

A list of Pascal-type strings concatenated into a single block of
memory.

CPStr See concatenated Pascal string (CPStr).

Glossary

Using External Code in LabVIEW G-2 ni.com

D

data type descriptor Code that identifies data types, used in data storage and representation.

diagram window VI window containing the VI’s block diagram code.

dimension Size and structure attribute of an array.

E

executable A stand-alone piece of code that will run, or execute.

I

icon pane Region in the upper right-hand corner of the front panel and block
diagram windows that displays the VI icon.

IDE Integrated development environment for developing computer
applications, for example, Visual Basic, Visual C++, and LabVIEW.

inplace When the input and output data of an operation use the same memory
space.

L

LabVIEW string The string data type (LStr) that LabVIEW block diagrams use.

M

MB Megabytes of memory.

MPW Macintosh Programmer’s Workshop.

MSB Most significant bit.

O

object code Compiled version of source code. Object code is not standalone
because you must load it into LabVIEW to run it.

Glossary

© National Instruments Corporation G-3 Using External Code in LabVIEW

P

Pascal string (PStr) A series of unsigned characters, with the value of the first character
indicating the length of the string. Used in the Pascal programming
language.

portable Able to compile on any platform that supports LabVIEW.

private data structures Data structures whose exact format is not described; usually subject to
change.

R

RAM Random Access Memory.

reentrant execution Mode in which calls to multiple instances of a subVI can execute in
parallel with distinct and separate data storage.

relocatable Able to be moved by the memory manager to a new memory location.

S

sink terminal Terminal that absorbs data. Also called a destination terminal.

shortcut menu Menu that you access by right-clicking an object. Menu items pertain
to that object specifically.

source code Original, uncompiled text code.

source terminal Terminal that emits data.

T

type descriptor See data type descriptor.

U

UT Universal Time.

	Using External Code in LabVIEW
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Introduction
	Calling Code in Various Platforms
	Characteristics of the Two Calling Approaches
	Details of the Call Library Function Node
	Details of a CIN

	Using the Flatten To String Function

	Chapter 2 Shared Libraries (DLLs)
	Configuring the Call Library Function Node
	Figure 2-1. Call Library Function Dialog Box
	Configuring for Multiple Thread Operation
	Setting the Calling Convention
	Configuring Parameters
	Figure 2-2. Call Library Function Node with Return Value of Void and Two Parameters
	Configuring Return Type
	Adding and Deleting Parameters
	Editing Parameters
	Selecting the Parameter Type

	Calling Functions That Expect Other Data Types

	Building a Shared Library (DLL)
	Task 1: Build the Function Prototype in LabVIEW
	Task 2: Complete the .c File
	Required Libraries

	Task 3: Build a Library Project in an External IDE
	Microsoft Visual C++ 6.0 on 32-bit on Windows Platforms
	Figure 2-3. Creating a Project in Visual C++
	Figure 2-4. Setting the Use run-time library Control, Microsoft Visual C++
	Gnu C or C++ Compilers on Solaris or Linux
	Metrowerks CodeWarrior on Mac OS
	Project Builder on Mac OS X

	Calling External APIs
	Common Pitfalls with the Call Library Function Node
	Incorrect Function Name
	Data Types
	Constants
	Calling Conventions

	Example 1: Call a Shared Library that You Built
	Complete Configuration of the Call Library Function Node
	Build the Front Panel
	Figure 2-5. Array Average VI Front Panel
	Complete the Block Diagram
	Figure 2-6. Array Average VI Block Diagram
	Run the VI

	Example 2: Call a Hardware Driver API
	Configure the Call Library Function Node
	Figure 2-7. Read Data VI Front Panel and Block Diagram

	Example 3: Call the Win32 API
	Table 2-1. Mapping Win32 Data Types to Standard C Data Types
	Table 2-2. Mapping Win32 Data Types to LabVIEW Data Types
	Constants
	Table 2-3. Selected Constants for MessageBox
	Figure 2-8. Combining Function Constants in LabVIEW
	Determining the Proper Library and Function Name
	Unicode Versions and ANSI Versions of Functions
	Configuring a Call to the Win32 API
	Figure 2-9. Configuring the Call Library Function Node to Call the Win32 API
	Figure 2-10. Block Diagram for a Call to the Win32 API
	Figure 2-11. Running a LabVIEW Call to the Win32 API

