MATRIXx

Xmath" User Guide

‘YNATIONAL April 2004 Edition
’ INSTRUMENTS' Part Number 3707528-01

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada (Calgary) 403 274 9391, Canada (Ottawa) 613 233 5949, Canada (Québec) 450 510 3055,

Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530, China 86 21 6555 7838,

Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 09 725 725 11,

France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427, India 91 80 51190000,
Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400,

Malaysia 603 9131 0918, Mexico 001 800 010 0793, Netherlands 31 0 348 433 466,

New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,
Russia 7 095 783 68 51, Singapore 65 6226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227,
Thailand 662 992 7519, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on the documentation, send email to techpubs@ni . com.

© 2000-2004 National Instruments Corporation. All rights reserved.

Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,

recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
MATRIXx"™, National Instruments™, NI"™, ni.com™, SystemBuild™, and Xmath™, are trademarks of National Instruments Corporation.

MATLAB® is the registered trademark of The MathWorks, Inc. Other product and company names mentioned herein are trademarks or trade
names of their respective companies.

Patents

For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents. txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Conventions

»

bold

italic

monospace

monospace bold

monospace italic

Platform

The following conventions are used in this manual:

The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

Contents

Chapter 1

Introduction
USIng This Manual........c..cocuiiiiiiinieiiiiienceteee ettt s e s 1-2
Document Organization.............covuereeruereerenienienienieneenieeeeneeeeeseeseesieeseesneas 1-2
Commonly Used NOMENCIAtUIEcoeevuereeriiniiiienieieniieieeeeeeee e 1-3
Related Publicationsc.ccoeoueienieiiiiiiiiinincneecceceeeeeee e 1-3
MATRIXX HEIP. .ottt 1-4
Environment Variablesccocoviriiiiiiiiiiiiiiii e 1-4
MTXHOMEoooiiiiiiiieiineeee ettt 1-4
KXMATH oottt 1-5
XMATH_STARTUP ...ttt 1-5
XMATH_PRINT ..ottt 1-5
PRINTER ..ottt 1-6
Starting and Stopping Xmath.........cccccoeriiriiniiiinineeeeeeee e 1-6
Starting Xmath......co.cecueeiiiiniiiireee e 1-6
Starting Xmath on UNIX SyStems.........ccocvevveveenenieneneeneneenennens 1-6
Starting Xmath on Windows SYStemSccccevereerueneenenienienneniene 1-8
Interrupting or Terminating Xmathccoceeeeviirieniiniininienceeneneneeeeee 1-9
EXiting XmMath c..cocooviiiiiiiiiiieiieteceeseetceete ettt e 1-10
Stopping and Restarting Xmath...........ccocevieneniiiiniiniencenneeneeeneeienene 1-11
LICOMSING ..ttt b ettt et et et st s saeas 1-11
Using Xmath WINAOWS......c..coiiiiiiiiiiriiiiicentee ettt 1-12
MOUSE CONVENLIONS ..ottt sttt 1-12
SCIOIIDAIScviiviiiiiiciiteecce ettt s 1-13
Resizing Xmath WindOWScc.cecveviiriininieniiienenieenteeeeeee e 1-13
IMIBIIUS ..ottt ettt et st e enea 1-13
MELA KEY ..ottt 1-14
Xmath Commands WINAOW...........cceviriiriiniiiiiiiiiiieseeeeeeeeeee e e 1-14
IMETIUS ...t e 1-15
LLOZ ATCA.c..eeiiiieieeiieietet ettt st et s 1-16
CommMANd ATEa......cc.evuiriiieieieieieeet ettt 1-17
Specifying Directory Pathnames and Filenamescc.cccccecveneee 1-17
Entering Multiple Lines of Information.........cc.cccccevereencnencnnennn. 1-18
Editing Text by Selecting, Copying, and Pastingcc.ccccceceenuenen. 1-19
Key Bindings Used in Editing TeXt......c.ccocceverienienvieneniencncenenen. 1-20
Changing the Key Bindings (on UNIX systems).......c..ccccevereenuennen. 1-22
Recalling Previous Commandsc.ccooereenenieiieneeniencnnencenennen. 1-22
MESSAZE ATCQ ..cueeiniiiieieeiteeteee sttt sttt ettt ettt sa e st 1-23
HEIP WINAOW ..cniiiiiiiiieieetc ettt ettt et 1-23

© National Instruments Corporation v Xmath User Guide

Contents

Chapter 2
JumpStart: A Tutorial

Starting Xmath for the Tutorialc..cccooiriiiiiiiiinieee e 2-2
Basic Data-Handlingcccovieriiiiiinienieteeeeseeeete ettt 2-2
Creating Variables...........coiviiriiiiiiiieniiceeeeece e 2-2
Using Command Recall.........cc.ccooieiiiiiininiiicceees 2-4
Sending Multiple Lines of Data at Oncecccceceeeeeveenceciencnnnens 2-4
Variables and Partitionsccccoeeveririeninienienieieeeeeeccreseeie e 2-5
VIEWINg Dataccoooviiiiiiiiiiiii e e 2-6
SAVING DALAoiiiiiiiiiii e 2-7
Save Command..........ccoeoveeiiiiieniniieneeeeeee e 2-7
Print Command............cccooieviiieiiiiiniiieceee e 2-8
Loading Data.........coccooiiiiiiiieiiieieeeeeee e 2-9
Load Commandccccoeeviniieieniieiiiiieeceeeeere e 2-9
Read Commandcccooiiiiiiiiieiiniieceee e 2-9
CIEANUD ..ttt ettt ettt s ene e 2-10
Functions and Commandsccccoeecierieiinieiinieieneeeeeeees et e 2-10
FUNCHON SYNTAXioiiiiiiiiieeicieeiee et 2-10
Command SYNTAXcc.ceeeruirieriirieiireee ettt ene e iees 2-11
GIAPNICS ..ttt ettt e s 2-12
PLOT()ittt ettt ettt e 2-12
KeYWOTS ..ttt 2-12
GIraph ODJECESoouiiiiiiieiiie et s 2-13
Working in the Xmath Graphics Windowcc..ccceceviniininiinnieninceeeees 2-13
Using Plot and Graph ODBjJects........c..cocuevieiiinieiiniiieiecieeceeeeee e 2-14
Using 2D Plotting Capabilities.........c.cccceevevierieiinienenccieneeeene 2-14
Using 3D Plotting Capabilities.........c..cccevveiienieiinieiencccnceeeen. 2-16
Using Different P1ot TYPescccoeeieiiiieiinieineeneeeeeeseeeeeee e 2-17
SEEP PLOLS e 2-18
POLAr PLOLS ...t 2-19
Bar PIOLS ..o 2-19
Contour PIOtSoouiiiiiiiiiecee e 2-20
Displaying Multiple Plots at Once.........ccccoceeveriieieniinienieiieeeeeceeeeee e 2-21
ANIMAtNG PLOLS....coouiiiiiiiiiiiieie ettt 2-22
Finishing the Graphics Tutorialccccocevieiinieniniieeieeeeeeeeeeee 2-23
ODJECES ..ttt sttt ettt et et et st s s neeneeas 2-23
SEEIIIES oottt sttt et 2-24
Matrices and VECLOTSc..cocueruieiiniieiiniieiie ettt 2-25
Creating Matrices and VECtOrScccceceevuieieriirieeneeiieniereneeneneens 2-25
Matrix Index Operations............ccccecvevueriecienieiieneeieeneeeseeeeneenens 2-27
Using Matrix FUNCHONSc..cocveviirieiiinieiiieerececeeeee e 2-28
POlynomials........ccoouiiiiiiiiiicicec e 2-29

Xmath User Guide vi ni.com

Contents

DyNamicC SYSTEIMS .euvverieeiieitierieeniiesieesite st erieeste et e stesteebeesreesbeesereesseesaees 2-31
Transfer FUNCLIONSoocviiriieiiiiiiieeiecieeee et 2-31

State-SPAaCe SYSLEIMS ...ocuveeiieriieiieriieniteeiteebee st eteesitesteesbeeebeesaee s 2-32

Analyzing Dynamic SYStEMSccuervverrieeriierieenienieeneeneeeieeniee e 2-33

Parameter Dependent MatriCes.........oooueerieriienieenieniieenee sttt 2-34

LLISES ettt ettt 2-37
IMALSCIIPL .evieitieiieeiteete ettt ettt sttt e st e bt e sabeebeesabeebeesaeesnbaenaeesanas 2-38
MathScript FEAtUIES.coviiiiieiiiiieiiesie ettt sttt 2-38
Debugger Window (0n UNIX SYStEIMS)....cc.eevuerviienieriierniienieenieeneesieeneee e 2-39
GUITOOIS ..ttt ettt sttt et b et bt et et enae st enaesaeen 2-41
CONCIUSION ..ottt ettt sttt ettt ettt sbe e sae et saeennesaees 2-41

Chapter 3
MathScript Basics

MathScript StALEMENLSccueeiiiieiieiieiee ettt ettt 3-1
ASSIZNIMENIES ...oveiiiiiiiiieiieie ettt ettt et en e e ae s sne e 3-1
Rules fOr NAMEeScocviiiiiiiiiciccee e 3-2
EXPIESSIONS ..ottt ettt e s s e s 3-2
Logical EXPIeSSIONScc.cevecuirierierieniinienieereieetesie e s 3-2
Logical Expressions with Matricesc.cceeeveecienieniecencneennennene 3-3
OPETALOTS ...ttt ettt ettt en e sreeae s enesaeen 3-4
Operator Precedencecccoveveniiienieiinieiiceceeeeceeeseeeeee 3-6
Partitions ..c..coeiiieiiieee e e e s 3-6
Listing Defined Variables...........cccooieiiiniiiininiiniieececeee e 3-8
WILACATAS ..ot e 3-8
Variable and Partition COMMENLScccceceevuiriieniirieninieeeeere e 39
Permanent Variables.........c..cocooioiiiiiiiiicieeee e 39
ATIS .ttt 3-10
Xmath Variables WIndowc..ccccooiiiiiiiiiiiiiicceeeeeeeee e 3-10
FIELAS .o 3-11
IMEIIUS ...ttt ettt e e 3-12
PUNCLUALION ..ot s e s 3-13
Iterative Conditional StatemMeNtS.cc.cecueruiiieriirieieeiee ettt 3-14
Using Predefined Functions and Commands...........ccccoceevenirieniniienieiienieeeie e 3-15
Command and Function Calling SyntaX..........cccccoceeveniniieninsienineeneseeneenneee 3-16
ATASLS ... e e 3-16
INput ArUMENLSocuiiiiiiiiiiieie e 3-16
KEYWOTS ... 3-17
Single and Multiple Output Arguments...........cc.cceceeverveenereenreennn. 3-17
Operating System INtrfaceccccocooviriiiiniiiiiieeeeee e 3-18
Manipulate and Show Current Dir€ctorycccceceeveevinieniiieneniencneenne 3-18

© National Instruments Corporation vii Xmath User Guide

Contents

Saving and Loading Datac.eecueeiieiiiiiiiiiieeeeieetesie sttt s 3-18
ASCII Versus Binary Considerationsc.ceeecveeriiervieeseenieenieeneeenseeneesnnes 3-20

Saving Data in Non-Xmath FOrmats..........ccceceevieniiniennienieeceneeeieeeeen 3-20

PIINE ittt ettt ettt et e st et e st e e e bt e b e eaneeaees 3-20

FPIINLEC) et 3-21

Reading Non-Xmath Data Files into Xmath..........cccoeeeeviiniiinnieniiinneeniennne, 3-22
MathScript ENVITONMENTcc.eeviiiiiiniienieeriieeieeite et sttt ettt e s 3-22
Changing Environment SEttngscccceereerrierreerieniieenienieeieeneesieeseeenaeees 3-22
Expanding Pathnames in MathScript Filescccccooviiniiiniiinieniiiiiiieeieene 3-25
Abbreviating Command Names (alias and unalias).......c.ccceeveeveeriveeneennennne. 3-26
MathScript BatCh FIIEsc..cooiuiiiiiiiiiniieeiecteeteee sttt et 3-26
Executing a Batch Filecoociiviiiniiiiiiieeeeecee e 3-27

Echoing an Executable File...........cccoviiviiiiniiniiiiiienieceeceeceeeee e 3-27
startup.ms (0N UNIX SYSEIMNS) ..cuvirvieriieriieiienieeieesiteeieeieesreeiee e sieesaee e 3-27
startup.ms (0N Windows SYSLEMS)eeeverriierieeiiieniieeieeieenieeieesieeseeesieesaeeens 3-28

I/0 REIrECHON.eeeieiiriieieeiieteniteteeteet ettt et st 3-29
Recording an Xmath Session (DIari€s)ccoeveerieriiienieniieeniienieeiee et 3-30
Recording Inputs (Command Diary)........ccecceeveeriiniieenieniiienienieeieesieesie e 3-31
Recording Inputs and Outputs (Session Diary).........ceeeeveervieeneenieenieeneenne. 3-32

Chapter 4
Graphics

Xmath Plotting Functions and Commands.............cocceeerieiienieneniieciineeeceeneseeeeeeen 4-1
General Purpose Plotting Functions............c.cccccoeveiiiinieninicninienceeeiennns 4-1

PLOT() ittt ettt st st 4-1

UIPIOT() coeeieiieiiiieetere ettt 4-2

PLOL2A0) ettt 4-2

Comparative Analysis: plot() versus plot2d()cccceccererveereerenieeneneecrennns 4-3

Plotting Commands and Special Purpose Functions...........ccccceceecenincencnne. 4-4
COLOTING ... 4-4

ERASE ...ttt s 4-4

HARDCOPY ..ot 4-5

PAMPLOL ..ottt 4-5

PLOT e 4-5

UIPIOtATEA ... 4-5

UIPIOEGRL ...t 4-5

Using the plot() FUNCHON........cccoiiiiiiiriiiec e e 4-5
PIot ONe INPUL ...coveiiiiiiiieieceeee e 4-6

POt TWO INPULS ...ttt st 4-7

PIOt Three INPULSeiiiiieiieieeeee ettt 4-7

Color as a Fourth DImensionccoccecenieieniiieniinieicecceeec e 4-8
Creating and Displaying a Graph Objectccccecieviinieiinieiinieneiecieees 4-8

Xmath User Guide viii ni.com

Contents

Using Keywords With POtcooieiiiiiieniiiiienieeieesite ettt 4-9
Labels and Legend.........ccocuieiiirieiiienienie ettt ettt 4-13
COLOTS wntteniiteiteeite ettt ettt ettt e st e e st e st e e bae s abeebeesbteenbeesseesateeseesanean 4-15
Line and Marker Specifications for Datacccceecvevienciieniennienneenieeeeee, 4-18
Multiple Graphs and Graph PoSitioning..........cccecveeriervieeneenieeneenee e 4-21
Adding New Data to Existing Plots (Keep, COPY)....ccververrureniernieeneenieeieennne. 4-23
AXIS AN ZETO LINES ..uvviiiiiiiieiieiie ettt s 4-26
TICS ANA GIIAS..eeeuiiiiieiiieiie ettt et et e bt e s e nbeesaees 4-27
Free Text and Global TexXt SEttings......ccccuevverrieerieriieeneenieeeenee st 4-29
Axis Limits and Logarithmic Scaling..........ccoecveevieniiiinieniinieenienieeeeneene, 4-32
ANIINALE ..ottt ettt ettt et e st et e st e e be e sabesabeenbaeenbeenbeesaseenbeesanes 4-33
Placement, Scaling, and ROtationcceceevvieniieiiienienieeiieeieeee e 4-34
Background, Edge, and Face Settingsccccceevveerviienieniieenieeieenee e 4-36
Lighting SoUIce SEttNGScccvevvveeiiieriiiiieiieeieeriie ettt ettt 4-38
Reusing plot AUITDULES........cceeriiriieriierie ettt ettt s 4-39

Hold KeyWord........cueevuiiiiiiiienieiiiesteeeeiee ettt 4-39

Using an Alias in the Keyword Stringccocceeeeevienvieenieeniennieennen. 4-42
SEEP PIOLS 1ottt ettt et st et st e s ens 4-42
Bar PIOS .oouevieieie ettt et et st 4-45
CONLOUT PIOLS ..ottt ettt s s 4-46
POLAr PIOLS....eiiieiiiiiieeeee e s 4-47
Clearing the Xmath Graphics Windowc.ccceeceeviienieniiiniieniienieenieeeeeeen 4-48

Interactive Xmath Graphics WindOWcccceevueeriiriiinieenieiieeeeseeeie et 4-49
Working INteractively.......ccevueeviieiiiiiieiie sttt 4-51
TOOIDAT ...ttt sttt st et bae et e bt e sabeebaesaees 4-51

SEIECLION ATTOW ..ovvvieriieiiieiieniieeieeitesteeteesteeteesteesbeesseesareeseenaeens 4-52
TEXE TOOL. ettt ettt et 4-52
Drawing TOOIS.....coiuieriiiiieiiieiterte ettt 4-53
Z.00mM IN/Z00M OUL ...cuviiiiiiiiiiieiitenteee ettt sttt 4-53
ROtation TOOIS.....cccuieiieriiiiieie ettt st 4-54
IMIEIIUS ..ttt ettt ettt ettt e bt e bt e st e et e e s ate e be e st e sabe e seesabeebaesnbeenteas 4-56
FALE e 4-56
Bt e 4-58
VIBW ettt ettt sttt s bt sbt e st e e st e et sbaeebeenaees 4-58
OPLIONIS ..ttt ettt sttt ettt e sabe et e e baeebeebeesabeenbeesanes 4-58
Font (UNIX Only)...coooiiiiiiiieieeieeeeeeeeieeete ettt 4-59
Point (UNIX ONLY)...ooriiiiiiiienieiieenieeeeiee ettt 4-59
Tools (WINdows OnlY)......cocueruieniierieiiienieeieenite et 4-59
WINAOWS ittt ettt et st st e beesane e 4-59
XMAth PalELE ...ouviiiiiiiieiie ittt et 4-59

© National Instruments Corporation ix Xmath User Guide

Contents

Chapter 5
Data Objects and Operators

Data HIErarchy........ccccoieoieiiiiiieieieeeet et e 5-1
Data Object DeSCIIPHIONSc..cocveruirieiirieniieeeieeeene e 5-3
IMLAETIX .ttt st s et st ae e 5-3
Matrix COonCatenatioN.cccuevuieiirieriiriieie ettt 5-4
MatriX OPETALOTSeeuviirereriietieiiete ettt ettt st sae s saesaees 5-5
MatrixX INAEXING.....ccueeiiiiiiiiiieiiniee et 5-7
Indexing with the Colon Operator (1)cccceveeveereenreneenieneeiennens 5-8
VBCHOT ..ttt st s e 5-8
RegUIAr VECIOT.......ceiiiiiiiieieiiecieeeeeeeeeeere e 5-9
Logspaced VECIOTcoeeiiiiiiieieiieicieeece et 5-10
SQUATE MALTIX . ..coeeiieiieiicie ettt s e ene s 5-10
SYMMELTIC.c..eouiiiieiiiiieet ettt ettt 5-11
DAAZONAL() eeeniiiiiieiieiiee e 5-12
TAENEILY ..o 5-13
TOCPLILZ ...t 5-13
HESSENDEIZ() .eeevveieiiiiieiieeeeeeee et 5-14
TrANGUIAL ..o 5-14
SCALAL ... 5-15
POLYNOMAAL()ttt et et sttt st e 5-18
Polynomial Operatorscoccecierieieniriienieieneeee e 5-19
Parameter-Dependent Matrix (PDM)c..ccooouiiiiiiiiiiiiinieniientcecetceeeee e 5-21
PDM Organizationcccceeeecuerieienieeineenie ettt e e e s 5-22
Creating PDIMS.....c..oooiiiiiiiinceceseeee ettt s 5-23
Default PDM Behaviorc...cceviiiiiiiiiiiieiciiciceeeeeeteeeee e 5-24
PDM Channelsc..cccccoueeieriieiiniieienieeeeneee ettt 5-28
Indexing to Extract Portions of a PDMc..ccccooiiiiiiniiniiicceeeee 5-29
PDM DimenSionsccceeeevueriieienieiinietineereeeeesneseesreseeneseenens 5-29
Dependent MatriCescocevieierierienienieiieniereereeee e s enesieenens 5-29
Domain and Name Information...........cccccceeveeiinieiininnencincncnnens 5-32
Modifying PDMSccooiiiiiiiiiiieieeeeee ettt s 5-34
SUDSHEULION ...ueiiiiiieiiciieee e 5-34
CONCAENALIONovieuiiiieiiiieeieieeeee ettt s 5-35
Converting PDMS to MatriCesccccoveeieniirieniieeciieienie e 5-36
Using PDMSs with OPeratorsccccceceeveerieieneriienenieieeeese e eees 5-37
Using Functions with PDMS ..o 5-39
Dynamic SYSIEM........couiiiiiiiiiieiieieieeeete ettt sttt ettt e 5-41
State-SPACE SYSIEIMS ...c.eervieiiiiiieiieieeeerteerete et ettt sieeas 5-42
Transfer FUNCHONSccooiiiiiiiiiiieiceee e 5-42
Creating SYSEIMS.cccuivuiiieiieierie ettt ettt et eaeennens 5-43
Using Operators with Dynamic Systems..........cccccoceeeeniecieneeiennens 5-45
Creating Subsystems by Indexing into Dynamic Systems................ 5-46

Xmath User Guide X ni.com

Contents

Functions for Manipulating Dynamic System Objectsceeeueeveerverreeenen. 5-48
TIimME RESPOMNSEeevviiiiieiiieiiieeie ettt ettt ettt sttt et saeesaees 5-49
SEEITIZS 1uveentteeiteeiee et e et e et e b te et e et e sab e e bt e btesbeesbtesabe e atesat e e beesabesabeesabesnseeseesnseeaeens 5-50
Converting Strings and NUMDETScocceeriiriiienieriienienieeiie e 5-51
Special Characters in SINESeecveeveerierienieeeente ettt e e eeeens 5-51
Manipulating SUDSIINGS......ccveerieriiiriienie ettt sae e 5-52
LLISES ettt ettt b e st e e b e saees 5-53
INAEX LSS ettt sttt st ettt ettt sbe e st 5-54

Chapter 6
MathScript Programming

OVETVIBW ...ttt ettt ettt st ettt et saeesne et esne st enesnees 6-1
Creating a Sample MSF... ..o e 6-1
Creating a Sample MSC ..o e 6-2
General Rules for MathScript Programsccoccooiiiiiininnininiiniccneee. 6-4
MathScript File FOrmats..........ccccocoiiiiiiiiiiieeeececeeeee e 6-4
MathScript Programmingcccccocceviiieiiiieiinieeeecreeeee e 6-6

Assigning Default Valuescccocevieniiiininieiiniicecceeeeneen 6-6
Output KeyWordscoueeieiieiiniiiiiieienecieeeeeeeee e e 6-6
Calling Void FUNCHONScccoeviiriiiirieieieeeeeeeee e 6-7
Variable SCOPING......cocvevuirieriieierieeeeese et 6-7
Creating Online Help for User-Defined MSFs and MSCs..........ccccceniennnee. 6-7
Using User-Defined MSFs and MSCScccccoviiiiiiininiiinicceeeceeeeeee 6-8
Search Pathsccooiiiiiiiiicc e 6-8
Manipulating Search Paths.............ccocoiiniiice 6-9
DEFINE ...ttt e 6-10
MathScript Program Compilation and Execution (.xf, .xc) 6-11

EXAMPIES....oioiiiiiiiiiie et st e e 6-11

Programmingc..ooeiiiiiiiiiiiiee e e 6-14
Iterative and Conditional Looping Statements...........c..ceceveecvenieveenerceennennen. 6-14

FOT ..ot 6-14
WHILE ..o 6-14
L e e e e 6-15
Goto and Labels ..o 6-16
Object QUery FUNCHONS.cccueiiieiiiiiciiecicee e 6-16
1€] () TSRS 6-16
[o] 1 TTe) () TSR 6-17
LT () 1SRN 6-18
User Interface FUNCHONS.........coieoiiiiiiiiiiieiicceeeece e 6-18
GELHINE() weeuvieeiieeiee ittt ettt ettt 6-18
GELCROICE()ereurerreeriieeiee ettt ettt 6-19

© National Instruments Corporation Xi Xmath User Guide

Contents

PAUSE() wveenrreeuieeiiesieeiteste et e stte st e stteste e baesbeenbeesabeeseessteenbeeanesases 6-20

EITOT() vveeeeietreeeeeeeieeeeeeeeeitreeeeeeetreeeeeeetaareeeeeessseeseeenareseeeesssteseeeennnres 6-20

DEEP() cvveetteeieeite sttt ettt ettt et sttt sab e e e e eaes 6-21
INdexing FUNCLIONScccuiiiiiiiieiie ettt ettt e 6-21
INAEX() eeverteererierientertert ettt ettt ettt ettt ettt 6-21

FINAQ) et e 6-21

Using the Xmath DebUZEZETccc.coiiiiiiiiiiiiiieieeie ettt ettt 6-22
DEDUZ ...ttt ettt sttt 6-24
DEbUZ MOME......c.iiiiiiiieeiie ettt ettt sttt st e sb e e 6-24
Setting, Showing, and Removing Breakpointsccceceevierverieenienneeennnenn 6-26
Setting and Removing WatChpoints.........ccceeveerieiieeneenieiieeniesie e 6-27
Debugger Window INterface..........coeecueevienieeiieniiiieeieeeeeeee e 6-28
AQVANCEA TOPICS ..vvenvreenrieiieeiteeiee ettt ettt sttt sttt e st e st esbtesbe e beesabeebeesabesnseenseesnnes 6-29
Variable ATZUIMENEScevviiriierieiiieiieeieenieeete et esiteete et e sbeesieesaeeesbeesanesnnes 6-29
21 74 11 () ISP PO URU PRSP 6-29

ATZV() veteeteeeite ettt ettt sttt ettt st et st e bt et e b e sabeebee et s 6-30

USING argn and argV......cocveeeeeriienieeiieeniiesieenieesteeniee e ebeeseresee e 6-30
Executing a Function at a Specific Directoryccccoevveeveerieeneenieenieeneenne 6-33
Partition and Variable Directory FUNCHONScccccvervieriiinieeniienieeiieiene 6-34
MathScript Command Output and Error Capture..........cccceeevveereerieeneeneeenne. 6-34
Programming for Platform Independence...........ccccoeevvieriiiniinnieniennieeniennne, 6-36

Chapter 7
MathScript Objects

IMSO OVEIVIEW.....eiiiiiiieiiiieciteeie ettt sttt ettt sttt st e bttt e bt e st e e s bt e sateesbeesaeeeate 7-1
Object INStantiationcccvevuieieriieienie ettt 7-1
MSO File FOrMALeeiiiiiiiiiieiiieteteeteeeeee ettt 7-2
Using MSOs in Xmathcccccieiiiiiiiiiiiiiicireeceeeeee e 7-3
Initializer FUNCHON «...ooviiiiiiiiiieiee ettt 7-3
Class VariabIes.ceeuerriiiiiiiieeiie ettt st 7-4
INEStEA ODJECLS ...nevieniiiieieeiecteeete et 7-5
Type Declaration.......c..coceoueeieiirieniieieiieeee et 7-6
Operator OVErloading.........cocoecverieiiiniiienieiee ettt 7-7
MemDbEr FUNCHIONSoetiiiiiiiiiiieeie ettt ettt sttt et 7-11
SaMPIE MSO ... 7-12
LAMIEAtIONS 1.eeeviiiiiiiiieeieeiiie ettt ettt et ettt st e b e 7-15

Xmath User Guide Xii ni.com

Contents

Chapter 8
External Program Interface
OVETVIBW ...ttt ettt sttt st ettt saeenesaeesae st enesnees 8-1
LINX ettt ettt ettt e b bt sa et b e e s 8-2
UCT Programs........cc.coeeeiieieiiinieieeeeieeeesie ettt e ene e 8-4
ComMPAtIDILILY ..c.eeeiiiieieecieeee e e e 8-5
externType Data TYPESccueeieiiiieiieiee e e e 8-5
MatrixX Data TYPE ..cc.covveriieiiiieieeee e 8-5
String Data TYPe......cccueeuieiiriiiiieeecete et e 8-6
PDM Data TYPE....ccveeieiieieiieieie ettt e s e 8-7
LISt DAt TYPE ...ceuveniieieiieieeeei ettt s e 8-10
NUIL Data TYPE ..ottt 8-10
LNX and UCT FUNCHONScc.eoouiiiieiiieieeteieneee ettt 8-11
XmathMain() (for LNX 0nly) «..coovieeriiriiiiiiiiieee ettt 8-12
XmMathComMmMEANA() ..eccvveeriieeeiieeeieeesieeesieeerieeesteeeeeeessaeeseseeessaeesnsseesssseeas 8-13
XMathDISPIAY() «eveeveriieiiiieienieeeeet et 8-15
XMAKEITOT() 1vveeiiieeeiie ettt e e e et e e eae e e s beeeesaeesnsaeesnsseeas 8-15
XMAKEXECULE() ..vvveeeeriieiiieeeiiieeieeeiteeertte et e ebeeesre e estaeesseeeesaeesnnseesnsseeas 8-16
XmathGet() and XmathPut()ccoeeveieeeiiieeiie e 8-16
XMANGEL() cevenvieiriiieieieeieeeee e 8-16
XMAAPUL() ottt 8-17
Example Using XmathGet(), XmathPut(), and XmathExecute()................. 8-18
XmathSave() and XmathLoad()ccceeviieerciiieniieeeie e 8-19
XMANSAVE() 1eeeeriieiiieeeiie ettt e e e e stee e et e e e s e e enneas 8-19
XMAthLOAA() veeeevieeiieeeiie ettt e eree e ere e e e e e e e e eeneas 8-19
Standard Library Linkageccccceeiiiiiniiiinieiiniienccieeeiee 8-20
Example of XmathSave and XmathLoad...........c..cccoceninnnninnnnn. 8-20
XmathStart() and XmathStop() ..c.ceeevverreerieniieiieeieeeere et 8-21
XMANSTATT().eeveeiiieiieie e e e 8-22
XMANSTOP() cevveeriiiieiiieeie ettt sttt 8-22
Sample LNX Demonstrating Most Functions (myfun)..........c.ccccceceeiniennnne 8-22
Building and Calling LNX and UCTccccociiiiiiiiiiiiineiceceecee e 8-24
Building on @ UNIX SyStem........ccccuieiiririieniinieieneeieneeieeeeee e 8-24
Sample makefile (UNIX)c.ooviiriiiniiiniinieiiieieeeeneee et 8-25
Building on a Windows SYSteImMcccoirvieriiriieniiieieeeeeeeeee e 8-27
Undefining an LINXocooiiiii e 8-28
Using the User-Callable Interfaceccccooevveniiiininiiiniieeceeee 8-28
Building and Calling a UCK............cccooiiiiiniiiiniieceeeeee e 8-29
ENX EXAMPLL....coeiiiiiiiieiieiieeie ettt e 8-29
UCT EXAMDPIES ...ttt s 8-30
Calling an LNX in Background Modeccccoceiiniiininiiniiiinicceeeee 8-33
Removing an LNX JOb.....c..ooiiiiiiiiiiiicceeeeee e 8-36

© National Instruments Corporation Xiii Xmath User Guide

Contents

Building an LNX to Link a FORTRAN Routine..........cccccccevveeeinceencneencnnee. 8-37
Calling FORTRAN from C LNX Filescccccoovevviiinieniiiieeneenenn 8-37
Creating FORTRAN LNX Fles......cccociiniinieiniienieeieeneeeeeeeeeen 8-37
DEDUZZING ..ottt sttt ettt e st s et st e e bt e sabe e aeesabeenbaesnbeentes 8-39
Debugging an LNX with dbx (on UNIX SyStems)........ccccervveereervennieennennne. 8-39
Debugging LNXs (0n Windows SYSEMS).....ccceeveveeriieruerrieenieenieeniiesieeneennne 8-41
Debugging UCIs (0n UNIX SYStEIMS) ..cc.veerveerieriieniienieeniiesieerieenieeeveeneennne 8-42
Debugging UCIs (on Windows SYStEMS)ceveeriierieeniinniienienieenieesresieennns 8-42
AQVANCEA TOPICS ..veenvveeniieiieiiieite ettt ettt ete e st e et e bee st e e st e st e ebeesaaeenbeesabesaseeneee 8-43
Handling an Aborted LNX.....cccooiiiiiiiiieie ettt 8-43
Advanced Features and NOES...........ccoceviiiiiiiiiniiiiiiiieccecce, 8-44
Advanced Background LNX Function (IPCWCQC)ccccoviiviinniienienienieene, 8-44
Chapter 9
Graphical User Interface
Finding Out About the GUIL.........c.cccciiiiiiiiiiiiiiee e 9-1
GUI TOOI USETS ..ttt sttt ettt sttt sttt e sbae s e 9-1
GUI DEVEIOPETS ...ttt ettt ene e 9-1
Running the GUI DemoOS.........ccooieiiriiiiinieiciicieeeeeteeeee e 9-2
Interacting with @ GUI APPLCAtiON........ooeiiiiiiiriiiieiieeeee e 9-4
Creating an Example Dialog.........ccccooeiiiiiiiiiiiiiieiiiciecceneee e 9-4
Controlling GUI ODbJECLScoouieiiriieieniieieieeeeieeeeteeeere e 9-5
GUI Programming OVEIVIEWc.coceeririeniiiiienieniieienieere ettt ene s eneneeas 9-8
Concepts and TerminoOlOZYcceeieviirieiiiniriieniereieee ettt et saees 9-8
Conceptual EXamPpIec..coceviiiiiiiiieniiiieeeeseeeeeeee e 9-9
Anatomy of @ GUITOOL......cc.cociiiiiiiniiiiieceeeee e 9-10
IMSC FILR ..ttt ettt ettt st s s s aes 9-11
HEIP FHlE ...ttt e 9-12
Xmath GUI FUNCHONSeoiutiiiiiiiiiiieieee ettt ettt st 9-13
TULOTIAL .ttt ettt et st e sat e st e bt e st e e b e e sabeebeesae 9-14
PUSHDULLON ...ttt 9-14
CalCULALOT ...ttt ettt et sttt st e sae et s 9-17
Translating Version 5.X GUI Files to Version 6. X PGUI Files..........cccccccccninenenn. 9-21
OVETVIEW ...ttt ettt ettt ettt st e st st e be e st ebeesabesbeennee s 9-21
EXECULION ...ttt ettt sttt et 9-21
DELALLS .ttt 9-22
LAMIEATIONS ..eevveiniieeiiieiie sttt ettt ettt ettt e sba e enee 9-23

Xmath User Guide Xiv ni.com

Contents

Appendix A
X Windows and Motif

Appendix B
Xmath HP-GL Driver

Appendix C
Xmath for MATLAB Users

Appendix D
Xmath to Mathematica Interface

Appendix E
Technical Support and Professional Services

© National Instruments Corporation Xv Xmath User Guide

Introduction

Xmath is a mathematical analysis, visualization, and scripting package that
is one of the five main products of the MATRIXx product family.
Complementing SystemBuild, another member of the MATRIXx product
family, Xmath serves not only as an analytical tool, but also as a working
environment and visualization tool for simulation data. Xmath and
SystemBuild run concurrently, which allows you to simultaneously edit
SystemBuild models, perform Xmath analysis or SystemBuild simulations,
and display 2D and 3D graphics in presentation quality.

MathScript, the Xmath programming language, provides unique
object-oriented capabilities that facilitate design analysis. Xmath also
offers an interactive debugger, a programmable graphical user interface
(GUI) layer, and an extensive library of mathematical, system modeling,
and analysis functions.

This chapter begins with an outline of the Xmath User Guide, and some use
notes. It continues with topics for helping you to get started in Xmath.
These basic tasks are divided into the following topics:

* Environment Variables

* Starting and Stopping Xmath
e Licensing

e Using Xmath Windows

* Xmath Commands Window

* Help Window

To complete the exercises in this chapter, Xmath must be properly installed
according to the System Administrator Guide for your operating system and
platform. For details about X Windows and the Motif window manager,
refer to Appendix A, X Windows and Motif. For more information about
Windows operating systems, refer to the System Administrator Guide
(Windows).

© National Instruments Corporation 1-1 Xmath User Guide

Chapter 1 Introduction

Using This Manual

This manual discusses Xmath structure and concepts. Chapter 2 is a
tutorial. Chapters 3, 4, and 5 cover basic features for general Xmath use.
Chapters 6 through 9 describe more advanced aspects of Xmath’s structure
and its programming abilities. Appendicies A—D contain material that is
only of interest to specific categories of users. A glossary, which includes
some general terms as well as Xmath terms, follows the appendices.

Document Organization

This manual includes the following chapters and appendices:

Xmath User Guide

Chapter 1, Introduction, starts with a outline of the Xmath User Guide.
It continues with a discussion of useful environmental variables and
licensing issues. It also tells how to start and exit Xmath, and
introduces the Xmath Commands window and the Xmath Help
window.

Chapter 2, JumpStart: A Tutorial, covers Xmath’s basic and
intermediate capabilities and introduces some of Xmath’s more
advanced features and concepts.

Chapter 3, MathScript Basics, introduces Xmath’s object-oriented
language, MathScript, and data management in Xmath.

Chapter 4, Graphics, details the plot function, providing a complete
listing of all keywords and many examples. This chapter also describes
how to change a plot’s appearance interactively.

Chapter 5, Data Objects and Operators, discusses the nature and
definition of each of Xmath’s object classes. It gives examples of how
to build and use each object.

Chapter 6, MathScript Programming, discusses how to create different
types of MathScript files, MathScript Functions (MSFs), and
MathScript Commands (MSCs). This chapter also includes brief
descriptions of Xmath-supplied functions and commands designed to
help you program in MathScript.

Chapter 7, MathScript Objects, describes how to define MathScript
objects.

Chapter 8, External Program Interface, explains the LNX and
User-Callable Interface (UCI) features. The LNX facility makes it
possible to link C, C++, or FORTRAN subroutines into Xmath. The
UCT allows your external programs to use Xmath for graphics and
computation.

1-2 ni.com

Chapter 1 Introduction

* Chapter 9, Graphical User Interface, describes Xmath’s
programmable graphical user interface (PGUI).

* Appendix A, X Windows and Motif, is included for users who are
unfamiliar with the workstation environment but want to start using
Xmath quickly. This appendix provides a summary of the X and Motif
actions used most frequently in Xmath.

* Appendix B, Xmath HP-GL Driver, discusses Xmath’s HP-GL driver
and the devices it supports.

* Appendix C, Xmath for MATLAB Users, is designed to help MATLAB
users transition to Xmath. Differences in syntax, behavior, and
functionality are discussed.

* Appendix D, Xmath to Mathematica Interface, describes how to set up
and use the Xmath to Mathematica Interface.

* Appendix E, Technical Support and Professional Services, describes
support options available from National Instruments.

Commonly Used Nomenclature

This manual uses the following general nomenclature:

* Matrix variables are generally denoted with capital letters; vectors are
represented in lowercase.

. G(s) is used to denote a transfer function of a system where s is the
Laplace variable. G(q) is used when both continuous and discrete
systems are allowed.

* H(s) is used to denote the frequency response, over some range of
frequencies of a system where s is the Laplace variable. H(q) isused
to indicate that the system can be continuous or discrete.

* A single apostrophe following a matrix variable, for example, x',
denotes the transpose of that variable. An asterisk following a matrix
variable (for example, A*) indicates the complex conjugate, or
Hermitian, transpose of that variable.

Related Publications

For a complete list of MATRIXx publications, refer to Chapter 2,
MATRIXx Publications, Online Help, and Customer Support of the
MATRIXx Gettting Started Guide. The following documents are
particularly useful for topics covered in this manual:

* MATRIXx Getting Started Guide
* Xmath User Guide

© National Instruments Corporation 1-3 Xmath User Guide

Chapter 1 Introduction

MATRIXx Help

e Control Design Module

» Interactive Control Design Module

e Interactive System Identification Module, Part 1
e Interactive System ldentification Module, Part 2
* Optimization Module

* XuModule

Xmath function reference information is available in the MATRIXx Help.
The online Help includes all Xmath functions. Each topic explains a
function’s inputs, outputs, and keywords in detail. Refer to Chapter 2,
MATRIXx Publicaions, Online Help, and Customer Support of the
MATRIXx Getting Started Guide for complete instructions on using the
Help feature.

Environment Variables

This section defines several important environment variables.

@ Note The following conventions are used in this manual when referring to environment

variables:

* When an environment variable appears in a pathname with its appropriate system
dependent environment variable designator ($ NAME for UNIX and $naMES for
Windows), then you can use the environment variable as shown.

* When NAME appears without the environment variable designator, then you must
substitute the pathname (value of the variable) in the command.

MTXHOME

Xmath User Guide

Xmath defines the MTXHOME and XMATH environment variables. It also
recognizes the other environment variables discussed below. You can
define them in your (UNIX) . cshrc file , in your (Windows) autoexec.bat
file , or in your (Windows NT) system properties (environment).
Alternatively, you can define them in each session in a Terminal or
Command Prompt window.

MTXHOME is an environment variable representing the installation directory
for MATRIXXx. This variable is used in pathnames.

1-4 ni.com

Chapter 1 Introduction

XMATH

XMATH is an environment variable representing the directory in which
Xmath is installed. XMATH is used in pathnames.

XMATH_STARTUP

XMATH_STARTUP is an environment variable you can use to specify a
directory in which the startup MathScript file (startup .ms) is located.
When you launch Xmath, the startup MathScript file (startup.ms) in
the specified directory is executed.

XMATH_PRINT

XMATH_PRINT is an environment variable that lets you set up a default
printer. When you run Xmath and use the HARDCOPY command, Xmath
uses the value of XMATH_PRINT to send the graphics to the printer.

To define XMATH_PRINT for a SunOS system using the print command 1pr
and a printer named hp0, define XMATH PRINT:

setenv XMATH_PRINT "lpr -PhpO"

If you are on an SGI or HP system, set XMATH_PRINT with an entry similar
to the following:

setenv XMATH PRINT "lp -dhp0 -c"

If you are on a Windows operating system, set XMATH_PRINT with an entry
similar to the following:

set XMATH_PRINT=MTXHOME\xmath\bin\xmprint your_ printer
where your_printer is the name of your selected printer.

You can place this command in the autoexec .bat file in the root
directory of your C drive. On Windows NT, you have the alternative of
using the System Properties, Environment tab under the Control Panel to
specify the environment variable.

@ Note If you specify the XMATH_PRINT environment variable, you do not need to set the
PRINTER environment variable. (Xmath ignores it.)

© National Instruments Corporation 1-5 Xmath User Guide

Chapter 1 Introduction

PRINTER

PRINTER is an environment variable that lets you specify a default printer
(if XMATH_PRINT) is not defined.

For example, to define PRINTER on a SunOS system, for a printer named
hpO, define the PRINTER environment variable in your .cshrc file with
the following:

setenv PRINTER "hpO"

The next time you run Xmath and use the HARDCOPY command, Xmath
will use the value of PRINTER to send the graphics to the printer.

@ Note National Instruments recommends the XMATH_PRINT environment variable
because it allows for platform-specific parameters. PRINTER may fail to work on some

systems.

Starting and Stopping Xmath

Starting Xmath

Xmath User Guide

This section covers starting and stopping Xmath, as well as terminating
Xmath abnormally and quitting and restarting Xmath at the same point in
your process. Major topics include:

e Starting Xmath

e Interrupting or Terminating Xmath
e Exiting Xmath

* Stopping and Restarting Xmath

Starting Xmath is a little different on UNIX and Windows machines, and
the options available are also different. Therefore, we have included
sections for each operating system.

Starting Xmath on UNIX Systems

You can start Xmath from any directory in any Terminal window, either in
the foreground or the background.

1-6 ni.com

Chapter 1 Introduction

Starting Xmath Locally
Complete the following steps to start Xmath.
1. Bring up a Terminal window.

A Terminal window allows you to input at the operating system
prompt.

2. Enter the following command:
% xmath

Unless all licenses are in use (refer to the Licensing section for more
information), the Xmath Commands window appears after a few
seconds.

Internal messages and warnings from Xmath may be written to the
Terminal window.

Starting Xmath on a Remote X Host

If you want to run Xmath on a remote UNIX host, you can start it from your
local machine or from the remote host itself.

To start Xmath from your local computer, type:

% xmath -host remoteHostName

The remote host must accept a remote shell (rsh). Be aware that when the
operating system stores the name of the current working directory, the
name may not be equivalent to that of the same directory on the remote
host. (For example, /home/user on the local machine versus
/net/machine/home/user on the remote machine.) When there is no
verbatim match, Xmath will start in your home directory on the remote
machine.

To confirm your location, go to the Xmath Commands window command
area and type show directory. If necessary, use set directory to
change the working directory from within Xmath.

To start Xmath from the remote host, type:
% xmath -d localHostName:0.0

This command displays the Xmath session on your local machine. You
need to make sure your local machine accepts the display from a remote
host. Consult the documentation on the UNIX operating system command
xhost.

© National Instruments Corporation 1-7 Xmath User Guide

Chapter 1 Introduction

Command-Line Options Available on UNIX

Table 1-1 contains a partial list of options; some options might not be
available on your platform.

Table 1-1. Commonly Used Startup Options for UNIX

Switch Action

-tty Start the tty (non-windowing) version. This version is suitable for
command-line calculations. It can also be used to submit a list of
instructions in batch mode (refer to the MathScript Batch Files
section of Chapter 3, MathScript Basics). The tty version has no
Help or graphics capabilities.

-call name args Runs a user-callable interface (UCI) executable, where name is the
image name and args can be any command line arguments
required by the UCIL.

-clean If a UCI has terminated abnormally you can run Xmath with this

switch to clean up orphaned processes. No other switches are
accepted when -clean is specified.

To get help on the xmath command in a Terminal window, type:

xmath -h

or

xmath -help

Starting Xmath on Windows Systems

To start Xmath on a PC, use one of the following methods:

¢ Select Start»Programs»MATRIXx xx.x»Xmath

* Enter the following command from the Command Prompt window:
MTXHOME\bin\xmath

where MTXHOME represents the installation directory for MATRIXx.

Xmath User Guide 1-8 ni.com

Chapter 1 Introduction

Table 1-2 contains a partial list of options. Some options might not be
available on your platform.

Table 1-2. Commonly Used Startup Options for Windows

Switch Action

-call name args Runs a user-callable interface (UCI) executable, where name is the
image name and args can be any command line arguments required
by the UCIL.

-clean If a UCI has terminated abnormally you can run Xmath with this
switch to clean up orphaned processes. No other switches are
accepted when -clean is specified.

Internal messages and warnings from Xmath may be written to the
Command Prompt window.

To get help on the xmath command in the Command Prompt window, type:

MTXHOME\bin\xmath -h

or
MTXHOME\bin\xmath -help

where you provide the path for the root installation directory of MATRIXx
(MTXHOME).

Interrupting or Terminating Xmath

To interrupt interactive execution of an Xmath function or command, press
(UNIX) <Ctrl-C> or (Windows) <Ctrl-Break> from any Xmath window.

@ Note Intrinsic commands (for example, save or 1oad; refer to the Using Predefined
Functions and Commands section of Chapter 3, MathScript Basics) are noninterruptible.
The same is true for window, dialog, or plot creation.

On UNIX systems, if either the windowing version or the tty version is not
responding, terminate your Xmath session by pressing <Ctrl-\> . This key
sequence terminates Xmath properly in unusual circumstances.

© National Instruments Corporation 1-9 Xmath User Guide

Chapter 1 Introduction

Exiting Xmath

Xmath User Guide

From a windowing version of Xmath, use any one of the following methods
to exit Xmath:

* Type quit in the Xmath Commands window command area (the only
part of the Xmath Commands window that accepts input).

¢ Choose File»Quit from the menu bar.
e With the cursor over the Xmath Commands window, press <Ctrl-q>.

e On UNIX systems, select Close from the X Windows Default Menu
in the Xmath Commands window.

e On Windows systems, click the X (Close) button in the upper right
corner of the Xmath Commands window, or click the Xmath icon in
the upper left corner of the Xmath Commands window and select
Close from the system menu, or use its keyboard equivalent of
<Alt-F4>.