	Additional Windows Examples of LabVIEW Calls to DLLs
	Debugging DLLs and Calls to DLLs
	Troubleshooting the Call Library Function Node
	Troubleshooting your DLL
	Troubleshooting Checklist

	Module Definition Files
	Array and String Options
	Arrays of Numeric Data
	Table 2-4. Compilers and the LabVIEW Library File Used with Each Compiler

	String Data
	Figure 2-12. LabVIEW String Format
	Figure 2-13. Pascal String Format
	Figure 2-14. C String Format

	Array and String Tip

	Chapter 3 CINs
	Supported Languages
	Mac OS X
	Mac OS Classic
	Microsoft Windows
	Solaris and Linux

	Resolving Multithreading Issues
	Making LabVIEW Recognize a CIN as Thread Safe
	Using C Code that is Thread Safe

	Creating a CIN
	Step 1. Set Up Input and Output Terminals for the CIN
	Figure 3-1. Resizing a CIN
	Input-Output Terminals
	Figure 3-2. CIN with a Control and Indicator Wired to the Terminal Pair
	Figure 3-3. CIN with Only a Control Wired to the Terminal Pair
	Output-Only Terminals
	Figure 3-4. CIN with an Output-Only Terminal Pair

	Step 2. Wire the Inputs and Outputs to the CIN
	Step 3. Create a .c File
	Figure 3-5. CIN with 32-bit Signed Integer Input and 32-Bit Signed Integer Output

	Step 4. Compile the CIN Source Code
	Mac OS X
	Mac OS Classic
	Microsoft Windows
	Solaris 2.x
	Linux
	gcc Compiler

	Step 5. Load the CIN Object Code

	LabVIEW Manager Routines
	Pointers as Parameters

	Debugging External Code
	DbgPrintf
	Windows
	UNIX

	Chapter 4 Programming Issues for CINs
	Passing Parameters
	Parameters in the CIN .c File

	Passing Fixed-Size Data to CINs
	Scalar Numerics
	Scalar Booleans
	Refnums
	Clusters of Scalars
	Return Value for CIN Routines
	Examples with Scalars

	Passing Variably-Sized Data to CINs
	Alignment Considerations
	Arrays and Strings
	Paths
	Clusters Containing Variably-Sized Data
	Resizing Arrays and Strings
	Examples with Variably Sized Data

	Manager Overview
	Data Types
	Scalar
	Table 4-1. Boolean Scalars
	Table 4-2. Floating-Point Data Types Supported by LabVIEW
	Table 4-3. Storage Format for Extended-Precision Numbers on Various Platforms
	Table 4-4. Code for Complex Numbers

	char
	Dynamic
	Memory-Related
	Constants

	Memory Manager
	Memory Allocation
	Memory Zones

	File Manager
	Identifying Files and Directories
	Path Specifications
	File Descriptors
	File Refnums

	Support Manager
	Table 4-5. String Types and Their Descriptions

	Chapter 5 Advanced Applications
	CIN Routines
	Data Spaces and Code Resources
	Figure 5-1. Data Storage Spaces for One CIN

	One Reference to the CIN in a Single VI
	Loading a VI
	Unloading a VI
	Loading a New Resource into the CIN
	Compiling a VI
	Running a VI
	Saving a VI
	Aborting a VI

	Multiple References to the Same CIN in a Single VI
	Figure 5-2. Three CINs Referencing the Same Code Resource

	Multiple References to the Same CIN in Different VIs
	Single-Threaded Operating Systems
	Figure 5-3. Three VIs Referencing a Reentrant VI Containing One CIN

	Multithreaded Operating Systems

	Code Globals and CIN Data Space Globals
	Code Globals and CIN Data Space Globals Examples
	Figure 5-4. Averaging CIN
	Using Code Globals
	Using CIN Data Space Globals

	Chapter 6 Function Descriptions
	Memory Manager Functions
	File Manager Functions
	Permissions for Files and Directories
	Figure 6-1. Permission Bits in UNIX

	File Manager Functions and Operations

	Support Manager Functions
	Mathematical Operations

	Individual Function Descriptions
	Abs
	ASCIITime
	AZCheckHandle/DSCheckHandle
	AZCheckPtr/DSCheckPtr
	AZCopyHandle/DSCopyHandle
	AZDisposeHandle/DSDisposeHandle
	AZDisposePtr/DSDisposePtr
	AZGetHandleSize/DSGetHandleSize
	AZHeapCheck/DSHeapCheck
	AZHLock
	AZHNoPurge
	AZHPurge
	AZHUnlock
	AZMaxMem/DSMaxMem
	AZMemStats/DSMemStats
	AZNewHandle/DSNewHandle
	AZNewHClr/DSNewHClr
	AZNewPClr/DSNewPClr
	AZNewPtr/DSNewPtr
	AZRecoverHandle/DSRecoverHandle
	AZSetHandleSize/DSSetHandleSize
	AZSetHSzClr/DSSetHSzClr
	BinSearch
	BlockCmp
	Cat4Chrs
	ClearMem
	CPStrBuf
	CPStrCmp
	CPStrIndex
	CPStrInsert
	CPStrLen
	CPStrRemove
	CPStrReplace
	CPStrSize
	CToPStr
	DateCString
	DateToSecs
	FAddPath
	FAppendName
	FAppPath
	FArrToPath
	FCopy
	FCreate
	FCreateAlways
	FDepth
	FDestroyPath
	FDirName
	FDisposeRefNum
	FEmptyPath
	FExists
	FFlattenPath
	FFlush
	FGetAccessRights
	FGetDefGroup
	FGetEOF
	FGetInfo
	FGetPathType
	FGetVolInfo
	FileNameCmp
	FileNameIndCmp
	FileNameNCmp
	FIsAPath
	FIsAPathOfType
	FIsAPathOrNotAPath
	FIsARefNum
	FIsEmptyPath
	FListDir
	FLockOrUnlockRange
	FMakePath
	FMClose
	FMOpen
	FMove
	FMRead
	FMSeek
	FMTell
	FMWrite
	FName
	FNamePtr
	FNewDir
	FNewRefNum
	FNotAPath
	FPathCmp
	FPathCpy
	FPathToArr
	FPathToAZString
	FPathToDSString
	FPathToPath
	FRefNumToFD
	FRefNumToPath
	FRelPath
	FRemove
	FSetAccessRights
	FSetEOF
	FSetInfo
	FSetPathType
	FStrFitsPat
	FStringToPath
	FTextToPath
	FUnFlattenPath
	FVolName
	GetALong
	HexChar
	Hi16
	HiByte
	HiNibble
	IsAlpha
	IsDigit
	IsLower
	IsUpper
	Lo16
	LoByte
	Long
	LoNibble
	LStrBuf
	LStrCmp
	LStrLen
	LToPStr
	Max
	MilliSecs
	Min
	MoveBlock
	NumericArrayResize
	Occur
	Offset
	Pin
	PostLVUserEvent
	PPStrCaseCmp
	PPStrCmp
	Printf
	Table 6-1. Conversion Specifiers and Descriptions

	PStrBuf
	PStrCaseCmp
	PStrCat
	PStrCmp
	PStrCpy
	PStrLen
	PStrNCpy
	PToCStr
	PToLStr
	QSort
	RandomGen
	SecsToDate
	SetALong
	SetCINArraySize
	StrCat
	StrCmp
	StrCpy
	StrLen
	StrNCaseCmp
	StrNCmp
	StrNCpy
	SwapBlock
	TimeCString
	TimeInSecs
	ToLower
	ToUpper
	Unused
	Word

	Appendix A Technical Support and Professional Services
	Glossary
	A-C
	D-O
	P-U