In all cases above, the Quit_popup dialog box may appear.

Quit_popup

Save before quit?

Figure 1-1. Quit Confirmation Dialog

You are given the opportunity to save before exiting. Selecting Save here
saves all current variables to a file named save . xmd in the current working
directory. The session terminates after the file is saved.

If you are using the tty version, type quit. You may see the following
warning:

Modified variables that have not been saved exist; quit
anyway? (y/n)

Type y (yes) or n (no) as desired. For more information, refer to the Saving
and Loading Data section of Chapter 3, MathScript Basics.

1-10 ni.com

Chapter 1 Introduction

Stopping and Restarting Xmath

You can quit Xmath at any time. To resume at the same point, type save
in the Xmath Commands window command area before quitting, or select
Save in the Quit dialog box. This saves all existing data to a file called
save.xmd in the current working directory.

@ Note The Save command overwrites any previous save . xmd file in the current working
directory.

To resume a session:
1. Restart Xmath from the same directory
2. Type load in the command area.

The default save file save.xmd is loaded.

Licensing

‘When Xmath starts, it checks out the Xmath Core license. The license for
each module is checked out when that module is started; for example, the
Control Design Module is checked out when that module is started. If your
site has a floating license or counted node-locked license, you may be
unable to check out a particular module.

If a Core license is available, the Xmath Commands window appears after
a few seconds (refer to Figure 1-2 for the UNIX version).

To get license information for your current version:

* Select Help»On Version from the Help menu on any Xmath window.
A pop-up appears that tells you the version, date, and platform.

e Inthe Xmath Commands window command area, type:
licenseinfo
A list of modules for which your site is licensed and their expiration

dates appear in the log area.

For additional information about your Xmath license, refer to the System
Administrator Guide for your operating system.

© National Instruments Corporation 1-11 Xmath User Guide

Chapter 1 Introduction

Using Xmath Windows

The major Xmath windows are listed in the table below, along with
sections in which you can find information about them. You get to these
windows through the Windows menu on each of the other windows.

Table 1-3. Major Xmath Windows

Xmath Window Section
Commands Xmath Commands Window
Graphics Interactive Xmath Graphics Window section

of Chapter 4, Graphics

Variables Xmath Variables Window section of
Chapter 3, MathScript Basics

Palette Xmath Palette section of Chapter 4,
Graphics

Debugger (UNIX only) | Debugger Window (on UNIX Systems)
section of Chapter 2, JumpStart: A Tutorial

This section contains general information that applies to all Xmath
windows.

Mouse Conventions

This document assumes you have a 2- or 3-button mouse. From left to right,
the buttons are referred to as MB1, MB2, and MB3. All instructions assume
MBI1 unless otherwise noted. Table 1-4 lists common mouse instructions.

Table 1-4. Common Mouse Instructions

Instruction Action
click Press then quickly release MB1.
double-click Rapidly click MB1 twice.
drag Hold down MB1 while moving the mouse;
release the button when the desired result is
obtained.

Xmath User Guide 1-12 ni.com

Chapter 1 Introduction

The following mouse-click combinations are useful for selecting text:

* To select a word, point anywhere within the desired word and
double—click.

» To select an entire line, point anywhere on the line and triple-click.

e To select all text in an Xmath window area, move the cursor into the
area and quadruple-click.

Scrollbars

Most Xmath windows have horizontal and vertical scrollbars so you can
look at data that extends beyond your window border. As you can see in
Figure 1-2, scrollbars have a small arrow on each end and a center area with
a rectangular slider.

The size of the slider depends on the amount of data out of view. In
Figure 1-2, the horizontal slider fills the whole area because all data is
visible. The slider becomes smaller as data accumulates. To move the
slider, place the cursor over the slide bar and use MB1 or MB2 to drag in
the desired direction. If you click MB1 or MB2 in the scrollbar and off the
slider itself, the slider moves toward the point you clicked.

Resizing Xmath Windows

Most Xmath windows are divided into several areas. If you make a window
shorter, you may notice that some areas get too small to be useful, or even
seem to disappear. When this happens, vertically resize these subwindows.

On the right side of a window on UNIX systems, you can see a small square
straddling the border between two areas. (Refer to Figure 1-2 for an
example.) This is called a grip or a sash. When you place the cursor over it,
the cursor changes to a cross-hairs symbol (4). Drag the grip vertically in
the direction you want the area to grow or shrink. Experiment with a
combination of resizing the frame and resizing the areas.

On Windows versions, you can resize the windows using standard windows
techniques.

Menus

The menu bar features pull-down menus that appear on most Xmath
windows, although not all menus are active in all windows. You can open
menus by clicking on the menu name or dragging down from the menu
name.

© National Instruments Corporation 1-13 Xmath User Guide

Chapter 1 Introduction

Meta Key

You need to know where the equivalent of the Meta key is on your
keyboard if you plan to use Xmath’s accelerators. Whenever the
documentation or one of the menus refers to Meta, you will need to press
the key appropriate to your machine, as shown in Table 1-5.

Table 1-5. Meta Key

Platform Key or Key Sequence

Sun Key with a diamond symbol (on either side of the space bar)
HP Extend/Char key (to the left of Shift)

IBM Alt

Windows | Alt

SGI Alt

Xmath Commands Window

Xmath User Guide

The Xmath Commands window appears when you start Xmath (refer to
Figure 1-2). This is your primary interface to Xmath. On UNIX systems,
the Xmath Commands window contains three primary areas: the log area,
the command area, and the message area. Windows systems have only two
primary areas: the log area and the command area; the information that
goes to the message area in UNIX goes to the log area on Windows

systems.

1-14 ni.com

Chapter 1 Introduction

Menu Bar

I
X Windows
Default Menu Xmath Commands: main

File Edit ¥isw Options Windows Help

Scroll

Type Here —»

Log Area Command Area Message Area

Figure 1-2. Xmath Commands Window (UNIX view)

You can interact with Xmath with both keyboard and mouse. The keyboard
is used for input and mouse position dictates the active input area. The
mouse is also used for menu selection, text manipulation, and for
displaying shortcut menus (right-click). Refer to the Mouse Conventions
section for mouse conventions.)

Menus

The pull-down menus shown in Table 1-6 are active in the Xmath
Commands window.

© National Instruments Corporation 1-15 Xmath User Guide

Chapter 1 Introduction

Table 1-6. Xmath Menus

Menu Description

File Allows you to execute files, set partitions and directories, load files, save all
variables, and exit Xmath.

Edit Allows you to clear the log area, message area, and command area, as well as send
a command and insert a new line in the command area.

Options Allows you to set the output display precision.

Windows Quickly finds other Xmath windows and brings them to the foreground.

Help Invokes the MATRIXx Help and provides version information.

Log Area

Xmath User Guide

The log area keeps a record of your interactions with Xmath. Both inputs
and outputs are displayed in the log area. Certain actions in the user
interface also cause Xmath to write to this area.

To control the number of lines written to the log area, type

set logarea N

where Nis the number of lines; Nis also limited by the buffer size, which is
machine dependent. Using this command truncates the current contents to
that number of lines.

To set the lines to the maximum, type

set logarea max

This limit is dependent upon hardware and the operating system resources
available.

To turn writing to the log area off, type

set logarea off

Current contents of the log area are discarded. While logging is turned off,
the data is not being buffered, and it is lost. When you are running batch
and simulation jobs in SystemBuild, setting logging off speeds up their
execution slightly.

To turn writing to the log area on, type

set logarea on

1-16 ni.com

Chapter 1 Introduction

All subsequent log data is displayed up to the limit; the limit is what you
set previously or the default (maximum).

The command

show logarea

displays both the number of lines (or ALL) and the state of logging—On or
Off.

To erase the log area, select Edit»Clear Log Area, or type

erase {logarea}

This action is not reversible, although you still have access to command
recall to retrieve previous entries.

If a file is executed, the file contents are not written to the log area unless
set echo on is specified (the default is off).

Command Area

The command area is the only part of the Xmath Commands window (or
any of the major Xmath windows) that accepts text input, so you can focus
anywhere on the window and type. (If you are not familiar with the term
focus, refer to the Mouse Focus and the Cursor section of Appendix A,

X Windows and Motif.)

Pressing Return or Enter causes Xmath to execute everything in the
command area.

Specifying Directory Pathnames and Filenames

Within the command area, you often need to specify directory pathnames
and filenames. To do so, you must use valid names. In general, Xmath does
not recognize directory pathnames and filenames that contain spaces.
Although such names are valid in Windows operating systems, Xmath does
not recognize them from the command line; however, if you can select the
directory and/or filename from a Browser or File Selection dialog, Xmath
does accept them.

Scripts, saving and loading data, printing a file, and changing a directory or
path can each be accomplished via a file selection dialog. On UNIX
platforms, Xmath uses the Motif file-selection dialog for interactive
directory and file specification.

© National Instruments Corporation 1-17 Xmath User Guide

Chapter 1 Introduction

Figure 1-3 shows a typical file selection dialog on UNIX. Most dialogs
have the same fields, but some actions may not require all fields.

Filter

|fhnmesfgrendsld}

Directories Files

— |%backup%~
oo _J . acrorc
.dt . acrosrch

L .cshrc
netscape .cshrc.old
.solreqis .cshrc.orig
.wastebasket .cshrcll.6. 98
bin ¥ .cshrc429

F e (0

Selection

|fhumes{grendel£

0K Filter Ccancel

Figure 1-3. Save Dialog (UNIX version)

If you know the full pathname of the directory or file you want, type it in
the Selection field at the bottom, and then press <Return> or click OK.

@ Note All of the file interactions described above can also be accomplished from the
command line, provided that the directory pathnames and filenames do not contain spaces,
which are not generally recognized in the Xmath command area.

Entering Multiple Lines of Information

Entering multiple lines of text works differently on UNIX and Windows
systems. See the following sections for examples.

On UNIX Systems

To enter multiple lines of text, press the <Line Feed> key or
<Shift-Return> to start a new line. When you are finished typing, press
<Return> to send all the lines to Xmath. Whenever the documentation
refers to linefeed, you need to press the key(s) appropriate to your machine,
as shown in Table 1-7.

Xmath User Guide 1-18 ni.com

Chapter 1 Introduction

Table 1-7. Linefeed Key

Platform Key or Key Sequence
Sun <Line Feed> or <Shift-Return>
HP Insert Line
IBM <Shift-Return>
SGI <Shift-Return>

You can achieve the same result by selecting Edit»Insert New Line from
the menu bar. The accelerator for your machine appears to the right of the
Insert New Line menu item.

On Windows Systems
Complete the following steps to send a set of multiple lines on Windows:
1. Enter the multiline mode by pressing <Shift-Enter>.
You can press <Shift-Enter> before or after entering the first line.
2. Enter your lines of text, pressing <Enter> after each.
3. Leave the multiline mode by pressing <Shift-Enter>.

4. Send all lines to Xmath by pressing <Enter>.

The Edit menu provides the Send Command that you can use instead of
the Enter key.

Editing Text by Selecting, Copying, and Pasting

The command area is in insert mode. You can use mouse clicks or keyboard
sequences to move the cursor within a line of text.

Your operating system’s standard selection, copy, and paste methods are all
valid.
The following selection sequences are defined:

* Toselect a character (forward or back), hold down the <Shift> key and
(UNIX) press the right or left arrow key.

» To select a word, point anywhere in the word and double-click.
* To select a line, point anywhere on the line and triple-click.

e (UNIX) To select all text in the window area, click four times.

© National Instruments Corporation 1-19 Xmath User Guide

Chapter 1 Introduction

Xmath User Guide

You can paste text from any Xmath window or other ASCII source into the
Xmath command area.

In UNIX, you can select a previous command from the log area, paste it into
the command area, and re-execute it. The following copy and paste method
is standard, although it may vary slightly with different window managers:

1. Point to the desired text and drag (holding down MB 1) until everything
you want is highlighted. Avoid highlighting extra characters.

2. Point to the destination and click MB2.

Key Bindings Used in Editing Text

Key strokes help you perform editing functions for Xmath. Key bindings
vary somewhat depending upon your type of operating system. You can
change the key bindings for UNIX; for Windows, you cannot.

UNIX Default Bindings

The UNIX default bindings are emacs-style, as shown in Table 1-8. On
UNIX systems keyboard types vary, so the default mappings for your
particular keyboard might be slightly different. For example, arrows may
map to editing keys or keypad arrows according to the keyboard.

Table 1-8. UNIX Default Key Bindings

Keystroke Action
<Ctrl-a> Beginning of line
<Ctrl-b, «> Back one character
<Ctrl-d> Delete next character
<Ctrl-e> End of line
<Ctrl-f, —=> Forward one character
<Ctrl-j> New line
<Ctrl-k> Kill to end of the line
<Ctrl-I> Redraw display
<Ctrl-n> Next line
<Ctrl-o> Put remainder of line on a new line
<Ctrl-p> Previous line

1-20 ni.com

Chapter 1 Introduction

Table 1-8. UNIX Default Key Bindings (Continued)

Keystroke Action

<Ctrl-u> Delete to the beginning of the line

<Ctrl-w> Wipe (delete) selected text

<Ctrl-y> Yank back a single line of killed text (unkill)

<Ctrl-T> Move up through recorded inputs (command
area recall is discussed in the Recalling
Previous Commands section)

<Ctrl-4> Move down through recorded inputs

<Backspace> Delete previous character

<Delete> Delete previous character

<Home> Move cursor to first character of text area

<End> Move cursor to last character of text area

<PgUp> Move up one page

<PgDn> Move down one page

<Ins> Insert a new line (linefeed)

Windows Bindings

On Windows, the set of key bindings is more limited but still exists (see
Table 1-9).

Table 1-9. Windows Key Bindings

Keystrokes

Action

<Ctrl-a>

Beginning of line

<Ctrl-d>

Delete next character

<Ctrl-j>

New line

<Ctrl-k>

Kill to end of the line

<Ctrl-T>

Move up through recorded inputs (command area
recall is discussed in the Recalling Previous
Commands section)

<Ctrl-1>

Move down through recorded inputs

© National Instruments Corporation

1-21

Xmath User Guide

Chapter 1 Introduction

Table 1-9. Windows Key Bindings (Continued)

Keystrokes Action
<Delete> Delete next character
<Home> Move cursor to first character of text area
<End> Move cursor to last character of text area

Changing the Key Bindings (on UNIX systems)

You may prefer UNIX-style or EDT-style bindings. These, along with
many other defaults, are implemented through the file
SXMATH/etc/Xmath.

To customize your key bindings, use a text editor to create a file called
Xmath in your home directory. Into this file, copy the desired key binding
set from $XMATH/etc/Xmath. Your Xmath file should contain only those
changes that differ from the defaults. Close and save your file.

The new key bindings become effective the next time you invoke Xmath.
(For more information, refer to the Changing Resource Parameters section
of Appendix A, X Windows and Motif.)

Recalling Previous Commands

Xmath has a command area recall feature based on keystrokes, as shown in
Table 1-10.

Table 1-10. Command Area Recall Keystrokes

Keystrokes Action
<Ctrl-T> Moving backwards, print recorded inputs in the command area.
<Ctrl-{> Moving forward, print recorded inputs in the command area.
<@@> Execute the last command.
<@@:p> Print the last input in the command area.
<@str> Execute the last input starting with str.
<@str:p> Print the last input starting with str.
<@n> Execute the nth input.
<@:1> List all inputs in the log area.

Xmath User Guide 1-22 ni.com

Chapter 1 Introduction

Table 1-10. Command Area Recall Keystrokes (Continued)

Keystrokes Action
<@str>:1 List all inputs starting with str in the log area.
<@> List the last 10 inputs. If @ is issued again (without an intervening Xmath
command) 10 inputs back from that point will be listed.

Message Area

Help Window

* Only syntactically correct inputs are recorded.
* @ commands are not recorded as inputs.
e Multiline inputs are recorded and recalled as one line.

* One hundred inputs are recorded; the oldest are automatically
discarded to make room for new inputs.

* An @ command can only be entered in the Xmath Commands window
command area on a line by itself. It cannot be issued from a MathScript
batch file.

The message area displays Xmath error messages and warnings. If an error
occurred when you were typing in the command area, Xmath highlights the
possible source of the error and displays a message (UNIX) in the message
area (Windows) or the log area. The input is not accepted until you fix the
error.

Xmath function reference information is available in the MATRIXx Help.
The MATRIXx Help includes all Xmath functions. Each topic explains a
function’s inputs, outputs, and keywords in detail. Refer to Chapter 2,
MATRIXx Publications, Online Help, and Customer Support, of the
MATRIX Getting Started Guide for complete instructions on using the Help
feature.

You can invoke the MATRIXx Help as follows:

* Select Help»Topic from the Xmath Commands window or type help
in the command area of the Xmath Commands window; a listing of
available topics appears in the left pane (refer to Figure 1-4). Scroll
down to see additional entries.

* Once in the Xmath Help window you can use the Topics Hierarchy
(table of contents) in the left pane to locate topics.

© National Instruments Corporation 1-23 Xmath User Guide

Chapter 1 Introduction

Xmath User Guide

For example, to view a linear algebra function topic (for example, the
function hessenberg ()), click the Math, Linear Algebra topic in
the left pane, and then click hessenberg in the right pane.

You can also use the Master Index (refer to Figure 1-4 in the right
pane) to locate a topic or function alphabetically. Using the alphabet at
the top of the right pane, you can link directly to the topics for any
given letter.

1-24 ni.com

Chapter 1 Introduction

ATRIXx Help - Hetscape

File Edit “iew Go Communicator Help
< » A 4 = & B @
Back Fopward, Reload Home Search Metzcape Erirat: Security Shop Stop

ﬁlnstantMessage Internet Ci Lookup Ci MewtCool RealPlayer

wtv Bookmarks J‘ Location:Ihttp:.-".-"arc:hon.isi.c:om.-"V?D.-"online.-"htmlhelp_?ﬂ‘l Ahelp. htrl

j @' Wwhat's Related

Topics Hierarchy

-

¥ Bottom

Felease Info
Tech Suppaort
Licensing

Using Help

Hmath
Data Handling
Dizplay
Ervvironment
hzthScript
Mumeric Clazzes
Flatting
Wariables

MathScript Programming
Frogrammable GUI
hathscript Debugger

External Program Interface
LM Functions
(1sd]

Cynamic Systems
Control Design
Freq{Tirme Rezponze
Mode| Reduction
Robust Control
Systern Identification
nu

Math
EBazic Math
Hyper{TrigiTrans
Linear Algebra
Matrix hiath
Cptimization
Statistics

Signal Processing
Filter Design
Signal Analysis

SystemBuild
Elocks
RWE
Simulation
SBA
Utilities

AutoCode

Documentlt

Fealzim

A Top |
N [

o

ABCDEFGHIJKLMMNOPQRSTUWWXZ Symbals

[3] sl

=
H
Hadamard
hankelsv
HARDCOPY
HELF
Help
CONtExXt-Sensitive
finding a topic
launching standalone (mtxhelp)
MetHelp engine
printing online Help
starting
using examples
Help menu
Catalog Browser
Palette Browser
STD Editor
Help Window
using
hessenberg
Hessenberg matrix
highpass
hilbert
HilbertTransfarm
hinfcantr
hinfnorm
hinfsyn
histogram
Haolding Flot Cptions
Hoops Plot Paths
HPGL Cutput
huge
HYPERELILD
HyperBuild dialog, SystemBuild
Hysteresis Elock
h2norm
h2syn

A Top I 4Prev| Nextbl

FHMATH/ help/ masterx.docg.html
Copyright @ 2000; Wind River Systems, Inc. All rights reserved.

= == |

| Documert:

Donhe = cie S AP Ed

© National Instruments Corporation

Figure 1-4. MATRIXx Help Window Topics Hierarchy and Master Index

1-25 Xmath User Guide

JumpStart: A Tutorial

This tutorial introduces basic Xmath features. It highlights some of the
ways Xmath is different from other tools. After getting you started, this
chapter provides the following major topics; the times shown are estimates
of how long it takes to complete each section.

Topic Time to Complete
Basic Data-Handling 15 minutes
Functions and Commands 10 minutes
Graphics 30 minutes
Objects 60 minutes
MathScript 15 minutes

To use the JumpStart you must have a properly installed version of Xmath.
You should also be familiar with the following:

* Your operating system
e A text editor

* (UNIX) Your window manager

If you are new to the workstation environment described in this book, refer
to Appendix A, X Windows and Motif. It will be helpful to new UNIX users
because many UNIX-based window managers share common
functionality. We assume that workstation users have X Windows and a
window manager running before starting this tutorial. The Jump Start is
very basic and you will be able to complete it even if you are unfamiliar
with the workstation environment.

If you find yourself having difficulties with the most basic elements, such
as not understanding how to use the Xmath Commands window or how to
get the MATRIXx Help, refer to Chapter 1, Introduction.

This tutorial contains many cross-references to other parts of the document.
It is not necessary to consult the cross references to complete this tutorial.

© National Instruments Corporation 2-1 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

After completing the tutorial, you may want to look into some of the
advanced features in Chapters 6 through 9.

Starting Xmath for the Tutorial

In this section, we want you to create a directory called jumpstart, make
that directory your working directory, and start Xmath. (UNIX) From a
Terminal window (Windows) or the Command Prompt window, enter the
following commands:

% mkdir jumpstart
% cd jumpstart

Then start Xmath using one of the methods provided in the Starting Xmath
section of Chapter 1, Introduction.

You may stop or interrupt the tutorial at any point. Remember to save your
work before you quit and to reload it upon startup again. Refer to the
Stopping and Restarting Xmath section of Chapter 1, Introduction.

Basic Data-Handling

Creating Variables

Xmath User Guide

This portion of the tutorial discusses creating and organizing variables, as
well as saving, deleting, and retrieving them.

A variable is named information. To create a variable, you must type into
the Xmath command area. You can assign a name to data:

a=3.14

a (a scalar) = 3.14

and assign the results of expressions or the output of an Xmath function:
b=a+expm([1,2;3,4])

b (a square matrix) =

55.109 77.8766
115.245 167.214

Pressing <Return> or <Enter> executes everything in the command area.
By default, your input is displayed in the log area, followed by the output.
To suppress output display, terminate inputs with a semicolon (refer to
Table 3-1 for a way to change display behavior).

2-2 ni.com

Chapter 2 JumpStart: A Tutorial

b;

If you input more than one statement on a line, a semicolon or question
mark, which forces output, must be used as a separator. Type:

c=b"a; d=b/a? c=d-a;
d (a square matrix)=

17.5506 24.8015
36.7022 53.2528

The only output displayed is the value of d, but c exists.

When entering multiple lines of text in the command area, use the <Line
Feed> key or <Shift-Return> to start a new line, and press <Return> when
you are finished. If your keyboard doesn’t have a Line Feed key select
Edit»Insert New Line from the Xmath Commands window, or use the key
combination appropriate to your platform. Refer to the Entering Multiple
Lines of Information section of Chapter 1 Introduction.

In the following example, press <Line Feed> after inputting the numbers 3
and 6, and press <Return> after the right square bracket:

e=[1,2,3
4,5,6
18,91

e (a square matrix) =
1 2 3
4 5 6
7 8 9

If you don’t assign a variable name to a valid statement, Xmath assigns the
value to the temporary variable ans. The following expression uses the
permanent variable jay to create a matrix of complex numbers and assign
the matrix to ans:

e*jay;

ans?

ans (a square matrix) =

2 3 33
4 3 53 6 3
7 3 8 3 9 3

ans will be changed the next time a statement output is not assigned to a
variable.

© National Instruments Corporation 2-3 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

Xmath User Guide

To comment an existing variable use the comment command:

comment b "combined an expression and a function"

You must enclose the comment string, like all other strings in Xmath, in
double quotes:

To retrieve the comment, use the commentof () function:
commentof (b)

ans (a string) = combined an expression and a function

Xmath also displays the comment when you view the variable in the Xmath
Variable Manager window, which is discussed in the Viewing Data section.

If you make an error, Xmath attempts to highlight the incorrect input. For
example, type:

max (E)

What you typed remains in the command area with the E in reverse video.
The message area displays E undefined in this scope.

Go to the command area and replace the capital E with a lowercase e:
max (e)

ans (a scalar) = 9

The max () function now finds the largest value in the variable e. For
detailed information on entering and editing text, refer to the Editing Text
by Selecting, Copying, and Pasting of Chapter 1, Introduction.

Using Command Recall

To print previous inputs to the command area, hold down the Control key
and press the up arrow <Ctrl-I>. For more on command area recall, refer to
the Recalling Previous Commands section of Chapter 1, Introduction.

Sending Multiple Lines of Data at Once

(UNIX) Press <Shift-Return> after each line until you are ready to send the
entire set of lines to Xmath; then you press <Return>.

(Windows) Pressing <Shift-Enter> turns on multiline mode. In this mode,
pressing the <Enter> key adds a new line rather than sending the command
line to Xmath. Pressing <Shift-Enter> again turns off this mode. Pressing
<Enter> a final time sends the multiple lines to Xmath for execution.

2-4 ni.com

Chapter 2 JumpStart: A Tutorial

For example,

UNIX Windows
for i=1:10 <Shift-Return> <Shift-Enter>
<Enter>
i? <Shift-Return> <Enter>
endfor <Return> <Shift-Enter>
<Enter>

sends the multiline for-loop to Xmath at one time.

Variables and Partitions

set partition datal
who

Xmath variable names are case-sensitive (for example, MyVar, myvar, and
MYVAR are different variables).

A partition is a named non-hierarchical directory that contains variables.
Partition names are also case-sensitive.

Xmath always starts in the default partition main. You can verify this by
typing show partition inthe command area. The full name of a variable
includes its partition, so the variable a, found in partition main, is named
main.a. However, you don’t need to supply a prefix when handling
variables in the current partition.

Use the command new partition to create partitions. Other commands
used for partition handling are set, show, and delete.

1. Create new partitions:

new partition datal
new partition data2
2. Using variables in the current partition (the default partition main),
create new variables for the partition datal:
datal.a=a\b;
datal.b=1lyapunov (b, c) ;

3. Goto the new partition datal and display a list of the variables in that
partition to the log area:

List variables in the current partition

© National Instruments Corporation 2-5 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

datal:
a -- 2x2
b -- 2x2

4. Attach a comment to a partition in the same way you comment
variables, except that you must put a period after the partition name to
distinguish it from a variable name:

comment datal. "vault"
commentof (datal.)

ans (a string) = vault
5. Use the same variable name in other partitions:

data2.a=random(4,4) ;
comment data2.a "a random matrix"
who data2.* # List variables in the named partition

data2:
a -- 4x4

6. Look at all the partitions and all existing variables:

show partitions # Shows all partitions
who *.* # Show all variables in all partitions

7. Delete a partition (datal).
To delete a partition, you must first empty it:
delete datal.* # Delete variables in datal.
To delete a partition you are in, change to another partition first:

set partition main
delete datal. # Delete the partition datal

Viewing Data

The Xmath Variable Manager window lists all variables in the current
partition. While it is open, Xmath immediately updates it whenever
changes occur in the viewed partition.

1. To invoke the Xmath Variable Manager window, select
Windows» Variables from the Xmath Commands window.

You should be viewing the current partition (main).

2. Click the Partition button in the Xmath Variable Manager window. In
the dialog that appears, select main, and click OK.

Xmath User Guide 2-6 ni.com

Saving Data

Chapter 2 JumpStart: A Tutorial

This lists the variables in main. Note that you are only viewing the
partition; you have not changed your working partition. (Only the set
partition command issued from the command area will change the
partition. Remember, you can type show partition to see the
current partition.)

3. Try the selections on the Variable Manager window View menu to
change the organization of the variables. Try sort by Name, sort by
Size, and sort by Type.

4. To close the Variable Manager window, select File»Close Window.

For additional information on the Variable Manager window, refer to the
Xmath Variables Window section of Chapter 3, MathScript Basics.

The commands and functions in Table 2-1 save data to files.

Table 2-1. Save Commands and Functions

SAVE Save variables in Xmath or MATRIXx format to a binary or ASCII file. This is the
standard way of saving data.

PRINT Print the values of a list of variables to an ASCII file.

fprintf() | Convert numeric values to a string representation, and then write the string(s) to an
ASCII file.

You can perform save operations from the command area and from the File
menu of most windows.

Save Command

The easiest save method is to type SAVE in the command area. When you
do, Xmath saves all variables to a file named save.xmd in the current
working directory. By default, SAVE produces a binary file with the
variables saved in Xmath format.

You can specify a list of variables, a filename, or a format. For example,

save main.* file="main" {ascii}

saves all variables in the partition main to an ASCII file named main . xmd
in the current partition. Note that SAVE adds the . xmd extension for you.

© National Instruments Corporation 2-7 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

Xmath User Guide

Complete the following steps to save all variables to a binary data file via
the File menu in either the Xmath Commands window or the Xmath
Variable Manager window:

1. From the menu bar, choose (UNIX) File»Save All or
(Windows) File»Save.

The Save dialog comes into view.

2. (UNIX) Add the filename datal.xmd to the path in the Selection field
at the bottom of the dialog, (Windows) or select a directory and then
specify a filename in the File name field of the dialog box.

For a complete explanation of this dialog, refer to the Specifying
Directory Pathnames and Filenames section of Chapter 1,
Introduction.

3. Click OK or Save.

(UNIX) If you look at the log area, you will see that the text equivalent
of your save action is echoed there. The current message will be similar
to:

save file="/YourPath/datal.xmd"

Print Command

The print command writes a variable in a text format you can read.

To print a specific variable to a text file:

set seed =0;
x=(rand(2,2))*sin([5,1;4,2]);
print x file="x.dat"

The function oscmd () lets you use an operating system command to
display the contents of the file you created to the Xmath Commands
window log area:

oscmd ("cat x.dat") # UNIX
oscmd ("type x.dat") # Windows
main.x =

-0.77482 0.865292
-0.250204 0.300552

ans (a scalar) = 0

2-8 ni.com

Loading Data

a=1l; b=2; c=3; d=4;
save

who *.*

delete *.*

who *.*

Chapter 2 JumpStart: A Tutorial

Load Command

If you type 1oad (with no file specified) in the command area, Xmath looks
for the default file save . xmd in the working directory and loads it if it
exists.

To test this, go to the command area and input the sequence below; these
instructions assume you are in partition main.

Create variables a, b, ¢, and d

Save all variables to save.xmd

Verify that the variables are in main
Delete variables in main

Verify that the variables have been deleted

You can then retrieve selected variables or all saved data:

load ¢ d "save"

load

who *.*

Load variables c¢ and d from save.xmd

or
Load all variables in save.xmd

Verify that the variables have been loaded

Xmath supplies the default filename extension xmd when you don’t supply
one. Another way to load saved data is to go to the commands or Variable
Manager window and select File»Load from the menu bar.

Read Command

The READ command copies the contents of a file into an Xmath matrix.
This function is particularly useful for loading externally generated data
into Xmath. The data can be character, integer, or floating-point types, as
well as ASCII. Consult the MATRIXx Help READ topic. Notice that the
arguments are a filename, the rows and columns of the data, the type (or
format), and the number of bytes in the file you want to skip before reading.

Read in the file you made with the print command (refer to the Print
Command section).

* Specify the input filename (x.dat), give the row and column
dimensions of the data, and specify the input file format (ascii).

* Specify an offset of 1; this instructs Xmath to skip the first line

(main.x =).

© National Instruments Corporation 2-9 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

Cleanup

Functions and

We do not have to worry about the last line in the file,
(ans (a scalar) = 0), because read stops after the two rows and
columns you specified have been read.

xx=read("x.dat",2,2,"ascii", 1)

xx (a square matrix) =

-0.77482 0.865292
-0.250204 0.300552

This concludes the section on basic data-handling. You can delete the
variables and partitions you created, as you do not need them later. Do not,
however, delete the partition main; delete only its contents.

Commands

Function Syntax

[outl,out2,...,outn]

Xmath User Guide

If you have been working through the tutorial, you have already used
several common commands and functions. In addition to discussing
functions and commands, this section includes references to more detailed
passages.

Functions operate on a list of input values and return output values. Input
arguments are passed by value (a local copy is nested inside the function
scope).

Functions are called in the following form:

= funName (inl, in2, ...inm, {options, keywords})

For examples of this syntax, refer to the MATRIXx Help Functions topic.
* Input and output arguments are separated by commas.
* Keywords are enclosed in braces and separated by commas.

* When a string is required, it must be enclosed in double quotes; for
example, line_color="blue".

e If a function has multiple outputs, by default only the first output is
returned. You must use the brackets if you wish to acquire more than
one output.

The following example shows two possible syntaxes for residue. Input
the following data to see the default output behavior:

2-10 ni.com

Chapter 2 JumpStart: A Tutorial

sys=(makepoly ([2:4:6]) /makepoly([3,5]));
Rp=Residue(sys, [5,10,inf], {tol=.5})

To see both outputs, use square brackets and assign the outputs to variables:

[Rp,Cl=Residue(sys, [5,10,1inf], {tol=.5})

For additional information, refer to the Using Predefined Functions and
Commands section of Chapter 3 MathScript Basics. Xmath function syntax
is detailed for each function in the MATRIXx Help. For a detailed
description of how to use MathScript to define your own functions, refer to
Chapter 6, MathScript Programming.

Command Syntax

Like functions, commands operate on inputs. However, command inputs
are passed by reference and can be changed within the command.

In the MathScript language, command syntax is as follows:

command argl, arg2, ..argN, {keywords}
For examples of this syntax, refer to the MATRIXx Help Commands topic.

If you have been working through the tutorial, you might realize that
intrinsic commands have a special syntax. Syntaxes we have used are:

new partition part_name

set partition part_name

delete part_name

save "filename" var_1 var_2 var_n
load "filename" var_1 var_2 var_n

The most obvious difference is that these commands require spaces rather
than commas as separators. The whatis command reveals a fundamental
difference between these commands and other MathScript commands
(MSCs):

whatis save
save: intrinsic command

Xmath includes many intrinsic commands and functions. These commands
and functions are part of the Xmath executable.

Refer to the MATRIXx Help for descriptions of Xmath commands. For a
detailed description of how to use MathScript to define your own
commands, refer to Chapter 6, MathScript Programming.

© National Instruments Corporation 2-11 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

Graphics

Plot()

Xmath User Guide

The Xmath plot () function provides two and three-dimensional
graphics that you can manipulate interactively while they are displayed in
the Xmath Graphics window. This section introduces plot () and several
types of plots it can create.

Two additional general purpose plotting functions, uiPlot () and
plot2d(), complement the capabilities of plot (). A brief description
of these functions can be found in the Xmath Plotting Functions and
Commands section of Chapter 4, Graphics.

The plot () function creates a graph object that Xmath displays in the
Xmath Graphics window. The most complete syntax for plot () is:

graphObj = plot(x,y,z,colorindex, {keywords})

2D graphs are produced with v, or x, y as arguments, while 3D graphs
require x, y, and z. For other plot () syntaxes refer to the Using the
plot() Function section of Chapter 4, Graphics.

plot () behaves like other Xmath functions in the following ways.
Functions are discussed in Functions and Commands section.

e If no output variable name is assigned, Xmath assigns the output
(graph object) to the temporary variable ans.

e Xmath displays a graph object in the Xmath Graphics window when it
is created unless you use a semicolon as a terminator. If you create a
graph object within a MathScript, only a ? terminator causes it to
display.

* You can display a graph object with the ? terminator anytime after
creation.

* You can save and load a graph object.

Keywords

Keywords define a graph’s labeling, layout, and appearance. This tutorial
introduces basic keyword use. For a complete keyword listing, refer to
Table 4-5, or the MATRIXx Help plot topic. You can create or change
many of the features for which keywords are used interactively using the
Xmath Graphics window menus or the Xmath Palette.

2-12 ni.com

Chapter 2 JumpStart: A Tutorial

Graph Objects

plot () is the only function that outputs a graph object. Xmath creates a
graph object whenever it displays the output of the plot () function in the
Xmath Graphics window. If you specify an output variable name, Xmath
writes the contents of the Xmath Graphics window to the variable;
otherwise, Xmath writes the contents to the default variable ans. If you
suppress plot with a semicolon, Xmath writes nothing to the Xmath
Graphics window. (Other functions may display plots in the Xmath
Graphics window, for example, windowing functions such as

firwind(), but their actual function output is numeric. Only plot ()
allows you to name the contents of the Xmath Graphics window.)

You can copy, save, display, and reload a graph object like any other
variable. Additionally, it can be altered or used in a new graph if you use
the keywords keep or copy. We explore the implications of the graph
object later in the tutorial.

Working in the Xmath Graphics Window

When you use the plot function without suppressing its output, Xmath
opens the Xmath Graphics window. The following mouse actions are
defined for this window:

* To select an object, click it.

An object can be a text string, label, grid, data, and so forth.

* Double click an object to select the object and bring up the Xmath
Palette.

The palette title area (center top) gives information on the object you’ve
selected. For example, the title Xmath Palette (tics:axis line) indicates that
you’ve selected an axis line.

Different menu items and palette locations on the Xmath Palette are
enabled based on your selection. For example, if a label is selected, the Font
and Point menus are enabled, and the text color can be changed from the
palette.

» If you have difficulty selecting an object (for example, you attempt to
select a tic mark, but you keep getting the axis), then hold down the
<Shift> key while clicking.

Xmath cycles through selecting the objects closest to the cursor. A glance
at the palette title area reveals the selected object.

* Click and drag to move objects.

© National Instruments Corporation 2-13 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

Objects that you can move independently are the legend, date, time, free
text, and graphics that you create with the graph tools in the Xmath
Graphics window icon bar. You cannot move a graph and its associated plot
data, grids, labels, axis information, and so forth interactively, but you can
move the entire graph with the plot () keyword position.

Using Plot and Graph Objects

t=0:0.01:2.24;

You can plot objects in two- or three-dimensional plots.

Using 2D Plotting Capabilities

Before continuing, generate a few waveforms:

set seed = 0 # Set random seed
a = sin(logspace(1,10,15));

bl = kronecker(a,a);

b2 = bl + 0.2*random(1,225);

Here graph_b1 is a graphical object with b1 plotted versus a time
sequence:

graph_bl=plot(t, bl,{title="xy plot",x_lab="time(sec)"})?

Xmath User Guide

If you can’t see the graph, select Windows»Graphics to bring the Xmath
Graphics window to the front.

Plot b2 with specific labels and titles:

graph_b2=plot (b2, {y_lab="volts",x lab="sample",
title = "sample display",legend = "noisy wave"})?

You can plot the original noise-free waveform b1 over the existing plot by
copying the graph object graph_b1 into the current graph. In the command
area type:

both_b=plot (bl, {copy=graph_b2,line_style=3,
line_width=2,legend = "original wave", !grid})?

Figure 2-1 shows the result. b1 is plotted as a thicker dotted line added to
graph_b2, a new entry is added to the legend box, the grid is suppressed
by the ! negator, and the image is given the name both_b.

2-14 ni.com

Chapter 2 JumpStart: A Tutorial

sample display

nolsy wave
"""" orlglnal wave

volts

—-rx

0 &l 100 200 2510

sample

Figure 2-1. Overlaid Graph Objects

To see the first plot, type:
graph_bl?

You do not need to execute the previous plot call to see the graph.
graph_bl is unchanged because the keyword copy was used and the
current contents of the window were given a new name (both_b). If you
are adding to a plot and it is not important to retrieve your previous efforts,
use keep instead of copy. keep is much faster than copy.

When you make interactive changes to a graph object displayed in the
Xmath Graphics window, the changes immediately become part of the
current graph object. To preserve graph_bl as it is, rename the graph
before making changes in one of following ways:

* From the Xmath Graphics window menu bar select File»Bind to
variable and save the contents of the Xmath Graphics window to the
name gl.

* From the Xmath Commands window command line, type:

gl=plot ()

© National Instruments Corporation 2-15 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

Calling plot () with no arguments binds the contents of the Xmath
Graphics window to the output variable name.

To illustrate that changes immediately become a part of the current graph
object, go to the Options menu and turn on the timestamp and datestamp;
then move them to new locations. Double-click a text string, and then
change the font and point size using the Xmath Palette. Double-click a
curve either in the data or in the legend, and then go to the Xmath Palette
and change the marker and line styles.

Display the object graph_b1 and then the object g1:
graph_bl?
gl?

Using 3D Plotting Capabilities

To demonstrate some of the 3D plotting capabilities, create %, y, and z:
x= [-2*pi:.65:2*pil"';

yv= logspace(1l,2*pi,20);

z= sin(x)./x*(sin(y) ./y);

plot(x,-y,z,{title="A 3D Plot",xlab="the xlabel",
ylab="the ylabel",zlab="the zlabel", !grid})?

Figure 2-2 shows these results.

Xmath User Guide 2-16 ni.com

Chapter 2 JumpStart: A Tutorial

A 2D Flot

e Tvdnad
T

=4
hE' ~3 Z
ylﬂbel HQ\-] 8 '5 4- t

Figure 2-2. 3D Plot with Labels and Title

You can rotate 3D plots with the rotation tools on the far right of the menu
bar in the Xmath Graphics window. The first tool allows you to rotate in all
directions (unconstrained); the remaining tools rotate about the three
principal axes. Select a rotation tool in the icon bar, and then move to the
plotting area. When the tool is active, just the grids are shown; click and
drag the cursor until the grid is in the position you want to see, and then
release the mouse. Xmath redraws your graph in the new position.

Complete the following steps to return to the initial plot position.
1. Select View»Reset.

2. To turn off the rotation tool click the arrow (selection tool) on the far
left of the menu bar.

Using Different Plot Types

This section discusses the use of different kinds of plots: strip, polar, bar,
and contour.

© National Instruments Corporation 2-17 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

Strip Plots

The strip keyword aligns two or more waveforms in stacked graphs
sharing a common x-axis. Optionally, you can specify the number of curves
you want in each graph. (Strip plots, like all other multiple graph plots,
cannot be rotated or zoomed.) The example below plots four variables;
strip=2 specifies that each graph should contain two curves (refer to
Figure 2-3). We specify an optional 1ine_style vector with legend to
distinguish the original values of b from the absolute values.
set seed = 0 # Set random seed
a = sin(logspace(1,10,10));
bl = kronecker(a,a);
b2 = bl + random(1,100);
£=.1:0.05:5.05;
plot (t, [bl;b2;abs(bl);abs(b2)]1"', {strip=2,
title ="strip chart",line_style=[2,1],
legend=["volts", "abs"],xmax=5.1,
vlab=["bl volts","b2 volts"],xlab="time"})?

Xmath creates a single legend, and the two plots share the title and x1ab.
Strip chart data is linked; to illustrate this, select a curve in one of the plots;
the corresponding curve in the other plot is also highlighted.

strip ohart

bl wolts

b& wolts

time

Xmath User Guide

Figure 2-3. Strip Plot with Two Curves in Each Strip

2-18 ni.com

Chapter 2 JumpStart: A Tutorial

Polar Plots

Xmath can display data in polar plots (refer to Figure 2-4). For example,

r = abs(sin(0:.1:35.9));

theta = 0:1:359;

plot (theta, r, {polar, fg_color="gray2",
line_color="royal purple", line_width=2})7?

30

270

Figure 2-4. Polar Plot

Bar Plots

Xmath also has bar graph capabilities.

Bar plots can be overlaid using the keep keyword. If a variable name is not
specified, keep adds what you specify to the current contents of the Xmath
Graphics window. The results of the example below appear in Figure 2-5.

plot (10:-1:1, {bar})?
plot([8,4.5,2,6,4.5,5,1.5,2,.5,.71,
{keep, bar, !xgrid, legend}) ?

© National Instruments Corporation 2-19 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

1 D T T T T T

I Surfaoe 1]
I Surfaoe 2

Figure 2-5. Overlaid Bar Plots

Contour Plots

x= [-2*pi:.6:7]"'; y=Xx;

z=1.2 + sin(x)./x*(sin(y))';

The first graph is a 3D surface plot, with grids suppressed:

plot (x,y,z,{!grid})>?

With the keep keyword, you can overlay a 2D contour plot of the same

surface (refer to Figure 2-6):

plot(x,v,z, {keep,contour2d, !face,contour_interval =
0.5})°7

Alternatively, you can display a 3D contour plot:

plot (x,v,z, {contour3d})?

Xmath User Guide 2-20 ni.com

Chapter 2 JumpStart: A Tutorial

Figure 2-6. 3D Plot with 2D Contour

Displaying Multiple Plots at Once

The rows and columns keywords allow you to display up to 25 different
2D and 3D graphs at once. The values you assign to rows and columns
determine how the screen is subdivided. Plots are then positioned on the
screen with a combination of row and column numbers or a
graph_number. The rows and columns keywords are initiators. This
means they remain in effect until a plot call that does not contain a row or
column keyword is issued; at this point the default values rows=1,
columns=1 are reset.

The following example places four plots on the screen in two rows and two
columns. Note that you don’t need to specify row=1 or column=1; these
are default values. The result is shown in Figure 2-7.

set seed 0
h=histogram(rand(1:100), {nbins=7,noplot}) ;
plot (bl, {rows=2,columns=2, line_color="blue"})?

plot (theta,r, {polar,row=2, fg_color="gray2”,
line_color="royal purple”, line_width=2})?

plot (h, {bar,column=2, !xlab})?

© National Instruments Corporation 2-21 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

plot (x,y,z, {contour3d, xinc=4, yinc=4,!grid, graph_number=4})?

N B

Animating Plots

Xmath User Guide

Figure 2-7. Different Plot Types Positioned with row and column Keywords

Given a series of plots, the animate keyword draws each plot as fast as
possible so the progression looks like movement. For the following
example, create a vector:

anl=sin(logspace(1,10,25));
an2=anl (25:-1:1);

an3=kronecker (anl,an2?) ;

We will be looking at an3 using 100 points at a time. First, we plot the
entire vector using animate and a fixed axis (axisfix). By default, axes
are adjusted to the current plot range, so, if animate is enabled, axes may
change while plotting. In this call, axis£ix holds the axes of the current
plot (until they are changed), ensures that the plot background remains the
same, and (since the whole vector is plotted) that the plot area is not too
small for the plot.

plot(an3, {animate,axisfix,xmax=100})?

The animate keyword stays active until it is disabled explicitly.

2-22 ni.com

Chapter 2 JumpStart: A Tutorial

Use a loop to plot portions of the data while animate is enabled:

for i=1:7:524
plot(an3(1,1:1i+100))
endfor

To turn off animate type:

plot ({!animate})
Alternatively, you can use plot ({reset}) to reset all plot defaults.

If you are curious about axisfix, repeat the above example without it, and
watch the axes.

Finishing the Graphics Tutorial

The above examples show only a sampling of the options available for
plot().

For more information on plot () graphics, first ensure that animate is
switched off. Then run the graphics demo:

plot({!animate})
execute file = "$SXMATH/demos/graphics"

Also refer to the Interactive Xmath Graphics Window section of Chapter 4,
Graphics, and the MATRIXx Help Xmath, Plotting topic.

This ends the graphics portion of the tutorial. Before moving on, you
should delete the variables you created in this section:

delete *.* # Delete all variables in all partitions

Objects

Unlike most numerical tools, which only deal with matrices, Xmath
employs object-oriented programming principles. Refer to Figure 5-1 for a
full description of the Xmath object hierarchy structure. For example, the
Toeplitz matrix class is a special kind of square matrix class. It inherits all
the properties of the square matrix class but automatically takes advantage
of specific operations which can be performed more efficiently for Toeplitz
matrices.

© National Instruments Corporation 2-23 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

Strings

Xmath User Guide

Benefits from Xmath’s object-oriented structure include:

* Fewer variables to manage. A single variable can represent several
very complex pieces of data. Therefore, you don’t need as many
variable names, which simplifies variable management.

* Fewer functions. For example, a single function handles continuous
and discrete cases.

* Faster calculations. Many objects take advantage of optimized
algorithms. This is especially true of all the specialized matrix objects.
Xmath recognizes special data properties and automatically uses an
optimal method if available.

* More intuitive syntax and ability to overload operators. Overloading
means that a single operator can have different meanings when it
interacts with different objects.

e More compact user code. Because objects have clearly defined
properties, it is simpler for users to check and handle data in their
programs.

This section briefly discusses the major Xmath objects. There are examples
of how to create each one and, in some cases, examples of special
techniques with operators or indexing. The examples create unique data for
each object. Therefore, you may quit the tutorial between any of the object
discussions and restart when convenient.

A string is a set of characters enclosed in double quotes. To display double
quotes within a string you must provide two sets of quotes (""). You can
convert numbers to strings with the string () function, while the

char () function gives the ASCII character for a given integer between 0
and 255.

a "The total score is ";
b = 301;
c = a + string(b)?

¢ (a string) = The total score is 301

You can create a matrix of strings using the familiar matrix-constructor
syntax.

a = ["one", "two"; "three", "four"]

a (a square matrix of strings) =

2-24 ni.com

Chapter 2 JumpStart: A Tutorial

one two
three four

When entering strings in the Xmath Commands window command area,
remember that a single string must be complete on a line. If for some reason
you must break the string, create separate strings and append them with the
+ operator:

text="Xmath strings cannot be continued " +...
"across lines, but separate strings can " +...
"be appended with the + operator."

text (a string) = Xmath strings cannot be ...

Matrices and Vectors

This section demonstrates how to create and use matrix and vector objects.
It also shows how Xmath’s object-oriented structure improves the
computational speed of matrix operations.

Creating Matrices and Vectors

You must enclose matrix specifications in square brackets; you separate
elements in separate rows by commas and row elements, by semicolons or

line feeds:
[1,2; 3,4] # A semicolon or a linefeed
[1,2 # can separate rows
3,4]
ans (a square matrix) =
1 2
3 4
ans (a square matrix) =
1 2
3 4

A vector is a single row or single column matrix. An apostrophe (*)
transposes a vector or a matrix.

i=[1,2,3]
(a row vector) = 1 2 3
i|

ans (a column vector) =

© National Instruments Corporation 2-25 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

Xmath User Guide

Regular vectors are row vectors specified as three values in the form

start:step:end.
time=0:0.01:10

time (a regularly spaced vector) = 0 : 0.01

The logspace () function creates logspaced vectors with points evenly
spaced on a log scale. Like regular vectors, logspaced vectors are stored as

three values.

logl=logspace(1l,2,5)

logl (a log-spaced vector) = 1 : 2 (5 points)

Transposing a vector or enclosing it in square brackets expands it:

logl'

ans (a column vector) =

1
1.18921
1.41421
1.68179
2

[time]

ans (a row vector) = 0O 0.01 o0.02 0.03 0.04...

To form a vector with descending values, use a negative step:
k2=[2:-.25:1]
k2 (a row vector) =2 1.75 1.5 1.25 1

To reverse a vector, use a negative step value:
k3=k2 (length(k2):-1:1)
k3 (a row vector) =1 1.25 1.5 1.75 2

Use vectors in expressions and to define new matrices:
g=[1:3;logspace(1,20,3)]

g (a rectangular matrix) =

1 2 3
1 4.47214 20

2-26

ni.com

Chapter 2 JumpStart: A Tutorial

Matrix Index Operations
Create the matrix testm:
testm = [1:3;4:6;7:9]

testm (a square matrix) =

1 2 3
4 5 6
7 8 9

To find any element in testm, give the matrix name followed by the row
and column index in parentheses:

testm(2,3)

ans (a scalar) = 6

To find the second row in testm, use a colon (:) as a wildcard symbol in
place of the column index to denote “second row, all columns”:

testm (2, :)

ans (a row vector) = 4 5 6

To find any column in testm, use the wildcard symbol (:) in the rows
position:
testm(:,1)

ans (a column vector) =

1
4
7

To find submatrices, use vector inputs:
testm(1:2,2:3)

ans (a square matrix) =

2 3
5 6

The function £ind () allows you to find indices for matrix elements that
meet a certain criterion. £ind () returns each index in [row, column]
format.

find(testm > 7)

© National Instruments Corporation 2-27 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

ans (an index list) =

3 2
3 3

The output indicates that the elements found in the third row, second and
third columns (3,2) and (3,3) are greater than 7.

You can incorporate £ind results as a special indexing scheme to perform
an operation on only the elements meeting the criterion in £ind.
testm(find(testm > 7)) = 0

test_matrix (a square matrix) =

1 2 3
5 6
7 0 0

Xmath changed the elements greater than 7 to zeros.

Using Matrix Functions

Matrix functions take advantage of the structure of matrix objects. The
more specialized a matrix is (that is, the more properties it inherits), the
greater the computational speed improvement. For example, consider
computing the eigenvalues of a common matrix, a symmetric matrix, and a
triangular matrix of the same size (100 x 100).

The clock () function monitors elapsed CPU time. It returns the time in
seconds since clock () was last called. Therefore, you should call it
before and after the monitored process.!

rmat = random(100,100);
clock({cpu});mm = eig(rmat); clock({cpu})?

Xmath automatically uses more efficient algorithms when the matrix fits a
given structure. The above example tells how long it takes to find the
eigenvalues of a general, random (100 x100) matrix.

I clock() results depend on your machine’s configuration.

Xmath User Guide

2-28 ni.com

Chapter 2 JumpStart: A Tutorial

In the following example, you can see how long it takes with a symmetric
matrix of the same size. We use the transpose operator (') to ensure that the
matrix is symmetric:

smat = rmat * rmat';
clock({cpu}); mm = eig(smat);clock({cpu})?

eig takes even more advantage of a triangular matrix:

tmat = triu(rmat);
clock({cpu}); mm = eig(tmat); clock({cpu})?

Xmath checks object properties before computations so that it uses the
fastest algorithms and performs no unnecessary computations.

Polynomials

To create a polynomial, specify its roots with the polynomial ()
function, or specify its coefficients with makepoly:

polyl = polynomial ([1,5])
(x - 1)(x - 5)
poly2 = makepoly([1l:.7:4.5]1)

5 4 3 2
x + 1.7x + 2.4x + 3.1x + 3.8x + 4.5

The default variable name is x. Both functions have an optional string
argument that specifies the variable name. For example:

p = polynomial ([l+jay,1-jay]l,"s")

p (a polynomial) =

2
(s - 2s + 2)

Several operators and functions are defined differently for polynomials
than they are for matrices.

Multiplying two polynomials with the * operator returns the polynomial
convolution:

poly3 = polyl*polyl

poly3 (a polynomial) =

2 2
(x - 1) (x - 5)

© National Instruments Corporation 2-29 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

Xmath User Guide

When adding two polynomials, the corresponding order terms of the two
polynomials are added:

polyl+poly3

ans (a polynomial) =

4 3 2
x - 12x + 47x - 66x + 30

Similarly, when adding a scalar and a polynomial, the scalar is added to the
scalar term of the polynomial:

polyl+1
ans (a polynomial) =

2
X - 6x + 6

When multiplying a polynomial and a scalar, the output format depends on
the format of the polynomial:

polyl*2
ans (a polynomial) =
2(x - 1)(x - 5)
Use roots() to find the roots of a polynomial:
roots (poly3)

ans (a column vector) =

u v R R

Use polyval () to evaluate the polynomial with a scalar value for the
variable:

polyval (poly2, 3)

ans (a scalar) = 489.3

Indexing into a polynomial is similar to indexing into a matrix. To find and
change the coefficient of the third element, type:

poly2(3)
ans (a scalar) = 2.4
poly2(3) = 9

2-30 ni.com

Dynamic Systems

Chapter 2 JumpStart: A Tutorial

poly2(a polynomial) =

5 4 3 2
x + 1.7x + 9% + 3.1x + 3.8x + 4.5

Xmath represents a dynamic system as either a transfer function or a
state-space system. A transfer function consists of two polynomials; a
state-space system is represented by four matrices. Transfer functions can
only represent single-input single-output (SISO) systems, but state-space
systems can represent multiple inputs and output (MIMO) systems. Objects
for both types of systems can be either discrete or continuous, depending
on the value of the object’s sample rate.

Transfer Functions

A transfer function is built from numerator and denominator polynomials:

num makepoly ([1,-163,5.5]);
den = makepoly([1,2.7,5.6,3.5,8.1]);

Use system to create the transfer function:
sysTF = system(num, den, {dt = 1})

sysTF (a transfer function) =

2
x - 163x + 5.5

x + 2.7x + 5.6x + 3.5x + 8.1

initial delay outputs
0

0

0

0

Input Names

System is discrete, sampling at 1 seconds.

© National Instruments Corporation 2-31 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

Xmath User Guide

If you do not wish to specify a sampling rate, you can use the shorthand

form: sys=num/den.

To extract the numerator or denominator of a transfer function, use

numden:

[n,d] =numden (sysTF)

n (a polynomial)

2
X - 163x + 5.5

d (a polynomial)

4 3 2
X + 2.7x + 5.6x + 3.5x + 8.1

State-Space Systems

To create a state-space system of the form

X = Ax+ Bu
Cx + Du

y

use system with four matrices as inputs:

ha=(1,0,0,.1; 0,-.2,.21,0; 0,1,0,0;-.2,0,0,11;

hb=[.5,0,0,.31";
he=[1,0,1,0];
hSS=system (ha, hb, hc, 0)

hSS (a state space system) =

A
1 0 0 0.1
0 -0.2 0.1 0
0 1 0 0
-0.2 0 0 1
B
0.5
0
0
0.3

2-32

ni.com

Chapter 2 JumpStart: A Tutorial

o O ©o o

System is continuous

Notice that Xmath creates continuous systems by default. To create a
discrete system, include the keyword dt, which sets the sampling period in
seconds:

hssd=system(ha,hb,hc,0, {dt = .1});

To extract the state and initial condition matrices from a system, use abcd:
[A,B,C,D,X0] = abcd(hsSsd)

The functions sys2sns () and sns2sys () might interest you:
* sns2sys() converts a system from MATRIXXx to an Xmath object.

* sys2sns() converts an Xmath system object to MATRIXx format.

Analyzing Dynamic Systems

You can display the time domain response of a system using the functions
in Table 2-2.

Table 2-2. Time Display Functions

impulse() Computes the impulse response of a system.

initial() Computes the unforced response of a system to a given initial condition.

step() Computes the step response of a system.

defTimeRange () Computes a default time vector for simulations.

sys*u() Performs a general simulation, where u is a PDM representing system
input.

© National Instruments Corporation 2-33 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

These functions return parameter dependent matrices (PDMs), our next
topic. For more on these functions, refer to the MATRIXx Help.

bode, nyquist, and nichols display frequency-domain response in
several standard formats. For example, to see the bode plot of the
continuous-time system we created earlier, type:

bode (hSS) ?

Parameter Dependent Matrices

Xmath User Guide

A parameter-dependent matrix (PDM) is a collection of same-size
matrices, with a vector (called the domain) attached; each matrix depends
upon a corresponding element of the domain vector. A PDM stores
matrices as functions of an independent element parameter (the domain). A
PDM is often a matrix of a physical parameter, such as time, frequency, or
speed.

PDMs are built from string, vector, and matrix objects using the pdm ()
function. For example, the following PDM stores data in a legible compact
format:

d=[95:991;

AR=[60.8; 59.3; 54.4; 50.7; 50.
Co=[41.2; 41.7; 36.3; 35.7; 35.
OR=[46.1; 47.5; 47.6; 46.7; 48.
WA=[45.4; 45.6; 44.0; 43.2; 43.
states=["AR","CO","OR", "WA"]
eJobs=pdm([AR,CO,0OR,WA],d, {domainName="Year", columnName
s=states})

O J W J

eJobs (a pdm) =

96 59.3 41.7 47.5 45.6
97 54.4 36.3 47.6 44

98 50.7 35.7 46.7 43.2
99 50.7 35.3 48.7 43.9

The advantage of storing the data, names, and domain together is clearer
when we create a plot such as Figure 2-8.

g2=plot (eJobs, {strip,ymax=65,ymin=32,ylab="THOUSANDS",
line_color = "mulberry", line_width = 2})

2-34 ni.com

Chapter 2

JumpStart: A Tutorial

LR

Bs T T T T T Bs T T
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
B[™ag---r--a--- I i BIf--- |
1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
BEF---1- - - - - 1- == | 1 BEF---1 1
1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
éﬁﬂ————:———:————l——- : : 5|]----: :
= 1 1 1 \ ' | |
(7)) 1 1 1 1 1 1 1
g o : . : :
E 1 1 1 1 1 1
45 -m e n koo : -] s :

1 1 1 1 1 1
1 1 1 1 1 1 1
o | ‘ ‘ ‘
A==y | : Ay --- :
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
B/r--m--y--am--] 3 \ T | 5 | T :] Rl
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

95 96 97 S8 9 oS5 S8 9F SR S5 o5 S8 97 9B 99 B85 BB oY 9% 98
Year ‘ear Year Vear

© National Instruments Corporation

Figure 2-8. PDM Plotted with the strip Keyword

PDM:s are commonly seen as outputs from functions, such as those listed
in Table 2-2. If you calculate the impulse response and step response of
hssd (the discrete state-space system created earlier), the responses are
formatted as PDMs. The output is too long to show here, but you can view

it in the log area:

hIm=impulse (hSSsd) ;
hSt=step (hssd) ?

It is convenient to store these related PDMs together in another PDM:

hPdm=pdm ([hIm;hSt], {rowNames=["Impulse", "Step"]1})?

Plot the responses separately with the strip keyword:

plot (hPdm, {strip})

shows the results.

2-35

Xmath User Guide

Chapter 2 JumpStart: A Tutorial

Impulse

-11
Al
Bl
41
21

Step

-210
-410
-B1
-8l

T T T T T T
---------- S S S SR S S SO I
---------- S S S SIS SO S,
i 5 1 15 20 o5 30 35

Xmath User Guide

Figure 2-9. PDM Impulse and Step Responses Plotted Separately

The size of a PDM is given as rows X columns X length of the domain:
size (hPdm)

ans (a row vector) = 2 1 303

Portions of a PDM are accessible with indexing, similar to matrices. Extract
the fifth dependent matrix from hpdm:

hPdm (5)

ans (a pdm) =

|
+
0.4 | Impulse 0.5594
|
+

Step 2.1394

To look at only the impulse responses, type:
hPdm(1,1)

ans (a pdm) =

2-36 ni.com

Chapter 2 JumpStart: A Tutorial

0 | Impulse O
0.1 | Impulse 0.5
0.2 | Impulse 0.53
0.3 | Impulse 0.55
0.4 | Impulse 0.5594
0.5 | Impulse 0.5578

To perform a general simulation, you can multiply a system by a PDM.
Here we use freqg to create a PDM.

u=freqg(hSSd, deftimer (hSsd)) ;
Y=hSSd*u;
plot (Y)

For more detailed information on PDMs, refer to the Parameter-Dependent
Matrix (PDM) section of Chapter 5, Data Objects and Operators.

Lists

A list object is a named collection of elements (objects). A list can contain
varied objects (including other lists). It is one-dimensional, storing your
specified objects regardless of dimensions or properties. Use the 1ist ()
function to create this object:

set seed 0

scalarl = 1;

stringl = "This is a string object";

poly = makepoly([1,2]);

matrix = random(5,5);

a_list = list(scalarl,stringl,poly,matrix)

a_list (a list with 4 elements) =

1:
1

2:
This is a string object

3:
x + 2

4:
0.211325 0.756044 0.000221135 0.330327 0.665381
0.628392 0.849745 0.685731 0.878216 0.068374
0.560849 0.662357 0.726351 0.198514 0.544257

© National Instruments Corporation 2-37 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

MathScript

0.232075 0.231224 0.216463 0.883389 0.652513
0.307609 0.932962 0.214601 0.312642 0.361636

A list containing four objects has a size of 4. To extract an element, specify
its order in the list:
a_list(3)

ans (a polynomial) =

X + 2
a_list (1)

ans (a scalar) = 1

MathScript is the language of Xmath. Every instruction you have typed into
the Xmath Commands window so far is a MathScript statement. With a
MathScript script file, you can create and define a MathScript function,
command, or object as MathScript entities, which are immediately
available for use without special linking or compiling. Chapter 6,
MathScript Programming, describes how to create, define, and debug
MathScript entities.

MathScript Features

MathScript provides the following features:

* Familiar programming constructs such as for and while loops and i £
statements.

e Nested expressions:
x = 20 * log(abs(l + 2 * jay))

* Functions to obtain interactive user input, such as getline() and
getchoice().

UserIn=getline("Enter the number of states now:")

vote=getchoice ("Choose or Lose", ["Repub", "Demo", "Inde"])

Xmath User Guide

* Functions to determine whether objects possess certain properties

(check and is). For example:

a = [1,0;0,1]
check(a, {identity})

ans (a scalar) = 1

2-38 ni.com

Chapter 2 JumpStart: A Tutorial

These features and more programming issues are discussed in Chapter 6,
MathScript Programming.

Debugger Window (on UNIX Systems)

The MathScript Debugger window, shown in Figure 2-10, is referred to as
“the debugger.” It allows you to interactively debug MathScript. Usually
the debugger is activated because a script contains a syntax error or a
runtime error (refer to the Using the Xmath Debugger section of Chapter 6,
MathScript Programming). It also opens if you have set up a file to be
debugged. You call debug the same way for both functions and commands:

debug entity name

The debugger opens whenever the function or command is invoked. To turn
off debugging, type:

debug entity name off

When the debugger opens, the top field in the window contains the source
of the MathScript function or command you are debugging. The filename
is displayed below the menu bar. If you don’t have write privileges to the
source file, the source code may be opened read-only (not editable). The
line that is about to be executed is highlighted (unless there are syntax
errors in the function, in which case highlighting is used to identify the
error). The message area, which displays error messages that occur during
execution, is just below the source code area. You can use buttons at the
bottom of the window in lieu of debugger commands.

© National Instruments Corporation 2-39 Xmath User Guide

Chapter 2 JumpStart: A Tutorial

Xmath Debugger(Debugging)
File it ¥iew dptioss Windows

./ns_debug.msf
Line: 40

Dutput:

ordered A matrix object whose elements are the sorted elements
of data. Dinensions match those of data.

Keyword:

backwards If specified, the elements of the matrix are sorted so
in decreasing order, with the largest element at (1,1).

Remarks: If data is complex. it will be sorted by the real part of
each elerent.
H

Function ordered = ms_debug{data {baclsards})

DEFAULT backwards = 0

If !CHECK{data, {matrix, !report}) then
stat = error("Input wust be a matrix","F")
RETURN

endTf

ordered = zeros{data)

[data rows,data cols J size(data)
M]

| Inexpected input encoumtered; expected inputs such as: a semicolon, a right bra
[-] |

Next Message | Breviony Messsgs | Redisplay | Bdih fmgafd |

Herver | Haworl | Next | Go |

Rerum Set Break Set Watch End D

Figure 2-10. Debugger Window (on UNIX Systems)

Run the debugger demo. It instructs you on how to edit an MSF that
contains syntax errors. From the command area, type:

execute file="S$XMATH/demos/debuggingMS1l"

For more on the debugger window, refer to the Using the Xmath Debugger
section of Chapter 6, MathScript Programming.

Xmath User Guide 2-40 ni.com

Chapter 2 JumpStart: A Tutorial

GUI Tools

Xmath offers a programmable graphical user interface (PGUI or GUI). For
an introduction to the GUI, and instructions on starting and using the GUI
demos and tools, refer to Chapter 9, Graphical User Interface.

To see some examples of GUI tools, type:

guidemo

To exit Xmath, refer to the Exiting Xmath section of Chapter 1,
Introduction.

Conclusion

This concludes the Xmath tutorial.

As you worked through the tutorial, you’ve become acquainted with the
concepts and procedures necessary to use the basic Xmath features
(described in Chapters 3 through 5). Chapters 6 through 9 discuss
advanced topics:

» Chapter 6 MathScript Programming, tells how to write your own
functions and commands using MathScript.

» Chapter 7 MathScript Objects, tells how to create your own
MathScript object.

* Chapter 8 External Program Interface, tells how to link C, C++, or
FORTRAN files to Xmath, and also details how to call Xmath from an
external program.

* Chapter 9 Graphical User Interface, tells how to program your own
graphical user interface.

© National Instruments Corporation 2-41 Xmath User Guide

MathScript Basics

MathScript is the language of Xmath. MathScript contains many of the
facilities common to high-level programming languages, such as logical
expressions loops, comments, conditional statements, nested functions and
recursion.

MathScript Statements

Assignments

A statement is the smallest independent executable instruction. Here are
some examples of statements:

x =7

vy = ones(3,3)

who

set format long

The first two statements are examples of assignments. The last two
statements are examples of commands.

The most common MathScript statement is an assignment. An assignment
is a statement that sets a variable to a specific value defined by the
expression on the right-hand side:

variable = expression

* If an expression output is assigned to a variable, use the question mark
(?) terminator to display the result. To suppress the output, use the
semicolon (;) terminator.

* A carriage return is also a statement terminator. If set display is on,
a return displays the result; if set display is off, nothing is
displayed. Refer to Table 3-7 for more information.

* Variable types do not have to be declared before assignment.

* Objects can be completely or partially modified using assignment
statements combined with indexing. For example:

vy = [100,21:24]
y (a row vector) = 100 21 22 23 24

© National Instruments Corporation 3-1 Xmath User Guide

Chapter 3 MathScript Basics

Rules for Names

Expressions

Xmath User Guide

y(l) =0
y (a row vector) = 0 21 22 23 24

Variable names consist of alphanumeric characters and internal
underscores (_) only.

* Name components must be less than 32 characters in length. For
example, variable b in partition a (a.b) could have a total of 31
characters.

¢ Names should not start with an underscore, because initial-underscore
names are reserved for internal use.

e Variable and partition names are case sensitive. The following
variables represent two partitions and four different variables:

a.b; A.b; a.B; A.B;
You can create a variable with the same name as a predefined Xmath

function or command; however, you will be unable to access that pre-defined
feature until you delete the variable.

An expression is a combination of variable names, functions, and operators
that evaluate to a single Xmath object. The Xmath object can then be
assigned to a variable name. For example,

(1l+sin(pi/4)) "2 # An expression

Expressions can be used as arguments to other functions or operators.
cep = abs(fft([1,-4,8,-2]))

The functions exist () and check() are exceptions. These functions
require a variable name as an argument.

Logical Expressions

In MathScript, a nonzero value (with the exception NAN and Inf) is
considered TRUE. All logical operators return 0 if FALSE and 1 if TRUE.

x = 3; x < (3 * cos(0))

ans (a scalar) = 0

Logical operators are “short-circuited.” For example, expl | exp2 | exp3
will return 1 if expl is nonzero without evaluating exp2 or exp3.

3-2 ni.com

Chapter 3 MathScript Basics

Therefore, careful ordering of subexpressions in logical expressions may
speed up execution.

Table 3-1 lists all MathScript logical operators. For a list of all Xmath
operators, refer to Table 3-3.

Table 3-1. MathScript Logical Operators

Operator Effect
< Elementwise less than.
> Elementwise greater than.
<= Elementwise less than or equal.
>= Elementwise greater than or equal .

== Elementwise equal.

<> Elementwise not equal.

& Elementwise logical and.

Elementwise logical or.

! The logical negator (!) appears directly before an
expression. For example, ! expr.

Logical Expressions with Matrices

When used with logical operators, two matrices must be equal in size; the
output will be a matrix containing the element-by-element comparison
results.

= [1,0;1,1);b = eye(2,2);

a
a &b

ans (a square matrix) =

1 0
0 1

ans is a matrix with 1 in the locations where a and b are the same.
a b

ans (a square matrix) =

© National Instruments Corporation 3-3 Xmath User Guide

Chapter 3 MathScript Basics

Operators

Xmath User Guide

You can also make logical comparisons with the functions check () and
is (), which return a logical value. The functions a1l (), any(), and
none () can also be used to return a logical value. Refer to the Object
Query Functions section of Chapter 6 MathScript Programming, or the
MATRIXx Help for more details.

An operator is a nonalphanumeric symbol that operates on its operand(s).
Operators with only one operand are called unary operators. Operators
with two operands are called binary operators. <hypertext>Table 3-2
shows how operators are used in expressions.

Table 3-2. Uses of Operators in Expressions

Format Type Example

operator operand Unary (prefix) -x

operand operator Unary (suffix) x!

operandl operator operand2 | Binary X+y

Table 3-3 lists the operators available in Xmath and their intrinsic
functions; overloaded functions are described in other chapters.

Table 3-3. Xmath Operators

Operator Effect

+ addition

- subtraction (and the unary operator negation)

* multiplication
/ right division, A/B solves the equation X*B=A
\ left division, B\A solves the equation B#X=A

transpose (unary suffix)

Hermitian (complex conjugate) transpose

element wise multiplication

./ element wise division (left divided by right)

A element wise division (right divided by left)

3-4 ni.com

Chapter 3

Table 3-3. Xmath Operators (Continued)

MathScript Basics

Operator Effect
~ raise to a power
or
**
~ raise elements to a power
or
ko
L Kronecker product
.. Kronecker right division
A Kronecker left division
& logical AND
logical OR
! logical NOT (unary operator)
< less than
> greater than
<= less than or equal
>= greater than or equal
== equal
<> not equal
= assignment
() indexing, precedence, and function reference
{1} keyword delimiters in function references

matrix construction and concatenation

Operator behavior depends on the objects involved. Special behaviors are
discussed in detail in the object descriptions in Chapter 5, Data Objects and
Operators.

© National Instruments Corporation

Xmath User Guide

Chapter 3 MathScript Basics

Partitions

Operator Precedence

You can control operator precedence with parentheses. In Table 3-4,
operators are ordered with precedence from highest to lowest (reading from
top to bottom).

Table 3-4. Operator Precedence

high non-—associative v
left—associative KRN Fx A
l left—associative /N Lx L/

non—associative | unary + unary -

l left—associative + -

left—associative

l left-associative > < >= <= == <>
left—associative &
low left—associative

jobl.R

1l
]

job2.R = jobl.R

Xmath User Guide

All variables reside in partitions. main is the default partition. You do not
need to specify the partition name of a variable if it resides in the current
partition; just call it by its local name.

Partitions must be created using new partition before any variables may
be placed in them. To create or use a variable in another partition, you must
specify the partition name. Partition names must meet the naming rules in
the Rules for Names section. For example,

Assign R in the current partition to the
variable R in partition jobl.

From the current partition, perform
an assignment between two other
partitions.

e To show the current partition, use the show partition command:
show partition

main

3-6 ni.com

Chapter 3 MathScript Basics

To list all defined partitions, type:
show partitions

Notice the s at the end.

Complete the following steps to get a better understanding of partitions.

1.

© National Instruments Corporation

main is the default partition that is created whenever Xmath is started.
If you are in main, you can create an object in partition main by

typing:

xx = 1

This is equivalent to main.xx = 1.

To create a new partition named var, type:

new partition var

You can navigate between partitions with the set partition
command:

set partition var
show partition
var

XX

xx not found.

Because xx is defined in partition main, its partition name must be
included:

main.xx? # variable from another partition
main.xx (a scalar) = 1

vy = 557 # create variable in current partition
vy (a scalar) = 55

Return to the main partition. The original main.xx is in local scope,
while yy exists in the partition var.

set partition main
XX

xx (a scalar) = 1
var.yy

var.yy (a scalar) = 55

3-7 Xmath User Guide

Chapter 3 MathScript Basics

6. A partition must be empty before it can be deleted. To delete a
partition, use the delete command. First, delete the partition
contents, then the partition itself:

delete var.* var.

Listing Defined Variables

who a*

To list all defined variables in the current partition, use the who command:

who

A single wildcard can be used with who:

List variables in the current partition
that start with a.

who otherPartition.*1 # List all variables that end in 1 in another

partition.

To list all variables in all partitions, type the following:

who *.*

Wildcards

Xmath allows the asterisk (*) and percent (%) symbols to be used as
wildcards for viewing, saving, loading, or deleting variables.

An asterisk denotes “any characters.” Used by itself, an asterisk is a
wildcard for all names. Therefore, delete * deletes all variables in the
current partition. Used with other characters, an asterisk replaces any
number of characters in that position. The percent sign replaces a single
character in that position.

a3=4; a23=1; b22=144; c23=random(a3,a23);

who* #Show variables in the current partition.
who a* #Show variables starting with a.
who *3 #Show variables ending with 3.
who %2%" #Show 3-character names where 2 is
#the second character (a23, b22, c23).

@ Note You cannot use the wildcard * twice in a pattern. For example, *sys* is not allowed,
but *sys%% is accepted.

Xmath User Guide

3-8 ni.com

Chapter 3 MathScript Basics

Variable and Partition Comments

You can attach a comment string to a variable or partition name with the
comment command.

comment main. "this is the default partition"
a=97;
comment a "the first letter of the alphabet"

¢ To retrieve the comment, use commentof ():
commentof (a)
ans (a string) = the first letter of the alphabet
commentof (main.)
ans (a string) = this is the default partition

* You can also view a variable’s comment if you invoke the Xmath
Variables window. Refer to the Xmath Variables Window section for
more information.

Permanent Variables

Permanent variables are values that have special meanings. These variables
are defined in all partitions as shown in Table 3-5.

Table 3-5. Permanent Variables

Variable Definition
Inf infinity
Jay sqrt(-1)
NaN Not a Number
eps very small number used to initialize outputs to be near zero

but not exactly zero

huge largest finite number less than Inf

null empty object

pi famous Greek number
tiny smallest possible number greater than 0
err global error status variable (set to NaN)

The name of a permanent variable or predefined function/command can be
overridden in the current partition or function/command scope, although it

© National Instruments Corporation 3-9 Xmath User Guide

Chapter 3 MathScript Basics

ans

is not recommended. When a value that has been given the name of a
permanent variable is deleted, the original definition reappears:

eps=2

n
N

eps (a scalar)
delete eps
eps?

eps (a scalar) = 2.22e-16
sin=17?

sin (a scalar) 1

sin(pi) # argument out of range
delete sin
sin(pi)

ans (a scalar) = 1.22465e-16

When a value returned from a function is not assigned to a variable name,
it is assigned to the variable ans.

sin(0.5)
ans (a scalar) = 0.479426
The value of ans is overwritten anytime the output of a function is not

assigned to a variable. Notice that the value of ans is local to the current
partition.

Xmath Variables Window

Xmath User Guide

The Xmath Variables Manager window, shown in Figure 3-1, is a graphical
interface that simplifies variable management. From this window, you can
view variable and partition information, and load and save data.

Select Windows» Variables to invoke the Variables Manager window. The
Variables Manager window lists all variables in the current partition. At a
glance you can see the variable’s type, size, and attached comments, if any.
If a variable is locked, an @ sign appears on the far left. To display a
variable, double-click on it. Numeric and string objects are displayed in the
log area of the Xmath Commands window, and graph objects are displayed
in the Graphics window.

3-10 ni.com

Chapter 3 MathScript Basics

Because the Variables Manager window is updated each time the value of
a variable changes, it is a good idea to minimize or close the window when
you do not need it. Leaving it open while executing a lengthy For orwhile
loop, for example, decreases Xmath’s execution speed.

File Edit ¥iew Format |
Load | save All | Print to File | Display | Find | |Jodify | Delete | Refresh |
Variable Name Data Type Value Size Corment
datal.a [Matrix] [...] 2x2
datal.b [Matrix] [...] 2x2
Name Size Corment
Partition: ‘ |vdata1 2 j

Figure 3-1. Xmath Variables Window (UNIX version)

Fields

The middle portion of the window is devoted to variable information.
Partition information is displayed at the bottom of the window. To view
variables in a different partition, click the Partition button, and then select
another partition from the subsequent dialog.

e Variable Name—The name of the variable.

* Data Type—For variables, displays the major type: matrix, vector,
polynomial, PDM, system, string, list, or graph.

* Value—The value of the variable.

* Size—For variables, the dimension of the object. For partitions, the

number of variables in the partition. Refer to the size topic of the
MATRIXx Help for more information.

* Comment—Displays the comments attached to the partition or the
variables. You can scroll to see lengthy comments for variables, but
you may need to resize the Variables Manager window to see a lengthy
partition comment.

* Name —The name of the partition.

© National Instruments Corporation 3-11 Xmath User Guide

Chapter 3 MathScript Basics

Xmath User Guide

Menus

The Variables Manager window provides several pull-down menus with
many functions. Some of the most common functions on the menus are also
available from buttons immediately below the menu bar.

File—Allows you to save and load variables. For an explanation and
an example of how to use the file selection dialog box, refer to the
Specifying Directory Pathnames and Filenames section of Chatper 1,
Introduction. The 1oad command accepts data saved from Xmath or
MATRIXXx.

If you want to load data that has not been created by the above
applications, go to the command area in the Commands window and
use the read command. read can place part or all of a data file into an
Xmath matrix variable. Refer to the Reading Non-Xmath Data Files
into Xmath section for more information. save and 1oad operations
can also be accomplished from the command area of the Commands
window. Refer to the Saving and Loading Data section for more
information.

The File menu also allows you to print and perform standard window
operations.

Edit—Lets you perform various editing functions for the partition or
variable.

Copy, Rename, and Modify Data operate on a selected variable;
notice that wildcards are not allowed here. Modify Data also allows
you to lock or unlock a variable.

Delete removes the selected variable, and Undelete retrieves the
last deleted variable.

View—Controls the order in which variables are listed. By Name
displays variables in case-sensitive alphabetical order from top to
bottom. By Date (the default) displays variables in the order created.
The latest variable is shown at the bottom of the list. By Size shows
variables sorted by dimension from top to bottom. By Type shows
objects grouped by alphabetized type.

Format—Allows you to set the format of the Value field for variables.

Options—Provides a Find function along with select and deselect
functionality.

Find searches the current partition for the specified variable, and lists
the result. A single wildcard is allowed in the find pattern. To find the
specified variable in all partitions, select Edit»Find and specify the *
wildcard in place of the partition name in the Pattern field. For

3-12 ni.com

Chapter 3 MathScript Basics

example, to find the variable a in all existing partitions, specify the
pattern. * . a.

Punctuation

MathScript has special uses for the ?, ;, ..., #, and . characters. These are
illustrated in Table 3-6.

Table 3-6. Punctuation Mark Usage

A question mark is a statement terminator. When placed after a numeric or string object,
the value is displayed in the log area; when placed after a graph object, the graph is
displayed in the Graphics window.

y = eye(3,3)?x=y/2;

y (a square matrix) =

1 0 0
0 1 0
0 0 1

Interactively, the default display behavior, which can be changed with set display, isto
display the output of all assignments and expressions not terminated by a semicolon. If this
is the behavior, the question mark is only needed as a separator. If set display is turned
off, output is suppressed unless a question mark is used. Refer to Table 3-7.

A semicolon () disables display to the log area, and acts as a separator or terminator. A
semicolon disables display regardless of whether set display is on or off.

x = 1:3:10; x'

ans (a column vector) =

1
4
7
10

© National Instruments Corporation 3-13 Xmath User Guide

Chapter 3

MathScript Basics

Table 3-6. Punctuation Mark Usage (Continued)

Anellipsis (. . .) is a continuation symbol that allows an Xmath statement to span multiple
lines:

plot

(rand(1,50), {title="Testgraph", line_style=1})

Ellipses are not required if a line ends with a comma, or an operator:

plot (x,vy,z,{x _lab="Hello",y_lab="Goodbye",

z_lab="Leave town before sundown!"})

However, you cannot continue all commands, even if you use the ellipsis. For example, you
cannot split an output assignment; thus, the following multiple line entry results in an error:

[blocknr=selectedblocks, sbname=name,
sbin=inputs, sbinname=inputname,
sbout=outputs, sboutname=outputsignal] = querysuperblock() ;

You can split this example input before or after the equal sign (=) but nowhere else.

A pound sign (#) comments out everything to the right on a single line. To comment
multiple lines of text, surround them with #{ }#.

#Comment a single line
#{You can comment
multiple lines}#

Iterative Conditional Statements

In MathScript, For and while loops have the syntax shown in Figure 3-2.

ForLoop Whik Loop
For wark ble = expression While expresson
o0 rnands oMz nds
L] L]
L] L]
L] L]
andFar end il

For wariabk =recior, cormands; EndFor

Whie expresson, command ; endWhile

Figure 3-2. For and While Loops

Xmath User Guide 3-14 ni.com

Chapter 3 MathScript Basics

If statements in MathScript have the syntax shown in Figure 3-3.

If & xpression
commends
dzf axpraszion
commands
d s
commands
and|f

If mlafion, com mands; endlf

Figure 3-3. If Statements

Note that end can be used in place of endFor, endwhile, or endIf.

Using Predefined Functions and Commands

To determine the origin of a function or command use the whatis
command:

whatis freq

freq : intrinsic function

whatis bode

bode : ISI function (path/bode.xf)

whatis build

build: intrinsic command

© National Instruments Corporation

Entities referred to as National Instruments functions and commands
are written in MathScript. You can view the National Instruments
function and command MathScript source in the location returned by
whatis, as shown in the Previous Example.

Intrinsic functions and commands are written in C++ and built into
Xmath by National Instruments; you cannot view this source.
Chapter 6, MathScript Programming, describes how to use MathScript
to define your own functions (MSFs) and commands (MSCs). The
characteristics of Xmath objects are also intrinsic; Chapter 7,
MathScript Objects, describes how to use MathScript to define your
own objects (MSOs).

3-15 Xmath User Guide

Chapter 3 MathScript Basics

Command and Function Calling Syntax

The rules described in this section are general; they apply to both intrinsic
functions and commands and MathScript functions and commands.

* The names of functions, commands, and keywords are case insensitive.

¢ Function and command names can be abbreviated to minimum of four
letters, or the minimum number of characters that uniquely identify the
name.

For example:
cova([l,2;3,41);
t = makep([1,2,3,4]);

covariance() can be called by specifying the first four characters,
while makepoly () mustbe abbreviated to five characters (because it
conflicts with makematrix()):

* Function inputs, keywords, and outputs are separated by commas.

[Ke,ev,P] = estimator (Sys, Qxx,Qyy)

Aliases

Names or strings can be aliased to a shorter string with the alias
command. Refer to the Abbreviating Command Names (alias and unalias)
section for more information. Then you can refer to the name or string by
its alias. For example:

alias ef execute file
alias ts title="TOP SECRET";plot (A, {ts})

Input Arguments

* The syntax for calling intrinsic commands and MathScript commands
is slightly different. Inputs for MathScript commands are separated by
commas, similar to MathScript functions.! For example:

xgraph t, {tgraph, average}

The majority of commands supplied with the Xmath Core are intrinsic,
(refer to the Using Predefined Functions and Commands section) and the
arguments are separated by spaces:

save "filename" a b c

' On the other hand, SystemBuild SBA commands are all written in MathScript, and use this syntax exclusively.

Xmath User Guide 3-16 ni.com

Chapter 3 MathScript Basics

Use the syntax shown in the MATRIXx Help when in doubt.

* Functions and commands cannot be called with fewer than the required
number of input arguments, or more than the maximum number of
inputs, as specified in the syntax shown in the MATRIXx Help.

Keywords
» Keywords are optional and case insensitive. Keywords must be placed
inside curly braces, { }, but the order is not significant.

* A value can be assigned to a keyword. Keywords with no value
assigned are given Boolean values.

For example, the following calls give an identical result:

g=plot (x, {legend, !grid})?
g=plot (x, {legend=1,grid=0})?

If a keyword is specified but not assigned to an expression, its value is set
to 1. This is useful for Boolean keywords, because 1 is interpreted as
TRUE. Preceding a keyword with the negation operator (!) causes its value
to be set to zero, or logical FALSE. The plot keywords specified previously
display a legend and no grid lines.

* Expressions can be used as arguments to keywords.

t = plot (x, {x_max = (4 * 256), x_lab="time"})

Single and Multiple Output Arguments
* Asdiscussed in the ans section, if no output variable is specified, the
output is assigned to the default variable ans.

* To view and assign multiple function outputs, an output name must be
specified in square brackets on the left side of the equation for each
output needed.

[T,S] = schur(d);

e If functions return multiple arguments, the output arguments will be
matched left to right. Consider the function size:

[outputs, inputs, states] = size(aSystem)

If a multiple output function is called with a single output name, the
output will take the value assigned to the leftmost output according to
the function syntax.

X = size(aSystem) # returns outputs
[x,xx] = size(aSystem) # returns outputs, then inputs

© National Instruments Corporation 3-17 Xmath User Guide

Chapter 3 MathScript Basics

* You can skip specific output arguments. To do this, use commas as
placeholders.

[,,states] = size(aSystem)

* Functions cannot be called with fewer than the required number of
input arguments or more than the maximum number of outputs, as
specified in the syntax shown in the MATRIXx Help.

Refer to the Variable Arguments section of Chapter 6, MathScript
Programming.

Operating System Interface

The oscmd () function lets you use operating system commands while in
the Xmath environment. The output of the operating system command is
displayed in the Commands window log area. For example:

oscmd ("1ls") # UNIX
oscmd ("dir") # Windows

The return value of oscmd () is the exit code of the operating system
command. For UNIX, if the command passed to oscmd () is
backgrounded with &, the return status is 0, not the execution status of the
background command. This behavior is consistent with UNIX calls.

Manipulate and Show Current Directory

The Xmath command set directory defines the default working
directory. Here’s how to change this directory:

show directory # Show current working directory.
/home/usr/xmath

set directory "/home/projX"
save X y z "3dTest.ms"

To set the directory through a dialog box, select File»Set Directory.

Saving and Loading Data

Xmath User Guide

Xmath provides commands for reading data files and writing Xmath
objects in files. One pair of commands, SAVE and LOAD, works directly on
Xmath objects and files. To increase the flexibility of the interface, the
commands PRINT, READ, and the function fprintf () work with a
wider variety of file formats.

3-18 ni.com

Chapter 3 MathScript Basics

The savE command writes Xmath variables to a file if entered without
arguments:

save

All variables in all partitions are written to the binary file save . xmd, in the
current working directory. This is equivalent to selecting File»Save All.

The LoAD command without arguments loads save . xmd from the current
working directory:

load

Alternatively, selected objects can be saved and loaded, and you can specify
a different filename:

a=1:1:10; b = "this is a test";c = 55;

Save a and b in file mysave . xmd:

save a b "mysave"; b = 27000;

Save b and c in file saveagain.xmd:

save b ¢ "saveagain"
delete *

load b "mysave"

b

b (a string) = this is a test

load b "saveagain"
b

b (a scalar) = 27000

The extension xmd is appended to the filename unless you specify a
different extension.

Objects with the same names as objects in the loaded file are overwritten.
For example:

a = 1:1:10;

aa = "this is a test";

save

aa = 55

aa (a scalar) = 55

load

aa

aa (a string) = this is a test

© National Instruments Corporation 3-19 Xmath User Guide

Chapter 3 MathScript Basics

The data is saved in Xmath binary format by default. Alternatively, the data
can be saved in an Xmath ASCII, MATRIXx binary, or MATRIXxASCII
(FSAVE) format.

save "mysave" {ascii} # Xmath ASCIT
save "mysave" {MATRIXx} # MATRIXx binary
save "mysave" {MATRIXx, ascii} # ASCII

Refer to the SAVE and LOAD topics in the MATRIXx Help for more
information. For information on how to save and load files in Xmath format
without starting Xmath, refer to the LNX and UCI Functions section of
Chapterc 8 External Program Interface.

ASCII Versus Binary Considerations

Format selection (ASCII or binary) is a tradeoff between loading speed and
portability.

Compared to the ASCII format, the binary format loads faster in Xmath.
The larger the data file, the more noticeable the speed advantage will be.
On the other hand, the binary format is typically larger in size and is not
portable across different Xmath platforms. For example, a data file created
on Sun OS will not be usable on Windows NT. Furthermore, a binary data
file must be transferred as binary, for example, through the binary mode in
FTP.

Before you send a binary data file through email, you must first encode the
file with uuencode (or an equivalent mail encoder), and the recipient of the
email can then use uudecode to recover the original binary file.

The ASCII format is fully portable. An ASCII format save file can be
transferred to any Xmath platform with NFS, FTP, or email. However,
some email gateways have restrictions on the length of lines of the email
content. For such systems, the save file, even though it’s ASCII, should be
treated as a binary file for the purpose of email transmission as mentioned
above. Again, this requirement is the same for non-Xmath files that contain
long lines.

Saving Data in Non-Xmath Formats

Xmath User Guide

print
The PRINT command outputs Xmath data to a file.

a=1[1.1,2.2,3.3;4.4,5.5,6.61;
print a file="print.tst"
oscmd ("more print.tst") #UNIX

3-20 ni.com

Chapter 3 MathScript Basics

ans (a scalar) = 0
If a file of the same name exists, it will be overwritten.

fprintf()

Using the same conventions for formatting as the C language routine

fprintf(), the fprintf () function converts numeric values to a
string representation for display, and writes them to an external file. For
example:

N = 3;

s=fprintf("fpr.asc","%d Laws of Motion"n",6N)

where n is the newline escape character sequence. Refer to the Special
Characters in Strings section of Chapter 5, Data Objects and Operators. If
an fprintf () call uses a filename that already exists, the output will be
appended to the existing file:

s=fprintf ("fpr.asc","%d Laws of Thermodynamics"n", N)

@ Note You can use the keyword reset to specify that the output file (if it already exists)
be truncated.

Print out the contents of the newly created file to the log area:

oscmd ("more fpr.asc") # UNIX
oscmd ("type fpr.asc") # Windows
fpr.asc

3 Laws of Motion
3 Laws of Thermodynamics

ans (a scalar) = 0

Refer to the MATRIXx Help for more information about PRINT and
fprintf().

© National Instruments Corporation 3-21 Xmath User Guide

Chapter 3 MathScript Basics

Reading Non-Xmath Data Files into Xmath

The read () function reads data files of binary numbers or ASCII text
files into an Xmath matrix. The syntax for read () is:

matrix=read(filename, out_rows,out_cols, type, seek)

read() can be called with just the filename argument, in which case the
entire content of the file is read into an Xmath string value.

Refer to the read topic of the MATRIXx Help for more examples.

MathScript Environment

The SET, SHOW, GET, and REMOVE commands allow you to customize the
MathScript environment. The SET command affects many settings,
including data output format, and random distribution. Commands such as
sHow and REMOVE and the function get () support other utilities for
displaying current variables and resetting conditions.

Changing Environment Settings

Xmath User Guide

Certain aspects of the MathScript programming environment can be
modified using the set command. For example, SET format changes the
numerical output format:

x = 0.123456789012345678907
X (a scalar) = 0.123457

set format longe
x

x (a scalar) = 0.1234567890123457e-01

set format shorte
x

X (a scalar) = 1.234578e-01
set echo on
show directory

/disk/math/test

Table 3-7 is a list of variables that SET controls.

3-22 ni.com

Chapter 3 MathScript Basics

Table 3-7. Environment Variables Controlled with SET

Variable

Effect

autocompile

Sets automatic compilation on/of £ for user-defined MSFs and MSCs.
Refer to the MathScript Program Compilation and Execution (.xf, .xc)
section of Chapter 6, MathScript Programming. Default is On.

break

Use from within the Xmath debugger to set a breakpoint at a specified line
number. Refer to the Using the Xmath Debugger section of Chapter 6,
MathScript Programming.

buffering

Sets text buffering on/off for output to the log area. Default is O£ £. By
default, Xmath sends output to the log area as soon as it is available. If you
are looking for maximum possible speed, SET BUFFERING ON.

commanddiary

Records command input in the file you specify. Refer to the Recording an
Xmath Session (Diaries) section.

debugonerror

Determines whether or not a script that contains a runtime error will be
debugged. Default is On. Refer to the Using the Xmath Debugger section of
Chapter 6, MathScript Programming.

directory

Sets the working directory.

display

When in interactive mode, if display is set to On, the result of an
assignment is displayed to the log area unless a semicolon (;) is used to
suppress the output. If display is set to Of £, assignment outputs are not
shown unless a question mark (?) is used.

When a MathScript file is executed, the interactive display setting is
ignored. Function outputs, including plot output, are not shown unless the
question mark (?) terminator is used in the MathScript.

Default is On.

distribution

Sets the distribution type for the function random(). Options are
uniform and normal. Default is uniform.

echo

Sets on/off echoing of contents of executed MathScript files to the
Commands window log area, or the Graphics window, as the case may be.
Refer to the Echoing an Executable File section.

If you want a function output to be displayed upon execution, including plot
output a ? must be used in the file, and echo must be on when it is executed.

Default is Of £.

© National Instruments Corporation 3-23 Xmath User Guide

Chapter 3

MathScript Basics

Table 3-7. Environment Variables Controlled with SET (Continued)

Variable

Effect

format

Sets numerical display output format. Choices are: compact,
engineering, fixed, long, longe, scientific, short, and shorte
fixed sets the number of decimal digits in a floating point number to the
value defined with set precision (see precision below). Default is
compact.

partition

Sets the working partition. Refer to the Partitions section. The default for a
new Xmath session is main.

path

Sets a search path for user-defined MSFs and MSCs. Multiple set path
commands may be issued.

pause

Sets pause to on/of £. If pause is set to of £, the pause command is
ignored. Default is on.

precision

Specify an integer representing the number of decimal digits. This number
affects variable display when set format fixed is specified. Most
machines cannot display more than 15 or 16 digits.

seed

Specify an integer to be the random seed. The random seed is reset to O at
the beginning of each Xmath session. To find the current seed, use show
seed or get ({seed}).

sessiondiary

Record Xmath inputs and outputs in a file. Refer to the Recording an Xmath
Session (Diaries) section.

timestamp

Turn on/of £ variable timestamping whenever a variable is changed or
modified. Turning timestamp off can save computational time when
variables used in a loop. Default is On.

uiupdate

Turn on/of£ variable and partition updating whenever a variable is
changed or modified. Turning uiupdate off can save computational time
when variables used in a loop. Default is On.

watch

Use within the debugger to set a watchpoint for the named variable.

Xmath User Guide

The REMOVE command cancels or deletes environmental settings, such as
path, sessiondiary, or commanddiary to cancel or delete the function.
REMOVE fills this need:

remove commanddiary

3-24 ni.com

Chapter 3 MathScript Basics

To check the current setting of any SET parameter, use the SHOW command:
show seed

1.11121e+09

The function get () can be used to return a current setting that can then
be assigned to a variable.

working_dir = get({directory});
working dir

current_dir (a string) = /home/xmath/data

Expanding Pathnames in MathScript Files

Commonly, pathnames are represented by environment variables. You can
expand them within a MathScript file in several different ways. For
example:

set directory = SENVIR_ VAR

works because directory is a specific option designed for the SET
command. On the other hand, if you use a general assignment, such as

file = "SXMATH/foo"

Xmath provides the result

$XMATH/ foo

because this assignment does not contain a command that was specifically
designed to expand environment variables.

If you want the expected results from the previous assignment statement
use the GET function with the keyword PATH. For example:

file = get({path="$XMATH"}) + "/foo"
provides the expanded pathname.

You can find additional examples of this type of usage in the following
files:

SXMATH/modules/basic/hardcopy.msc
SXMATH/modules/basic/version.msc

You can also use the oscmd () with the $ENVIR_VAR format; in this case,
the operating system expands the environment variable.

Refer to the get (), SET, and oscmd () topics in the MATRIXx Help for
more information.

© National Instruments Corporation 3-25 Xmath User Guide

Chapter 3 MathScript Basics

Abbreviating Command Names (alias and unalias)

The ALTIAS command allows you to substitute a name for a text string.

alias clear delete *
alias mkm makematrix

To see all current aliases, type:

alias

An alias defined in any context is local to the defined scope. For example,
an alias entered from the command line is not accessible from an MSF,
MSC, or MSO. Conversely, an alias defined in an MSF, MSC, or MSO is
not accessible from the command line.

Use the UNALIAS command to undo any aliases.

unalias clear

Alias substitution is performed at compilation time. Therefore, a code
fragment similar to the following will not have the intended effect:

alias sl save

if do_load
alias sl load
endif
sl # Always substituted with load because that
was

the last alias command.

MathScript Batch Files

Xmath User Guide

MathScript batch files contain sequences of Xmath statements. They are
useful for setting up user environments, performing repetitious tasks, and
processing programs in batch. MathScript batch files have no declaration
statement, and therefore, no inputs or outputs.

Batch files are run using the execute £ile command. A MathScript batch
file typically has the suffix .ms, but any suffix will do. If the suffix is .ms,
you can execute the file without specifying the extension. Refer to the
Executing a Batch File section.

If you do not want a function or command output to be displayed when the
file is executed, use the semicolon terminator. If you want the output to be
displayed, you must use a question mark as a terminator. This also applies
to the output of the plot () function.

3-26 ni.com

Chapter 3 MathScript Basics

Executable strings must also be terminated by a semicolon (;) or question
mark (?). For example, the following is incomplete:

test_string = "show format";
execute test_string

From the previous incorrect syntax, you receive the message:

Error(s) in executing show format

The correct syntax is as follows:

test_string = "show format;"
execute test_string

Executing a Batch File

You can execute a batch file from either the command area in the Xmath
Commands window or the File menu. From the command area, use the
execute file command. For example, to execute a batch file called
myfile.ms in the current working directory, type:

execute file = "myfile"

Echoing an Executable File

By default, when you execute a MathScript file, the contents of the file
itself are not echoed to the log area. If you specify SET ECHO ON, each
statement is displayed to the log area as it is being executed. To turn this
feature on, type:

set echo on

You can find out the current echo setting by typing:

show echo

To turn the echo off, type:

set echo off

startup.ms (on UNIX systems)

The environment variable XMATH_STARTUP defines the properties of the
Xmath startup icon to execute the startup.ms batch file. This batch file
contains MathScript statements that execute every time you start a new
Xmath session. You can set up your initial working environment for the
Xmath session. For example, you can specify a list of directories as a search
path.

© National Instruments Corporation 3-27 Xmath User Guide

Chapter 3 MathScript Basics

Xmath looks for and executes startup.ms in the following order:

1. The space-separated list of directories specified in the environment
variable XMATH_STARTUP

2. The optional xmath subdirectory under your home directory,
SHOME/xmath/startup.ms

3. The current directory, . /startup.ms
The environment variable XMATH_STARTUP can be set to include multiple
directories. For example:

setenv XMATH_STARTUP "/home/group /home/user"

Xmath will run startup.ms in /home/group and then /home/user.
Example 3-1 shows a sample startup.ms file.

Example 3-1 Sample startup.ms File

set up aliases

alias sp set path =

set path to several test directories
sp "/usr/me/tests"

sp "/usr/me/tests/routines"

set up new partition and go there
new partition projectX

set partition projectX

output data display format

set format long

startup.ms (on Windows Systems)

Xmath User Guide

The environment variable XMATH_STARTUP defines the properties of the
Xmath startup icon to execute the startup .ms batch file. This batch file
contains MathScript statements that execute every time you start a new
Xmath session. You can set up your initial working environment for the
Xmath session. For example, you can specify a list of directories as a search
path.

The following are sample definitions for $XMATH_STARTUP%.

¢ (Windows NT) Set the path to the startup.ms batch file by selecting
Start»Settings» Control Panel»System. From the System Properties
dialog box Environment tab, for example, add an entry in the User
Variables field (Variable, Value):

XMATH_STARTUP S%HOME%\user

3-28 ni.com

Chapter 3 MathScript Basics

e (Windows 9x) Set the path to the startup.ms batch file by adding the
following line to your AUTOEXEC . BAT file (or to any other startup
batch file):

set XMATH_STARTUP=%HOME%\user

Xmath looks for and executes startup .ms in the following order:

1. The space-separated list of directories specified in the environment
variable XMATH_STARTUP

2. The optional xmath subdirectory under your home directory
$HOMES% \xmath\startup.ms

3. The current directory . \startup.ms

@ Note You must define the $HOMES variable yourself.

You can set the environment variable XMATH_STARTUP to include multiple
directories. For example:

set XMATH_STARTUP="%HOME%\group $HOME%\user"

Xmath runs startup.ms in $HOME$\group and then $HOME% \user.
Example 3-2 shows a sample startup.ms file.

Example 3-2 Sample startup.ms File

1/0 Redirection

set up aliases

alias sp set path =

set path to several test directories
sp "\\user\me\tests"

sp "\\user\me\tests\routines"

set up new partition and go there
new partition projectX

set partition projectX

output data display format

set format long

If you have a lengthy automated process that does not require interactive
input, you can run it in background or batch mode using the tty
(non-graphical) version of Xmath.

To create a MathScript file suitable for batch execution, start by using an
editor to write a script file containing the instructions as you would enter
them from the Xmath command line. Alternatively, you can start with a

© National Instruments Corporation 3-29 Xmath User Guide

Chapter 3 MathScript Basics

command diary file. Data generated in the batch script file can be written
to an external file using the SAVE command.

If a file runs to completion and unsaved variables exist, Xmath asks the
question:

Modified variables that have not been saved exist; quit
anyway? (y/n)

This presents a problem because you cannot respond while in batch mode.
To bypass the situation, you must save or delete the data at the end of the
file. The final entry in a batch file must be QUIT. If QUIT does not end the
file, Xmath will remain in terminal mode.

1/0 Redirection

To run the completed batch file from the UNIX command line, type:
% xmath -tty < batchfile.ms > batchfile.output

where the MathScript input is contained in batchfile.ms, and the output
results are redirected to batchfile.output. The output file contains
anything that would normally appear in the Commands window log area,
so be sure that echo is set properly.

Recording an Xmath Session (Diaries)

Xmath User Guide

Xmath can automatically record commands and responses using command
and session diaries. A command diary records user input only, while a
session diary records user input and the Xmath responses.

To create a diary, the environmental variable echo must be on. If itis o £ £,
a diary file may be opened but nothing will be recorded in it. To determine
the echo setting, type:

show echo

If echo is of £, you must type set echo on to activate it.

3-30 ni.com

Chapter 3 MathScript Basics

Recording Inputs (Command Diary)

Command diaries record MathScript input. A command diary is by
definition an executable file; it contains all valid instructions issued while
the command diary was set. However, when the file is executed, you might
not see all the outputs you did when you captured the commands; you must
either edit the diary to insert the proper terminators or be sure to use them
when you input the commands you are capturing.

To open a command diary, type:
set echo on

set commanddiary "mytest.ms"

where mytest .ms is the name of the diary file. The file is placed in the
current working directory. Refer to the Manipulate and Show Current
Directory section for details on setting the working directory. To see if a
diary file is already open, type:

show commanddiary

If the specified file does not exist, it will be opened for writing. If a diary
file of the same name exists, it will be closed and a new file opened.

t =1:0.1:100

s = sin(t)

g=plot (s)?

To close a diary file, use the remove command:

remove commanddiary

Since a command diary contains only executable MathScript commands,
you can replay the contents using execute:

execute file = "mytest"

Notice the output behavior when the file is replayed. When the calls were
typed interactively, the outputs of t and s were written to the log area, but
when the file was executed, the outputs were omitted. When a value is
assigned to a variable, the function outputs will only be displayed if the
question mark terminator (?) is used, as was the case for the graph object g.

© National Instruments Corporation 3-31 Xmath User Guide

Chapter 3 MathScript Basics

Recording Inputs and Outputs (Session Diary)

Xmath User Guide

A session diary records inputs and outputs, that appear in the Commands
window log area while the diary is open. This can be useful when the
contents of a data object need to be recorded in the file. For example:

set echo on
set sessiondiary "sessionl"

testl = 0.75;
exist (testl)
sin(testl)

remove sessiondiary
oscmd ("more sessionl")

Because session diaries include outputs that are not MathScript statements,
they cannot be executed as command diaries until they are edited.

3-32 ni.com

Graphics

This chapter begins with an outline of the plotting functions and commands
available in Xmath. The remaining sections show how to graphically
display your data with the plot () function, and also how to change its
appearance interactively with the Xmath Graphics window.

Xmath Plotting Functions and Commands

General Purpose Plotting Functions
Xmath provides a choice of three basic plotting functions:

* Theplot() function provides an easy to learn syntax for 2D and 3D
plotting in an interactive graphics window. For a quick, interactive look
at your data, and for 3D plotting, plot () is a good choice.

* TheuiPlot () function provides full featured 2D plotting integrated
with an extensive programmable GUI facility. If you want more
control over the formatting of your 2D graphics, or the ability to
integrate plots with your own interactive Xmath PGUI tools, then
uiPlot () has the power you need.

* Theplot2d() functionrecognizes mostplot () keyword options
and provides quick access to advanced formatting features of the
uiPlot () function, while avoiding the cost of constructing a
programmable GUI tool. Use plot2d() to obtain highly customized
2D graphics without writing a PGUI tool.

plot()

The plot () function and its associated Xmath Graphics window provide
complete interactive facilities for building, modifying, and viewing 2D and
3D graphics. You can specify graph characteristics as keywords to plot, or
you can add or modify them interactively from the Xmath Graphics
window menus or the Xmath Palette.

The output of plot () is a graphics object. Rather than archiving an
executable file that recreates a graph, you can save the images as graph
objects. A graph object can be displayed in the Xmath Graphics window,

© National Instruments Corporation 4-1 Xmath User Guide

Chapter 4 Graphics

Xmath User Guide

altered with keywords, or combined with another plot to create a new
image.

plot () keyword options facilitate multiple plots, strip plots, bar plots,
polar plots, contour plots, and scatter plots. The animation mode of the
Xmath Graphics window provides rapid sequential display of graphics
objects.

This chapter provides additional detail on the capabilities of plot (). For
further information about plot () and associated plotting tools, refer to
the Xmath, Plotting topic of the MATRIXx Help.

uiPlot()

The uiPlot () function formats and displays 2D plots (including line,
scatter, and polygon) in any uiPlotArea widget of a programmable GUI
tool. While plot () is limited to displaying its objects in a single Xmath
Graphics window, uiPlot () can generate and display plots in multiple
windows. However, this power comes at a considerable cost—the
construction of programmable GUI tools and widgets.

uiPlot () features include interactive data-viewing, zooming, and curve
selection. Animation is achieved through the binding of curves to Xmath
variables. Custom callbacks can be programmed in GUI tools, providing
application-specific, graphic interaction with the data.

The uiPlot () function syntax provides access to the structure of the
underlying graphics database. The database hierarchy lets users specify
graphics objects much like how one specifies a file path. Properties can then
be set using either uiPlot () keywords, or generic option strings of the
underlying graphics system, resulting in a wide range of custom formatting
capabilities.

For more information about the programmable GUI, refer to Chapter 9,
Graphical User Interface. For further details on using the uiPlot ()
function and associated plotting tools, refer to the Xmath, Plotting topic of
the MATRIXx Help.

plot2d()

The plot2d() function is based on uiPlot () and is designed to
implement most capabilities of both plot () and uiPlot (), while
avoiding the overhead of programmable GUI tools and widgets.

4-2 ni.com

Chapter 4 Graphics

In particular, plot2d() provides multiple graphics windows, interactive
data-viewing, animation through the binding of curves to Xmath variables,
and the power of the uiPlot function syntax. Some new features have been
implemented such as multiple Y-axes, advanced row/column layout
options, and automatic data scaling in one coordinate while constraints are
specified in the other.

For those familiar with plot () syntax, plot2d() supports most of the
2D-related keywords of plot (). Itis possible to convert most scripts by
substituting plot () function calls with identical plot2d() calls.

The most obvious differences between plot2d() and plot () are that
3D plotting options and the graphics object are not supported. All
uiPlot () functionality is available through the plot2d() function.

For further details on using the plot2d() function and associated
plotting tools, refer to the Xmath, Plotting topic of the MATRIXx Help.

Comparative Analysis: plot() versus plot2d()

Table 4-1. plot() Advantages

Feature Advantage

3D Plotting | plot () supports 3D lines and surfaces, and also 2D
and 3D contour plots. The plot2d() function does not
support 3D or contour plots.

Polar Plots | plot () supports polar coordinate plotting. To display
polar plots, plot2d() users must write their own
conversion script.

Graph The graphic result of a plot function can be saved to a
Object variable. plot2d() does not support graph objects.

© National Instruments Corporation 4-3 Xmath User Guide

Chapter 4 Graphics

Table 4-2. plot2d() Advantages (these features also available with uiPlot)

Feature

Advantage

Data Viewing

plot2d() has the capability of displaying (X,Y) data values of curves in a
pop-up window interactively activated by the right mouse button (RMB).

Callbacks plot2d() callbacks can be attached to curves/sub-areas for
click/drag/release with modifiers. The callbacks are implemented using
MathScript.

Variable By binding a variable to a plotted curve, the plot2d() plots are updated as

Binding the variable changes. This is a superior to the plot () method of achieving
animated display.

Polygons plot2d() has polygon plot capability. plot () does not support 2D
polygon plots.

Hierarchy By specifying hierarchy paths, selected elements of plot2d() plots can be

Selection addressed for setting/changing attributes.

Plot Inclusion

A plot2d() sub-area can be made to include a plot from some other
window. It is useful for displaying a single post-stamp sized element of a large
row/column plot. Any changes are updated automatically.

Drivers

Setting generic Hoops options such as driver options, heuristics, visibility and
frame are available in plot2d().

Plotting Commands and Special Purpose Functions

Xmath User Guide

Several additional commands and functions are used with the general
purpose Xmath plotting functions. Brief descriptions are given here. Some
are discussed in more detail later in this chapter. For more information,
refer to the Xmath, Plotting topic of the MATRIXx Help.

colorind

The colorind function creates a colorindex matrix used as a fourth
argument with the plot function to add color emphasis or a fourth
dimension to 3D plots.

ERASE

The ERASE command can be used to erase the contents of the Xmath
Graphics window (plot function display).

4-4 ni.com

Chapter 4 Graphics

HARDCOPY

The HARDCOPY command is used to create a hardcopy of the contents of the
Xmath Graphics window (plot function display), or a graphics object (plot
function display). It can also be used to create hardcopy of plot2d results.

pdmplot

The pdmplot function invokes a dialog box-driven process resulting in
plots selected from a specified pdm. It can be used with either the plot or
the uiPlot plotting system.

qplot

gplot is asimple uiPlot based function. Like plot2d, it provides use of
uiPlot features with a pre-programmed GUI. However, gplot does not
support plot and other high-level keyword capabilities of plot2d.

uiPlotArea

uiPlotArea is a programmable GUI function for creating uiPlotArea
widgets.

uiPlotGet

uiPlotGet is a programmable GUI function for getting the current cursor
position to be used with callback routines.

Using the plot() Function

The plot () function creates 2D and 3D plots from data; complex
components (those containing imaginary elements) are ignored.! You can
call plot () with any one of the following syntaxes:

graphObj = plot(y, {keywords})
graphObj = plot(x,y, {keywords})
graphObj = plot(x,vy,z, {keywords})

)
{keywords})

graphObj = plot

(
(
(

graphObj = plot(x,y,z,colorindex, {keywords})
(
graphObj = plot(
(

graphObj = plot (graphObj, {keywords})

! If you need to plot complex data, you can make a real versus imaginary cartesian graph. Given complex data z, call
plot(real(z),imag(z)).

© National Instruments Corporation 4-5 Xmath User Guide

Chapter 4 Graphics

Plot One Input

Xmath User Guide

In the preceding plot syntaxes, x is a vector or matrix; y is a vector, matrix,
or PDM; and z is a vector or matrix. If z is a matrix, a color index matrix
colorindex can be supplied to add color as a fourth dimension. Each
syntax is discussed in the following sections.

An existing graph object can be reused as an input in several ways; it can
be altered with keywords or combined with another plot to create a new
image.

An optional graph object can be included as an input for one, two, or three
input plots. If the data is compatible, the new data is overlaid on graphObj,
and the modified graph is returned as a graph object from plot ().
However, a graph object can also be referenced with the keep or copy
keywords. The keep keyword is preferable because it is fastest. In either
case, you can reference a single graph object. You can not specify keep and
the optional graph object input in the same call.

If you input the following data, you can test each syntax in the sections that
follow:

define vectors for plotting

v=[0:.25:30]";

ve=v.*cos (v); vs=v.*sin(v);
define a PDM
ypdm=pdm ([vc,vs]) ;

define matrices for plotting
x=[vc,vc]; y=I[vs,vs]; z=[1.5*v,1.5*Vv];
vm=vs*vc';

m=v*v';

ms=[vs,-vs];

mc=[vc, -vc];

For a single argument the syntax is plot (y):
e Ifyisavector with m elements, then y is plotted versus the vector 1:m.
plot (vc)?

e If yis an m X n matrix, then each column of y is plotted versus the
vector 1:m. The result is n curves, each with m points.

plot (vm) ?

4-6 ni.com

Plot Two Inputs

Chapter 4 Graphics

If vy is an m X n X d PDM where m X n is the size of each dependent
matrix, and d is the length of the domain (the independent parameter),
then m X n curves of d points are drawn, each versus domain (y).
Therefore, each line corresponds to a channel of a PDM. Refer to the
PDM Channels section of Chapter 5, Data Objects and Operators):

plot (pdm([vc,vs]))?

The syntax for two arguments is plot (x,y):

Plot Three Inputs

If x and y are vectors of the same length, then v is plotted against x:
plot(vs,vc)?

If xisanm X 1 or 1 X m vector and y is an m X n matrix, each of the
n columns of y is plotted against x on a single graph. Each curve has
m points:

plot (vs,m(:,1:7:1length(vs)))?

If x and y are both m X n matrices, then n curves are drawn, each
consisting of a column of y versus the corresponding column of x:

plot (m,vm)?

The syntax for three arguments is plot (x,y,z):

© National Instruments Corporation

If %, v, and z are vectors of the same length, then z is plotted versus x
and y as a curve in space:

plot (vc,vs,v/3)?

IfxisanmXx1or1XxXmvector,andyisnX1lorlXn,and zisann X m
matrix, then z is plotted as a surface versus x and y:

plot (vc(1:50),vs(1:50),vm(61:110,61:110), {!grid})>

If x, v, and z are matrices of the same dimensions, then z is plotted
versus x and y as a surface in space:

plot (mc,ms,z, {!grid})-?

4-7 Xmath User Guide

Chapter 4 Graphics

Color as a Fourth Dimension

If inputs %, v, and z are supplied and z is a matrix, then you can pass a
fourth argument to use color to represent an additional dimension over the
data surface. In the following example, the fourth argument is a matrix the
same size as z generated by the colorind() function (a colorindex
matrix). The values specified with the face_color keyword are applied
to the data surface at the locations in the colorindex matrix:

v=[0:.25:30]";

X=V.*sin(v) ;

y=X;

z=vs*-vs';

z=z(31:60,31:60) ;
gl=plot(x(1:30),y(1:30),z,colorind(z), {face_color=9:19}
)

Creating and Displaying a Graph Object

final=plot ({ keep,

This section discusses common plotting approaches. Keywords mentioned
here are discussed in detail later in this chapter.

Graph object output is handled like any other function output, except that it
is displayed in the Xmath Graphics window rather than to the log area.
When no output is assigned, the graph is written to the default object ans.

It is a good practice to use the » terminator with plot (), regardless of
how you call it: interactively, in executable files, or in MathScript entities.
This is particularly important when plots are developed in a .ms file. By
default, set echo is of £ when files are executed so Xmath displays only
graphs with the ? terminator.

The keep keyword, which is also discussed in the Adding New Data to
Existing Plots (keep, copy) section, combines an existing graph object and
any new information. If the plots are compatible, the new information
becomes part of the specified graph. For example:

v=[0:.05:5];
plot(v.*sin(v), {title="The first curve."})?
plot (-v.*cos(v), {keep,title="The second curve."})?

The second curve is plotted over the first; notice that plot () recognized
there was already a title and substituted the newest one. You can still add to
the graph, and this time name the output:

xlog, xmax=100, title="The Final Graph",

legend=["1lst curve", "2nd curve"]})?

Xmath User Guide

4-8 ni.com

g2=plot ()

5

Chapter 4 Graphics

If saving a graph to a variable is an afterthought, you can capture the current
image in the Xmath Graphics window by selecting File»Bind to Variable
from the Xmath Graphics window menu bar or by calling plot () withno
arguments:

name current graph object g2

Both File»Bind to Variable and variable=plot() do the same thing
as Variable=plot ({keepl}).

Once a graph object is assigned to a variable, it can be saved to a file and
then loaded and displayed at a later time. Rather than creating an executable
file that recreates the graph, you can archive the images themselves.

Note (Windows NT) If you have an observable delay, when you drag a window across an
Xmath Graphics window, try disabling the Show window contents while dragging
checkbox on the Control Panel»Display»Plus! tab.

Using Keywords with plot

Every call to plot () can have alist of keywords that modify the plot’s
appearance. Almost everything that can be done using keywords can be
done interactively with tools available from the Xmath Graphics window
menus and the Xmath Palette. Keywords, however, are convenient because
they provide command-line control of graphics modifications. This implies
that plot instructions can be saved to and retrieved from a diary file or built
up independently in a MathScript file. Also, a keyword string may be
aliased to a shorter string.

* Plot keywords, as shown in Table 4-3, are used like any other
keywords. As a reminder, though, the type of information dictates how
the keyword is implemented.

Table 4-3. Keyword Types

Keyword Type Input Samples
Boolean {!legend}, {!axisfix}
integer {rows=5}, {line_color=12}
vector {scale=[.5,.5],line_color=2:24}
string {title="My Beautiful Graph"}
vector of strings {legend=["input 1", "input2"]}

© National Instruments Corporation 4-9 Xmath User Guide

Chapter 4 Graphics

Xmath User Guide

For Boolean scalars, note that a nonzero value denotes TRUE/on, while O

denotes FALSE/off. For example:
plot ({grid,marker})

grid and marker are on

plot ({!grid, !x_lab}) # grid and x_lab are off

e If you use the hold keyword, the keyword settings remain until you
redefine an attribute, until you use !hold, or until you call
plot ({reset}) (refer to the Hold Keyword section).

* You can use the negative operator ! to set a keyword to FALSE or 0.
For example, you can use either !grid or grid=0 to turn off all grid
marks while grid=1 enables them.

The Using Keywords with plot section discusses keywords in functional
groups as shown in Table 4-4, using examples to illustrate how they work.
Each keyword description gives its default setting.

Table 4-4. Keyword Categories

Category

Section

Labels and legend

Labels and Legend

Colors

Colors

Line and marker specifications for
data

Line and Marker Specifications
for Data

Multiple graphs and graph
positioning

Multiple Graphs and Graph
Positioning

Adding new data to existing plots
(keep, copy)

Adding New Data to Existing
Plots (keep, copy)

Axis and zero lines

Axis and Zero Lines

Tics and grids

Tics and Grids

Free text and global text settings

Free Text and Global Text
Settings

Axis limits and logarithmic scaling

Axis Limits and Logarithmic
Scaling

Animate

Animate

Placement, scaling, and rotation

Placement, Scaling, and Rotation

Background, edge, and face

settings

Background, Edge, and Face
Settings

ni.com

Table 4-4

Chapter 4

. Keyword Categories (Continued)

Graphics

Category

Section

Lighting source settings

Lighting Source Settings

Holding graph attributes

Reusing plot Attributes and Hold

Keyword
Strip plots Strip Plots
Bar plots Bar Plots

Contour plots

Contour Plots

Polar plots

Polar Plots

An alphabetized list of all keywords and the location of each appears in Table 4-5.

Table 4-5. Plot Keywords (Alphabetized Listing)*

Keyword Section Keyword Section Keyword Section
animate Animate line_width line width X_axis_ axisfix
fix x_axisfix
y_axisfix
z_axisfix
axis Labels and Legend log log x_axis_1 x axis_line
ine y_axis_line
z_axis_line
axix_fix axisfix marker marker x_grid x_grid
x_axisfix yv_grid
y_axisfix z _grid
z_axisfix
axis_ axis_line marker_ marker_color x_inc x_inc y_inc
linea color z_inc
bar Bar Plots marker_ marker_size x_lab x_lab
size
bg_color bg_color marker_ marker_style x_log x_log y_log
fg_color style z_log
colormap mapDefault=plot({color || move move X_max x_max y._max
map}) Z_max
column column polar polar x_min x_miny_min
Z_min
columns columns position position x_tic x_ticy tic
z_tic
© National Instruments Corporation 4-11 Xmath User Guide

Chapter 4 Graphics
Table 4-5. Plot Keywords (Alphabetized Listing)* (Continued)
Keyword Section Keyword Section Keyword Section
contour contour projection | projection X_tic_ x_tic_lab
contour2d lab y_tic _lab
z_tic_lab
contour2d contour r_inc r_inc X_Zero_ x_zero_line
contour2d line y_zero_line
z_zero_line
contour3d contour3d r_max r_max y_axis xX_axis
y_axis
Z_axis
contour_ contour_interval reset reset v_axis_f axisfix
interval ix x_ axisfix
yv_axisfix
Z_axisfix
copy copy rotate rotate y_axis_ x_axis_line
line yv_axis_line
z_axis_line
date date row rows v_grid x_grid
yv_grid
z_grid
edge edge rows rows y_inc x_1inc y_inc
z_1inc
edge_ edge_color scale scale v_lab yv_lab
color
edge_ edge_style strip Strip Plots v_log x_log y_log
style z_log
edge_ edge_width text text y_max xX_max y._max
width Z_max
face face text_angle text_angle y_min x_min y_min
Z_min
face_ face_color text_color text_color y_tic X _ticy_ tic
color z_tic
face_ face_style text_font text_font y_tic_ x_tic_lab
style lab y_tic_lab
z_tic_lab
fg_color copy text_ text_position y_zZero_ x_zero_line
position line v_zero_line
z_zero_line
Xmath User Guide 4-12 ni.com

Chapter 4 Graphics
Table 4-5. Plot Keywords (Alphabetized Listing)* (Continued)

Keyword Section Keyword Section Keyword Section
graph_ edge_width text_style text_style z_axis x_axis
number y_axis

z_axis
grid grid text_size text_size z_axis_f axisfix
ix x axisfix
y_axisfix
z_axisfix
hold hold theta_inc theta_inc z_axis_ x_axis_line
line y_axis_line
z_axis_line
keep keep theta_max theta_min z_grid x_grid
theta_max y_grid
z_grid
keepsubpl keepsubplot theta_min theta_min z_inc x_inc y_inc
ot theta _max z_inc
legend legend tic tic z_lab z_lab

light light tic_lab tic_lab z_log x_log y_log

z_log
light_ light_color tic_maj tic_maj Z_max X_max y_max
color z_max
light_ light_direction tic_min tic_min z_min x_min y_min
direction z_min

line line time time z_tic X ticy_ tic

z_tic

line_ line_color title title z_tic_ x_tic_lab
color lab y_tic_lab

z_tic_lab
line_ line_style x_axis x_axis y_axis Z_Zero_ x_zero_line
style z_axis line y_zero_line

z_zero_line
* Underscores are always optional. For example, both x_axis and xaxis are acceptable.

Labels and Legend

Labels allow you to place a text string in a specific location relative to the
plotted data. Labels are therefore bound to the plot and their locations
cannot be changed.

© National Instruments Corporation

Xmath User Guide

Chapter 4 Graphics

The keywords 1egend, date, and time also place text on the graph, but
you can move these small text objects with the mouse. To create
“independent” text, use the text keywords, or create free text interactively.
Table 4-6 summarizes the labels and legends.

Table 4-6. Label and Legend Keywords

Keywords Description
title String for the graph title above the plot. Default is an empty string.
x_lab String for the x-axis label. Default is an empty string.
y_lab String for the y-axis label. Default is an empty string.
z_lab String for the z-axis label. Default is an empty string.
date Places the date in the upper left corner; format is: dayName_month_date_year.
Default is an empty string.
time Places the time in the upper left corner. Format is hour_minutes_seconds ona
24 hour clock. Default is an empty string.
legend For multi-line or contour plots, you can specify a vector of strings naming each
line or contour, for example, legend =["Time", "Speed"]. The default labels
for 2D plots are the line number followed by the corresponding line style (and
color, for color monitors). For 3D plots, the default legend corresponds to differing
surface styles.
Tic labels (numbers corresponding to major tic marks) are discussed in the
Tics and Grids section.
The example that follows creates 3D data and then creates the contour
graph shown in Figure 4-1. All axis information is negated so that you can
clearly see every label (negating axis information is optional). Note the
string of vectors used to label the legend. There are four intervals in this
contour, and this vector of strings provides new labels for only the first and
last; the default label is displayed for intervals where the null string " " is
specified.
x=[-2*pi:0.35:2*pi]"';
x=[x;x];y=%x;
z=sin(round(x)) ./x* (sin(y) ./y) ';
legetext=["Mt. Everest","","", "sea level"];
g=plot (x,vy,z, {!grid, contour3d, time, date,
title="Contour Graph", xlab="the x label",
vlab="the y label", zlab="the z label",
legend=legetext})?
Xmath User Guide 4-14 ni.com

Chapter 4 Graphics

13,1834 Thu Jul 22 1898 Contour & oph I . Everast

0
- sea laval

Figure 4-1. Label Locations and Legends

Colors

Many keywords take a color as an argument. You can specify colors by
number or name, and a vector of color names or numbers is acceptable. You
can see the current colormap on the Xmath Palette. On color monitors, up
to 64 colors can be allocated.

If a value is specified (an integer between 1 and 64), Xmath indexes into the
current colormap.

If a color name is specified, Xmath searches for a match in the following
tables in the following order:

1. The currently installed Xmath colormap.

For black and white systems, the current colormap represents black,
six shades of gray, and white. On color systems, each row in the
colormap is a color. The first column represents red intensity; the
second, green intensity; and the third, blue intensity.

2. On UNIX systems, the X11 color name database, often stored in
/usr/1ib/X11/rgb. txt.

This is a very long list.

© National Instruments Corporation 4-15 Xmath User Guide

Chapter 4 Graphics
3. The list of supported Xmath color names, which are listed in Table 4-7.
The first eight colors on this list compose the default sequence for line
and marker colors. The first color is black or white, depending on the
background color, followed by red, green, yellow, blue, magenta, cyan,
and black or white.
If you use strings to specify these colors, spacing must be typed as
shown, but case is not important. For example:
plot(x, {bg_color="CADET BLUE", fg color=51})
4. The list of default (built-in), machine-dependent color names.
As soon as a name match is found in one of the locations above, Xmath
looks at the corresponding values, compares them to values in the
current colormap, and then implements the closest color available in
the current colormap.
To supply your own colormap, construct an # X 3 matrix with values
representing red, green, and blue intensity ranging from O to 1. Before
installing your color map, it is a good idea to save the default color map:
mapDefault=plot ({colormap})
This saves the colormap to the variable mapDefault.
To replace the current colormap with your own mapMyColors, type:
plot ({colormap=mapMyColors})
Your colormap now appears in the Xmath Palette as the current colormap.
For more on colormaps, refer to the Color List, Colormaps, and Color
topics in the MATRIXx Help.
Table 4-7. String Color Names for Xmath Supported Colors
No. Name No. Name No. Name
1 black 22 chris cyan 43 aliki aqua
2 red 23 periwinkle 44 cyan
3 green 24 prussian blue 45 cerulean
4 yellow 25 cadet blue 46 big blue
5 blue 26 kam blue 47 lapis
6 magenta 27 royal purple 48 blue
Xmath User Guide 4-16 ni.com

Chapter 4 Graphics
Table 4-7. String Color Names for Xmath Supported Colors (Continued)

No. Name No. Name No. Name
7 cyan 28 red violet 49 marine blue
8 white 29 mulberry 50 violet
9 silly putty 30 orchid 51 mark magenta
10 peach 31 maroon 52 purple

11 salmon 32 strawberry 53 fuchsia

12 brick 33 fire engine red 54 berry

13 kin orange 34 orange 55 raspberry ron
14 burnt umber 35 pumpkin 56

15 brown 36 golden dawn 57 black

16 coffee 37 yellow 58 grayS

17 mustard 38 lemon yellow 59 gray4

18 neon green 39 light green 60 gray3

19 forest green 40 algae 61 gray?2
20 teal 41 grant green 62 grayl
21 ocean green 42 new grass 63 gray(

64 white

The following keywords dictate color changes for different plot elements:

bg_color

edge_color

face_color

fg color

grid_color
light_color
line_color
marker_color

text_color

The meanings of these keywords are discussed elsewhere within the
keyword functional groups.

© National Instruments Corporation

4-17

Xmath User Guide

Chapter 4 Graphics

Line and Marker Specifications for Data

You can change the color, style, and width for lines (for example, curves)
of data as specified in Table 4-8. If you make changes to lines and specify
the 1egend keyword, your changes are reflected in the legend.

Table 4-8. Line Specification Keywords

Keyword

Description

line

Boolean that turns line plotting on or off. Default=1.

line_color

Integer, string, vector of integers, or vector of strings for specifying data line
colors (refer to the Colors section). If 1ine_color specifies a vector, the given
color sequence is cycled through. On color monitors for plots with multiple
curves, Xmath automatically assigns each curve a different color.

line_width

Any float is accepted. The variety of line widths allowed is machine dependent;
if you specify a value the machine can not provide, it supplies the closest thing.
The default value of 1 is approximately equal to one pixel on your monitor. On
a high resolution monitor, the difference between .5 and 1 may be visible. On
others, the output might be the same.

line_style

Integer, vector of integers, string, or vector of strings that specify line styles for
each curve on the graph. The 1ine_style mapping is:

Integer String

NN DNk W= O
1

If line_styleis setto a vector of integers, strings, or names, Xmath cycles
through the specified sequence of styles.

Xmath User Guide

The following example generates several line styles and widths; the plot

appears in Figure 4-2:

v=[0:2/7:20]"';vc=v.*cos (V) ;

x=[vec,ve*2,ve*d,ve*6] ;

plot (x, {legend,

line_width=[8,6,4,2],1line_style=[4,3,2,1],
line_color=["peach", "teal", "lapis", "purple"]})

4-18 ni.com

Chapter 4 Graphics

150 T T T T T . : Lina 1
: : : : : : YR Lins 2
| | | | | | = = Llne 3
: : : : : : {— Lo
100 ' | i | i i |
1l i i
0
-&0
-100
Figure 4-2. Line Styles and Widths
Markers, as described in Table 4-9, are symbols plotted at each data point.
You can change a marker’s size, style, or color using integers, floats, or
strings the same as you do with line styles. To see a plot with only markers,
use the keywords {!1line,marker}.
Table 4-9. Marker Specification Keywords
Keyword Description
marker Boolean that turns on/off plot markers. Default = 0.
marker_color Integer, vector of integers, string, or vector of strings that specifies marker

color (refer to the Colors section). You can specify an integer or string for
each curve on a graph. If a vector is specified, the color sequence is cycled
through.

© National Instruments Corporation 4-19 Xmath User Guide

Chapter 4 Graphics

Table 4-9. Marker Specification Keywords (Continued)

Keyword

Description

marker_size

Any nonzero float is accepted. The range of marker sizes allowed is
machine-dependent; if you specify a value the machine can’t provide it will
supply the closest thing. The default value is 0.5.

marker_style

Integer, vector of integers, string, or vector of strings that specifies marker
style for each curve on the graph.
The marker style mapping is:

Integer String Style

0 e no markers

1 R asterisks

2 "x" X’s

3 " Crosses

4 "o" circles

5 NGA filled circles
6 1" squares

7 " filled squares
8 "A" triangles

9 Via\W filled triangles

The default marker style is 1. If a vector of marker styles is specified, they
will be cycled through.

Xmath User Guide

You can use a combination of line styles and markers to expand the number
of unique lines you can plot. This is especially valuable for those using
black-and-white monitors or for complicated plots that will be printed in
black and white.

a=1:9; b=ones(9,9);for i=1:9; b(i, :)=a;endfor
plot ({!grid, !x_axis,y_inc=1,axisfix,hold})

plot (b, {columns=2,
line_width=[.5, 1, 2, 3.5, 4, 5.5, 6.5, 7, 7.51})?

g=plot (b, {keep, column=2, !1ine,marker_size=[.25, .5,
.75, 1, 1.5, 2.25, 2.25, 2.5, 2.751})
plot ({reset})

The final result, shown in Figure 4-3 shows some of the line and marker
styles in a variety of widths and sizes. Normally hold and axisfix need
to be turned off with 'hold and !'axisfix, but plot ({reset}), which
resets everything, is used in this example.

4-20 ni.com

Chapter 4 Graphics

10 1

9-_-9-M'
gl eeesssssssssss—— | 8]
7 s 1 1111111 B
] 1 8]
5 15000000000
47 1 4 O C O OO0 0000]
3 1 3 E
2 1 2F = x % ox ox ox ow o= ox]
1 N T T T T S S SR
0 1

Figure 4-3. Line and Marker Styles with Varying Widths and Sizes

Multiple Graphs and Graph Positioning

The keywords shown in Table 4-10 allow you to place more than one plot
in the Xmath Graphics window. If you are displaying multiple graphs, you
can ensure that they are the same size by dividing the window into rows
and/or columns and then positioning the graphs with row and column
coordinates or graph number. You cannot rotate or zoom plots with
multiple graphs interactively.

Table 4-10. Graph Specification Keyword

Keyword Description
column Integer specifying the column position of the graph.
Defaul t=1.
columns Integer specifying how many columns the plot

window is divided into. Default = 1.

row Integer specifying the row position of the graph.
Default=1.

© National Instruments Corporation 4-21 Xmath User Guide

Chapter 4 Graphics

Table 4-10. Graph Specification Keyword (Continued)

Keyword

Description

rows

Integer specifying how many rows the plot window
will be divided into. Default = 1.

graph_number

Integer specifying alternate representation for row
and column in a multi-graph plot. For rows=m and
columns=n, the “cells” are numbered from 1 to

m X n going across the rows and then down the
columns. Thus, for rows=2 and columns=2,
graph_number=3 is equivalent to row=2,
column=1.

Notice that the keywords row, rows, column, and columns all default to
1. Therefore, you do not need to specify row=1 or column=1 because
Xmath attempts to place graphs in these locations by default. The keywords
rows and columns are initiators. If they are used in aplot () call, the
row/column setting remains in effect for subsequent plots that use the
keywords row, column, or graph_number. If a plot is called that does not
contain row, column, or graph_number, the default format

({rows=1, columns=11}) is reset.

The following example places six graphs in the window; the final plot
appears in Figure 4-4.

v=[0:.25:20]";

vc=v.*cos (V) ;
x=[vc,vc*2,vec*d,ve*6,ve*8,ve*10] ;
g=plot (x, {rows=2,columns=3})
g=plot
g=plot

vc*2, {keep=g, column=2}) ;
vc*4, {keep=g,column=3}) ;

(
(
g=plot (vc*6, {keep=g,graph_number=4}) ;
(
(

#assume row 1 col 1
#assume column=1
#assume row=1

g=plot (vc*8, {keep=g, graph_number=5}) ;
g=plot (vc*10, {keep=g,graph_number=6})?
Xmath User Guide

4-22 ni.com

Chapter 4 Graphics

201 41 8l
150 31 Bl
1 21 11
50 F 1t 20}
g I I
-5l -11 -21
ST -21 -41
-1510 -3l -8l
-210 -41 -8l
150 201 201
L 51 s
Lot 1
5l - 51
I
I ! -5l
a1 “5l -10
-1in -151
ST -150 -211

Figure 4-4. Plots Placed with row, column, and graph_number Keywords

Adding New Data to Existing Plots (keep, copy)

Xmath has two ways of storing the image in the Xmath Graphics window
in a variable. The keywords keep and copy described in Table 4-11 both
use the contents of the Xmath Graphics window, but they may affect
previously saved variables differently.

Keep combines the attributes and data from your current plot call with the
current contents of the Xmath Graphics window and updates the variable.
Keep is best used when you are building a plot by overlaying data or adding
attributes to an existing plot. Because keep uses whatever is in the Xmath
Graphics window, Xmath keeps changes you make with interactive tools
automatically.

If you create a graph object g1 and later create a graph object g3 that keeps
gl, a common incorrect perception is that g1 has the old view and g3, the
new. In reality, both variables point to the same graph object. You can test
this as follows:

v=[1:.25:30]"';vs=abs (v.*sin(v)) ;vm=vs*vs';

gl=plot(vs,Vv)

© National Instruments Corporation 4-23 Xmath User Guide

Chapter 4 Graphics

g2=plot (vs(1:30),vs(1:30),vm(61:90,61:90))
g3=plot ({keep=gl, log})
gl

where gl and g3 are the same.

As long as the data dimensions allow it, Xmath performs any keep you
specify. For example, you can combine a 2D and 3D plot. The following
example uses the keep keyword to specify a 2D plot and provides the 3D
information internally:

plot(vs(1:30),vs(1:30),vm(61:90,61:90), {!grid, keep=g3,
vlab="The Y label",xlab="The X label",
zlab="The Z Label"})

If you want to re-use a graph object but you do not want it to be altered, use
the keyword copy instead of keep. Refer to Table 4-11 for these keyword
descriptions. For example, g1 and g2 remain different in this case:

g2=plot ({copy=gl, legend})
gl

Copying is computationally expensive, but it means you can save each
stage when building a plot.

Table 4-11. Data Keywords

Keyword Description

keep Specifies that the current plot should be added to the specified graph object.
If no graph object is specified, the plot is combined with the current contents
of the Xmath Graphics window. If the graphs are incompatible, the new plot
overwrites the Xmath Graphics window.

keepsubplot Boolean. Used with keep when adding or replacing data on a subplot.
keepsubplot indicates that new data should be laid over the existing data on
the subplot. ! keepsubplot indicates that the subplot should contain only the
new data. Default is 1.

copy copy can be specified with a graph object argument {copy = GraphObj};
if no graph object is specified, the plot is combined with the current contents
of the Xmath Graphics window. copy differs from keep in that copy does not
alter the original graph object. In this case, the new data and graph keywords
are combined with a copy of the existing graph object. The combined graph
object is returned, while the copied graph object remains unchanged.

Xmath User Guide 4-24 ni.com

Chapter 4 Graphics

Figure 4-5 shows an example created by combining graph objects through
the sequence of inputs below. By default, if graph objects with different
data ranges are combined, Xmath rescales the plot to accommodate all the
data. As you create each plot below, notice how the axes change to
accommodate the new data with each curve addition.

v=[0:.25:20]; vc=v.*cos(v);vs=v.*sin(v);
plot ({title="You can add to a graph as you work!"})?

plot (vc, {keep})?
plot (vs, {keep})?
plot (-vc, {keep})?

plot (-vs, {keep}) ?

g=plot ({keep, !grid, legend=[" vc"," vs","-vc","-vs"]})?

fou ean add to a graph as you workl — ¥o

20 T T . T — g

~W

WS

10 1

D'J{-\:\:\ / \ _

_ln - -
_2D 1 1 1 1

1] 20 410 ED a0 100

Figure 4-5. Combination of Graph QObjects

If you do not want the plots rescaled, you must specify one of the axisfix
keywords. Refer to Table 4-12.

© National Instruments Corporation 4-25 Xmath User Guide

Chapter 4 Graphics

Axis and Zero Lines

The keywords described in Table 4-12 control axis and zero-line display.

Table 4-12. Axis and Zero Line Keywords

x_axisfix
v_axisfix
z_axisfix

Keyword Description

axis Boolean that turns on or off all axis graphics on the entire graph.
This includes grids, zero lines, tic marks, and tic labels. If an
attribute is specified, it is applied to all axis graphics.

x_axis Booleans that toggle all axis graphics on the X, y, or z axis.

y_axis

z_axis Axis graphics color, style, and width attributes affect all
components on the named axis.

axisfix Booleans that toggles automatic axis scaling when graph objects are

combined. Default = 0 (autoscaling on). If axisfix=1, axis limits
are those of the kept graph object.

axis_1line

Boolean that toggles lines for all axes. Default = 1.

x_axis_line
v_axis_line
z_axis_line

Booleans that toggle axis line for the x, y, or z axis, respectively.
Default=1.

zero_line

Boolean that toggles zero lines on all axes. Default = 0.

x_zero_line
v_zero_line
z_zero_line

Booleans that toggle zero lines on the X, y, or z axis, respectively.
Default = 0.

The following call produces the zero lines and axes for 2D and 3D plots
shown in Figure 4-6. This demonstrates axis and zero lines in 2D and 3D

plots.

plot(sin(-5:.2:5), {columns=3, !grid,

title="2D Axis Lines and Zero Lines"})

plot(0,0,0, {column=2, !axis, title="3D Zero Lines"})
plot(0,0,0, {column=3, !zero_line,title="3D Axis
Lines"})?

Xmath User Guide

4-26 ni.com

Chapter 4 Graphics

2D1.0.x[s Lines and Zero Linas

A Zerc Lines

I Az Lines

.5

-0.5

-1

n
Ll e

I 110

20 30 40 50 810

Tics and Grids

Figure 4-6. Zero Lines and Axes for 2D and 3D Plots

Tics and grids appear by default on all plots. You can suppress these
features on one or more axes. Table 4-13 describes the keywords grid,
tic, and tic_lab, which are especially useful because they control all

axes.

Table 4-13. Tic and Grid Keywords

Keyword Description
tic Boolean that toggles tic marks on all axes. Default = 1.
tic_maj Boolean that toggles major tic marks on all axes. Default = 1.
tic_min Boolean that toggles minor tic marks on all axes. Default = 0.
x_tic Booleans that toggle tic marks on the x, y, or z axis, respectively. Default = 1.
v_tic
z_tic
x_inc Integers specifying the major tic increment for the X, y, or z axis, respectively.
v_inc
z_inc
tic_lab Boolean that toggles tic mark numbering on all axes. Default = 1.

© National Instruments Corporation

4-27

Xmath User Guide

Chapter 4 Graphics

Table 4-13. Tic and Grid Keywords (Continued)

Keyword Description
x_tic_lab Booleans that toggle tic mark numbering on the x, y, or z axis, respectively.
y_tic_lab Default = 1.
z_tic_lab
grid Boolean that toggles all grids. Default = 1.
grid_color Grid color, style, and width attributes can be changed for the entire graph.
grid_style Colors are specified as described in the Colors section. Line styles and widths
grid_width are specified as described in the Line and Marker Specifications for Data
section.
x_grid Booleans that toggle the x, y, or z grid, respectively. Default =1 .
y_grid
z_grid

The following instructions produce the changing tic and grid setting shown
in Figure 4-7.

v=[[1l:.15:15], [15:-.15:1]1;

ve=[v.*cos (v)];vs=[v.*sin(v)];

veb=ve.*. [2;2.5;2.75;2.5;271;

vsb=vs.*.[1;1.5;2;1.75;1.25];

plot (-vec5,ve5,vs5, {yinc=30,xinc=15, !zgrid})

Figure 4-7. Changing Tic and Grid Settings

Xmath User Guide 4-28 ni.com

Chapter 4 Graphics

Free Text and Global Text Settings

The text keyword places a single string onto the plot. You can alter the
angle, color, font, position, size, and style of the string with keywords.
Refer to Table 4-14).

The text keyword loosely corresponds to the interactive free text feature.
If you want to add more than one text string to a plot or show a variety of
text styles, you can work on the plot interactively or combine several plots
with the keep keyword. Text keywords do not affect text associated with

the data, such as labels and titles. You can change these interactively or, in
the case of labels, with keywords.

Table 4-14. Free Text and Global Text Keywords

Keyword Description
text String containing the text to be written on the plot.
text_angle Vector of three float numbers [X,y,z] specifying the angle of the text’s

clockwise rotation about the axis.

text_font Integer or a string from the following:
Integer String

"simplex"
"duplex"
"triplex"
"complex"
"script”
"greek"
"times"
"helvetica"
"courier"

O 01N N B W=

Fonts 1 through 6 are Hershey fonts, while fonts 7, 8, and 9 are PostScript
fonts. The default font (font = 8)is Helvetica.

If your platform is not be able to create the font you want in the size you
want, it attempts to supply the closest thing.

text_color Integer or string indicating the color name. Specifies the color for all text
in the graph. Default = ""black"'. Refer to Table 4-7.

© National Instruments Corporation 4-29 Xmath User Guide

Chapter 4 Graphics

Table 4-14. Free Text and Global Text Keywords (Continued)

Keyword

Description

text_position

Vector of two float numbers [x,y] used to place a line of text anywhere in
the Xmath Graphics window. The upper left corner of the text line is
placed at the specified position. When first drawn, a plot extends from -1
to +1. Note that any float is acceptable, so it is possible to position the text
outside the viewport. If you do, it may seem as though the string was not
created; you must zoom out to view the text. Default = [0,0].

text_size

Floating-point number specifying the size in points. One point is about
1/72 inches.

text_style

Integer or string indicating the text style:

Integer Font

1 "plain”
2 "bold"
3 "italic"
4 "bold italic"

Default = 1 (plain).

Xmath User Guide

4-30 ni.com

Chapter 4 Graphics

The following example uses text keywords; it produces the plot shown in
Figure 4-8. Notice that text_position and position work on the same
principle.
v=[0:.5:25]"'; vc=v.*cos(v); vs=v.*sin(v); vm=vs*vc';
plot (v, v, vm)
plot ({keep, scale=[.9,.9],position=[-.4,0],

x_inc=5,y_inc=10,

text="Text is placed with "ntextposition"+...

""n and textangle.",

text_font=3, text_size=14,

text_angle=[0,0,301],

text_position=[.1,-.71})

Figure 4-8. Text Changes and Text String Placement

© National Instruments Corporation 4-31 Xmath User Guide

Chapter 4 Graphics

Axis Limits and Logarithmic Scaling

You can change the actual scaling of the data (to log scale, for example).
You can also specify the minimum and/or maximum range of data you
want to see on any dimension. Refer to Table 4-15 for the pertinent
keyword descriptions.

Table 4-15. Axis Limits and Logarithmic Scaling Words

Keyword Description
log Turn on/off log scaling for all axes. Default = 0.
x_log Turn on/off log scaling for the specified axis. Default = 0.
y_log
z_log
x_min Integer indicating the minimum for the x, y, or z axis, respectively.
y_min
Z_min
X_max Integer indicating the maximum for the X, y, or z axis, respectively.
v_max
Z_max
x_inc Integer indicating the increment for the x, y, or z axis, respectively.
y_inc o . S . .
2 inc For logarithmic axes, this value becomes multiplicative. This means that if the
- integer is greater than 1, it increases by multiples, and if it is less than 1, it decreases
by multiples. So if x_inc = 10, tic values are 1,10,100, and so on. If x_inc =0.1,
values are 1, 0.1, .01, etc.

Xmath User Guide

You can make an axis go backward by making the value of xmin greater
than xmax as illustrated in the following example:
x=exp(.5:0.15:5);

plot (x, {x_log,rows=3,xmax=32})

plot (x, {keep, row=2,y_log,ymax=150})

plot (x, {keep, row=3,xmin=35, xmax=1, title="Reversed
Scaling"})

The results appear in Figure 4-9.

4-32 ni.com

Chapter 4 Graphics

150

100

50

0 5 10 15 20 25 30 35

Feversed Scaling
150

100

50

‘_—_—‘___‘_———_

D35 30 25 20 15 10 5

Figure 4-9. Axis Maximums and Minimums

Animate

The animate keyword allows you to plot new data without redrawing
other parts of the plot. It is a Boolean used to show changes in data as
quickly as possible for an animation effect between successive plots. The
default is 0.

The following example plots a series of curves on the same axes. The first
plot sets the dimensions of the plot; the second plot holds the dimensions
of the first and specifies that only the data will be redrawn each time. The
curves are plotted within a loop and then animate is turned off.
Alternatively, plot ({reset}) can be used to restore the original settings.

© National Instruments Corporation 4-33 Xmath User Guide

Chapter 4 Graphics

a=[0:20/75:20];a=a.*cos(a);

b=[10:-10/75:0] ;b=b.*sin(b); c=[a,bl;

plot ({animate,ymin=-85,ymax=85,xmax=150}) ;
for i=[[1:.25:5],[5:-.25:1001];

plot(c*i, {linestyle=1})"?

endfor

plot ({'!'animate})

Placement, Scaling, and Rotation

The placement, scaling, and rotation keywords operate on a graph
as a whole. Refer to Table 4-16 for descriptions. This means scale
changes reduce or enlarge the entire graph, including labels, and so forth.
The keywords, rotate, projection, and position, also operate on an
entire graph. You can use these keywords when plotting a single graph or
multiple graphs. Refer to the Multiple Graphs and Graph Positioning
section.

Table 4-16. Placement, Scaling, and Rotation Keywords

Keyword Description

scale Vector of two float numbers [x,y]. Each float indicates the amount of
compression (float < 1) or expansion (float > 1) on the relevant x or y Xmath
Graphics window coordinate. Default is [1,1].

rotate Vector of three float numbers [X,y,z] specifying the angle in degrees of a 3D
plot’s rotation. Assumes a right-hand coordinate system, based on the Xmath
Graphics window axes (not the object coordinates). Rotations are performed
counter-clockwise, first about the x-axis, then about the y-axis, then about the
z-axis. Because this rotation is based on window coordinates (the current view),
it may be simpler to rotate one axis at a time.

projection String equal to one of the following string values:
"stretched"

Stretches the graph so that it fills as much of the plotting area as possible. This
is the default projection for 2D graphs.

"orthographic"

Indicates a coscaled setting such that unit distances on all axes are equal. This
is the default projection for 3D graphs.

Xmath User Guide 4-34 ni.com

Chapter 4 Graphics

Table 4-16. Placement, Scaling, and Rotation Keywords (Continued)

Keyword

Description

move

Vector of two float numbers [x,y] specifying the distance (in Xmath Graphics
window coordinates) to move the object from its current position. [-1,-1] is the
lower left corner, [1,1] is the upper right corner, and [0,0] is the center of the
window.

position

Vector of two float numbers [x,y] specifying the Xmath Graphics window
coordinates of the center of the graph object. Default is [0,0] (the middle of the
window). [-1,-1] is the lower left corner, and [1,1] is the upper right corner.

The following example uses scaling, rotation, and projection, and the
text_position keyword, which works much the same as position
does. This example creates the projection shown in Figure 4-10.

x=[-2*pi:0.35:2*%pi]"';

x=[x;x];y=(x); z=sin(round(x))./x*(sin(y)./y)"';
v=[0:.5:20]"';vs=v.*sin(v) ;vm=vs*vs';

plot (x,y,z, {columns=2,scale=[1,.9],rotate=[-20,0,0],
projection="stretched"})?

g=plot (x,vy,z,{keep,column=2,projection="orthographic",
text="Stretched and Orthographic Projections",
text_position=[-.35,-.9]})?

.y U U
h

e it S

Figure 4-10. Stretched and Orthographic Projections

© National Instruments Corporation 4-35 Xmath User Guide

Chapter 4 Graphics

Background, Edge, and Face Settings

Table 4-17. Background, Edge, and Face Setting Keywords

Keyword Description
bg_color Specifies the Xmath Graphics window background or foreground color.
fg_color Accepts an integer or a string. Refer to Table 4-7.
face Boolean that turns surface filling on 3D surfaces or bar plots on or off.
Default = 1.
face_style Changes the style on all faces. Specify an integer corresponding to the desired

style from the following list:
Integer Face Style

none (default)

solid

cross-hatched pattern
vertical-line

horizontal-line pattern
left-slanting diagonal pattern
right-slanting diagonal pattern
dotted pattern

diamond pattern

square pattern

O 0N Nk W ~=O

Note: For black and white monitors, the face styles are only shown if the face
color is black or white. If you specify a shade of gray and a face style, you only

get gray.

face_color Specifies the color of 3D surfaces based on the z data values. Acceptable
inputs are an integer, a vector of integers, a string, or a vector of strings. Refer
to Table 4-7. If you specify a vector, Xmath cycles through the given sequence.

edge Toggles the display of web lines on 3D surfaces or bar plots. Default = 1.

edge_color Specifies the color of the web lines on 3D surfaces or bar plots.

Acceptable inputs are an integer, a vector of integers, a string, or a vector of
strings. Refer to Table 4-7. If you specify a vector, Xmath cycles through the
given sequence.

Xmath User Guide 4-36 ni.com

Chapter 4

Table 4-17. Background, Edge, and Face Setting Keywords (Continued)

Graphics

Keyword

Description

edge_style

A LN = O

Integer

Sets the style of all web lines. This keyword accepts an integer or a string
equivalent indicating the border line type.
Default = 1 (a solid line). Allowed values are:

String

edge_width

Sets the width of all web lines. This keyword, like line_width, accepts any
floating point number.

The following example displays a variety of edge and face specifications.

x=logspace(1,180,90) ;y=1logspace(90,270,90) ;
z=45:134;
a=[-x;x;-x;x];b=[y;-yi-yivlic=([z;z;2z;2]);

plot(a,b,c, {edge_width=2,

face_style=7, !grid, !axis,bg_color="gold",
edge_color="black", face_color="cyan"})

The graph appears in Figure 4-11.

© National Instruments Corporation

Figure 4-11. Edge and Face Styles

4-37 Xmath User Guide

Chapter 4 Graphics

Lighting Source Settings

Table 4-18. Lighting Source Setting Keywords

Keywords Description
light Boolean that turns light source on or off.
Default=0.
light_color Integer (color number) or string (color name)

specifying light source color. Default = ""white"'.

light_directi Vector of three real numbers [X,y,z] indicating the
on direction in which the light travels. Light source
location is assumed to be infinitely far away. The
default path vector is [1,—1,3].

Setting 1ight =1 for the plot shown in Figure 4-11 produces a very
different graph as shown in Figure 4-12.

Figure 4-12. Edge and Face Styles with Light Added

Xmath User Guide 4-38 ni.com

Chapter 4 Graphics

Reusing plot Attributes

Hold Keyword

Table 4-19. Holding Graph Attributes

Keyword

Description

hold

Boolean. When {hold} is used with other keywords it makes them “permanent”,
applying them to all future graphs until hold is terminated with plot ({'hold}).
Note that { thold} removes keywords specified by the most recent hold. When you
invoke hold in numerous plot calls, a hold stack is formed. You can specify a
negative integer as an argument to hold ({hold =-n}) toremove the lastn hold
invocations from the hold stack. Use plot ({reset}) to clear the entire hold stack.
(Default=0)

reset

Resets plot options to their startup values. Use this keyword alone, that is,
plot ({reset}).

You can use plot attributes, such as line widths, the legend, and titles, with
the hold keyword, but you cannot use plot types (strip, bar, contour, and
polar) with hold. When you use an attribute with the hold keyword, it
replaces the current default. The following example uses the hold stack:
v=[0:.3:20]"';vs=v.*sin(v);
plot (v,vs, {hold, time, date, legend,

title="Top Secret Project", scale=[1,.95]})
plot([-vs,-vs], [v,v], {hold, scale=[1,.95]})
plot (v+12,vs, {'hold})

plot([-vs,vs], {'hold})

You can see the results of each of these four plots in Figure 4-13 and
Figure 4-14.

© National Instruments Corporation 4-39 Xmath User Guide

Line 1

Tep Secret Project

Fridul 23 1993

Graphics

16,684,110
20

Chapter 4

20

— Line 1
— Llna 2

U [
B e

10

Tep Secret Project

(U vy |

T T R R T S N e L

B e) B

B L e T Ty

168512 FrtJul 23 1809

10 f--------
5 e e e - o
D

15 f--------

-5 :_________________
-op L
20

ni.com

20

1

Figure 4-13. Results of First and Second plot Commands Using hold
4-40

-15

-20

Xmath User Guide

Graphics

Chapter 4

FriJul 23 1999

1B 554

Line 1

Top Secret Pro)sct

e
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
' 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 =
||||| | e e S e B o S a5
' 1 ' 1
1 1 1 1
1 1 1
' 1 1
1 1 1 1
1 1 1 1
' 1 ' 1
1 1 1
1 1 1 1
' 1 ' 1
1 1 1 1
1 1 1
||||| [LA _i____a____]wn
1 1 1] &)
1 1 1 1
' 1 ' 1
1 1 1
1 1 1 1
' 1 i 1
1 1 i 1
1 1 1 1
' 1 ' 1
1 1 1 1
1 1 1 1
' 1 ' 1
..... R S S
' 1 ' 1 o
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
||||| Lo LM ¥ __d____1____1____]|
[0 1 1 [1 —
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
TN TN T T T T T T T T TS O B o A
= L = L = L = Lo =
(&} — — 1 —_— —_— o
| 1 |

T T T T T T T T T b
1 1 1 1 1 1 1 =
1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
! 1 1 1 1 =

ol R i T N Ui [)
1 1 1
1 1 !

T 1 i
1 1 1
1 1
1 1 1
1 1
1 1 '

1) 1 R L — =
1 1 1 L
1 1 '

1 1 1
1 1 1
1 1 '
1 1
1 1 1
1 ' '
1 1

||||| [P, e
1 ' =+
1 1
1 1
1 '

1 1
1 1
1 '
1 1
1 1 —
T - o
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 I =

R CTTTTAT ol T T T ol
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

Y U U g A0 U U dooooo [— =
1 1 1 1 [1 —
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 ! 1 1 ! !

METEEE A | | T T T AT S I T T B A MR [y
= L = L = Lo = Lo =
(0] —_— — 1 — —_— o

| | |

Figure 4-14. Results of the Third and Fourth plot Commands Using !hold

Xmath User Guide

4-41

© National Instruments Corporation

Chapter 4 Graphics

alias XX time,date,
plot ([-vs,vs], {XX})

Using an Alias in the Keyword String

Another way to reuse plot attributes is to create an alias. You then can use
the alias in the keyword string. An advantage of using an alias is that the
defaults are not affected. You can store the aliases you use frequently in
your startup.ms file.

You can obtain the results achieved with the hold keyword with an alias:

title="Top Secret Project",scale=[1,.95], legend

This example reproduces the fourth plot command as shown in
Figure 4-14.

@ Note The rows and columns keywords are a special case and cannot be explicitly used
with the ho1d keyword. Because they are initiators, they are automatically held until a plot
call is made that does not contain the row or column keyword.

Strip Plots

Xmath User Guide

The strip keyword is an integer indicating the number of data lines to be
plotted on each strip plot in a given set.

The default is 1; Xmath plots one strip per channel or column of data for up
to 10 strips. After 10, strip adds data to the existing strips.

If a value n is specified, Xmath creates strip plots with n data lines per strip
plot. If the number of lines is not evenly divisible by #, the data lines
corresponding to the remainder are lost.

Xmath creates strip charts such that the first data line appears on the first
strip chart, the second appears on the second strip chart, and so on until
each strip in the first cycle has a data line. All the lines in the first cycle have
the same line style. Xmath draws the second cycle of lines with a different
line style. You can interactively modify line styles, colors, markers, and so
forth as discussed in the Interactive Xmath Graphics Window section.
When you alter a data line, Xmath also changes all lines in that cycle. Note,
however, that changes that do not affect data (for example, grid lines) are
not passed to other strips.

By default, strip plots are laid out as follows:

* plot(y, {strip=N}) wherey is an (m X n) matrix and n is an integer
multiple of N. Strips are arranged as an ((n/N) X 1) matrix of plots. Each
strip contains N graphs.

4-42 ni.com

Chapter 4 Graphics

e plot(y, {strip=N}) where yis an (m X n X T) PDM and m is an
integer multiple of N. The results are an ((m/N) X n) plot matrix. Think
of the PDM as a column vector of blocks. Each subplot contains N
graphs.

e plot(y, {strip, columns=m, rows=n}) where y is a matrix with N
columns and N is an integer multiple of m X n. This syntax creates an
(m X n) plot matrix that is filled with graphs rowwise. The number of
data lines in each subplot is N. This option is very handy because it
precludes having to write a nested loop to fill in a matrix of plots.

e plot(y, {strip,columns=m, rows=n}) whereyisan (m; X n; X
T) PDM and m; X n; is an integer multiple of m X n. The result is
identical to that obtained by plotting makematrix (y) with the same
keywords. When used with columns=1, this syntax specifies a column
of strip plots instead of a matrix of strip plots.

To demonstrate strip plots, load the following file:

load "$XMATH/demos/sys.xmd"

This file contains sys, a lightly damped mechanical system that inputs two
forces and outputs two positions. It is discrete, sampling at one second. For
this example, we use this data to create a system with a sampling rate of one
second and named inputs and outputs:

sysd=system(sys, {dt=1, inputNames=["Force 1"; "Force 2"],
outputNames=["Position 1";"Position 2"]});

Obtain a frequency response of the new system.

f = [1:200]/400; gd=freq(sysd,f);

Create a continuous version of this system and create a frequency response
for it:

sysc=makecontinuous (sysd); gc=freqg(sysc, f);

Plot the continuous and discrete systems.

plot (abs ([gd;gcl),
{xlog,vylog,strip=2, legend=["Discrete"; "Continuous"]
, lgrid})?

© National Instruments Corporation 4-43 Xmath User Guide

Chapter 4 Graphics

The results of this example appear in Figure 4-15.

Foroe 1 Foroe 2
1.1 : : 1 . .
001k 0.1
- 011
AERTEY
= b.001
ol
NI
o 10001
Discrete
le-l8 ¢ 1s-0105 Continuous)
1e-108 1s-116
1 1
i1} 01
001}
‘E 101
2 notf
[
a 00101
= panitf
Lo-t15 | WITT
Lem 0085y i1 i1 RLRE ST i1 i i

Figure 4-15. Frequency Responses

Xmath User Guide 4-44 ni.com

Chapter 4 Graphics

Bar Plots

The bar keyword is a Boolean used to indicate that the current plot is a bar
plot. Each coordinate is plotted as the center of a bar whose height is the v
or z coordinate. Default=0.

plot (logspace(1l,10,13), {bar, face_style=5, !x_grid})

This plot appears in Figure 4-16.

Figure 4-16. Bar Plot

© National Instruments Corporation 4-45 Xmath User Guide

Chapter 4 Graphics

Contour Plots

A contour plot is a 3D plot that shades portions of the plot based on the

z data values; the effect is like a topographical map. You can use a legend
to show which value ranges correspond to the color or fill pattern shown in
the contour plot. If you specify the keyword face_color and supply a
vector of colors, those colors will be used to shade the data values.

Table 4-20. Contour Plots Keywords

Keywords Description
contour Booleans used to indicate that the current 2D
contour2d plot is a contour plot. Requires x, y, and z data.
Default = 0.
contour3d Boolean used to indicate that the current 3D
plot is a contour plot. Requires x, y, and z data.
Default = 0.

contour_interval | Float value which can be used with contour
or contour3d to determine the intervals of the
contour plot. Defaults to the internally
calculated tic label values of the z data.

The following instructions produce Figure 4-17:

v=[0:.5:7]1";

ve=v.*cos (v); vs=v.*sin(v); vm=vs*vc';

plot(vc,vs,vm, {rows=2,columns=2, contour2d, !grid})

plot(vc,vs, vm, {keep, row=2, contour2d, !grid,
contour_interval=1.3})

plot(vc,vs,vm, {keep, column=2, contour3d, !grid})

plot (vc,vs,vm, {keep, row=2, column=2, contour3d,
'grid, contour_interval=1.3,!z_tic_lab})

Xmath User Guide 4-46 ni.com

Chapter 4 Graphics

Figure 4-17. 3D Contours with Different Intervals

Polar Plots

The polar plot option draws a 2D plot on a polar grid. Polar plots require a
radius (magnitude vector) and an angle vector in degrees (theta):

plot (radius, theta, {polar})

Table 4-21. Polar Plot Keywords

Keywords Descriptions
polar Boolean used to make the current 2D plot a polar plot. Default = 0.
r_inc Integer specifying the polar radius increment value to be marked on the vertical

axis of the polar plot.

r_max Integer specifying the maximum polar radius to be plotted on a polar plot.

theta_inc Integer specifying the polar angle increment value to be marked around the
circumference of the polar plot.

theta_min Integer specifying the minimum or maximum polar angle increment to be
theta_max marked around the circumference of the polar plot.

© National Instruments Corporation 4-47 Xmath User Guide

Chapter 4 Graphics

Clearing the Xmath Graphics Window

Xmath User Guide

The following instructions produce Figure 4-18.

t=[logspace(1l,180,32) ;logspace(90,270,32);
logspace(180,360,32) ;logspace(360,540,32)1];
plot (t,t,{polar, !x_grid,r_inc=90,

theta_inc=10,marker})

To clear the Xmath Graphics window, type ERASE in the Xmath
Commands window command area.

250

280 p7p 2ap 290

5410
450
3E0
2710
120
a0

80

180
270
3E0
450
&40

4-48

Figure 4-18. Polar Plot

ni.com

Chapter 4 Graphics

Interactive Xmath Graphics Window

The Xmath Graphics window displays Xmath plots and other graphics. It
is typically opened and updated whenever plot (), or a function that calls
plot(),suchasbode(),isinvoked. It provides extensive interactive
facilities for building, modifying, and viewing 2D and 3D graphics. You
can specify graph characteristics, such as labels, placement, and size, as
keywords to plot (), or you can add or modify them interactively from
the Xmath Graphics window menus or the Xmath Palette.

Graphs are composed of objects such as lines, labels, markers, and axes.
Object attributes can be prespecified as keywords when the plot command
is issued from the Commands window command area. Keyword usage is
discussed in the Using Keywords with plot section. You also can manipulate
an object’s attributes interactively from the Xmath Graphics window menus
or toolbar or from the Xmath Palette. Figure 4-19 shows the graphics
environment on UNIX platforms.

© National Instruments Corporation 4-49 Xmath User Guide

Chapter 4

Graphics

— | Xmath Palette {(drawings)

Xmath Commands: main

File Edit ¥iew Options Windows I_lelpl

v=[0:.1:25]" ;vc=v. *cos(¥);vs=v.*sin{v);
plotive,vs)?

plot{-vc,-vs, {keep, !grid,

legend=["positive" , "negative"].

=1sh-"Keep allows you to combine graphs.",

|— le="Use tools to alter or add to a graph."})

s (a graph object)

lines

e |

x5 v
X 3of o
i i
o |
B s
ol e 12
7 1 =
o i 1

_| color wheel

(s Lines arkers

mavkens

Xmath Graphics: main.ans
File Edit ¥iew Options ¥Foot ¥Point Windows

INA D= A

lIse tools to alter or add to a graph.
T

Help |

Py

Mon Jul 26 1993
104703

1 1
-10 i 10 20 3
Keep allows you to combine graphs.

-30
-30

1
-20

Xmath User Guide

Figure 4-19. Xmath Graphics Environment (UNIX)

In the example shown in Figure 4-19, the graph originated withaplot ()
function call in the Xmath Commands window command area:
v=[0:.1:25]"';vec=v.*cos(v);vs=v.*sin (V) ;
plot(vc,vs)?
plot (-vec, -vs, {keep, !grid,

legend=["positive", "negative"],

xlab="Keep allows you to combine graphs.",

title="Use tools to alter or add to a graph."})

4-50 ni.com

Chapter 4 Graphics

Notice that two plots were combined using the keep keyword. Graphical
additions (the arrows, for example) were created with tools from the
toolbar. New objects (for example, the timestamp and datestamp) were
added from the Options menu in the Xmath Graphics window. The mouse
was used to select and position objects (for example, the legend, timestamp,
and the datestamp).

Working Interactively

Toolbar

5

The most common approach is to start with a graph and then use interactive
tools to alter it to your satisfaction.

» To make interactive changes, first click an object to select it.

Xmath selects the closest object to the mouse-click. When you select
text, round handles appear on the corners of the text box. When you
select a line or curve, it is highlighted and has a thicker appearance.

When you make a selection, the appropriate attributes are enabled for
both the Xmath Palette and the Xmath Graphics window menus. For
example, when the background is selected, the Xmath Palette shows
that only the fill patterns are available (line and marker styles are
disabled, and the Fills button is pushed). If a label is selected, the Font
and Point menus become available in the Xmath Graphics window; in
the Xmath Palette, the Text button is pushed. You can then change the
font and point size from the Xmath Graphics window and select a new
color from the Xmath Palette.

* Place the cursor over an object and drag to move objects.

You can also use pull-down menus to modify and move selected objects,
make global changes (zooming, rotating, and so forth), or add objects
(through the Options menu). Click an object to select it. When you pull
down the menus, only the items appropriate for the object selected are
displayed.

The toolbar appears in the Xmath Graphics window by default. This feature
provides quick mouse access to simple graphical drawing tools and the
zoom and rotate tools. To toggle the toolbar off and on, (UNIX) select
Options»Icon Bar. Figure 4-20 shows the toolbar in both UNIX and
Windows and shows labels for each tool.

Note Notice that not all tools are enabled for all plot types. In general, zooming and
rotation are disabled for all multiple graph plots, such as strip plots.

© National Instruments Corporation 4-51 Xmath User Guide

Chapter 4 Graphics

Xmath User Guide

Zoom Out (Reduce)
Rotate About Y-Axis

[
@ ||55| Rotate All Axes

Ellipse Tool

O
™y _/I Arc Tool

Line Tool

|:| Rectangle Tool
?. Zoom In (Englarge)

_,, Arrow Tool

:E"" > Text Tool
/

= e

Y
B
9
(=)

i,

Iﬁ I% Rotate About X-Axis
&
ﬁ Rotate About Z-Axis

= | !I Selection Arrow

Figure 4-20. The Toolbar (UNIX and Windows)

Selection Arrow

You use the selection arrow to reset the cursor to selection mode after you
use a drawing or text tool.

Text Tool

To use the text tool, click on the Text Tool toolbar button. You receive an
I-beam cursor. Move to the graph area and click. An empty text box
appears; you may start typing. The text box expands as you type. To create
a paragraph (continuous lines of text) press the <Return> key and keep
typing. To start a new string, click in a different place. To turn off the text
tool, click the selection arrow or another tool.

The key commands described in the Editing Text by Selecting, Copying,
and Pasting section of Chapter 1, Introduction, are also active in the text
box. Notice that the font and size in the text box are not what is displayed
in the graph. Figure 4-21 demonstrates this in the center text piece. To edit
existing text, click the Text Tool toolbar button, and then click in the text;
the text box reappears. Note that the changes you make are not displayed
until you click the selection arrow or another tool.

To format text, select it, and then choose a font style and point size from the
Font and Size menus on the Xmath Palette; you can also enable checkboxes
for bold and italic font. To change text color, select the text, and then select
a color from the Xmath Palette. Figure 4-21 shows reversed text created
with a text string and a graphical object.

4-52 ni.com

Chapter 4 Graphics

Text can be a single string or a multiple-line paragraph.
Fress Return to break a text string.

When inputting or editing text,
¥ou don't see the final font and size
until you choose the selection arrow.

Figure 4-21. Using the Text Tool and the Xmath Palette

Drawing Tools

| | | ’ ’ The line tool, rectangle tool, ellipse tool, arc tool, and arrow tool are
primitive drawing tools that allow you to draw in the Xmath Graphics
window. When you use drawing tools, they remain active until you choose
the selection arrow or another tool. To use a tool, click on the desired
toolbar button; a crosshairs cursor appears. Press MB1 and drag until the
desired shape is formed; then release MB1.

@ Note You cannot resize or reshape the polygons you create because these are primitive
tools.

Zoom In/Zoom Out

To zoom in on a graph, click the toolbar button with the larger image on the
left. Position the mouse over your plot; then click and drag to create a box
around all or a portion of the graph; the area captured in your box is
enlarged to fill the Xmath Graphics window. Every time you zoom in, the
previous view is saved on a stack.

You can use the Zoom Out toolbar button (the toolbar button with the
smaller image) to undo a series of enlargements. If you zoom out when you
are at the default view, the graph is reduced by approximately 10%.

The zoom feature is disabled for multiple graph plots.

© National Instruments Corporation 4-53 Xmath User Guide

Chapter 4 Graphics

Xmath User Guide

Rotation Tools

Rotation is only allowed with 3D plots and other contour plots. The first
rotation tool allows rotation on all axes. The other tools are constrained to
rotate only in the directions indicated by the arrows. Select a tool, and then
move the cursor to the plot area. Press MB1, and slowly drag the cursor in
the direction allowed. The data disappears and you see the plot axes turning
in response to your mouse movement; when the axes are in the position you
wish to view the plot, release MB1, and the data is redrawn. To return to
the original graph, select View»Reset.

Consider the following example:

x = [0:107;
y = [0:10];
z = [0:107;

graph = plot(x,vy,z, {marker=1, x_lab="X", y_lab="Y",
Z-lab="2"})

The default plot appears in Figure 4-22. This 3D vector is projected in such
a way that it is not particularly useful.

4-54 ni.com

Graphics

Chapter 4

Figure 4-22. Default View of 3D Vector

Using the rotation toolbar buttons, you can rotate this plot in almost an

infinite number of ways. Figure 4-23 shows one rotated view, which gives

more information that the default plot.

Xmath User Guide

4-55

© National Instruments Corporation

Chapter 4 Graphics

Figure 4-23. Rotated View of 3D Vector

Menus

This section discusses the menus that are available in the Xmath Graphics
window.

File

* Bindto Variable—Saves the current Xmath Graphics window image as
a variable that you specify. You can redisplay the plot at a later time by

typing the variable name, or you can reuse the graph in another plot by
using the keep keyword.

Xmath User Guide 4-56 ni.com

© National Instruments Corporation

Chapter 4 Graphics

Bind Graph to Variable

Variable Nane

| graph_30 |

=

Print—Raises the Print dialog box (UNIX version shown in the
following figure), which allows you to send the image in the current
Xmath Graphics window to a printer. The UNIX Print dialog allows
you to save a graphics file in PS (PostScript), EPS, HPGL, PICT,
CGM-ANS, CGM-CAL, or CGM-TXT format.

(® Portrait (@ B/W
_Landscape _Itolor

Scale X: |1 Scale Y: |1

File Type: PS5 (PostScript) — |

Print Conmand: |1pr —Php3
W Print to File:
| /hones/ techpubs/3D_vector .p{

o | sanced

(UNIX) The default printer shown in the Print Command field is set at
the operating system level. The default line printer for your system is
assumed. The system’s default print command is set using the
environment variables XMATH_PRINT and PRINTER. XMATH_PRINT
defines the default print utility, while PRINTER defines the default
printer.

(Windows) This command raises the standard Windows Print dialog
box from which you can also print to a file.

For all systems, you can print from the Xmath command area using the
HARDCOPY command. Refer to the HARDCOPY topic of the
MATRIXx Help for details.

Iconify Window—Lower the Xmath Graphics window.

Close Window—Kill the Xmath Graphics window.

4-57 Xmath User Guide

Chapter 4 Graphics

Edit

Cut—Delete the selected object.

Move Up, Down, Left, Right—Move the selected object. Distance will
be 1-2 pixels, depending on the size of the window.

@ Note These commands work only for objects that you place on the graphic interactively
or with keywords such as legend, date, time, and so forth.

Bring to Front—Bring the selected object to the front.

View

Reset—Reset to the original graph.

Projection—Change the projection for the current graph. In stretched
projection (the default for 2D plots), the plot is scaled to occupy the
maximum amount of available space. For orthographic projection (the
default for 3D plots), all axes are coscaled to have the same unit length.
Acircle will look round, and a cube will look like a cube and not a shoe
box.

Lights—Toggle lights on/off.

Options

Xmath User Guide

Timestamp—Add the timestamp to the graph. The timestamp appears
in hour:minutes:second format and is positioned by default in the upper
left corner of the graph. You can select it and then change the text
attributes or move it. To remove the timestamp, select it and press the
<Ctrl-x> keys.

Datestamp—Adds the datestamp to the graph. The date stamp appears
in the day:month:date:year format and is positioned by default in the

upper left corner of the graph. You can select it and then change the text
attributes or move it. To remove the datestamp, select it and press the
<Ctrl-x> keys.

Legend—Toggle the legend on/off.
(UNIX) Icon Bar—Toggle the toolbar on/off .

4-58 ni.com

Chapter 4 Graphics

Font (UNIX Only)

This menu is only available if text is selected in the Xmath Graphics
window. PostScript fonts available are Times, Helvetica, and Courier.
Stroke fonts available are Simplex, Duplex, Triplex, Complex, Script, and
Greek.

@ Note Your machine might not be able to display all fonts in all sizes listed in the Point
menu; the same is true for printer output. In either case, the device produces the font it can
manage.

Point (UNIX Only)

This menu is only available if text is selected in the Xmath Graphics
window. Point sizes are 6, 9, 10, 12, 14, 18, 24, 36, and 48. You can also
choose the font style: plain, bold, italic, or bold italic.

@ Note Your machine might not be able to display all fonts in all sizes; the same is true for

printer output. In either case, the device produces the font in the closest size it can manage.

Xmath Palette

Tools (Windows Only)

You can use this menu to duplicate all the functions on the toolbar. Select
the menu item rather than the toolbar button to perform the same function
as discussed in the Toolbar section.

Windows

This menu allows you to bring other Xmath windows to the front quickly.
Of special note is the Palette, which is used to make interactive changes to
graphic objects.

Xmath provides another window from which you can work interactively.

Complete the following steps to bring up the Xmath Palette:
1. Click Windows»Palette in the Xmath Graphics window.

The Xmath Palette comes on view. The UNIX version looks a little
different from the Windows version, but the functions are essentially
the same. The default UNIX version appears in Figure 4-19. You can
also select colors via a color wheel on the UNIX version; this view of
the Xmath Palette appears in Figure 4-24, as well as the Windows
version of the window.

© National Instruments Corporation 4-59 Xmath User Guide

Chapter 4 Graphics

Xmath Palette [tics:axis line)

& oo
vidth: — — l5ie: B Jﬁ & Lines O Markers C Flle O Text

_Lines paxkers JFills (@ Text black

0 E

[Hnes Width
[w———] [0 o]
File
= — hark :
lines warkevy fills SREE fidth:
— | || [B =l Jotzon 7]
[| — | | ﬂ M —Fillz
I e | %% — —
| .
|

— Text Shyle

Fant Size

fontlabel j Ipointj
I} Ecld =

W color wheel

Cloze

Figure 4-24. Xmath Palette: UNIX and Windows Versions

Complete the following steps to use the Xmath Palette:
1. Select an object in the Xmath Graphics window.
The object type appears at the top of the Xmath Palette in the title bar.

The radio button for the active option—Lines, Markers, Fills, or
Text—is pushed. All items that are available for the selected item are
active, whereas others are inactive in the window.

2. Click the radio button for the option that you wish to change: Lines,
Markers, Fills, or Text.

Xmath User Guide 4-60 ni.com

Chapter 4 Graphics

3. Make the desired changes for this option.

You can control the color of all attributes. You can turn lines, markers,
and fills off or choose the type of each. For lines and markers, you can
also choose the width. For text, you have a choice of fonts, sizes, plain,
bold, italic, or bold italic style. The text choices mimic the options
available through the Font and Point menus in the Xmath Graphics
window in UNIX.

4. Modify as many attributes for as many objects as you want, and then
click Close to close the window.

© National Instruments Corporation 4-61 Xmath User Guide

Data Objects and Operators

This chapter provides a conceptual overview and detailed descriptions of
Xmath data objects and operators.

Data Hierarchy

Xmath data hierarchy, as shown in Figure 5-1, is divided into numeric and
nonnumeric branches.

The matrix, for example, is general. It consists of matrices of various
shapes. The square matrix is a specific kind of matrix that requires an equal
number of rows and columns, but otherwise inherits the characteristics of
the matrix. A scalar is a special kind of square matrix with dimensions of
1 x 1. A scalar is also defined as a special kind of vector, because it is a
vector with a length of 1.

© National Instruments Corporation 5-1 Xmath User Guide

Chapter 5 Data Objects and Operators

Variable
Numeric | Non-Numeric
Polynomial | | Matrix PDM Graphic | | sting | | Qe List
I |
Vector Index List Square State-Space l':rran sfer
unction
Regular Logspaced
Vector Vector
| |
Symmetric Toeplitz Hessenberg Scalar
| |
Diagonal Triangular
I
Identity

Xmath User Guide

Figure 5-1. Object Relationships

Xmath’s object-based structure provides three significant benefits:

Simplified data management—As variables in Xmath can represent
complex groupings of data, you don’t have to track numerous
variables. For example, with a state-space system using

system (A, B, C, D), all the data (including input names, output
names, and so on) is stored in a single variable. The matrices can be
deleted.

Optimized performance—Many Xmath data objects were designed
to take advantage of optimized algorithms. This is especially true of
the specialized matrices. The eigenvalues of a symmetric matrix, for
example, can be found more quickly with a symmetric eigensolver
rather than a general eigensolver. Xmath recognizes the special
properties of a matrix and uses the appropriate, optimized algorithm.

Natural syntax—Because Xmath recognizes the special properties of
each type of data object, operations are intuitive. For example, it is
more natural to multiply two polynomials by typing p1*p2 than itis to
call convolve (pl,p2).

5-2 ni.com

Chapter 5 Data Objects and Operators

Data Object Descriptions

This chapter describes Xmath data objects in the following order:

Matrix

Polynomial

Parameter-dependent matrix (PDM)
Dynamic system

String

List

Some of the categories are subdivided. For example, dynamic systems
include state-space systems and transfer functions, and matrices include the
following:

Vector

— Regular vector

— Logspaced vector

Square

— Symmetric, Diagonal, Identity, Toeplitz
— Hessenberg, Triangular

— Scalar

Indexlist

@ Note To reproduce the examples, cut and paste the monospace text.

Matrix

A matrix is an object organizing m rows and n columns (m X n) of real or
complex numbers (elements). A complex number contains both a real and
an imaginary term. A matrix is complex if at least one element is complex.
To qualify as a real matrix, all elements must be real.

Matrices are specified with the following syntax elements:

© National Instruments Corporation

A matrix specification is enclosed in square brackets.
Matrix column elements must be separated by commas.

A semicolon separates rows.

5-3 Xmath User Guide

Chapter 5 Data Objects and Operators

For example, x=[jay, 4; 3,-11.In aformatted matrix, a line feed
replaces the semicolon:

x=[jay, 4 # Line Feed
3, -1] # Return

If your machine does not have a Line Feed key, refer to Table 1-7, Linefeed
Key. The matrix specification ends with a right bracket.

Specific types of matrices are also created with functions such as
zeros(), random(), diagonal(), and so on. These functions
require row and column dimensions as inputs:

set seed = 0
x=random (3, 4)

x (a rectangular matrix) =

0.211325 0.756044 0.000221135 0.330327
0.665381 0.628392 0.849745 0.685731
0.878216 0.068374 0.560849 0.662357

The functions check () and is () can be used to determine if a variable
is a matrix. For brief explanations of check () and is(), refer to the
Object Query Functions section of Chapter 6, MathScript Programming.
Sample syntaxes are: check (x, {matrix}) or is (x, {matrix}).

Use size to find the row and column dimensions of a matrix:

size (x)

ans (a row vector) = 3 4

To find the total number of elements, use length():
length (x)

ans (a scalar) = 12

Many classes stem from the matrix class, and it is the primary component
of several more specialized objects.

Matrix Concatenation

Xmath User Guide

Concatenation (combining several matrices into a new matrix) is
performed using square bracket operators []. Right concatenation is
indicated with commas [,]; bottom concatenation is indicated by
semicolons [;].

5-4 ni.com

Chapter 5 Data Objects and Operators

For example,

* [A,B] concatenates B to the right of A (where B must have the same
number of rows as A).

e [A;B] concatenates B to the bottom of A (where B must have the same
number of columns as A).

x=random (3,2) *12

x (a rectangular matrix) =

8.71621 2.38217
6.53109 2.7849
2.77468 2.59756

x=[x,ones(3,4);ones(2,2),zeros(2,4)]

X (a rectangular matrix) =

8.71621 2.38217
6.53109 2.7849
2.77468 2.59756
1 1

1 1

co R RER
co R RR
cCo R RR
co R RER

Matrix Operators
The operators in Table 5-1 have special meanings for matrices:

scalar operator matrix

usually means applying the operator elementwise.

matl=(1,1,1,1; 2,2,2,2; 3,3,3,3];
mat2=matl * matl'

mat2 (a square matrix) =
4 8 12
8 16 24
12 24 36

3 * matl

ans (a rectangular matrix) =

© National Instruments Corporation 5-5 Xmath User Guide

Chapter 5 Data Objects and Operators

Table 5-1. Matrix Operations

Operator

Effect

Addition (or unary plus). Matrices must have the same dimensions.

Subtraction (or unary minus). Matrices must have the same dimensions.

Matrix multiplication. The number of columns in the first matrix must equal the
number of rows in the second matrix.

Matrix right division. A/B solves the equation X X B=A. The number of columns
in A must equal the number of rows in B.

Matrix left division. B\A solves the equation B X X=A. The number of columns
in B must equal the number of rows in A.

Transpose (unary suffix).

Complex conjugate transpose (unary suffix).

Elementwise matrix multiplication. Matrices must have the same dimensions.

Elementwise division (left divided by right). Matrices must have the same
dimensions.

Elementwise division (right divided by left). Matrices must have the same
dimensions.

Aor‘k*

Raise a square matrix to a scalar power.

LN oor L xF

Raise elements to a power. Another matrix of the same size can contain the
powers.

Kronecker product.

Kronecker right division.

Kronecker left division.

Elementwise logical and.

Elementwise logical or.

Elementwise logical not.

Elementwise less than.

Elementwise greater than.

Elementwise less than or equal.

Elementwise greater than or equal.

Xmath User Guide

5-6 ni.com

Chapter 5 Data Objects and Operators

Table 5-1. Matrix Operations (Continued)

Operator

Effect

Elementwise equal.

<> Elementwise not equal.

= Assignment.

Matrix Indexing

Indexing (extracting a specific subset of matrix elements) is performed
using the parentheses operators (). Indices can consist of any one of the
following:

© National Instruments Corporation

Two integers specifying the desired row and column.

A(i,j) extracts from A the element located in row i, at column J.
This can be demonstrated using the matrix mat2 created earlier.

mat2

mat2 (a square matrix) =

4 8 12
8 16 24
12 24 36

mat2 (2, 3)
ans (a scalar) = 24

Two vectors of integers specifying a range of rows and columns.
A (vectorl,vector2) extracts a portion of A with rows
corresponding to vector 1 and columns corresponding to vector 2.

mat2(1:2,2:3)

ans (a square matrix) =

8 12
16 24

An index list that specifies all desired element locations in terms of row
and column indices. An index list can be created with the find () or
indexlist () functions. For more on the index list object, refer to
the Index Lists section.

ijList=find (mat2>15)

ijList (an index list) =

5-7 Xmath User Guide

Chapter 5 Data Objects and Operators

Vector

Xmath User Guide

2 3
3 2
3 3

¢ Notice that £find () returns the row and column coordinates for
elements in mat?2 that are greater than 15: (2,2), (2,3), (3,2), and (3,3).
You can use indexing to display the values in these index list locations:

mat2 (ijList)

ans (a column vector) =

16
24
24
36

Indexing with the Colon Operator (:)

The colon operator (:) is a wildcard for all elements, thus A (1, :) is the
ithrowof A and A(:,3) is the jth column of A.

You can use a wildcard and a decreasing vector to reverse the columns of a
matrix.

mat2(:, [3:-1:17)

ans (a square matrix) =

12 8
24 16 8
36 24 12

Here wildcards are used to extract rows, which are reassembled into a new
matrix:

mat3=[mat2 (1, :);sgrt(mat2(2,:));mat2(3,:)"2]

mat3 (a square matrix) =

4 8 12
2.82843 4 4.89898
144 576 1296

The vector class is a subclass (or specialization) of the matrix class. A
vector object is a matrix that has a row or column dimension equal to 1.
Vectors can be oriented as either rows or columns.

5-8 ni.com

Chapter 5 Data Objects and Operators

Many of the functions defined for matrices apply to vectors as well. Vectors
also have many special behaviors. The most important of these are listed
below:

* Use ~ to raise elements to a power (for matrices, use .).
[1:4]7[1:4]
ans (a row vector) = 1 4 27 256

* Vectors can be indexed with a single index variable. Thus v (i) is the

i element of the vector v. A single vector of integers can also be used
as an index.

a=[2,4,6,8,10]

a (a row vector) = 2 4 6 8 10
a(l[1,3,5])

ans (a row vector) = 2 6 10

* The colon (:) wildcard expands vectors in column form.
aVector (:) is always defined as a column, regardless of whether
the vector is a row or column.

* The length() function is the most natural method of determining
the length of vector. length (avector) is defined as
max (size(aVector)) .

e To see if a variable is a vector, invoke is (var, {vector}) or
check (var, {vector}).

To determine whether the vector is a row or column, use is (var, {row})
or is (var, {column}) (or use check). The {row} and {column}
keywords imply {vector}. For brief explanations of check and is, refer
to the Object Query Functions section of Chapter 6, MathScript
Programming.

Regular Vector

A regular vector is evenly spaced, with each element a fixed increment
from the previous value. If a regular vector is created with the colon
operator, Xmath stores it as three values (start : increment : stop). You can
treat it as a vector, but it is displayed in a special manner.

* Aregular vector can only be a row vector. Transposing it expands it to
full size, turns it into a simple vector.

x=0:0.33:1
x (a regularly spaced vector) = 0 : 0.33 : 1
xl

© National Instruments Corporation 5-9 Xmath User Guide

Chapter 5 Data Objects and Operators

Square Matrix

Xmath User Guide

ans (a column vector) =

0

0.33
0.66
0.99

e Putting a regular vector between square braces [] will expand it.
[x]
ans (a row vector) = 0 0.33 0.66 0.99

A regular vector is internally expanded for most operations, except
indexing.

Although a regular vector is stored in compact form (as start, stop, and
increment values), it has the same dimensions as if it were created in
expanded form. You can view the sizes of all the variables in your current
partition with the who command. Use the size function to view the size of
a single variable:

size (x)

ans (a row vector) = 1 4

Logspaced Vector

A logspaced vector is just like a regular vector except that its points are
evenly spaced on a log scale. It can only be created with the logspace ()
function. logspace () inputs are the initial value, the final value, and the
number of points desired in the vector. All the display considerations for a
regular vector apply to logspaced vectors.

x1l=1logspace(0.1,10,4)

x1 (a log-spaced vector) = 0.1 : 10 (4 points)
[x1]
ans (a row vector) = 0.1 0.464159 2.15443 10

The square matrix class is a subclass of the matrix class. A square matrix
object has equal row and column dimensions.

All of the functions that are defined for matrices are also defined for square
matrices. However, there are several square matrix functions that are not
valid for rectangular matrices. The most important of these are shown in
Table 5-2.

5-10 ni.com

Chapter 5

Table 5-2. Functions That Are Only Valid for Square Matrices

Data Objects and Operators

Function Result
~or ** raise matrix to a power (A*3=A X A X A)
Lhor Lk raise each element to a power
cholesky() Cholesky decomposition
cosm() matrix cosine (use cos elementwise)
det () determinant
eig() eigenvalues
expm() matrix exponential (use exp elementwise)
hessenberg() Hessenberg decomposition
inv() inverse
logm() matrix logarithm (use 1og elementwise)
lu() L-U decomposition
orth() orthogonal decomposition
polynomial () characteristic polynomial
polyvalm() evaluates polynomial function of a matrix
az() generalized eigenvalues
rref () reduced-row echelon form
schur () Schur form
sinm() square matrix sine (use sin elementwise)
sqgrtm() matrix square root (use sqrt elementwise)
trace() find the sum of the diagonal elements of a matrix

Symmetric

The symmetric matrix class is a subclass of the square matrix class.

A symmetric matrix object is equal to its transpose.

For most applications, symmetric matrices act just like square matrices.
Certain algorithms take advantage of their special structure to achieve
improved results. For example, the eigenvalues of a symmetric matrix can

© National Instruments Corporation 5-11

Xmath User Guide

Chapter 5 Data Objects and Operators

Xmath User Guide

be found more quickly than the eigenvalues of a general matrix. Also, the
answers are constrained to be purely real.

a=[1:4];b=[a;a;a;al

(a square matrix) =

BB R R
NN NN
wWwww
NS

is (b, {symmetric})
ans (a scalar) = 0
c=tril(b,1) + tril(b,1)"

¢ (a square matrix) =

2 3 1 1
3 4 5 2
1 5 6 7
1 2 7 8
is(c, {symmetric})
ans (a scalar) = 1

Diagonal()

The diagonal matrix class is a subclass of the symmetric matrix class and
the triangular matrix class as discussed in the Triangular section. A
diagonal matrix object has zero in all positions except along the main
diagonal.

The diagonal () function can be used to extract a diagonal from a
matrix. Extract the diagonal from the matrix c defined above:
d=diagonal (c)

d (a column vector) =

o o BN

If a vector is used as an input, a matrix is created that
has the vector on the main diagonal.

5-12 ni.com

Chapter 5 Data Objects and Operators

e=diagonal (d) # use the vector d as the
diagonal of a new matrix

e (a square matrix) =

o ooN
o O & O
o & © ©
0 O O o

Identity

The identity matrix class is a subclass of the diagonal matrix class. An
identity matrix object has ones on the main diagonal and zero for all other
elements. The function eye () creates an identity matrix from row and
column dimensions:

eye(3,3)

ans (a square matrix) =

1 0 0
0 1 0
0 0 1

For most applications, identity matrices act like square matrices. Certain
algorithms, such as multiplication and inversion, take advantage of their
special structure.

Toeplitz

The Toeplitz matrix class is a specialization of the square matrix class with
constant entries along the diagonals. A Toeplitz matrix can be described by
its first row and first column (if it is symmetric, it can be described by a
single vector). The matrix left and right division operations have been
overloaded for solving matrix equations of the form 7XxX= A4 and
XxT= A (where T is a Toeplitz matrix):

t=toeplitz([3,2,1],[1,2,31)

t (a toeplitz matrix) =

3 2 1
2 3 2
3 2 3

© National Instruments Corporation 5-13 Xmath User Guide

Chapter 5

Xmath User Guide

Data Objects and Operators

Hessenberg()

The Hessenberg matrix class is a subclass of the square matrix class. A
Hessenberg matrix has zeros in all elements below the first subdiagonal or
above the first superdiagonal. The hessenberg () function puts a matrix
A in Hessenberg form H, defined suchthat 4 = TxHXT #'whereT
is a unitary transformation matrix of the same size and type as A.

hessenberg([1,2,3;1,2,3;1,2,31)

ans (a square matrix) =

1 -3.53553 0.707107

-1.41421 5 -1

0 -3.14018e-16 3.14018e-16
Triangular

The triangular matrix class is a specialization of the Hessenberg matrix
class. A triangular matrix object has zeros in all elements above the main
diagonal (upper triangular) or below the main diagonal (lower triangular).

set seed 0
a=round (rand(4,4) *4)

a (a square matrix) =

1 3 0 1
3 3 3 3
4 0 2 3
3 1 2 1

12345678 112345678 212345678
aTriu=triu(a) # an upper triangular

aTriu (a square matrix) =

1 3 0 1
0 3 3 3
0 0 2 3
0 0 0 1
aTril=tril (a) # a lower triangular

aTril (a square matrix) =

1 0 0 0
3 3 0 0
4 0 2 0
3 1 2 1
5-14 ni.com

Chapter 5 Data Objects and Operators

Scalar

The scalar class is a subclass of the square matrix class. A scalar object is
a matrix with a single row and a single column.

Any function or operator defined for a matrix is also defined for a scalar.
However, scalars have many special properties when used in combination
with other classes of objects, as shown in the samples that follow.

© National Instruments Corporation

scalar x matrix—Each element of the matrix is multiplied by the
scalar. The same holds true for vectors and PDMs. Division works the

same way.

5*[1:5]

ans (a row vector) = 5 10 15 20 25
ans/5

ans (a row vector) = 1 2 3 4 5

scalar x polynomial—If the polynomial is in factored form, the gain
of the polynomial is multiplied by the scalar. Refer to the
Polynomial() section for mor information. If the polynomial is in
coefficient form, each coefficient is multiplied by the scalar. Division
works the same way.

Using a scalar with a polynomial in roots form:
4*polynomial (1:4)

ans (a polynomial) =

4(x - 1)(x - 2)(x - 3)(x - 4)
Using a scalar with a polynomial in coefficients form:
makepoly (1:4)

ans (a polynomial)

3 2
X + 2x + 3x + 4

ans/0.5

ans (a polynomial)

3 2
2xX + 4x + 6x + 8

scalar x system—Multiplies the gain of the system by the scalar. Refer
to the Dynamic System section for more information about dynamic
system objects. For transfer functions, the numerator polynomial is

5-15 Xmath User Guide

Chapter 5 Data Objects and Operators

multiplied by the scalar. For state-space systems, the C and D matrices
are multiplied by the scalar. Division works the same way.

system([2,2;2,2],[3;31,1[4,41,1);
2*ans

ans (a state space system) =

System is continuous
system(makepoly (2:5) ,makepoly (0:3))

ans (a transfer function) =

3 2
2xX + 3x + 4x + 5

initial integrator outputs
0

0

0

Input Names

Input 1

Xmath User Guide 5-16 ni.com

© National Instruments Corporation

Chapter 5 Data Objects and Operators

Output Names

Output 1

System is continuous
ans/2

ans (a transfer function) =

3 2
x + 1.5%x + 2x + 2.5

initial integrator outputs
0

0

0

Input Names

Output 1

System is continuous

matrix+scalar—The scalar is added to each element of the matrix.
This operation is commutative. The same holds true for vectors and
PDMs. Subtraction works the same way.

-2+ (3+(ones(3,3)))

ans (a square matrix) =

2 2 2
2 2 2
2 2 2

polynomial+scalar—Converts the polynomial to coefficient form and
adds the scalar to the scalar (order 0) term of the polynomial. This
operation is commutative. Subtraction works the same way.

p=polynomial (3:5)

5-17 Xmath User Guide

Chapter 5 Data Objects and Operators

p (a polynomial) =

(x - 3)(x - 4)(x - 5)
2+p

ans (a polynomial) =

3 2
x - 12x + 47x - 58

* matrix(vector,vector)=scalar—Copies the scalar to each element of
the specified partition of the matrix. The same holds true for vectors
and PDMs.

o=ones(4,5);
o([2:3],[2:4]1)=32

o (a rectangular matrix)

1 1 1
32 32 32
32 32 32

1 1 1

kR B R
kR B R

Polynomial()

Polynomials take the form x° +9x” —4x+7 or x(x—2)(x +6) . The
first notation is in coefficients form,; its coefficients (1, 9, —4 and 7) are
plainly shown. The second polynomial is in roots form, its roots being 0, 2,
and —6. Polynomial objects consist of a vector of coefficients or roots and
a single independent variable (a text string, usually a single character).

Polynomials can be defined in terms of their roots or coefficients. The
polynomial () function creates a polynomial object where roots are the
elements of a vector or eigenvalues of a square matrix you supply. You can
specify a text string for the polynomial variable. makepoly () converts a
simple vector into a polynomial.

Create a polynomial from its roots with polynomial (). The polynomial
is displayed in roots form:
pl=polynomial ([1*jay, -1*jay, 1,

2*jay, -2*jay., 2,

3*jay, -3*jay, 31, "3")

Xmath User Guide 5-18 ni.com

Chapter 5 Data Objects and Operators

pl (a polynomial) =
2 2 2
(3 - 1)(F - 2)(F =-3)(F + 1)(F + 4)(F + 9)

p2=polynomial ([9,8,7])

p2 (a polynomial) =
(x - 7)(x - 8)(x - 9)

Create a polynomial from a vector withmakepoly () ;the polynomial will
be displayed in coefficients form:

p3=makepoly(logspace(1l,3,5),"L")

p3 (a polynomial) =

4 3 2
L + 1.31607L + 1.73205L + 2.27951L + 3

pd=makepoly(l:.5:3)
p4 (a polynomial) =

4 3 2
x + 1.5%x + 2x + 2.5x + 3

Polynomial Operators

The following operators are valid for polynomials:
+ polynomial addition

- polynomial subtraction

* polynomial multiplication

/ creates a transfer function

Operations can only be performed between polynomials that have the same
independent variable or between polynomials and scalars.
p5=p2+p4d
p5 (a polynomial) =
4 3 2
x + 2.5x - 22x + 193.5x - 501

p6=p2*p2

© National Instruments Corporation 5-19 Xmath User Guide

Chapter 5 Data Objects and Operators

p6 (a polynomial) =

2 2 2
(x - 7) (x - 8) (x - 9)

sysp=3/p6

sysp (a transfer function) =

(x -7) (x-28) (x-9)

initial integrator outputs

©O O ©O o oo

Input Names

Input 1

Output Names

Output 1

System is continuous

The functions in Table 5-3 can handle parts of polynomials. For more

information on inputs and outputs, refer to the MATRIXx Help.

Table 5-3. Polynomial Handling Functions

Function Purpose
roots () extracts the roots of a polynomial
makematrix() extracts the coefficients of a polynomial
domain() extracts the independent variable from a
polynomial or PDM

Xmath User Guide 5-20

ni.com

Chapter 5 Data Objects and Operators

Table 5-3. Polynomial Handling Functions (Continued)

Function Purpose
polyval() evaluates a polynomial at each element of a given
matrix
polyvalm() evaluates a polynomial over an entire square
matrix

Parameter-Dependent Matrix (PDM)

A parameter-dependent matrix (PDM) is a flexible extension of the matrix
data type. It consists of a vector of same-size matrices with a vector
attached to it. The attached vector (or parameter) is referred to as the
domain as shown in Figure 5-2. A PDM also has optional string names for
its rows and columns Figure 5-3.

mrows

N

Domain n columns

One vector in a matrix of
vectors is called a channel.

Figure 5-2. Structure of a PDM

PDM data is stored as a series of matrices indexed by a single domain
vector. Computations involving the PDM are performed on each matrix
separately. Data can also be handled as a series of vectors, called channels,
having a common domain vector (time or frequency, for example). In this
format, the computations are performed on each vector of the data
separately.

© National Instruments Corporation 5-21 Xmath User Guide

Chapter 5 Data Objects and Operators

PDM Organization

Xmath User Guide

Used either way, PDMs provide a convenient method for storing data as a
function of a parameter and are particularly useful in the analysis of
multiple input and/or output dynamic systems, where they can be used to
store time or frequency responses.

For example, when the frequency response of a system with n inputs and m
outputs is calculated, a PDM is created. Each of the n columns represents
an input, each of m rows represents an output, and the dependent matrix at
element i of the domain corresponds to the frequency response from each
output to each input. Plotting time and frequency responses stored as PDMs
are particularly convenient when the {strip} keyword is used, in which
case a matrix plot is produced where the rows and columns correspond with
inputs and outputs, respectively (for information on strip plots, refer to the
Strip Plots section of Chapter 4, Graphics. For an explanation of time
response, refer Time Response section.

Consider the object radar as an example of PDM organization (+).
Exactly how radar is created is outlined in Creating PDMs section.

Column Names
POy res] |
Name = " L_————1_ R ittt
0.01 Radar 1 5.311 0.01
Radar 2 6.316 0.07
AR U e I
0.02 Radar 1 16.79 0.0
Radar 2 19.97 0.07
AR P e I
i 1 Radar 1 26.28 0.08
Domain Radar 2 29.86 0.04
Vector L R . D
2 Radar 1 35.51 0.04
Radar 2 42.23 0.09
,,,,,,,, 0 I I B
6 Radar 1 53.11 0.01
Radar 2 63.16 0.02
I U o I
Row Names Dependent
Data Matrices

Figure 5-3. Parts of the PDM radar

5-22 ni.com

Creating PDMs

maxrange=[5.311,

Chapter 5 Data Objects and Operators

Every PDM consists of five main parts:

* Dependent Data Matrix—Every PDM contains one or more
matrices; radar has five 2 X 2 matrices in the dependent data area. The
matrices must be the same size. There is no limit to the size or number
of matrices in this area.

* Domain Vector— The PDM allows you to group an independent
vector of parameter values and a stack of associated matrices. The
vector of independent parameter values is called the domain of the
PDM. The domain usually represents a physical parameter, for
example, time, frequency, temperature, pressure, or altitude. If no
domain vector is specified, the PDM domain defaults to increasing
positive integers starting from one.

¢ Domain Name—A label for the domain vector. In radar, the domain
string is "RCS". If no name is specified, the default string is
"domain".

* Row Names—Each dependent matrix row may have an optional string
name. In radar, the names are "Radar 1" and "Radar 2".Each
matrix has the same row names associated with it. If no names are
specified, the row names are labeled "Row 1", "Row 2", ..."Row N".

* Column Names—FEach dependent matrix column may have an
optional string name. In radar, the names are "Range" and "%
Error". If no column names are specified, the columns are labeled
"Col 1", "Col 2",.."Col N".

PDMs are created from a single matrix object using the function pdm().
Additional optional arguments to pdm() specify the domain, domain
label, and row and column labels to be associated with the matrices in the
final PDM.

For the PDM radar, the dependent data is formed from a columnwise
concatenation of the vectors maxrange and perr:

6.313, 16.79, 19.97, 26.28, 29.86, 35.51, 42.23,

0.0, 0.07, 0.08, 0.04, 0.04, 0.09, 0.01, 0.02]"';

The final dependent data matrix [maxrange, perr] used as an argument
to pdm () has two columns and 10 rows.

The domain vector used in radar, rcs, has five elements.

rcs = [0.01,0.02,1,2,6];

© National Instruments Corporation 5-23 Xmath User Guide

Chapter 5 Data Objects and Operators

Use the pdm () function to construct the PDM radar from the matrix
[maxrange, perr] and the domain vector RCS:

radar = pdm([maxrange,perr],rcs, {domainName="RCS",
rowNames = ["Radar 1", "Radar 2"],
columnNames = ["Range","$ Error"]})

radar (a pdm) =

_____ e
1 | Radar 1 26.28 0.08

| Radar 2 29.86 0.04
_____ e
2 | Radar 1 35.51 0.04

| Radar 2 42.23 0.09
_____ e
6 | Radar 1 53.11 0.01

| Radar 2 63.16 0.02
_____ e

You have just recreated the PDM shown in Figure 5-3.

The dependent matrix is the only required argument to a PDM. Any
additional arguments can modify the structure of the PDM. For example,
using pdm () with no optional arguments results in a PDM with each
dependent matrix having one row.

Default PDM Behavior

Xmath User Guide

If you do not use the rows or columns keywords and do not specify a
domain vector, each row of the input matrix becomes one of the output
dependent data matrices. For example:

r43=rand (4, 3)

r43 (a rectangular matrix) =

0.849745 0.685731 0.878216
0.068374 0.560849 0.662357
0.726351 0.198514 0.544257
0.232075 0.231224 0.216463
5-24 ni.com

pdm (rd3)
ans (a pdm) =

domain

0.068374
0.726351

|
+
| 0.849745
|
|
| 0.232075

0.685731
0.560849
0.198514
0.231224

Chapter 5

0.878216
0.662357
0.544257
0.216463

Data Objects and Operators

This default behavior also applies if any or all of the rows or columns

keywords, or domain vector, are specified in a way that matches the default
case. For example, Xmath generates the same PDM output. The rows and
columns keywords are ignored in this case):

pdm(rd3, {rows=1, columns=3})

ans (a pdm) =

|

+
1 | 0.849745
2 | 0.068374
3 | 0.726351
4 | 0.232075

pdm(rd3,1:4)

ans (a pdm) =

0.068374
0.726351

I
+
| 0.849745
I
I
| 0.232075

0.685731
0.560849
0.198514
0.231224

0.685731
0.560849
0.198514
0.231224

0.878216
0.662357
0.544257
0.216463

0.878216
0.662357
0.544257
0.216463

If you specify arguments that deviate from the default, other PDMs are

obtained:

pdm(r43,1:3)

ans (a pdm) =
domain
1 Row 1 0.849745

Row 2 0.068374
Row 3 0.726351

© National Instruments Corporation 5-25

Xmath User Guide

Chapter 5 Data Objects and Operators

Xmath User Guide

I
+
I
I
I
I
_______ .
I
I
I
I
+

0.232075
0.685731
0.560849
0.198514
0.231224
0.878216
0.662357
0.544257
0.216463

In the previous example, the number of rows of the input matrix (4) is not
a multiple of the length of the domain vector (3). However, the number of
columns of the input matrix (3) is a multiple. In this case, each column,

instead of each row, of the input matrix becomes one of the output

Dependent Data Matrices.

When no domain vector is specified, the default vector is [1:1: #rows].

pdm ([maxrange, pe
ans (a pdm) =
domain | Col 1
_______ Fmmmm
1| 5.31
2 | 6.31
3 | 16.79
4 | 19.97
5 | 26.28
6 | 29.86
7 | 35.51
8 | 42.23
9 | 53.11
10 | 63.16

rr])

To change the dimensions of the dependent matrices, use the rows and

columns keywords. For example:

pdm ([maxrange, pe

ans (a pdm) =

_______ [gy Sy Sy gy S S,

rr], {rows

Col 1

5-26

ni.com

$ —— F — — o — — — — — —

Chapter 5

Data Objects and Operators

Alternatively, the row and column size is implied in the number of strings

entered in keywords columnnames and rownames:

pdm ([maxrange, perr], {rowNames =

columnNames = ["Range","% Error"]})
ans (a pdm) =
domain | Range % Error
_______ o e
1 | Radar 1 5.311 0.01
| Radar 2 6.313 0.07
_______ o e
2 | Radar 1 16.79 0
| Radar 2 19.97 0.07
_______ o e
3 | Radar 1 26.28 0.08
| Radar 2 29.86 0.04
_______ S
4 | Radar 1 35.51 0.04
| Radar 2 42.23 0.09
_______ S
5 | Radar 1 53.11 0.01
| Radar 2 63.16 0.02
_______ S

["Radar 1", "Radar 2"],

The dependent matrix size can also be influenced by the domain vector. In
the following example, the columns of the PDM matrices are the same as
the input matrix. The number of rows of each PDM matrix is equal to the

© National Instruments Corporation

527

Xmath User Guide

Chapter 5 Data Objects and Operators

total number of rows in the input matrix divided by the number of elements
in the domain vector. The domain rcs has five elements, and the input
matrix has 10 rows. Therefore, each PDM matrix has 10/5 (=2) rows.

pdm ([maxrange, perr],rcs)

ans (a pdm) =

domain | Col 1 Col 2
_______ o e
0.01 | Row 1 5.311 0.01

| Row 2 6.313 0.07
_______ o e
0.02 | Row 1 16.79 0
| Row 2 19.97 0.07
_______ o e
1 | Row 1 26.28 0.08
| Row 2 29.86 0.04
_______ o e
2 | Row 1 35.51 0.04
| Row 2 42.23 0.09
_______ o e
6 | Row 1 53.11 0.01
| Row 2 63.16 0.02
_______ o e

The PDM row and column dimensions specified by rows, rowNames,
columns, and columnNames must agree with the PDM dimensions
specified by the domain vector, or an error message is returned:

pdm(r43, {rows=1, columns=3})

Dimensions of PDM do not match specified rows and columns
and length of domain vector

PDM Channels

In some circumstances, a PDM is a collection of vectors instead of a
collection of matrices. For PDMs, these vectors are called channels of the
PDM. A channel is a vector consisting of the same element from each
dependent matrix. For example, radar has four channels,

(1,1) 5.311, 16.79, 26.28, 35.51, 53.11
(2,1) 6.313, 19.97, 29.86, 42.23, 63.16
(1,2) 0.01, 0, 0.08, 0.04, ©0.01
(2,2) 0.07, 0.07, 0.04, 0.09, 0.02

Xmath User Guide 5-28 ni.com

Chapter 5 Data Objects and Operators

and all channels have the common independent variable defined by rcs.
Figure 5-2 illustrates this idea.

Certain MathScript functions, such as ££t (), have the option of operating
on the dependent matrices or the channels of a PDM. By default, all
functions operate on the dependent matrices.

Y = fft(radar)

If the FFT of each channel is needed, the channels keyword must be
included.

Y = fft(radar, {channels})

Refer to the Using Functions with PDMs section for more details on using
functions with PDMs.

Indexing to Extract Portions of a PDM
PDM Dimensions

Use the size () function to see the dimensions of the new PDM:
size(radar)

ans (a row vector) =2 2 5

The above result indicates that each dependent matrix has two rows and two
columns, and that the length of the PDM (the length of the domain or the
number of dependent matrices) is five.

Dependent Matrices

PDM indexing allows you to extract parts of a PDM. The output of any
PDM indexing operation is always another PDM. If you want to index to
extract a single piece of data—as opposed to a dependent matrix or a
channel of a PDM) it may be simpler to use makematrix() before
indexing. Refer to the Converting PDMs to Matrices section.

To extract a single dependent matrix, use a single index corresponding to
the domain value of interest. For example, you might want to extract only
the data pertaining to objects with RCS value of 1:

radar (3)

ans (a pdm) =

RCS | Range % Error

© National Instruments Corporation 5-29 Xmath User Guide

Chapter 5 Data Objects and Operators

Xmath User Guide

1 | Radar 1 26.28 0.08
| Radar 2 29.86 0.04
.

To see the third through fifth elements of the PDM, you can index into
radar using the standard colon notation. Refer to the Indexing with the
Colon Operator (:) section:

radar (3:5)

ans (a pdm)

|
+
|
|
+
2 | Radar 1 35.51 0.04
|
+
|
|
+

You can also examine one or more channels of the data in a PDM and see
changes over the length of the PDM (as the RCS parameter changes). When
indexing with both row and column specifications, you extract the (i,j)
channel over the entire domain. The following example extracts the
element that resides in the second row and first column of each dependent
matrix.

radar (2,1)

ans (a pdm) =

5-30 ni.com

Chapter 5 Data Objects and Operators

The standard colon notation can be used to access more than one channel:
radar(1:2,1)

ans (a pdm) =

RCS | Range
_____ o mmmm e
0.01 | Radar 1 5.311

| Radar 2 6.313
_____ Hmm e
0.02 | Radar 1 16.79

| Radar 2 19.97
_____ Hmm e
1 | Radar 1 26.28

| Radar 2 29.86
_____ oo
2 | Radar 1 35.51

| Radar 2 42.23
_____ oo
6 | Radar 1 53.11

| Radar 2 63.16
_____ oo

To extract a single value in PDM form, you can use a temporary value:

temp=radar (5) ;
FinalPerr=temp (2, 2)

FinalPerr (a pdm) =

Individual PDM elements can be extracted and modified using three scalar
indices to specify the row, column, and domain positions, respectively. The
returned object is always a scalar. Thus, for the radar example:

radar(1,1,1)

ans (a scalar) = 5.311
radar(2,2,5)
ans (a scalar) = 0.02

radar(2,1,3)=radar(1,1,5)

radar (a pdm) =
RCS | Range % Error

© National Instruments Corporation 5-31 Xmath User Guide

Chapter 5 Data Objects and Operators

_____ o o e e
0.01 | Radar 1 5.311 0.01

| rRadar 2 6.313 0.07
_____ o e e e
0.02 | Radar 1 16.79 0

| Radar 2 19.97 0.07
_____ o e e e
1 | Radar 1 26.28 0.08

| Radar 2 53.11 0.04
_____ o e e e
2 | Radar 1 35.51 0.04

| Radar 2 42.23 0.09
_____ o e e
6 | Radar 1 53.11 0.01

| Radar 2 63.16 0.02
_____ o e e

Domain and Name Information
The domain can be extracted using domain ().
rsvector = domain(radar)

rsvector (a row vector) = 0.01 0.02 1 2 6

The PDM names can be extracted with the names () function. In order to
get all three labels, specify three outputs:

[rowN, colN, domN] =names (radar)

rowN (a row vector of strings) = Radar 1 Radar 2
colN (a row vector of strings) = Range % Error
domN (a string) = RCS

Example 5-1 Indexing into a PDM

This example illustrates PDM indexing by plotting a PDM and different
combinations of data that can be extracted from it. Notice that plot ()
will reuse the row and column labels from your PDM, if possible.

x=logspace(1,100,3);F=([1.02:.02:2.51);
slc=system(makep([sin(x)]) , makep(-x*2));

s2c=system(makep ([cos (x)]) ,makep (x*2)) ;

s3c=system(makep ([cot (x)]) ,makep(x));

sld=discr(slc,1);
s2d=discr(s2c,2);

Xmath User Guide

5-32 ni.com

Chapter 5 Data Objects and Operators

s3d=discr(s3c,3);

flc=freq(slc,F);fld=freq(sld,F) ;
f2c=freq(s2c,F); f2d=freq(s2d,F) ;
f3c=freq(s3c,F); £3d=freq(s3d,F) ;

p=pdm ([[flc;f1d], [f2c;f2d], [f3c;£3d]],
{columnnames=["sys", "sys2","sys3"], rownames=["cont","disc"]});
plot(p, {strip})

If strip is specified alone, each submatrix is plotted in a separate subgraph,
as shown in Figure 5-4. Try plotting portions of the PDM with the different
strip settings shown below.

sys2

o2

0.6

syEd

LB

[FAN

cont

—04 : : —015
0.2 : 06

SRy

03

disc

0.2

SARY

Figure 5-4. PDM Plotted with strip

© National Instruments Corporation 5-33 Xmath User Guide

Chapter 5 Data Objects and Operators

If the number of strips is specified, the inputs will be plotted accordingly.
plot (p, {strip=31})

Extract all discrete rows, then plot one plot per subgraph:

plot(p(2,:), {strip=1})

Plot all rows of the 2nd column with default strip settings.

plot(p(:,2),{strip})

Modifying PDMs
Substitution

Using PDM indexing, outlined in the Indexing to Extract Portions of a
PDM section, assignments can be made to replace parts of a PDM. For
example, to replace the third dependent matrix of radar with an identity
matrix, type:

ind = eye(2,2); radar_copy = radar; radar_copy(3) = ind

radar_copy (a pdm) =

RCS | Range % Error
_____ o e
0.01 | Radar 1 5.311 0.01

| rRadar 2 6.313 0.07
_____ e
0.02 | Radar 1 16.79 0

| Radar 2 19.97 0.07
_____ e
1 | Radar 1 1 0

| Radar 2 0 1
_____ e
2 | Radar 1 35.51 0.04

| Radar 2 42.23 0.09
_____ e
6 | Radar 1 53.11 0.01

| Radar 2 63.16 0.02
_____ e

Xmath User Guide 5-34 ni.com

Chapter 5 Data Objects and Operators

To replace a channel of data, type:

ind = [10,20,30,40,50];
radar_copy(1l,1) = ind

radar_copy (a pdm) =

RCS | Range % Error
_____ o e
0.01 | Radar 1 10 0.01

| Radar 2 6.313 0.07
_____ o e
0.02 | Radar 1 20 0

| Radar 2 19.97 0.07
_____ o e
1 | Radar 1 30 0

| Radar 2 0 1
_____ o e
2 | Radar 1 40 0.04

| Radar 2 42.23 0.09
_____ o e
6 | Radar 1 50 0.01

| Radar 2 63.16 0.02
_____ o e e
Concatenation

Compatible PDMs can be concatenated in the same manner as matrices. A
comma results in right concatenation, and a semicolon results in bottom
concatenation.

new_radar =[radar,radar(1:2,1)"2]

new_radar (a pdm) =

RCS | Range % Error Range
_____ e o o e o o e e e o o e o o e
0.01 | Radar 1 5.311 0.01 28.2067

| Radar 2 6.313 0.07 39.854
_____ e o o e o o e e e o o e o o e
0.02 | Radar 1 16.79 0 281.904

| Radar 2 19.97 0.07 398.801
_____ e o o e o o e e e o o e o o e
1 | Radar 1 26.28 0.08 690.638

| Radar 2 29.86 0.04 891.62
_____ e o o e o o e e e o o e o o e
2 | Radar 1 35.51 0.04 1260.96

© National Instruments Corporation 5-35 Xmath User Guide

Chapter 5 Data Objects and Operators

| Radar 2 42.23 0.09 1783.37
_____ e —————————
6 | Radar 1 53.11 0.01 2820.67
| Radar 2 63.16 0.02 3989.19
_____ S ————————

Converting PDMs to Matrices

The makeMatrix () function converts a PDM into a matrix by discarding
the independent parameter (domain) and right concatenating the dependent
matrices columnwise. If a PDM is an argument to makematrix(), a
matrix containing all dependent matrix data is returned:

radar_mx = makematrix (radar)
radar mx (a rectangular matrix) =

5.311 0.01 16.79 0 26.28 0.08 35.51 0.04 ...
6.313 0.07 19.97 0.07 29.86 0.04 42.23 0.09 ...

All Radar 1 values are right-concatenated to form the first row, and all
Radar 2 values appear in the second row.

To create a matrix formatted in the same manner as the dependent matrix
elements in radar, transpose the PDM—this transposes each dependent
matrix separately for each domain element—then transpose the result as

shown below. Compare this result to radar and radar_mx.

radar_mxTrans = makematrix(radar')'

radar_ mxTrans (a rectangular matrix) =

5.311 0.01
6.313 0.07

16.79 0

19.97 0.07
26.28 0.08
29.86 0.04
35.51 0.04
42.23 0.09
53.11 0.01
63.16 0.02

Xmath User Guide 5-36 ni.com

Chapter 5 Data Objects and Operators

When the channels keyword is used, rows of each dependent matrix are
right-concatenated to form rows in the resulting matrix:!

radar_mxChan = makematrix (radar, {channels})

radar_mxChan (a rectangular matrix) =

5.311 0.01 6.313 0.07
16.79 0 19.97 0.07
26.28 0.08 29.86 0.04
35.51 0.04 42.23 0.09

53.11 0.01 63.16 0.02

Sections of a PDM can also be used as an input to makematrix(). This
makes it easy to extract a desired value. For example, to see the range for
Radar 2 at 0.01, type:

temp=makematrix(radar (1))
temp (a square matrix) =

5.311 0.01
6.313 0.07

temp(2,1)

ans (a scalar) = 6.313

The saveE command also has the ability to create matrices from PDMs.
When SAVE is called with the matrixx keyword, all saved PDMs are
stored as two matrices. The domain is given the name pdmName_t and the
dependent matrix data is given the name pdmName_u, where pdmName is
the name of the original PDM. This handling is designed to map to
simulation data.

Using PDMs with Operators

Operators defined for matrices are also defined for PDMs. For example, the
square of each element in the first dependent matrix of radar can be
calculated by:

radar (1) "2

ans (a pdm)

0.01 | Radar 1 28.2699 0.05381

I This feature can be used to convert time and frequency responses to a format similar to that used in MATRIXx.

© National Instruments Corporation 5-37 Xmath User Guide

Chapter 5 Data Objects and Operators

Xmath User Guide

| Radar 2 33.9703 0.06803
_____ e

Notice the output is also a PDM.

Operations between two PDMs are defined such that the operation is
performed elementwise on each pair of corresponding matrices. These
operations are restricted to PDMs with identical dimensions.

For example, the average value of Row 1 and Row 2 is calculated by:
(radar(1,1) + radar(2,1))/2

RCS |

_____ mm e
0.01 | Radar 1 5.812
0.02 | Radar 1 18.38
1 | Radar 1 28.07
2 | Radar 1 38.87
6 | Radar 1 58.135

Operators can also be used between matrix objects, including vectors and
scalars as well as matrices, and PDMs. In this case, the operation is
performed between the matrix object and each dependent matrix in the
PDM. The result of the operation is a PDM with the same domain as the
PDM operand.

For example, the identity matrix is added to each dependent matrix using
the expression:

radar + eye(2,2)

ans (a pdm) =

|
_____ o e e e
0.01 | Radar 1 6.311 0.01

| rRadar 2 6.313 1.07
_____ o e e e
0.02 | Radar 1 17.79 0

| Radar 2 19.97 1.07
_____ o e e e
1 | Radar 1 27.28 0.08

| Radar 2 29.86 1.04
_____ o e e e
2 | Radar 1 36.51 0.04

|

5-38 ni.com

Chapter 5 Data Objects and Operators

+

6 | Radar 1 54.11 0.01
| Radar 2 63.16 1.02
+

A scalar value can also be used in operators with a PDM. The operation will
be applied to each matrix element and the scalar.

5.0 * radar (1)
ans (a pdm) =

I
+

0.01 | Radar 1 26.555 0.05
| Radar 2 31.565 0.35
+

Using Functions with PDMs

When a PDM is used as an input to a function, the function is applied to
each dependent matrix as shown in Figure 5-5. If the channels keyword
is available and is used, the function will be applied to each channel.

) dem=f(xpdm)
ypdm | pdm)
[ypdmz] =| [f(xpdm,)]

1 l
I:ypdm:l = [f(xpdm,)]

Figure 5-5. Functions of PDMs

For example, if xpdm is a step response of a system with 7z inputs, m outputs
over p time points, then y = max(xpdm) isa (1 x1)xp PDM whose
kth element contains the maximum element of the kh matrix in xpdm (the
maximum output for every time point) . ! The result of any function that
accepts the channels keyword is always a matrix the size of the dependent
matrices in the PDM. Refer to Figure 5-6.

! Where max (xpdm, {channels}) is an n x m matrix where (i,j) element is the maximum of the vector of the (i,j) elements of
all the dependent matrices.

© National Instruments Corporation 5-39 Xmath User Guide

Chapter 5 Data Objects and Operators

PDMs use optimized internal looping to speed up the total computation
time. Therefore, using a single PDM as a function input is much more
efficient than looping through a set of separate matrices with MathScript
commands.

Next you will use the intrinsic function max () to illustrate the flexibility
of PDMs. max () finds the maximum over a specified subset of the PDM

data.
y=f(xpdm,{channels})

() e)]
: o |4

fon(dy:d)) . fv, (dy:d)) | = | [Viw) - (V)]

2 J| {

f‘(vlm(dl:dp))'~'f(vnm(d1:dp)) = _(Vll) (vnl)_
. . dp

_(vlm) e (vnnl

Figure 5-6. Functions of a PDM Over Channels

To find the maximum range for both Radar 1 and Radar 2 over all RCS
values, apply the function to all rows of the first column of dependent

matrices. Type:

maxrad = max(radar(:,1))

maxrad (a pdm) =

RCS |

_____ e

0.01 | 6.313

0.02 | 19.97

1 | 29.86

2 | 42.23

6 | 63.16

max () treats the PDM as a series of matrices, returning a PDM with the

same domain as radar. It loops over all the domain points (values of RCS),
finds the largest value each dependent vector contains (in this case, the
Range value), and returns that scalar value as the dependent matrix
corresponding to the same domain point in the output PDM.

Xmath User Guide 5-40 ni.com

Chapter 5 Data Objects and Operators

You might want to know the maximum ranges for Radar 1 and Radar 2
separately. In this case, the PDM is treated as a matrix of vectors, each
corresponding to a channel of the PDM. To use max () in this manner,
invoke the channels keyword:

maxvals = max(radar(l:2,1), {channels})

maxvals (a column vector) =
53.11
63.16

The range for Radar 1 corresponds to the (1,1) channel, and the range for
Radar 2 corresponds to the (2,1) channel. The (1,1) element of the output
matrix, 53.11, is the maximum value for the range of Radar 1 over all the
RCS values. The second element is the maximum value for Radar 2.

Dynamic System

The dynamic system class represents systems of time-dependent equations
for modeling input/output relationships. In general, there are many
different kinds of dynamic systems, with many different representations.

Xmath supports linear, time-invariant systems. These can be continuous
(systems of differential equations) or discrete (systems of difference
equations). Two specific representations are provided: state-space systems
and transfer functions. Both are created with the system() function and
are discussed later. Sampling times (0 for continuous systems and nonzero
for discrete) are automatically stored within a dynamic system object.

The dynamic system class is closely tied to the PDM class. Simulations or
dynamic systems are defined using a PDM to represent inputs, and return a
PDM representing the outputs. The * (product) operator has also been
overloaded (defined) such that system* input_pdm performs a simulation
over the data in input_pdm.

© National Instruments Corporation 5-41 Xmath User Guide

Chapter 5 Data Objects and Operators

State-Space Systems

Transfer Functions

Xmath User Guide

A state-space dynamic system stores the A, B, C, and D matrices associated
with the following equation:

for continuous systems for discrete systems
d—x=Ax+Bu X, = Ax;+ Bu,
dt
y = Cx+Du Vi = Cxp+ Duy

x is the state vector (with initial conditions Xy), u is the input vector, and y
is the output vector. All matrices are stored, even if they are null.

e State-space systems can be single-input/single-output (SISO) or
multiple-input/multiple-output (MIMO).

* Names can be attached to each of the inputs and outputs and states of
a state-space system. This capability is particularly useful with MIMO
systems.

A transfer function is described as:

‘ for continuous systems ‘ ‘ for discrete systems ‘
i) _ H(s) = num(s) yi@) _ H(z) = num(z)
u(s) den(s) u(z) den(z)

The notations H(s) and H(z) are common for transfer functions. s represents
the Laplace transform variable, and z represents the z-transform variable. A
transfer function represents a dynamic system in terms of numerator and
denominator polynomials.

* A transfer function is proper if the order of the numerator is less than
or equal to the order of the denominator.

* It may sometimes be convenient to use an improper or noncausal
transfer function (to represent an ideal differentiator, for example).
Xmath allows you to define an improper transfer function, but restricts
the types of analyses you can perform. You can find the frequency
response of an improper transfer function, but not the time response.

5-42 ni.com

Chapter 5 Data Objects and Operators

An improper transfer function cannot be connected with state-space
systems or converted to state space form.

* Currently, only SISO transfer functions are supported.

* Names can be attached to the inputs and outputs of a system in
transfer-function form.

* To perform a time-domain simulation (Sys X u), multiply a system by
a PDM whose columns contain the input vector(s) for the
simulation(s). Refer to the Time Response section.

Creating Systems

Dynamic systems can be created with the system() function. If four
compatibly sized matrices are given as inputs, a state-space system is
formed.

a=[1,2;3,4]1; b=[.1,-.1,1; 2,-.2,2]1; c=[3,3]; d=[.4,-.4,47]1;
ssSys=system(a,b,c,d, {inputNames=["red", "white", "blue"],
outputNames=["Flag"], stateNames=["Alaska", "Nebraska"],dt=.01})

ssSys (a state space system) =

Alaska Nebraska

Input Names

© National Instruments Corporation 5-43 Xmath User Guide

Chapter 5 Data Objects and Operators

red

white

blue

Output Names

System is discrete,

Xmath User Guide

sampling at 0.01 seconds.

A handy shortcut for creating state-space systems with an all-zero D matrix
is to use a NULL-matrix specifier ([]) for the D matrix. This automatically
sets the D matrix to a zero matrix, with row size equal to the row size of C
and column size equal to the column size of B.

If at was not given a value, ssSys would have been continuous. dt
defaults to O.

The size of a system object is defined by the number of outputs, inputs, and
(in the case of a state-space system) the number of states it has. You can use
the size () function to find these dimensions.

[out,in, states]=size(ssSys)"?

out (a scalar) = 1
in (a scalar) = 3
states (a scalar) = 2

If a pair of polynomials is given, a transfer function results:

n=makepoly (polynomial ([1,-1;2,-2],"s"));
d=polynomial([-2,1;1,-2],"s");
tfSys=system(n,d, {inputNames="In", outputnames="Out"})

tfSys (a transfer function) =

(s + 1)(s + 3)

initial integrator outputs
0

0

Input Names

5-44 ni.com

Chapter 5 Data Objects and Operators

System is continuous

The various parts of a transfer function or a state-space system can be
extracted with the abcd(), numden(), period(), and names()
functions. Refer to the MATRIXx Help for more information.

Using Operators with Dynamic Systems

Operators have also been defined to perform connections between dynamic
systems. Suppose you have dynamic systems Sys1 and Sys2, where
outputs are y1 and y2 and inputs are ul and u2, respectively. The
statements in Table 5-4 would then be true.

Table 5-4. Operations on Dynamic Systems

Sys = Sysl + Sys2

ul Val
, el Y,

. +

sl -4

Defined such that v = yv1 + y2.

The inputs are tied together such that u=ul=u2.

Sys = Sysl - Sys2

ul yi
o el

—P _

P

Defined such thaty = y1 - vy2.

In the unary case, Sys = -Sys2 is defined such that
y = -y2 (Sysl=system([1,[1,0 1,0 1)).

Sys = Sys2 * Sysl

ui y1 u2 y2
_u>| Sys1 |—>| Sys2 |—y>

The cascade connection of Sys1 followed by Sys2. The
output of Sys is y2 and the input is ul.

© National Instruments Corporation

5-45 Xmath User Guide

Chapter 5 Data Objects and Operators

Table 5-4. Operations on Dynamic Systems (Continued)

Sys = [Sysl;Sys2 Defined such thaty = [y1;y2] and u=ul=u2 (inputs

] are tied together).
ul y1
. LSSt P
—» y

sl >

[Sysl, Sys2 Defined suchthaty = v1 + y2 and u = [ul;u2].

Sys

Sys1

Sys2

c c

N Y
+§

< <

[\b} —
<

Creating Subsystems by Indexing into Dynamic
Systems

You can index into a dynamic system to create a subsystem comprising a
subset of the original inputs and outputs, as shown in Table 5-5.

Table 5-5. Indexing Into a Dynamic System

Sys = Sysl(i,3) Defined to be a system such that
y=y1l(i) and u=ul (7). 1 and j
can both be vectors as well, in
which case multiple inputs and
outputs will be extracted.

If you are familiar with input/output notation, you may feel that the
previous definition (outputs first, inputs second) of indexing seems
reversed. It was designed with the traditional definition of a transfer
function in mind, where outputs are specified first: y(s) = Sys(s) X u(s).
This definition also led to Xmath’s definition of Sys X aPDM to perform
simulation, since in that case y(¢) = Sys X u(t). For a MIMO system with m
outputs and 7 inputs, y is an m X I vector and u is n X I; thus, it makes
sense for Sys to be m X n. You can see this if you index into ssSys from
the Creating Systems section:

Sys2=ssSys(1,3)

Sys2 (a state space system) =

Xmath User Guide 5-46 ni.com

Alaska Nebraska

Input Names

System is discrete,

Chapter 5 Data Objects and Operators

sampling at 0.01 seconds.

The output is a SISO dynamic system containing the third column of the B
and D matrices.

© National Instruments Corporation

5-47

Xmath User Guide

Chapter 5 Data Objects and Operators

Functions for Manipulating Dynamic System Objects

Table 5-6 summarizes functions commonly used to manipulate systems.
To see a full description of each function, refer to the MATRIXx Help.

Table 5-6. Functions Commonly Used to Manipulate Systems

Function Description

abcd() Extracts the component A, B, C, and D matrices from a state-space
system object. In addition, it returns the initial conditions on the states
if a fifth output argument is requested.

abcd () can be called on systems in either state-space or
transfer-function form. If the system is a transfer function, the
conversion to state-space is done internally to return A, B, C, and D,
although the format of the variable itself remains unchanged. The
transfer function must be proper.

discretize() Converts a continuous system to discrete form.
makecontinuous() Converts a discrete system to continuous form.
numden () Returns the numerator and denominator polynomials comprising a

SISO system in transfer function form. If the system is in state-space
form, an internal conversion is performed to find the transfer function
equivalent, but the format of the system variable itself remains
unchanged. State-space systems used as inputs to numden () must be
SISO. Note that common roots in the numerator and denominator
polynomials are not canceled.

period() period() extracts the sample period (in seconds) of a system. If the
system is continuous, period() returns zero.

names () Extracts matrices of strings representing the input, output, and (if the
system is in state-space form) state names of a system. It works much
the same as described for PDMs in the Domain and Name Information.

check() Can be used to return a Boolean indication of whether a system is in
transfer-function or state-space form, discrete, continuous, or stable. In
addition, check can be used with the convert keyword to change a
system’s representation between SISO state-space and
transfer-function forms.

Xmath User Guide 5-48 ni.com

Time Response

Chapter 5 Data Objects and Operators

The behavior of a dynamic system as a function of time in response to
external stimuli is referred to as the system’s time response. Xmath can
simulate the response of a dynamic system to various inputs to obtain the
system's time response. This is accomplished with the * operator between
dynamic systems and parameter-dependent matrices (PDMs) and with one
or more of the functions in Table 5-7.

Table 5-7. Time Response Functions

Function Description
impulse() Computes the impulse response of a system.
initial() Computes the unforced response of a system to a given initial condition.
step() Computes the step response of a system.
defTimeRange () Computes a default time vector for simulations.

Borrowing from the convenient frequency response notation for a system
where y(s) = H(s)*u(s), Xmath defines the operation system *PDM as a
time domain simulation. Thus, for any dynamic system Sys (continuous or
discrete) and for a PDM u representing the external stimulus as a function
of time, the operation y=Sys*u creates a PDM y that contains the outputs
of the system as a function of time.

For a dynamic system with n, outputs and n, inputs, the input vector is
defined to be n, X 1 and the output vector is n, X 1. Thus, the input PDM u
should be n, X1 X N,,,, where N, is the number of time points in u.

* The input PDM must have a regular domain.

e If the system is discrete, the domain intervals must be equal to the
system’s sampling period.

» If the system is continuous, it is discretized using the exponential
(zero-order hold) method, with the sampling interval set equal to the
input domain interval spacing. For accurate results, make sure this
sampling interval is small enough that discretization effects are
negligible.

If you desire to run several simulations with different inputs, you can define
a PDM where columns contain the input vectors for the different
simulations. Then u will be 1y X @ X Nygpps where gis the number of
different simulations to be run. The resulting y will be 1, X g X Ny, With
each column of the PDM corresponding to a different simulation.

© National Instruments Corporation 5-49 Xmath User Guide

Chapter 5 Data Objects and Operators

Refer to the Strip Plots section of Chapter 4, Graphics, for a explanation of
how PDMs are plotted.

Strings

A string object is a sequence of characters enclosed by double quotes. To
be recognized as a string, an object must be created with double quotes or
be the output of the string () function, which converts numbers to
strings.

Xmath User Guide

You can concatenate strings with the plus (+) operator.

c="California";s="Sacramento";
str=""nThe capital of "+c+ " is "+s+"."

str (a string) =
The capital of California is Sacramento.

You can concatenate strings and then use them on the Xmath command
line.

alias mypath "C:/myhomedir/myexamples/"

display mypath + "engine"

execute file = mypath + "engine"

You can group multiple strings into string matrices (also called rables)
using the same punctuation as matrices.

r=" rest"; i=" ice"; c=" compression"; e="
elevation";
rice=[r,1,c,e];ouch=[82,73,67,69];
sport=[char (ouch) ', rice']

sport (a rectangular matrix of strings) =

R rest

I ice

C compression
E elevation

For strings, size () returns the number of rows and columns of the
whole string matrix.

size (sport)
ans (a row vector) = 4 2

To find the total number of elements (characters) in a string, use
length().

length (sport)

ans (a scalar) = 35

5-50 ni.com

Chapter 5 Data Objects and Operators

Converting Strings and Numbers

Numbers can be converted to strings using the string() function, and
strings to numbers using makematrix().

aStr=string(32)
aStr (a string) = 32 # result is a string
aNum=makematrix (aStr)

aNum (a scalar) = 32 # result is a scalar
The displayed result looks the same; only the object type has changed.

The ascii() function returns the ASCII representation of a single
character. The char () function returns the character representation of a
single character.

ascii ("A")

ans (a scalar) = 65
char (65)
ans (a string) = A

Special Characters in Strings

Sometimes you may want to format your string output. You can insert a
newline with the sequence "n or char (10). To insert a tab, use the
sequence "t or char (9) . To cause double quotes to appear in a string, use
a pair of double quotes (" ") or char (34).

str=""n2 feet, 3 inches can be shortened to " + "2'3"".";
display str

2 feet, 3 inches can be shortened to 2'3".

You can use the DISPLAY command to display a string, variable, or the
result of an expression; only the string is displayed (the message ans (a
string) = is omitted.)

strl="A string must be enclosed in ";

str2="quotation marks. For example:"; nl=char(10); g=char(34);

test=nl + strl + nl + str2 + nl + char(9) + char(10) + g +...
"What's next?" + q;

display test

A string must be enclosed in quotation marks. For example:
"What's next?"

For more examples refer to the DISPLAY topic of the MATRIXx Help.

© National Instruments Corporation 5-51 Xmath User Guide

Chapter 5

Data Objects and Operators

Manipulating Substrings

Xmath User Guide

You cannot use conventional to index into a string, but you can index into
a matrix of strings. Refer to the Indexing with the Colon Operator (:)
section for more information.

Create a matrix of strings:
mat=[65:69;97:101] ;m=char (mat (1:2,:))

m (a rectangular matrix of strings) =

A B (o] D E
a b c d e

Index into a matrix of strings:

bball="The N"+m(1,2)+m(1,1)+...
" is where the action is."

bball (a string) = The NBA is where the action is.

You can use the index () function to find the starting location of a
substring within a string.

i=index (bball, "ac")

i (a scalar) = 22

As mentioned earlier, length () returns the total number of characters in
astring. The function stringex () extracts a substring from a string, and
the function delsubstr () deletes all instances of a substring. Look up
these functions in the MATRIXx Help, and notice how you can use them to
alter a string, as shown in the following example:

bball2=stringex(bball, i, length(bball))
bball2 (a string) = action is.
bball3=delsubstr (bball, bball2)

bball3 (a string) = The NBA is where the
bball4=bball3+"money is."

bball4 (a string) = The NBA is where the money is.

5-52 ni.com

Chapter 5 Data Objects and Operators

Lists

Lists are created with the 1ist () function. A list object can be thought
of as a collection or set of other objects. Each element in the list can be of
any arbitrary class, including another list. This makes nested lists possible.
A list is one-dimensional, in that it can only be addressed with a single
index. The following is an example list:

title="Gasoline Prices"; t=1:12; d=1:100;
fg=makepoly([1,2,-.9],"t"); p="p=polyval (fg/t)/d;";
L=list(title, t,d, fg,p)

L (a list with 5 elements) =

1:
Gasoline Prices

1 : 1 : 100

t + 2t - 0.9
5:
p=polyval(fg/t)/4;

A single index can be used to access entire objects from the list.
p=polyval(L(4),L(2))"

p (a column vector) =

J ok WwN R

© VN YR WREIN
o e e e e e

R R RRRBRRRBRR

o

119.1
142.1
167.1

The plus (+) operator can be used to concatenate two lists.

© National Instruments Corporation 5-53 Xmath User Guide

Chapter 5 Data Objects and Operators

Index Lists

Xmath User Guide

An index list contains a list of indices or pointers into a vector, matrix, or
PDM. An index list looks like a matrix, but matrices cannot be used as lists.
The function £ind () outputs an index list, and you can create your own
with indexlist ().

An index list has either one, two, or three columns. If it has one column, it
can be used to index into a vector. If it has two columns, it can be used to
index into a matrix; the first column contains row pointers, and the second
column pointers. If it has three columns, it can be used to index into a PDM;
the first column is used for domain pointers, the second for row pointers,

and the third for column pointers.

set seed 0
m=hessenberg (random(4,4))

m (a square matrix) =

0.211325 -0.563151 0.529676 0.288135

-1.31969 1.47381 0.313928 0.0170223
0 -0.599434 0.164669 0.00777988
0 0 0.173159 -0.217164

Find the row and column location of each element smaller than 0, and
assign the value 3 to it:

lis=find (m<0)

lis (an index list)

1 2
2 1
3 2
4 4
m(lis)=3

m (a square matrix)

0.211325 3 0.529676 0.288135

3 1.47381 0.313928 0.0170223
0 3 0.164669 0.00777988
0 0 0.173159 3

The following example shows the use of a three-column indexlist
with a PDM. For a complete discussion of PDMs, refer to the

5-54 ni.com

Chapter 5 Data Objects and Operators

Parameter-Dependent Matrix (PDM) section. Using the previous
matrix, create a PDM with two dependent matrices:

mpdm=pdm (m, [1,2])
mpdm (a pdm)

domain | Col 1 Col 2 Col 3 Col 4
_______ o e e e e
1| Row 1 0.211325 3 0.529676 0.288135
| Row 2 3 1.47381 0.313928 0.0170223
_______ o e e e e
2 | Rowl O 3 0.164669 0.00777988
| Row 2 0 0 0.173159 3
_______ o e e e e

The goal is to find all elements of mpdm in row 2 of a dependent matrix that
are greater than 0 and less than .5 and set them to 0.1. To do this, first find
the location of all elements of mpdm that meet the criteria:

mlis=find((mpdm > 0) & (mpdm < .5))

mlis (an index list) =

NNDNR R RBR
NBRE RBRNMNDBRR
WeE We W R

The first column shows the domain, the second the row, and the third the
column. Extract the portions of the index list that index elements in row 2
of the dependent matrices.

row2=find(mlis(:,2)==2)

row2 (an index list) =

7

Create an indexlist that locates only the elements in row 2 of a dependent
matrix that meet the criteria used to create mlis.

rlis=indexlist (mlis (row2, :))

© National Instruments Corporation 5-55 Xmath User Guide

Chapter 5 Data Objects and Operators

rlis (an index list) =

1 2 3
1 2 4
2 2 3

Set all elements of mpdm that are greater than 0, less than .5, and in the
second row to 0.1:

mpdm (rlis)=0.1

mpdm (a pdm)

domain | Col 1 Col 2 Col 3 Col 4
_______ e e
1| Row 1 0.211325 3 0.529676 0.288135
| Row 2 3 1.47381 0.1 0.1
_______ e e
2 | Rowl 0 3 0.164669 0.00777988
| Row 2 © 0 0.1 3
_______ e e

Xmath User Guide 5-56 ni.com

MathScript Programming

This chapter describes how you can combine MathScript expressions,
statements, commands, and functions to create MathScript programs.

Xmath handles MathScript functions (MSFs) and MathScript commands
(MSCs) you write in the same manner as it does Integrated Systems
commands and functions (refer to the Using Predefined Functions and
Commands section of Chapter 3, MathScript Basics). MSCs and MSFs can
call other MSCs and MSFs, or call themselves recursively.

Overview

This section explains how to create a MathScript function (MSF) and a
MathScript command (MSC), giving you a brief overview of the scripting
process along the way. In subsequent sections, scripting will be explained
in detail, and we will use these samples as a point of reference.

Creating a Sample MSF

User-defined MSFs behave exactly like predefined functions; they take
input arguments, perform the statements in the body of the function using
these arguments, and return one or more outputs. Input arguments are not
modified.

The sample MSF hal fwave (Example 6-1) converts all values less than
zero to the value of zero. Go to your Xmath working directory and use a
text editor to create a file named hal fwave.msf, as shown.

Example 6-1 halfwave.msf

#{

Function halfwave() has 1 required input argument

T#

Function outl = halfwave(inl) # function declaration
line

outl = inl

© National Instruments Corporation 6-1 Xmath User Guide

Chapter 6

MathScript Programming

outl (find(inl < 0)) = 0
endFunction

The file begins with an optional block comment (text enclosed in #{ }#).
If supplied, the comment serves as Help on this function if you supply a
Help file (refer to the Creating Online Help for User-Defined MSF's and
MSCs section).! The function declaration is required. This declaration
defines the function name, the number and type of input arguments, and the
number of output arguments.

To use halfwave, call the function just like any intrinsic MathScript
function.

y = [1,0,-1,0,1,0,-1,0];

z = halfwave (y)

z (a row vector) = 1 0 0 0 1 0 0 0

Creating a Sample MSC

Example 6-2

graphit.msc

While MSFs return one or more new objects as outputs and cannot modify
input arguments (pass by value). MSCs do not return any values, but they
can modify input arguments (pass by reference).

As an example of a typical MSC, consider the command graphit (shown
in Example 6-2), which takes a single input and plots it on a log-log scale;
alegend is supplied if the input is a matrix. Inputs other than a vector or
matrix invoke an error message. Go to your Xmath working directory and
use a text editor to create the file shown in Example 6-2.

#{

GRAPHIT plots a numerical input.

T

Command graphit indata # command declaration

if !is(indata, {scalar}) & !is(indata, {string})
if is(indata, {matrix, !vector}) ==
plot (indata, {legend})?
else
plot (indata, {xlog,ylog,xmax=length(indata),
ymin=min (indata), ymax=max(indata)})?
endif

! This text will be displayed in the Local Help window when you type help halfwave in the Command window command area.

Xmath User Guide

6-2 ni.com

Chapter 6 MathScript Programming

else
error ("Input is not worth plotting!","C")
endif

endCommand

The first line of the file after the optional block comment (#{ }#) section
is the command declaration. The command declaration is required. It
defines the command name, and the number and type of input arguments.
Notice that the arguments are not in parentheses as they are in functions.

To test this command, call it as follows:

a=[1:.01:31;1[,
k = a(1,100:125

cl=size(a);

)

m =k .*. sin(a);
*4

v=[a*5, a*2, a al;
graphit c
graphit m
graphit v

In these examples, the argument to graphit is a single variable that
requires no parsing; in cases where the argument is a simple token—a
single variable or constant, you can separate the command name from the
first argument with white space only, and it works. If the first argument is
more complex, such as an expression, you must also place a comma after
the command name. A comma separating the command name from the first
argument always works. The following example illustrates this point.

Create the following MSC in your working directory:

Command add3nums argl, arg2, arg3
argl+arg2+arg3?
endCommand

The following usages of this command all work:

add3nums 1,2,3
add3nums a,b,d
add3nums a,b-c,d
add3nums a,b,d-c

The following produces an error message:

add3nums a-c,b,d

© National Instruments Corporation 6-3 Xmath User Guide

Chapter 6 MathScript Programming

If you place a comma after the command name, however, the command
works:

add3nums, a-c,b,d

General Rules for MathScript Programs

There are two types of names in MathScript programming: the MathScript
name and the filename.

* MathScript names follow the same rules as variable names (refer to
the Rules for Names section of Chapter 3, MathScript Basics).

e MSF and MSC filenames must be lowercase, and they must match the
MathScript name.

* All filenames must be unique. For example, creating both name . ms £
and name .msc is ambiguous. The filename for Xmath to call is
undefined.

MathScript File Formats

The file formats are shown in Figure 6-1 and Figure 6-2.

MathScript Function Format

#1{
Optional Block Comment
that may be used for Help
T#

Function [outl,..outn]=fun_ name(inl, ..inN, {keywds})
MathScript instructions that operate on the
arguments.

Optional Return

endFunction

Figure 6-1. MSF File Format

Xmath User Guide 6-4 ni.com

Chapter 6 MathScript Programming

MathScript Command Format

#1{
Optional Block Comment
that may be used for Help
T#

Command command_Name inl, ..inN, {keywds}
MathScript instructions that operate on the
arguments.

Optional Return

endCommand

Figure 6-2. MSC File Format

Comment Header

The optional comment at the top of the file may serve as the online Help
entry for your MSF or MSC. To display your Help for your MSF or MSC
in the Local Help window type:

help script_name

@ Note Refer to the Creating Online Help for User-Defined MSFs and MSCs section for
additional information about creating online Help for your MSF or MSC.

Declaration

@ Note Refer to the Creating Online Help for User-Defined MSFs and MSCs section for
additional information about creating online Help for your MSF or MSC.

The first line of code following the comment Help block is the declaration,
which defines the number of input and output arguments. Required
arguments are placed before the braces, while keywords are defined inside
the braces.

» Files must end with the appropriate end statement (endCommand or
endFunction) followed by a carriage return (blank line).

* There can only be one user-defined command or function in an MSF
or MSC file (refer to Example 6-3 and Example 6-4 for extended
examples of MSCs and MSFs). MathScrip Objects (MSO) allow for
more than one function or command to be declared in a file. An

© National Instruments Corporation 6-5 Xmath User Guide

Chapter 6 MathScript Programming

optional return statement can be used to exit before the
endFunction or endCommand statement.

Void Function Declaration

Although the discussion and examples show both input and output
arguments, you can define a void function that has no outputs. The syntax
of this function declaration is as follows:

function [] = void_func_name(inl, ...inN, {keywds})

MathScript Programming

Xmath User Guide

This section gives an overview of MathScript programming. Some of the
functions mentioned here are also discussed in the Programming section.

For a detailed description of any function or command provided by
National Instruments, refer to the MATRIXx Help.

Assigning Default Values

Optional arguments and keywords typically have default values that will be
used if the argument is not specified. The DEFAULT command assigns a
default value to the specified argument. In the following function syntax,
kwdl is given a default value of 5.0, and kwd?2 is assigned "Earth" by
default.

function [outl,out2,out3]=funName (inl, in2, {kwdl, kwd2})
DEFAULT kwdl = 5.0
DEFAULT kwd2 = "Earth"

Output Keywords

For MathScript programs, output keywords provide a feature whereby
desired output can be selected directly by name rather than positionally. For
example, consider an MSF defined with this prototype:

[01,02,03] = function myfun(il)

To access only the third output of an MSF, use one of the following
methods:

» Skip the first two outputs like this:

[,,thirdout] = myfun(a)

e Use output keywords like this:

[thirdout = 03] = myfun(a)

6-6 ni.com

Chapter 6 MathScript Programming

For a general discussion of keywords, refer to the Keywords section of
Chapter 3, MathScript Basics

Calling Void Functions

When you call a void function, you must use the following syntax:

[1 = void_func_name(...)

Refer to the Void Function Declaration section.

Variable Scoping

All variables created within MathScript functions and commands are local
unless you use an explicit partition name
(partitionName.variableName). Remember, you cannot change
partitions within a program.

For MSFs, input arguments are passed by value. This means that functions
cannot alter the values of their arguments. Output arguments requested by
the caller are copied back to the scope of the caller.

For MSCs, arguments are passed by reference and can alter the values of
their arguments, rename them, or delete them altogether if the argument is
a variable name.

E Note Ifyou get an error message from Xmath indicating that your file is incomplete, your
file may be missing an ending carriage return.

Creating Online Help for User-Defined MSFs and MSCs

You can provide online Help for your MSF or MSC in one of the following
ways:

* Provide a Help file in the same directory as your MSF or MSC.

* Allow Xmath to use the block comment at the top of your MSF or
MSC if you do not provide a Help file.

When you try to bring up Help for your MSF or MSC by typing the

following command

help script_name

Xmath follows these steps:

1. Xmath searches for the Help topic name in the standard Xmath Help
project file (help.hpf).

© National Instruments Corporation 6-7 Xmath User Guide

Chapter 6 MathScript Programming

If Xmath finds your Help topic, it displays it in the MATRIXx Help
window.

2. If Xmath does not find an Xmath Help topic, it looks in the local Help
project file (Local .hpf).
If Xmath finds your Help topic, it displays it in the Local Help window.
@ Note On UNIX systems, local.hpf is in your home directory. On Windows systems,

local.hpf also exists in your home directory if the home directory is defined; otherwise,
you can find local . hpf in $XMATHTMPDIR%.

If Xmath does not find the Help topic in the local Help project file, it
looks in the same directory as your MathScript file for a Help file with
the name script_name.html,script_name.htm, Oor
script_name.txt.

If Xmath finds your Help file, it displays it in the Local Help window
and appends the topic name to the local.hpf file.

If Xmath does not find a Help file, it goes to the MathScript itself,
extracts the text in the comment section at the top, and creates a text
file (script_name. txt) that contains the extracted information.

On UNIX systems, Xmath stores the script_name. txt filein your
home directory. On Windows systems, Xmath stores the
script_name. txt file in your home directory if the home directory
is defined; otherwise, Xmath stores the file in $XMATHTMPDIR%.

Xmath displays the Help topic in the Local Help window and appends
the topic name to the 1ocal . hpf file.

Using User-Defined MSFs and MSCs

Your MSF or MSC can be called in the same way as Xmath functions and
commands. However, Xmath must know where to look for them.

Xmath User Guide

Search Paths

When you call a MathScript program, Xmath looks for it in the search path
using the following criteria:

The current working directory (.) is put in the search path when Xmath
starts up.

The search path is searched only upon the first call to the MSF or MSC.

You can use DEFINE and UNDEFINE to select or deselect an MSF or
MSC.

6-8 ni.com

Chapter 6 MathScript Programming

For example, if hal fwave.msf£ is not found in the search path, you receive
the following message:

File halfwave not found

If this occurs, add the new directory to the search path with the command
set path "directory" where directory can be any valid directory
path string. Assuming halfwave.msf is in the subdirectory myScripts,
you add its path as follows:

set path "myScripts"
show path

1) .

2) myScripts

Manipulating Search Paths

If the file graphit .msc is in the directory test, you can add this entry to
the Xmath search path as follows:

set path "test"
show path

1) .

2) myScripts

3) test

To remove an entry from the Xmath search path, use the REMOVE command
and the path number.

remove path 2
show path

1) .
2) test

To handle paths through a file selection box, use Select File»Set Path. In
the Directories field of the Set Path dialog box shown in the following
figure, double-click on the directory you want for your search path, and
then click OK.

© National Instruments Corporation 6-9 Xmath User Guide

Chapter 6 MathScript Programming

Xmath User Guide

1 1)
=| Set Path

Filtexr

fdisk2/testy |

Directories

S [Y

estf. . oo

;estfaltia altia

;est/dawnsBlock davnsBlock

;est/filtexr filtexr

sest/filterl filterl -

est/filter inline filter inline

:est/frameset Fi frameset i
R - H JE
Selection

I Jdisk2/testf

[1]:4 | Filterl [.‘-ancell Help

DEFINE

By default, Xmath looks for built-in functions and commands (refer to the
Using Predefined Functions and Commands section of Chapter 3,
MathScript Basics) before searching user paths. The DEFINE command
explicitly associates an MSF or MSC with a MathScript name. It is useful
for accessing functions that are not in the search path. For example, the
Xmath function hilbert () is stored in the following location:

whatis hilbert

hilbert is an ISI function (path/hilbert.xf)

where path is the path to your Xmath installation. Suppose we have an
MSF called hilbert.msf located in a subdirectory called funs, and we
would rather use it for Hilbert computations. To make and verify the
change, type:

define hilbert, {directory = "funs"}
whatis hilbert

hilbert is a Mathscript function (funs/hilbert.xf)

All calls to the hilbert () function will now use the function located in
funs instead of the predefined function. To retrieve the predefined

6-10 ni.com

Chapter 6 MathScript Programming

function, release your local version of hilbert (), and then verify with
the whatis () function:

undefine hilbert
whatis hilbert

hilbert is an ISI function (path/hilbert.xf)

For more information on DEFINE and UNDEFINE, see the MATRIXx Help.

MathScript Program Compilation and Execution
(.xf, .xc)

When a program is defined or called for the first time, Xmath compiles the
program and stores the resulting binary code in an .xf or .xc file,
depending on the file type. Refer to Figure 6-3.

(compile)
halfwave.msf — halfwave.xf
MathScript ASCII Source Compiled MathScript Code

Figure 6-3. Compile Process for an MSF

When halfwave is called again, the Xmath interpreter checks the last

modified dates of halfwave.xf and halfwave.msf. If halfwave.msf
is more recent, the ASCII .msf file is recompiled, overwriting the existing
.xf file. After compilation, the new halfwave.xf binary file is executed.

You can use the following command to turn off file usage time stamp
checking:

SET AUTOCOMPILE OFF

If you know that you will not be modifying a source file, this can improve
the speed of a task such as calling an MSF in a loop.

If a new version of Xmath is installed, old local .msf and .msc files are
automatically recompiled.

Examples

Example 6-3 provides a sample user-defined MSF called pdm2mx. This
MSF changes a PDM to a matrix of the same dimensions as the input
matrix. This is to reverse any PDM formatting so that you can compare a
PDM'’s dependent matrices with the source matrix for the PDM.

© National Instruments Corporation 6-11 Xmath User Guide

Chapter 6 MathScript Programming

Example 6-3 pdm2mx.msf

Destructs a PDM to a matrix of the same dimensions as the input
matrix. Idea is to reverse any PDM formatting so that you can compare
a PDM's dependent matrices with, for example, the original matrix the
PDM was created from.

Syntax: Function [mat, same]=pdm2mx (m,p)
Inputs: m A matrix to compare to the elements of a PDM.
P A PDM with elements you wish to organize in a

matrix of the same dimensions as m.

Outputs: mat A matrix of elements of p formatted according to m.
same If mat and m are the same, same=1. If not, same=0.

T

Function [mat, same]=pdm2mx (m,p)

[mr,mcl=size(m); [pr,pc,pll=size(p);

if is(m, {matrix}) & is(p, {pdm}) & mr*mc==pr*pc*pl

if mr==pr & mc==pc
mat=makem(p') ';
else
mat=makem (pdm (makem(p') ', {rows=mr, columns=mc}));
endif
if any(mat-m) <> 0; same=0; else same=1; endif

else

error ("Matrix and PDM must have same number of elements.","C")
endif
endFunction

A call to pdm2mx might be:

b=rand(6,3)? bp=pdm(b, {rows=3, columns=6})
[, same] =pdm2mx (b, bp)

Xmath User Guide

The command plotspectrumin Example 6-4 takes PDM input and plots
the original wave and its magnitude spectrum in the Graphics window.
plotspectrum uses check to see if the input is a PDM. If the input is a
PDM, the length of the PDM channels is returned from length() to the
variable len.

6-12 ni.com

Chapter 6 MathScript Programming

Example 6-4 plotspectrum.msc

#{plotspectrum first uses check() to see if the input is a PDM. If the input
is a PDM, the length of the PDM channels is returned from length() to the
variable len. The domain of the PDM is a vector stored as in am. }#

command plotspectrum input

stat = check(input, {pdm,abort});len = length(input) ;
dm = domain (input) ;

#compute the fft of the input, and the frequency range

gPDM=fft (input, {channels}) ;

res =(len-1)/(len* (dm(len)-dm(1l)));
dmF=(0:res: (len-1) *res) ;

output = pdm(abs (makematrix (gPDM)), dmF);

#{set up the frequency axis label. The x label on the spectral graph is

generated using + to append strings together. The final string is stored in
xLab. } #

xLab = "Frequency (resolution = " + string(res) + ")";

#{ The first call sets up the plot format. By default in the first graph, the
time series graph is placed in row 1.}#

t = plot (input,
{rows=2,title = "original wave",
v_lab = "amplitude", x_lab = "time (sec)"})?

#{The second plot call plots the spectrum in the second row).}#

t = plot (output, {keep, row=2, y_log, x_lab = xLab,
yv_lab = "Log Magnitude", title="Spectrum"})?
endCommand

A typical call to plotspectrum looks like:

time = 1:1:256; wave = pdm(cos(5*time), time);
plotspectrum wave

The Graphics window will display the time and spectrum plots.

© National Instruments Corporation 6-13 Xmath User Guide

Chapter 6 MathScript Programming

Programming

This section describes MathScript functions, commands, and constructs
used for programming.

Iterative and Conditional Looping Statements

Xmath User Guide

Loops provide the ability to repeat a command or sequence of commands,
either for a fixed number of iterations or until some criterion is met. You
can also exit a loop with the EXIT statement as described in the MATRIXx
Help.

For

The For command executes a statement or a set of statements for a
specified number of iterations. If a statement contains a variable on which
the loop_variable operates, the order of execution is as follows:

e If the variable is a column vector, the order is top to bottom of the
column vector.

e Ifthe variable is a matrix, the order is by columns, moving from left to
right.

e If the variable is a row vector, the order is from left to right.

The For loop syntax is as follows:

For loop_variable = vector
statements
endFor

A line break acts as a terminator in this construct. A comma, a semicolon,
or the DO keyword can be used. For example, the following formats are
correct:

For x=1:n, statements; endFor
For x=1:n; statements; endFor
For x=1:n DO statements; endFor

While

A while loop iterates as long as a conditional expression is TRUE. The
While loop can be structured as follows:

While conditionalExpression
statements
endWhile

6-14 ni.com

Chapter 6 MathScript Programming

WHILE conditionalExpression, statements; ENDWHILE
WHILE conditionalExpression; statements; ENDWHILE
WHILE conditionalExpression DO statements; ENDWHILE

If

If executes a statement or set of statements when a particular condition is
met; if the condition is not met, any else or elseIf statements are
executed.

The syntax for an i f statement is:

If condition
statements
elself condition
statements

else
statements
endIf

A line break acts as a terminator in the above construct, or a comma, a
semicolon or the THEN keyword can be used. For example, the following
variations are correct:

IF condition, statements ELSE, statements ENDIF
IF condition; statements ELSE, statements ENDIF
IF condition THEN statements ELSE, statements ENDIF

For example:

if input < cost

display "Please deposit: "+ string(cost-input)+ " cents"
elseif input > cost

display "Your change is: "+ string(input-cost)+ " cents"
else

display "Thank You."
endIf

Or, for example:
IF inl | in2 < 1 THEN x=0; ELSE x=1; ENDIF

© National Instruments Corporation 6-15 Xmath User Guide

Chapter 6 MathScript Programming

Goto and Labels

A goto and corresponding label can be defined in a MathScript function
(MSF), MathScript command (MSC), or MathScript object (MSO) file (not
in a .tt file); goto cannot be used interactively. The goto command causes
a jump to a specific label in the program. A label is a name enclosed in
angle brackets; labels must be unique within a script.

For example, an MSF, MSC, or MSO file might have the following:

If input > cost & change < input-cost
GOTO exact # jump to <exact>
endIf

#{

definition of label exact
T#

<exact>

display "Please use exact change only."

Object Query Functions

Xmath User Guide

These functions are useful for testing the validity of input arguments of
MathScript entities. To see the full set of available keywords for each
function, refer to the MATRIXx Help.

exist()

exist () checks to see if an object is defined with the given name.
exist () returns TRUE (1) if the object is defined, and FALSE (0)
otherwise.

a = 1; exist(a)

ans (a scalar) = 1
delete a
exist (a)
ans (a scalar) = 0

6-16 ni.com

Chapter 6 MathScript Programming

check()

check () performs multiple checks on a variable and prints out error
messages (by default); check () is similar to is, but has additional
features including error reporting, two-input comparisons, and conversions
between different object types. Both functions are useful in programming
and often used interchangeably.

check () only operates on variable names (you can use is if your input
is an expression); check () can also compare certain properties of two
inputs, such as sameClass or sameRate. See the check topic in MATRIXx
Help for a listing associated keywords.

© National Instruments Corporation

By default, check () automatically reports an error when the
keyword list does not match the input object. If you type:

a = [1,2,3,4];
t = check(a, {symmetric})

t (a scalar) = 0 isdisplayed in the log area, and the following
message appears in the error log window:

Specified argument to check must be symmetric.

To turn off reporting, specify ! report in the keyword list; the status
of check () is still displayed in the log area, but the message is
suppressed.

The abort keyword highlights a specific argument and returns an
error message; the statement does not execute until the appropriate
correction is made.

check () can accept two inputs, and compare them:

a = [1:4]; b = [3:5];
check(a,b, {samelength, !report})

ans (a scalar) = 0

check () can be used to make the following conversions:
— single channel PDM < vector

— polynomial <> vector

— 1OW ¢> column

When the convert keyword is used, the input is a variable; if all
keyword requirements are met, the input variable is converted to the
appropriate keyword format.

p=pdm([4:-.675:2])
p (a pdm) =

6-17 Xmath User Guide

Chapter 6 MathScript Programming

domain |

_______ o mm e
1| 4
2 | 3.325
3| 2.65

[status,pl=check(p, {real, matrix, convert})

status (a scalar) = 1

p (a row vector) = 4 3.325 2.65

check () converts p from a PDM to a vector. Refer to the check topic
of the MATRIXx Help for a complete description of check () and its
keywords.

is()

is() accepts a variable name or an expression as an input, and then
determines if the input variable is of the type specified in the keyword
argument. is () returns 1 if TRUE and 0 if FALSE.

tmatrix = [1,3;0,1];
is(eig(tmatrix), {identity})

ans (a scalar) = 0
is(tmatrix, {triangular})

ans (a scalar) = 1

is() can be used to report errors as follows, notice that the error ()
function can only be used in a MathScript program:

if ! (is (a, {symmetric})); error ("Argument must be
symmetric.")? endif

Many keywords can be used with is (); refer to the is() topic and the
check () topic in the MATRIXx Help for details about these keywords.

User Interface Functions

Xmath User Guide

Xmath provides the simple graphical user interface functions
getline(),getchoice(),pause(),error(),andbeep().For
more sophisticated tools, refer to Chapter 9, Graphical User Interface.

getline()
getline() pops up adialog box with a prompt asking for input.

response = getline("Enter input here:")

6-18 ni.com

Chapter 6 MathScript Programming

The dialog box appears.

Enter input here:

You will not be able to enter text in the Command window until the dialog
box is closed. If the string returned from getline () must be converted
into a number, use the makematrix () function. Itis overloaded to handle
strings.

response (a string) = 2.333

response = makematrix(response)

response (a scalar) = 2.333

getchoice()

getchoice() pops up a dialog with choices defined by an input string

matrix. By default the dialog will have radio buttons, which allow only one
choice. If themultiple keywordis used, the dialog will have check boxes,
which allow more than one selection. If the keyword defaultChoice is
specified, certain choice(s) are pre-selected when the dialog appears.

choice = getChoice("The title", ["Choice 1";
"Choice 2";"Choice 3"], {defaultChoice=3}

e The title

& Choice 1
4 Choice 2

4 Choice 3

The output variable returns the user’s choice(s) as a scalar or vector.

© National Instruments Corporation 6-19 Xmath User Guide

Chapter 6 MathScript Programming

Xmath User Guide

pause()

This command displays a dialog with a button that must be pressed before
Xmath will continue. pause () is commonly used in . ms files to view a
graph in the Graphics window.

If a string is added to the pause () command, that string will appear in
the Xmath Pause dialog.

plot(1:10)

pause "press Continue to see the next plot"

plot (random(1l,10))

You can disable pause () with the following command:

set pause off

error()

error ()can only be used inside MathScript entities. You supply a
severity code of W, C, S, or F to signify the type of error: warning,
confirmation, strong warning, or fatal. The operating system and the error
severity determine where the error is displayed:

* For all operating systems, F aborts execution; the instruction remains
in the command area with the error highlighted, and the error message
is displayed in the message area.

* On Windows operating systems, all error messages remain in the
Xmath Commands window; W, C, and S settings display your message
in the log area.

¢ OnUNIX, c and s settings display a dialog with the error message you
specified. w writes your message to the message area.

Refer to the MATRIXx Help for additional details.

if is(Input2, {!matrix})==
error ("Not a matrix!", "F", Input2)
endif

6-20 ni.com

Chapter 6 MathScript Programming

If the error criterion is met, the string Not a matrix! is written to the
commands window message area.

beep()
beep () causes an audible beep; on UNIX, it also displays a dialog box.

beep "this is a test"

3
=} ¥math Beep

this is a test

Indexing Functions

This section is a brief overview of indexing functions that are useful in
programs. For detailed descriptions of these functions, refer to the
MATRIXx Help.

index()

index () finds the starting location of a substring within a string. If the
substring is not found —1 is returned.

s="What is the meaning of this?";
i=index (s, "this")

i (a scalar) = 24

find()

find () returns an index list of the elements in the matrix that meet the
specified condition. An index list is a matrix containing the row and
column locations (the indices) of all elements that meet the condition.

a = [20,4,-14;30,-65,0;48,582,29]

a (a square matrix) =

20 4 -14
30 -65 0
48 582 29

© National Instruments Corporation 6-21 Xmath User Guide

Chapter 6 MathScript Programming

elements = find(abs (a)>25)

elements (an index list) =

W wwhoN
WNRBRDNDR

Using the Xmath Debugger

The Xmath Debugger can be controlled interactively from the Debugger
window (Figure 6-4), or from the Commands window command line. The
command line debugger is the only available method for Windows users
and anyone running the tty version. This section describes both interfaces.

Xmath User Guide 6-22 ni.com

Chapter 6 MathScript Programming

Debug Mode
11 11
=) math Debugger{ Debugging) a i
Menu Bar —» File Zdit ¥iew Uptiosny Windows Help
File Name — | | -/ms_debug.msf
Line # — | [Line: 40
Keyword:
backsrards If specified, the elements of the matrix are sorted so
in decreasing order, with the largest element at (1.1).
Remarks : If data is complex, it will be sorted by the real part of
each elewent.
H
Function ordered = ws_debug{data {backsrards}) #31
DEFAULT backwards = 0 33
If !CHECK{data, {matrix, !report}) then #34
stat = error("Input wust be a matrix","F") #35
RETURN #36
endTf #37
Location of ordered = zeros{data) #38
»
SusEpected [data_rows,data cols [size(data) #40
rror data_size = data_rows*data_cols #41
data_wect = datai:) #42
sorted_data = sort{data wect) #43
if backwards then #45
back_wectil:data size) = sorted data{data size - [1l:data size]+1) #46
sorted_data = back_wect #47
endif #48
for row ptr = l:data rows #50
ordered{row_ptr, : }=sorted data{{row_ptr-1)*data_cols+1:row_ptr*data_cols)" #b1
endfor #52
43 =
Error — Tnexpected input encowmtered; expected inputs such as: a semicolon, a right bra
Message
RE e
Next Message | Proviang Mossages I Redisplay | EXIVRARETTE |
Buttons —» Sanee | Rovery | Next | Go
: Rermn | Set Break | Set Watch

Figure 6-4. Xmath Debugger Window in Debug Mode (UNIX)

© National Instruments Corporation 6-23 Xmath User Guide

Chapter 6 MathScript Programming

Debug

Debug Mode

Xmath User Guide

Notice that debug mode starts under three circumstances:
e A call is made to a program that is set up for debugging.

e A program contains a syntax error. A syntax error is an error in
punctuation, for example, a missing brace: plot (a, {xlab="A
missing brace").

* A program contains a runtime error. A runtime error occurs when an
instruction is impossible to process. The following statement would
cause a runtime error because the objects are incompatible: x=5 +
"hello".

You can use the debug command to define and set break for a program. In
the command window command area, type:

debug program_name

If you activate debug for a program, the debugger opens automatically on
the first executable line in the script whenever you call the entity. While in
debug mode you can step through your file and evaluate any expression or
run any command. In addition, the NEXT and SET BREAK commands can be
used to debug nested functions.

In addition to the above cases (where you are intentionally debugging a
specific MSF or MSC), a programming error also invokes the Debugger
window in debug mode (refer to the SET DEBUGONERROR section).

Entering Debug Mode

e All windows say “(Debugging)” in the title area (at the top) when you
are in debug mode. In the Debugger window, the full filename of the
entity being debugged is displayed just below the menu bar.

In the command line debugger, the command prompt will change to:
(program) Debug>.

» Ifthe Debugger window was opened because the file contains a syntax
error, the Next button is enabled (refer to Figure 6-4). If there are
multiple errors, the Next Message and Previous Message buttons are
also enabled. You can repair a syntax error, then continue to step
through your file or look at the previous message.

6-24 ni.com

Chapter 6 MathScript Programming

Stepping Through a Script

* In the command line debugger you can step forward, using the next
command, or continue execution with the go command.

* Youcan set and remove break points from the Debugger window or the
command line (refer to the Setting, Showing, and Removing
Breakpoints section).

* You can set and remove watch points from the Debugger window or
the command line (refer to the Setting and Removing Watchpoints
section).

Exiting Debug Mode
* To stop debugging from the Debugger window, click End Debug.

* To stop debugging from the command line, type abort.

In the Debugger window, the word Debugging disappears from the title
area of all windows. This mode is referred to as Edit mode.

To close the window select File»Close Window. To stop debugging and
close the debugger in one step, place the cursor over the Debugger window
and type <Ctrl-W> (for workstations only).

Editing a File in the Debugger Window

When the Debugger window is not in debug mode, it is acts as an editor.
To fix your script, click into the Debugger window and make your change.
If you modify the script through the Debugger window, the Save and
Revert buttons become active, and you can no longer step through. Before
saving, make sure that the script file is not open in any other editor.

The Debugger window provides the same simple editing capabilities
available from the Xmath Commands window command area (refer to the
Command Area section of Chapter 1, Introduction). You can manually
open the debugger by selecting Windows»Debugger. To edit a file, select
File»Open. The file appears in the window. After you make a change, the
Save and Revert buttons are activated.

SET DEBUGONERROR

The environmental setting debugonerror determines the mode in which
the debugger will appear.

* The default setting is On. If an error is detected in a program, Xmath
opens the debugger and redirects focus to the Xmath Debugger
window (refer to the Debug Mode section).

© National Instruments Corporation 6-25 Xmath User Guide

Chapter 6 MathScript Programming

If debugonerror is set to On, and you have activated debugging for a
program with debug program_name, the debugger opens in debug
mode whenever the entity is called.

If debugonerror is set to O£ £, and you have activated debugging for
aprogram with debug program_name, the debugger opens whenever
the entity is called, but focus stays in the Commands window.

Setting, Showing, and Removing Breakpoints

A breakpoint causes the debugger to stop execution at a specific line
number in the source, provided that set debugonerror on is in effect
(the default).

If you issue the command DEBUG NAME a break is automatically set on
the first executable line of the script, causing the debugger to open
whenever that script is called.

You can set a breakpoint interactively in the Debugger window, or
from the Commands window command area.

@ Note In order to set a breakpoint interactively, the file in which you wish to set or remove
breakpoints must currently be open in the Xmath debugger in debug mode.

Xmath User Guide

— To set a breakpoint in the Debugger window, position the cursor
in the line where you want to break execution, then click the Set
Break button. Note that when you position the cursor in the
Debugger window, the line number is shown below the filename
on the upper left.

or
— Go to the command area and type:

SET break lineNumber

To see a list of the breakpoints you have set, go to the command area
in the Commands window and type:

SHOW break

A list of breakpoints will appear in the format
fileName:Line_Number. You will see breakpoint line numbers for
all entities that have debugging enabled.

Breakpoints can be removed in the Commands window with the
REMOVE command. Again, you must be viewing this script in debug
mode. Go to the command area and type:

REMOVE break lineNumber

6-26 ni.com

Chapter 6 MathScript Programming

As mentioned earlier, all scripts that have been called or explicitly
defined automatically have a breakpoint set on the first executable line.
Type SHOW debug to see the files you are debugging.

* To run a file without stopping at its breakpoints, go to the command
area and type:

DEBUG program_name off

Note, however, if the script contains an error, the debugger will open
regardless.

Setting and Removing Watchpoints

A watchpoint causes the debugger to stop execution whenever a watched
variable is modified.

You can set a watchpoint interactively in the Debugger window, or from the
Commands window command area. The script containing the variable you
want to watch must currently be shown in the debug window in debug
mode:

* To set a watchpoint interactively, go to the Xmath Debugger and
highlight the variable you want to watch, then click the Set Watch
button.

* To set a watchpoint with the set command, go to the commands
window command area and type:

set watch varName

Now you can use the Commands window to display the values of variables
that are local to the current MSF or MSC.

To see a list of the variables you are watching, go to the Commands window
command area (while in debug mode) and type:

show watch
A listing appears in the format functionName:varName.

Watchpoints can be removed in the Commands window with the remove
command. The entity containing the watchpoints you want to remove must
currently be shown in the debug window in debug mode. Go to the
Command window command area and type:

remove watch varName

© National Instruments Corporation 6-27 Xmath User Guide

Chapter 6 MathScript Programming

If you want a function to run without stopping at the watchpoints but you
do not want to remove them, type

debug program_name off

in the command area.

Debugger Window Interface

Xmath User Guide

This section describes the Xmath Debugger’s user interface.

Fields

The filename of the function being debugged is displayed just below the
menu bar.

The top field in the window contains the source of the MSF or MSC that
you are debugging. The line that is about to be executed is highlighted
(unless there are errors in the function, in which case the highlighted line
points to the error). The source field is read-only unless you have write
privileges to the source file. The middle field is the message area. Status
and error messages that occur while debugging are displayed here.

Menus

The enabled menus are the File menu and the Windows menu. The File
menu allows you to edit another MSF or iconify the debugger. The
Windows menu allows you to quickly find other Xmath windows and bring
them to the foreground.

Buttons

* Next Message—Enabled when there are multiple errors. This button
highlights the next line that contains an error (assuming you are not at
the bottom of the list).

* Previous Message—Enabled when there are multiple errors. This
button highlights the previous line that has an error (assuming you are
not at the top of the list).

¢ Redisplay—Refreshes the window.

* Edit On/Off—Toggles the source to be editable or read only. You may
want to toggle edit off to prevent accidental edits.

e Save—Enabled whenever you make changes to the source. Clicking
this button saves your changes to the file.

¢ Revert—Discard edit changes and load the last saved version of the
file.

6-28 ni.com

Advanced Topics

Chapter 6 MathScript Programming

Next—Executes the next line of code.

Go—In debugging, causes the function to run until a break point is
encountered, a watched variable is modified, or the end of the file is
reached.

Rerun—Enabled after source changes have been saved. Click to rerun
the function with previous inputs.

Set Break—Sets a breakpoint on the current line (where the cursor is
in the source field). Xmath will pause function execution at any
breakpoint(s) you set. To do this from the command area, refer to the
set break topic of the MATRIXx Help .

Set Watch—Sets a watch on a variable. To watch a variable, use the
cursor to highlight the variable name, then click this button.

End Debug—Exit debug mode; no arguments will be returned from
the function.

This section includes the following topics:

Variable Arguments

Variable arguments

Executing a function at a specific directory
Partition and variable directory functions
MathScript command output and error capture

Programming for platform independence

When you use the colon (:) index operator in a MathScript entity
declaration, the program handles a variable number of inputs, outputs, or
keywords. The function argn () returns the number of a program’s
arguments, while argv () extracts the value and name of the argument.

argn()

argn () returns the number of inputs (the default), keywords, or outputs
for a MathScript entity (refer to Example 6-5). To get the number of
keywords, specify the keyword, keywords; to get the number of outputs,
specify the keyword, outputs.

© National Instruments Corporation

6-29 Xmath User Guide

Chapter 6 MathScript Programming

Example 6-5

Example 6-6

Xmath User Guide

argn()

function [args]=howmany (:)
args=argn ()
endfunction

Example 6-5 counts the number of inputs. For example,
howmany (1,1,1,1) returns 4.

argv()

argv () allows you to index into the inputs, keywords, or outputs for a
program. argv () can return the value and/or name of the argument; for
argv () to return the name of the argument, however, it must be a
keyword. To return the name of an output, the calling statement must use
output keywords (refer to the Output Keywords section).

Using argn and argv

Example 6-6 uses the argn () to determine the number of inputs and loop
over them accordingly. argv () gets the value of each argument, and then
the length is determined for the output.

argv() combined with argn()

function out=howlong(:)
n=argn() ;
for i=1:n

in=argv (i)

out (i)=length(in) ;
endfor
endfunction

x=howlong (rand(2,3),1:7,pdm(ones (4,5), {rows=2}))?

X (a column vector) =

6
7
10

Example 6-7 accepts any number of scalars; it displays a message when the
keyword reply is specified but not otherwise.

6-30 ni.com

Chapter 6 MathScript Programming

Example 6-7 msg.msf
function [out]l=msg(:, {reply})

ni=argn/()
nk=argn ({keywords}) ;
[v,n]l=argv(ni) ;
ni=ni-nk;
if n=="reply"
key=1;
else
key=0;
endif

for i=1:ni
if is(argv (i), {!scalar})
error ("Scalars Only!", "C");
else
out (i)=argv (i) ;
endif
if key==0 & i==ni
out;
endif
if key==1 & ni==1
display "Thanks for the scalar!"
elseif key==1 & i==ni
display "Thanks for the " + string(ni) + " scalars!"
endif
endfor

endfunction
msg(1,1000,pi, {reply})

Thanks for the 3 scalars!

ans (a column vector)

1
1000
3.14159

msg(5,5,9)

ans (a column vector)

© National Instruments Corporation 6-31 Xmath User Guide

Chapter 6 MathScript Programming

5
9

Example 6-8 provides the function varargs (), which has a variable
number of outputs, inputs, and keywords. In the following call:

[outl=fopl,out2=fop2]=varargs(l,2,3,{k=9})

Notice that we define two outputs (fopl, fop2), three inputs, and one
keyword (k).

Within the function, argn () is used to determine the number of
arguments, and argv () is used to determine the name of the arguments.
Notice the use of the [value, namel=argv (i, {keywords}) syntax for
inputs and keywords and the name=argv (i, {outputs}) syntax for
outputs. Notice also that the function itself does not assign a value to the
outputs.

The output of the previous call appears in Example 6-9. The names of the
keyword and the outputs appear in the output stream; the names of other
input arguments are NULL.

Example 6-8 varargs.msf Using argn and argv
function [:] = varargs(:,{:})

for i=1:argn({keywords})

[v,n] = argv (i, {keywords})? # display value and name of
end # keyword inputs

display “-—===———mmmm e "n”
for i=1:argn({!'keywords})

[v,n] = argv (i, {!'keywords})? # display value and name
end # of non-keyword inputs
display === =m—m e “n”
for i=l:argn()

[v,n] = argv(i)? # display value and name
end # of all inputs

display === ——mmm e "n”
for i=1:argn({outputs})

n = argv (i, {outputs})? # display name of all outputs
end

endfunction

Xmath User Guide 6-32 ni.com

Chapter 6 MathScript Programming

Example 6-9 Output of varargs.msf

v (a scalar) = 9
n (a string) =

v (a scalar) = 1
n is null
v (a scalar) = 2
n is null
v (a scalar) = 3
n is null
v (a scalar) = 1

n is null

v (a scalar) = 2

n is null

v (a scalar) = 3

n is null

v (a scalar) = 9

n (a string) =

n (a string) = fopl

n (a string)

Il
h
(©]
ke]
)

To assign values to the outputs fop1 and fop2, the function needs an
assignment statement(s), which must be a text string. For example, the
following loop assigns the outputs with the values 1 and 2, respectively:

for i=l:argn({outputs})
n = argv (i, {outputs})

execute n + "=" + string(i) + ";"; # assign i to
the i'th output

endfor

Executing a Function at a Specific Directory

The function assignment syntax used in calling an LNX in background
mode allows a directory to locate the function to be specified with a
keyword. For example:

[out] = (define myfunc, {directory="mydir"}) (1,2,3)

where Xmath calls the MSF or LNX function myfunc () in the directory
mydir, leaving an existing definition of myfunc () unchanged.

© National Instruments Corporation 6-33 Xmath User Guide

Chapter 6 MathScript Programming

Partition and Variable Directory Functions

The function directory () allows directory listings of Xmath partitions
and variables to be captured as vectors of string names. The

directory() function requires one input, a string containing a wildcard
as used in the command wHO, and produces one output, a vector of names
of partitions and variables as produced by the command WHO using the
specified wildcard. The names are always full names, and the partition
name is always prefixed. The syntax is shown in the following example:

out = directory("main.*")

where the variable out will contain a vector of strings of the variable names
found in main (for example, main.a, main.b, and so on.).

MathScript Command Output and Error Capture

Xmath User Guide

The following syntax allows the textual output and error messages of a
MathScript command to be captured in MathScript variables as string
values:

[outputs = format, errors] === statement
or
[outputs, errors] === statement

where outputs and errors are MathScript variable names and
statement can be any valid MathScript statement. The format keyword
formats the output in a command-dependent way; refer to the following
examples for details.

If the outputs variable is specified, the textual (nongraphical) outputs of
statement, if any, are inserted into the outputs variable instead of
displaying in the Xmath log area of the Commands window. If the
outputs variable is omitted, the output of statement is displayed
normally.

If the errors variable is specified, Xmath will suppress normal processing
(error location highlighting, bringing up the Debugger window, and
stopping command execution) of any errors generated by statement.
Instead, the error messages are converted to text and inserted into the
errors variables. If errors is omitted, Xmath performs normal error
processing of errors generated by statement.

This error capture feature allows a program to perform error handling of
commands that may fail as shown in the following Examples section.

6-34 ni.com

Chapter 6 MathScript Programming

Examples

In the following example of error handling, if the variable name contained
in the string varname is a legal Xmath variable name, err would be a null;
otherwise, err would contain an error string. For example:

varname = getline("Please enter an Xmath variable
name:") ;

[,err]===execute varname + "=1;"

In the following example of error handling, any error calling my func is
converted into an error message and inserted into err as a text string:

[,err] === myfunc(123)

In a similar example, the variable out captures the output of the Windows
dir command in a string:

[out] === oscmd("dir")

In the following example, out contains a formatted version of the captured
output:

[out=format] === statement

Currently, the WHO and SHOW PARTITIONS commands support this
formatting. The directory() function described in the Partition and
Variable Directory Functions section uses both these commands. For
example,

DIRECTORY ("main.*")

actually executes this statement:

[out=format] === who main.*

The captured output is a vector of strings containing the names of the
variables in the partition main.

When [out=format] is used with other statements that do not support
formatting, the captured output will be a vector of strings, each of which
contains a line of output. By default, the length of the row vector out is the
number of strings (and therefore the number of lines in the captured
output). You can transpose out to see the output strings as they are
normally displayed in the Xmath log area.

[out=format] === rand(2,2)
size(out)
out'?

@ Note This syntax cannot be nested.

© National Instruments Corporation 6-35 Xmath User Guide

Chapter 6 MathScript Programming

Programming for Platform Independence

While MathScript is portable across UNIX and Windows platforms, calls
to the operating system are platform-dependent. For example:

oscmd ("1ls *.xmd") # UNIX
oscmd ("dir *.xmd") # Windows

With the MathScript functionplat form(), you can program a command
so that it can be run on either platform. For example:

if platform() == "UNIX"

oscmd ("ls *.xmd") # UNIX
else

oscmd ("dir *.xmd") # Windows
endif

Another problem area with cross-platform programming is the directory
path name syntax difference. The get ({path}) function is useful

in reconciling these differences. The COPYFILE command, for
example, makes use of the get ({path}) function to provide a
platform-independent way of copying files. For more information,

refer to the MATRIXx Help.

Xmath User Guide 6-36 ni.com

MathScript Objects

This chapter outlines the procedure for writing and using your own
MathScript object (MSO). Before writing an MSO you should have a good
understanding of object-oriented concepts and Xmath objects in particular.
Chapter 5, Data Objects and Operators, introduces each intrinsic Xmath
object and the operators that are overloaded for that object. You should also
be proficient in the MathScript language. Refer to Chapter 3, MathScript
Basics and Chapter 6, MathScript Programming.

As described in Chapter 5, Data Objects and Operators you can easily
augment these intrinsic objects by designing your own custom objects
using MathScript.

MSO Overview

The MathScript object feature enables you to create custom high-level
objects for use in the Xmath environment. Object development in Xmath
fundamentally involves determining what data defines the instance of an
object, writing the initializer function and creating the various commands,
functions, and operators which can manipulate object instances. The
complete definition of an object and its behavior is encapsulated within an
MSO file. The structure and contents of an MSO file are described in
greater depth in subsequent sections.

Careful thought should be used when developing objects, especially those
which will be shared among a number of people. The object author should
design, test, and document objects before allowing others to use them. Once
an MSO is in use, any changes to the definition of the class variables will
create inconsistencies between current and future instances that may be
difficult to identify.

Object Instantiation

Once an object is defined by creating an MSO file, object instances can be
created from the Xmath command line or within any script using the
following syntax:

instance = myobject (parameters) ;

© National Instruments Corporation 7-1 Xmath User Guide

Chapter 7 MathScript Objects

This statement executes the object’s initializer function with the supplied
input parameter(s). The output of this expression is an object instance. An
object instance is recognized as an Xmath variable; this implies that it can
be operated on by Xmath commands such as SAVE, LOAD, and DELETE,
copied with the assignment operation, passed as a parameter to a function
or command, and returned as a function output.

The object instance is a container that stores the persistent class variables
that characterize a particular instance. The syntax for accessing a class
variable is the same as the syntax for addressing a variable in another
partition. For example, if an object named myobject contains a class
variable named sigma, then that variable can be accessed with the
following statement:

instance.sigma

MSO File Format

MSO file format structure adheres to the rules in the General Rules for
MathScript Programs section and the MathScript File Formats section of
Chapter 6, MathScript Programming, with one exception. The MSO file
format accommodates multiple constructs in a single file. This enables you
to use a single file to define the object, overload or create pertinent
functions and commands, and overload operators to support the new object.
Example 7-1 illustrates the structure of an MSO file.

Example 7-1 Sample MSO File Format

#{

Block comment used as Help for this object.

T#

Object[x1l,...] = mymso(inl,..., {kwds})
MathScript statements

endObject

Operator zl = +(<type>left,<type>right)
MathScript statements
endOperator

Function[yl,...] = memFun(<type>a,..., {kwds})

MathScript statements
endFunction

Xmath User Guide 7-2 ni.com

Chapter 7 MathScript Objects

Command memCmd <type>input {kwds}
. MathScript statements
endCommand

* If MATRIXx Help is desired, supply a Help file or begin the file with
commented text that will serve as the Help text.

@ Note You provide online Help for MSOs the same way as for MSFs and MSCs;refer to
the Using User-Defined MSFs and MSCs section of Chapter 6, MathScript
Programmingfor more details.

* The body of the file consists of programming constructs. The first
construct in the file must be the initializer function for the object. The
initializer function contains the MathScript statements which are
executed by Xmath whenever a new instance of this object is created.
The initializer function is explained in greater detail in the Initializer
Function section.

* Optional constructs to define or overload MathScript functions and
commands that act on your object can follow the initializer function in
any order, as discussed in detail in the Member Functions section.

* Optional constructs to overload operators can also appear anywhere
after the initializer function, as discussed in detail in the Operator
Overloading section.

Using MSOs in Xmath

The process for defining an MSO is identical to that for other MathScript
entities (refer to the Using User-Defined MSFs and MSCs section of
Chapter 6, MathScript Programming). Just include the MSO files you need
in your Xmath path. Alternatively, you can define them explicitly with the
DEFINE command:

define mymso, {directory="/myHome/myobjects/my mso"}

Xmath dynamically loads an MSO definition into memory only when it is
necessary.

Initializer Function

The initializer function is a special function that is executed to create a new
instance of an object. It is the only required component in an MSO, and it
must be the first construct in the MSO file following the optional Help text.
The syntax for an initializer is the same as MathScript functions, except

© National Instruments Corporation 7-3 Xmath User Guide

Chapter 7 MathScript Objects

Class Variables

Xmath User Guide

that the initializer is declared between the statements Object and
endObject. All other rules in the General Rules for MathScript Programs
section and the MathScript File Formats section of Chapter 6, MathScript
Programming.

The following is asimple initializer function is shown below.

Object [y]=mymso (al, {bl})
MathScript code
endObject

An object instance is characterized by persistent variables that are stored
within the object instance, similar to the way variables are stored within a
partition. The initializer is responsible for creating an instance and storing
the class variables within the instance. After object instances have been
created, any other constructs defined in the MSO file can access the class
variables.

There are three types of class variables: required, optional, and computed.
Examine the following code fragment:

Object[yl]=mymso(al, {bl})
MathScript code
endObject

* Required variables, such as a1l in the previous example, must be
specified by the user when the object instance is created.

e Optional variables, like b1, are optional input arguments to the
initializer.

e Computed variables, such as y1, are calculated by the initializer,
typically as a function of the input arguments.

Any number of required, optional, or computed class variables may be
defined for an object. The DEFAULT command is sometimes useful to give
optional and computed variables a default value.

When the initializer completes execution, a class variable that exists within
the function scope will be stored within the object instance. The MathScript
statements within the initializer can modify or delete any class variable. As
a result, required, optional, or computed arguments may or may not exist
within an object instance, depending on statements in the initializer.

Variables created in the body of the initializer that are not class variables
are considered temporary and are automatically deleted when the initializer

7-4 ni.com

Chapter 7 MathScript Objects

completes execution. If you want a variable to be persistent, specify it as a
computed variable.

When an object initializer is called, the result of that statement is always a
single instance of the new object. The defined outputs, such as y1 in the
above initializer function, are used to create a computed class variable (as
opposed to the output of an ordinary function).

The following is a sample initializer function for the new object mysys.
Notice that this object does not have any computed variables. They are not
required.

Object mysys(a,b,c,d, {dt})
MathScript code
endObject

You would create an instance of mysys as follows:

inst= mysys(1,2,3,4);

After the input variables are created within the object and given their
appropriate values, the initializer is called in the scope of the inst object.
The initializer checks the arguments for correctness, sets any optional
arguments that require a default value, and then calculates the output
arguments based on the inputs. When the initializer is complete, all local
variables are deleted from the object.

Nested Objects

Any class variable can be an instance of another object. As a result, you can
create quite complex nested object hierarchies. If a required or optional
class variable is an object, the user must create an instance of the nested
object and supply it as an input to the initializer. If a computed class
variable is an object, the initializer itself will create the instance of the
nested object.

Let’s say you had the following nested object embedded within two other
objects.

Object nested(z)
MathScript code
endObject

Object supplied(<nested> x)

MathScript code
endObject

© National Instruments Corporation 7-5 Xmath User Guide

Chapter 7 MathScript Objects

Type Declaration

Xmath User Guide

Object [x] = computed(y)
x=nested(y)
delete y

endObject

To create an instance of the object supplied, the user would type the
following:

a = nested (1) ;
b

supplied(a) ;

However, to create an instance of the object computed, the user only types
the following:

c = computed(1l);

Type declarations are qualifiers that can optionally precede each input
argument for functions, commands, and operators defined in an MSO.
They create a restriction that an argument must be an instance of a
particular type of object.

The syntax of a type declaration is to specify the name of an MSO within a
set of angle brackets immediately before any input argument.

Object[x]= mymso(inl,<alien>in2)
MathScript
endObject

In the initializer function shown in the previous example, the type
declaration <alien> specifies that any instance of an object of type alien
will be accepted as the second argument.

Arguments that do not have a type declaration indicate that any object will
be accepted when this function, command, or operator is called.

The Xmath interpreter uses type declarations for two purposes:

* Ensure that parameters passed to user-defined functions and
commands are the correct type. If a mismatch is encountered, Xmath
will automatically generate an error message.

* Facilitate function, command, and operator overloading by limiting the
use of certain constructs to a specific combination of input arguments.
The use of type declarations to achieve overloading is described in
detail in a later section.

7-6 ni.com

Chapter 7 MathScript Objects

Operator Overloading

The ability to customize the behavior of operators in Xmath to manipulate
MSOs is called operator overloading. Operator definitions containing
MathScript statements that should be executed to achieve the desired
behavior are placed within an MSO file. The syntax of an operator
definition is similar to that of a function definition, with the exception that
the operator behavior is declared between the Operator and
endOperator statements. For example, to define the plus (+) operator to
add two apple objects together, you would insert the following construct
in apple.mso

Operator vy = + (<apple>left, <apple>right)
MathScript code
endOperator

Multiple operator definitions may be required for the same operator to
completely define all possible object combinations. For example, if you
have an apple.mso and an orange .mso, you would need the following
three operator definitions in addition to the one above to describe all
possible combinations of adding apples and oranges.

Operator vy = + (<apple>left, <orange>right)
MathScript code
endOperator

Operator y = + (<orange>left, <apple>right)
MathScript code
endOperator

Operator y = + (<orange>left, <orange>right)
MathScript code
endOperator

Operator definitions can be inserted in any of the MSO files that are
declared as arguments. So the two operators that combine apples and
oranges can appear in either the apple.mso or the orange .mso. However,
because Xmath searches MSO files from the left argument to the right
argument, it is more efficient to put the operator definition in the MSO file
corresponding to the first argument.

Type declarations, like <apple>, tell the Xmath interpreter which operator
definition to choose from when performing operations that deal with
objects. For unary and binary operator definitions, at least one of the

© National Instruments Corporation 7-7 Xmath User Guide

Chapter 7 MathScript Objects

arguments must have a type declaration for the MSO in which the operator
definition resides.

Type declarations are not required on all arguments. If a type declaration is
not specified, Xmath will accept any variable for that argument. For
example, the following operator will add an apple object to any type of
object including intrinsic Xmath objects such as matrices, strings,
etc.

Operator y = + (<apple>left, right)
MathScript code
endOperator

The MathScript code within such an operator should check unqualified
arguments and restrict inputs to the object types that the MathScript code
can properly handle; an error should be returned if the conditions are not
met.

Operators that can be overloaded are listed in Table 5-1.

Unary operators act on a single variable and their operator definitions will
have only one input argument. Binary operators act on two variables and
their definitions will have two input arguments. The - operator is both a
unary and binary operator and Xmath will automatically select the correct
definition from an MSO file based on the number of declared arguments.

Operator yv = - (<apple> arg)
MathScript code

endOperator

Operator y = - (<apple>left, <apple>right)
MathScript code

endOperator

The comma and semicolon operators are special operators that can accept
two or more operands. For example, the following operator definitions
describe two combinations of different types of objects manipulated by the
comma operator.

Operator y = , (<objl>one, <obj2>two)
MathScript code
endOperator
Operator y = , (<objl>one, <obj2>two, <obj3>three)

MathScript code
endOperator

Xmath User Guide 7-8 ni.com

Chapter 7 MathScript Objects

The comma operator definitions above would correspond to the following
two types of expressions, assuming a, b, and c are of the appropriate type:

casel = [a,b];
casel = [a,b,c];

The comma and semicolon operators can also be used in compound
expressions. In the following example, a and b would first be resolved
using the appropriate comma operator to produce an intermediate result,
then, c and d would be resolved with the appropriate comma operator to
produce a second intermediate result. Finally, the two intermediate results
would be resolved with the appropriate semicolon operator.

result = [a, b; c, dl;

When the comma or semicolon operators act on an operand of
heterogeneous types, a separate operator definition is required for each
specific combination of operands, as was illustrated in the previous
examples. However, the variable argument construct (:) can be used
when all operands are of the same type (refer to the Variable Arguments
section of Chapter 6, MathScript Programming). The variable argument
construct also has the advantage that a single operator definition can
generically handle any number of operands. The following definition of the
comma operator illustrates the variable argument syntax:

Operator y = , (<special>:)
n = argn();
for i = 1:n
x = argv(i);
y =
endfor
endOperator

The colon argument (:) instructs Xmath that any number of operands will
be accepted by this definition, all of which must be of type special. The
argn() function, which requires no inputs, will return the number of
operands. The argv (1) function accepts an integer between 1 and the
number of operands and will return a copy of the requested operand.
Consequently, the variable argument operator definitions can be
generically programmed with loops to handle any number of homogeneous
operands.

The insertion and extraction index operators are also special operators. The
insertion index operator enables indexing into an object instance on the left
side of the equal sign in an expression. In the following example, inst is

© National Instruments Corporation 7-9 Xmath User Guide

Chapter 7 MathScript Objects

Xmath User Guide

an instance of an MSO called myOb3j, and the following expression
attempts to insert 10 into the second element of the inst object.

inst = myObj(a);
inst(2) = 10;

The extraction index operator enables indexing into an object instance on
the right side of the equal sign in an expression. For example, the following
expression attempts to extract the value from the fifth element of the inst
object.

ans = inst(5);

The definition of the insertion and extraction index operators would have
the following structure and would reside in the myobj .mso file.

Operator Object(i) =y
Mathscript code
endOperator
Operator y = Object (i)
Mathscript code
endOperator

The argument i would contain the element indices 2 and 5 from the
previous examples at runtime. The argument y would contain the value to
be inserted or the result to be extracted to or from the object. The
MathScript code within the index operator should check and restrict the
input arguments (i and y) to only object types with values that the
MathScript code can properly handle; an error should be returned if the
conditions are not met.

The word Object in the above declarations is a reserved token which
instructs Xmath that this is a special operator that will execute directly
within the scope of the object instance. In other words, the MathScript code
within these operators can directly access the class variables within the
instance. For example, let’s say the variable x is a class variable of myOb3.
The MathScript code within a binary plus (+) operator would have to
reference x with the statement left.x or right.x, but the index operator
can reference x directly with the statement x. Take care that the declared
arguments of the operator (y and i) do not overwrite the class variables of
the object.

The index operators can accept any number of operands, as long as an
operator definition with the appropriate number of arguments resides in the
object’s MSO file. To also handle two-dimensional indexing for the myOb3j
example object, the following two operators, each with two index
arguments, i and j, would be required.

7-10 ni.com

Chapter 7 MathScript Objects

Operator Object(i,j) =Yy
. Mathscript code
endOperator

Operator y = Object (i, j)
. Mathscript code
endOperator

The index operators also support the variable argument construct to handle
any number of operands generically. The following extraction index
operator illustrates the variable argument syntax for the index operator.

Operator y = Object(:)
n = argn() ;
for i = 1:n
x = argv(i);
y =
end
endOperator

Member Functions

Your MSO should include any functions or commands that use your object.

* Member functions and commands behave like MSFs and MSCs with
the exceptions that they cannot be debugged individually unless they
are uniquely named.

Once your MSO is defined, MSO member entities can be called from the
Xmath command area, or other MathScript files.

* You can overload existing commands and functions to operate on your
object. For example, the following function overloads the function
max () to accommodate the MSO type group.

function [out]=max(<group>a)
out=max (a.data)
endfunction

‘When a function or command is overloaded, its behavior is limited to
the cases specified in the function header. For example, the overloaded
version of max will only be enabled if the input is a group object.

* The file need not contain all the code for each new function or
command. Using LNXs for complex numerical operations will speed
up execution considerably.

© National Instruments Corporation 7-11 Xmath User Guide

Chapter 7 MathScript Objects

* You can identify member functions with the whatis command. For
example:

whatis other
other is a member function (./other.mso)

e Member function and command definitions do not include Help text;
their Help text should be included with the Help text for the MSO.

Sample MSO

The MSO shown in Example 7-2 defines an object named group. This
MSO will accept any single row matrix. This MSO overloads the min ()
and max () functions to support this object. It also overloads binary and
unary minus (-), *, +, and binary and unary equality. You can find this
example in $XMATH/examples/mso/group .mso.

Example 7-2 group.mso

The group object is an unordered collection of unique whole numbers which can
be manipulated by operators that adhere to conventional set theory. We are
using the name "group" for this object so it does not conflict with the "set"
command in Xmath.

A new group is defined using the group initializer. For example:

sl = group([1,2,3,4]);
s2 = group([3,4,5,6]);

Binary group operators are defined as follows:

A + B = union of A and B

A - B = difference, the elements of A
which are not in B

A * B = intersection of groups A and B

Unary group operators are defined as follows:
- A = inverse of all the elements of A
Object group(data)
if(!check(data, {rows=1, !report}))

error ("Parameter 'data' must be a single row matrix","F")
return

Xmath User Guide 7-12 ni.com

endif
data = sort(data); // check for duplicate elements
[,n] = size(data);
for i = 1:n-1

if data (i) == data(i+1l)

error ("Non-unique element","F",data);

endif

endfor
endObject

function [out]=max(<group> a)
out=max (a.data)
endfunction

function [out]=min (<group> a)
out=min(a.data)

endfunction
B o
Unary Minus
B o
Operator y = - (<group> a)
v = group(-a.data);
endOperator
B o
Difference
B o
operator y = -(<group> a, <group> b)
[,cols]=size(a.data)
v = null;
temp = null;
for i = 1l:cols
loc = find(a.data(i) == b.data)
if(loc == null)
temp = [temp,a.data(i)];
endif
endfor

© National Instruments Corporation 7-13

Chapter 7

MathScript Objects

Xmath User Guide

Chapter 7 MathScript Objects

if (temp <> null)
y = group (temp) ;
endif
endoperator

operator y = * (<group> a, <group> b)
[,cols]=size(a.data)

y = null;
temp = null;
for i = 1l:cols
loc = find(a.data(i) == b.data)

if(loc <> null)
temp = [temp,a.data(i)];

endif

endfor

if (temp <> null)
y = group(temp) ;

endif

endoperator

operator y = + (<group> a, <group> b)
c = b - a;
vy = group([a.data,c.datal]);
endoperator

operator y = == (<group> a, <group> b)

vy =0

[,acols]=size(a.data)

[,bcols]=size(b.data)

if(acols <> bcols)
return

endif

res = a.data==b.data

if(check(res, {nonzero, !report}))
vy =1

endif

Xmath User Guide 7-14

ni.com

Chapter 7 MathScript Objects

endoperator

Operator Object (i) = vy
[r,cl=size(y);
if (r <> 1 & ¢ <> 1)
error ("Invalid insertion data","F",vy);
endif
data(i) = vy;
endOperator

Operator [y] = Object (i)
v = data(i);
endOperator

Limitations

* Member entities and operators cannot have their own online Help.

* You cannot explicitly define or debug a member function, command,
or operator, only the object initializer. Consequently, if you alter the
definition of a member entity, you must UNDEFINE it before the new
definition can be used.

* A MathScript object cannot be passed into an LNX, but the class
variables from a given instance can be passed into an LNX as other
variables are.

* You cannot assign or access a variable using an expression that
contains more than one dot. This implies that if an object instance
contains another MSO as a class variable, you cannot directly access
the class variables of the nested object. For example, the following
syntax is not allowed:

x = objl.obj2.var;

This limitation can be circumvented if you use a temporary variable:

temp = objl.obj2;
X = temp.var

© National Instruments Corporation 7-15 Xmath User Guide

External Program Interface

Overview

This chapter describes the three Xmath interfaces for user programs written
in C, C++, or FORTRAN:

e The User-Callable Interface (UCI) mechanism allows a user program
to call Xmath as a server.

e The LNX (LiNked eXecutable) mechanism allows a subroutine in a
user program to be callable by Xmath as if it were a regular MathScript
function.

* Any C or C++ program can call the functions XmathSave () and
XmathLoad () to save and load Xmath data files.

A user program using the LNX or UCI mechanism is termed an LNX or
UCI program, or simply an LNX or UCI. Table 8-1 summarizes the
differences between an LNX and a UCL

Table 8-1. LNX and UCI Comparison

Feature

Comparison

Purpose

A UCI starts Xmath; an LNX is started by Xmath.

Data Structure

Both use the same data structure, the externType.

Functions

UCI: Must use XmathStart () and XmathStop (); must not use
XmathMain().

LNX: Must use XmathMain (); must not use XmathStart () or
XmathStop().

Build

Both must include a C header file called xmathlib.h and link with a library
called 1ibxmath.a (for UNIX) and xmath.1ib (for Windows).

Running

UCT: Start Xmath with -call (aswitch that triggers the UCI), the program
that is calling Xmath, and any other desired startup options..

LNX: An LNX can be called just like any other MathScript function.

© National Instruments Corporation 8-1 Xmath User Guide

Chapter 8 External Program Interface

LNX

Xmath User Guide

Xmath also provides two functions, XmathSave () and XmathLoad (),
which allow an external program to save and load Xmath data.

The Xmath directory $XMATH/src contains code examples for the LNX
and UCI utilities, as well as a sample makefile. $XMATH/include has
include files for LNX and UCI scripts.

The LNX utility allows you to invoke C, C++, or FORTRAN subroutines
from within Xmath. After an LNX is built, it can be used in the same
manner as any MathScript function. Furthermore, an LNX can be invoked
in background mode so that it can run in parallel with Xmath.

Sample LNX Program

An LNX written in C program has the layout shown in Figure 8-1. Each
LNX program contains one LNX function. The LNX function performs a
specified calculation and has the following format:

void LNXfunc(nlhs, lhs, nrhs, rhs)
int nlhs, nrhs;
externType **lhs, **rhs;

{

8-2 ni.com

Chapter 8 External Program Interface

Required header file P> $include "xmathlib.h"

externType is a data structure defined in .

xmathlib.h. The variables nlhs and nrhs specify void INXfunc(nlhs, lhs,nrhs, rhs)
the number of left-hand side and right-hand side int nlhs, nrhs;

arguments (inputs and outputs). Each elementin | externType **lhs, **rhs;
the |hs array holds an output variable pointer;

each element in the rhs array holds an input {
variable pointer. /* test for errors in input data */

if (condition){ /*input data errors*/
XmathError (ERROR_FATAL, "error msg",1);

return; *
Severity is defined in xmathlib.h }
Error message 7+ code */

. }
Argument number in error
Table of function data P static functionData fdata[]={
LNX function pointer E— {"myLNX" ,LNXfunc, 4—,
Minimum # of inputs, » 1,3,1,3,
maximum # of inputs,
minimum # of outputs, "myLNX takes the first input ..."},
maximum # of outputs
{0}

Help text Y
Main program main(argc, argv)

int argc;

char** argv;
{

Main program must call XmathMain —> XmathMain(argc, argv,fdata,0);

Return 0 is mandatory P return 0;
}

Residency flag (0 or 1)

Figure 8-1. Typical C Language LNX Program Format

The input arguments reside in an array of externType pointers to which
the variable rhs (right-hand side) points. The integer nrhs (number of
right-hand side arguments) defines how many externType pointers are in
the array.

An LNX function writes its outputs to 1hs, which is an array of nlhs
pointers allocated by Xmath. For example, if n1hs=3 (indicating that your

© National Instruments Corporation 8-3 Xmath User Guide

Chapter 8 External Program Interface

LNX was called with three outputs), you might allocate a matrix for the first
input, a PDM for the second, and a string for the third:

Ihs

Ihs[0]

lhs[1] Ihs[2]

ENENEN

| Matrix | PDM | String |

UCI Programs

The User Callable Interface (UCI) lets an external C program invoke

Xmath as a child process, send and receive data to and from Xmath as
shown in Figure 8-2, and execute MathScript statements. A UCI has the
layout shown in Figure 8-3.

P

MathScript Value

Xmath Process

extern Type

Inputs

>

LNX Process

Outputs

Figure 8-2. Calling Xmath from an External Program (UCI)

Required header file —¥»

Main program —

#include

"xmathlib.h"

main (argc, argv)
int argc;
char** argv;

{

XmathStart("") ;

/* Starts Xmath */
/* Calls to XmathGet, XmathPut,
XmathExecute, etc....*/
XmathStop (""); /* Stops Xmath */

retum O0;

Xmath User Guide

Figure 8-3. Typical C Language UCI Program Format

84

ni.com

Chapter 8 External Program Interface

Compatibility

If an existing LNX or UCI compiled for an older version of MATRIXX is
intended to be run in a new version of MATRIXX, we recommend that you
rebuild the LNX or UCI using the new version of MATRIXx to maintain
currency with the new compiler, DLLs, and OS supported by the new
version of MATRIXx.

Sometimes the IPC protocol in the Xmath LNX or UCI library changes due
to bug fixes and enhancements. An existing LNX or UCI must be rebuilt
using the new version of the MATRIXx LNX or UCI library
(libXmath.a/xmath.1ib). If you attempt to run a previous version of an
LNX or UCI, Xmath displays the following message:

Process failed to load (incompatible ipc version).

externType Data Types

The file $XMATH/include/xmathlib.h contains the data structures for
externType data types and related function declarations. This file must be
included in all LNX and UCI programs and programs that call
xXmathSave () (refer to the XmathSave() section) and XmathLoad ()
(refer to the XmathLoad() section).

An externType is an external version of an Xmath data value such as
matrix, string, and PDM. These are detailed in the following subsections.

If you allocate memory for the externType data type with an
Allocate* () function, you need to remember to deallocate the memory
with the corresponding Delete* () function, especially before re-using
the variable. The function tables in this section provide the names of these
functions for each data type.

Matrix Data Type

The externType et_matrix corresponds to a MathScript scalar matrix
value.

typedef struct {
externType et;
int rows, columns, isReal;
double *real, *imag;

} et_matrix;

The Boolean member isReal indicates whether the matrix is complex
(isReal = 0)orreal (isReal = 1).

© National Instruments Corporation 8-5 Xmath User Guide

Chapter 8 External Program Interface

Table 8-2 lists the functions provided in the LNX functions used to allocate
a new matrix, convert arrays to the matrix structure, and delete existing
matrices.

Table 8-2. et_matrix Functions

Function Description and Prototype

AllocateMatrix() Allocates a matrix:

et_matrix* AllocateMatrix(int rows, int columns, int
isReal) ;

WrapMatrix() Converts single or double arrays into a real or complex matrix.

et_matrix* WrapMatrix(int rows, int columns double*
real,double* imag) ;

Both input arrays must be previously allocated and of type double.
If the matrix is real, use the NULL pointer O as the imag argument.

This function does not copy the input data; therefore, do not delete
the original arrays after calling WrapMatrix().

DeleteMatrix() Deallocates storage associated with the et_matrix input argument.

void DeleteMatrix, (et_matrix* the_matrix)

String Data Type
The externType et_string corresponds to the MathScript string value.

typedef struct {
externType et;
int len, rows, columns;
char *buf;
char **array;

} et_string;

* array is an array of char* with dimensions defined by rows and
columns.

* buf points to the string in the first row, first column of array. The
integer len defines the length of this string. 1en does not have any
significance for any of the other strings in array.

For a summary of the et_string type functions, refer to 8-3.

Xmath User Guide 8-6 ni.com

Chapter 8 External Program Interface

Table 8-3. et_string Type Functions

Function Description and Prototype

AllocateStringMatrix() | Creates an et_string structure that can hold strings up to

length 1en.

et_string* AllocateStringMatrix(int rows, int
columns, int len))

The length of the string does not include the termination
character.

WrapString() Converts a previously defined string to the et_string data type:

et_string* WrapString(char *buffer);

WrapStringMatrix() Converts a previously allocated array of strings to a string matrix

object (LNX string data type).

et_string* WrapStringMatrix(int rows, int
columns, char** buffer))

Wrapping functions WrapStringMatrix() and
WrapString() do not perform any copying of strings;
therefore, do not delete the original input strings after
calling a wrap function.

DeleteString() Deallocates storage associated with the structure et_string.

void DeleteString, (et_string* the_string)

PDM Data Type

The PDM data structure et_pdm is defined as shown in the following
examples:

typedef struct {
externType et;

et_matrix *iv;
et_string *name;
et_string *columnNames;
et_string *rowNames ;
et_matrix *theData;

int rows, columns;
} et_pdm;

The meaning of each member is described in the following PDM:

testpdm=pdm ([1:3; 4:6; 7:9; 10:12],101:1:104, {rowNames = "leaves",

columnNames =["birch", "elm", "oak"], domainName = "time"}):

© National Instruments Corporation 8-7 Xmath User Guide

Chapter 8 External Program Interface

Xmath User Guide

Figure 8-4 shows the PDM testpdm and the et_pdm struct mapped to its

parts.

+
\
+
| leaves
+
\
+

birch elm oak [

\
e
\

1 2 3
7777777777 i s 6
"""""" 7 8 9
777777777 10 11 12
____________________ S

externType
—— et_matrix
et_string
et_string
et_string
et_matrix
int rows,
} et_pdm;

typedef strugt {

et;

*iv;

*name ;
*columnNames ;

*rowNames ;
*theData;
colums;

Figure 8-4. Mapping the et_pdm Structure to a PDM

Figure 8-5 shows how the information from testpdm is assigned to
the fields of the et_pdm structure. Use AllocateMatrix() and
AllocateStringMatrix() to build the PDM components, and

WrapPDM () to form the PDM. For a summary of these functions, refer

to Table 8-4.

8-8

ni.com

Chapter 8 External Program Interface

et_pdm—et = etpdm

et_pdm—iv real = 101, 102, 103, 104
N =1
(et_matrix struct) rows

columns = 4
e t_pdm—name array = time
(et_string struct) len = 4
—® array = ["birch","elm", "oak"]
et_pdm—columnNames | rows = 1
(et_string struct) —® columns = 3
“—® len = 5 (length of birch)
—® array = leaves
et_pdm—rowNames _ ¥ rows = 1
(et_string struct) —® columns = 3
—®» len = 5
— rows = 4
1 =
et_pdm—theData —> ?O umns_ 3
(et i v) —1» isReal = 1
et_matrix struc L B real = 1:12
% imag = NULL

et_pdm—rows = 1
et_pdm—columns = 3

Figure 8-5. et_pdm Data Structure

Table 8-4. et_pdm Functions

Function Description and Prototype
WrapPDM() et_pdm* WrapPDM(et_matrix *iv,
et_matrix *theData,
int rows,

int columns,

et_string *name,
et_string* columnNames,
et_string* rowNames)

Inputs must be previously defined using AllocateMatrix() and
AllocateStringMatrix(). Like the other wrapping functions,
no copying is done, so do not delete the input after the call.

DeletePDM() Deallocates storage associated with the et_pdm input argument.

void DeletePDM(et_pdm* the_pdm)

© National Instruments Corporation 8-9 Xmath User Guide

Chapter 8 External Program Interface

List Data Type
The externType et_1ist corresponds to a MathScript list object.

typedef struct {
externType et;
int nElem; /* The number of elements in the list */
externType** item; /* an array of pointers to the list elements */
} et_list;

For a summary of et_1ist functions, refer to Table 8-5.

Table 8-5. et_list Functions

Function Description and Prototype

AllocateList (Allocates a list:

) . . .
et_list* AllocateList(int N)

DeleteList() Deallocates storage.

void DeletelList (et_list* N)

Null Data Type

The NULL data type corresponds to the Xmath NULL value ([]).

Table 8-6. et_null Functions

Function Description and Prototype

AllocateNull (Allocates a null:

) et_null* AllocateNull()

DeleteNull () Deallocates storage.

void DeleteNull (et_null* N)

DeleteAny() (Generic deallocation) Deallocates any
externType you allocate.

void DeleteAny (externType*)

Xmath User Guide 8-10

ni.com

Chapter 8 External Program Interface

LNX and UCI Functions

The functions available for use in LNX and UCI programs (described in
Building and Calling LNX and UCI section) are described in the following
sections. A summary of these functions appears in Table 8-7.

Table 8-7. LNX Functions

Function Description

XmathMain () Sets up the communication facility and transmits information about the

(for LNX only) LNX back to Xmath; it then transfers control to your LNX function.
Upon completion, the results are transmitted back to Xmath.

XmathCommand (Executes Xmath commands and provides access to command and error
output.

XmathDisplay (Displays a message to the Xmath log window.

XmathError () Allows you to report errors and make log entries. Severity levels are
described in the file $XMATH/include/xmathlib.h. The argument
in error will be highlighted in the Command Window command area.

XmathExecute (Executes Xmath commands. Xmath windows (except for the
commands window and the debugger) are created as needed.
XmathExecute () returns O if successful and an error string
otherwise.

XmathGet () Retrieves the value of a variable from Xmath. XmathGet () returns 0
if successful and an error string otherwise.

XmathLoad () Creates externType values from an Xmath data file.

(for any C or C++

program)

XmathPut () Copies the contents of a data structure to the Xmath environment.

XmathSave () Saves externType values to an Xmath data file.

(for any C or C++

program)

XmathStart () Starts Xmath. option is a char* that is reserved for future Xmath

(for UCI only) invocation options. The option must be an empty string ('''') for this
version.

XmathStop () Terminates the Xmath process immediately. Modified variables will not

(for UCI only) be saved.

© National Instruments Corporation

8-11 Xmath User Guide

Chapter 8 External Program Interface

XmathMain() (for LNX only)

Xmath User Guide

XmathMain () sets up the communication facility and transmits
information about the LNX back to Xmath; it then transfers control to your
LNX function. Upon completion of the LNX function, the results are
transmitted back to Xmath. For an example, refer to Figure 8-1.

int XmathMain(int argc, char **argv, functionData*
fData, int flag);

The £lag argument to XmathMain specifies whether the process remains
resident. If this argument has the value LNX_RESIDENT, the process is
resident. It remains in memory across invocation until Xmath is exited or
the LNX is undefined by issuing the UNDEFINE command in Xmath. If the
flag argument to XmathMain () is 0, the process is nonresident. It is
terminated after each invocation and a new process started.

If an LNX function is called often, then it is advisable to make the process
resident. If the user function allocates a large amount of memory and is
called infrequently, then it is more memory efficient to make the LNX
nonresident.

The functionData data structure is typically used as follows:

static functionData fdatal[] ={
{"userFun",userFun,minIn, maxIn,minOut,maxOut,help},

{0}

Figure 8-1 shows functionData in relation to the rest of an LNX.

e fdataisthe name of an array that holds the function data. Although it
is an array, Xmath currently uses only the first element.

. "userFun" is the name of this LNX; the lowercase version of this
name must match the filename of the executable LNX program.

* userFun is the pointer to the function itself.

* minIn, maxIn are the minimum and maximum number of input
arguments, respectively. For example, if userFun must be called with
no less than two, and no more than four inputs, minIn is 2, and maxIn
is 4.

* minOut, maxOut are the minimum and maximum number of output
arguments, respectively.

Every time userFun is called, Xmath automatically verifies that the
number of input and output arguments is in the valid range.

* The optional Help text entry is a char* pointer; 0 can be used if there
is no Help. The Help text can span multiple lines (as shown in

8-12 ni.com

Chapter 8 External Program Interface

Example 8-1). For an additional example on formatting Help, see
SXMATH/src/fasthilb.c.

@ Note You can provide a Help file for your LNX just as you can for MSFs, MSCs, and
MSOs in the same directory as your LNX. If Xmath finds no Help file, it uses the optional
Help text within the LNX itself. Refer to the Creating Online Help for User-Defined MSF's
and MSCs section of Chapter 6, MathScript Programming for details.

* The mandatory array terminator {0} comes last.

Example 8-1 Sample Help Text
/* Define the online Help */

#define Help "\

Description: Produces an n x n matrix\n\
with each element multiplied by -1.\n\
\n\

Syntax: C = negate(A)\n\

\n\

Inputs: A is a matrix or PDM.\n\
\n\

Outputs: C is a matrix or PDM.\n\
\n\

Examples: a = 1:10; negate(a)?\n\

\n\"

XmathCommand()

XmathCommand () is an enhanced version of XmathExecute ()
providing access to command and error output. The syntax is as follows:

char **XmathCommand (char *command, int options) ;

The return value of XmathCommand () is a static array of two pointers of
type char*. The first pointer points to command output, or O if none or not

© National Instruments Corporation 8-13 Xmath User Guide

Chapter 8 External Program Interface

requested. The second pointer points to an error message caused by the
command, or 0 if none or not requested. This can be illustrated as follows:

char**out
out[0] out[1]

v v
Command Error
Output | Message

The options parameter is a bit mask defined with the following macros:
XMCMD_OUT Returns command output.
XMCMD_ERR Returns command errors.

Both of these macros are used in the following example:

char *xmcmd = "foo(bar)?";
char **out = XmathCommand(xmcmd,XMCMD_OUT|XMCMD_ERR);
if (outf01) {
printf ("The output of \"%s\" is %s\n",xmcmd,out[0]);
free(out[0]);
}

else

printf ("\"%s\" has no output\n",xmcmd) ;
if (outll]) {

printf ("\"%s\" resulted in the error:
%s\n",xmcmd,out[1]) ;

free(out[1l]);
}
else

printf ("\"%s\" has no errors\n",xmcmd) ;

@ Note The error message string returned by XmathCommand () is memory allocated with
the C library function malloc () . To free this string, use the C library function

free().

Xmath User Guide

8-14 ni.com

XmathDisplay()

XmathError()

Chapter 8 External Program Interface

XmathDisplay () displays a message to the Xmath Log window. The
syntax is as follows:

void XmathDisplay (char *message) ;

An example of using this function follows:

XmathDisplay ("Have a nice day.");

This output appears in the Xmath Log window.

XmathError () allows you to report fatal and warning errors as well as
log entries. The syntax is as follows:

void XmathError (errorType error, char* message, int
argNum)

Severity levels are described in the file $XMATH/include/xmathlib.h.
You can specify ERROR_FATAL, ERROR_WARNING or ERROR_LOG. You
must also specify the input argument number that is in error (a scalar
between 1 and the number of right-hand side arguments), or specify O to
indicate the function itself. The argument in error will be highlighted in the
Command Window command area.

The following code fragment uses XmathError () to check whether the
first input is a matrix.

if (*rhs[0]!= ETMATRIX) {

XmathError (ERROR_FATAL, "Input must be a matrix!",
1);

return;
}

This code fragment checks if the matrix is real:
x=(et_matrix*)rhs([0]
if (!x->isReal) {

XmathError (ERROR_WARNING, "Matrix is not real!", 1);

In the previous example, we cast the first input into x, an et_matrix
pointer, then check to see if it is real.

© National Instruments Corporation 8-15 Xmath User Guide

Chapter 8 External Program Interface

XmathExecute()

XmathExecute () executes Xmath commands. Xmath windows (except
for the commands window and the debugger) will be opened as needed.
XmathExecute () returns O if successful and an error string otherwise.

char *XmathExecute (char *cmd)

For example, this call opens the Graphics window:

XmathExecute ("plot (random(2,3))?");

This call opens the Help window:
XmathExecute ("help bode; ") ;

@ Note The command string must end with a question mark (?) or semicolon (;).
For an example of how to use XmathExecute (), refer to Example 8-2.
@ Note The error message string returned by XxmathExecute () is memory allocated with
the C library functionmalloc (). To free this string, use the C library function free().

XmathGet() and XmathPut()

Xmath User Guide

XmathGet () and XmathPut () retrieve and modify Xmath variable
values.

XmathGet()

XmathGet () retrieves the value of an Xmath variable. It sets the second
argument to externType*. XmathGet () returns O if successful and an
error string otherwise. The syntax is as follows:

char *XmathGet (char* name, externType** data)

For example:

er_string = XmathGet("data", (externType**)&data);
if (er_string != NULL)
printf ("ERROR: %s", er_string);
switch(*data) {
case ETMATRIX:
M = (et_matrix*)data;
break;

case ETSTRING:
S=(et_string*)data;
break;

8-16 ni.com

Chapter 8 External Program Interface

case ETPDM:
P=(et_pdm*)data;
break;

Notice how the externType pointer is dereferenced to determine the
actual data type.

XmathGet () allocates storage for Xmath variables. If you re-use the
variable, be sure to deallocate the storage prior to an XmathGet call. For an
example of how to use XmathGet (), refer to Example 8-2.

@ Note The error message string (er_string) returned by XmathGet () is memory
allocated with the C library function malloc() . To free this string, use the C library
function free().

XmathPut()

XmathPut () creates or modifies an Xmath variable with a given data
value. The first argument (name) must be a valid Xmath variable name. The
second argument (data) is a pointer to one of the external types described
in the externType Data Types section on. XmathPut () returns O if
successful and an error string otherwise. The syntax is as follows:

char *XmathPut (char *name, externType* data)

For example:

/* allocate a real-valued Matrix struct */
x = AllocateMatrix(n, 1, 1);

/* f£ill up some local data */
ptx = x->real;
pty = y->real;
for (1 = 0; 1 < n; i++) {
*ptx = (double)i;
*pty++ = sin(*ptx);
*pty++ = cos (*ptx++);
}
/* send local x over to Xmath as variable x */
er_string = XmathPut("x", x);

if (er_string != NULL) {
printf ("ERROR: %s", er_string);

© National Instruments Corporation 8-17 Xmath User Guide

Chapter 8 External Program Interface

free(er_string) ;

}

For an example of how to use XmathPut (), refer to Example 8-2.

@ Note The error message string (er_string) returned by XmathPut () is memory
allocated with the C library function malloc (). To free this string, use the C library
function free().

Example Using XmathGet(), XmathPut(), and XmathExecute()

Example 8-2 combines the use of the last three functions discussed.

Example 8-2 Using XmathGet(), XmathPut(), and XmathExecute()

n = 10;
vy = AllocateMatrix(n, 2, 1);
/* £ill up some local data */
pty = y->real;
for (i = 0; 1 < n; i++)

*pty = (double)i;

/* copy data over to Xmath*/
er_string = XmathPut("y", v);
if (er_string != NULL) {
printf ("ERROR: %s", er_string);
free(er_string) ;

}

/* execute the function */
er_string = XmathExecute("y = log(abs(y));");
if (er_string != NULL) {
printf ("ERROR: %s", er_string);
free(er_string) ;

}

/* Free up existing memory associated with y
before executing XmathGet () */
DeleteMatrix(y) ;
er_string = XmathGet("y", (externType**)&y);
if (er_string != NULL) {
printf ("ERROR: %s", er_string);
free(er_string) ;

}

Xmath User Guide 8-18 ni.com

Chapter 8 External Program Interface

XmathSave() and XmathLoad()

XmathSave () and XmathLoad () make it possible for a C or C++
program to save and load files in Xmath format without starting Xmath.
Both functions make use of the externvar data structure:

typedef struct {
char *name;
externType *value;
} externVar;

The variable name points to the full name of the Xmath variable, which
consists of the partition name and the variable name (for example,
main.var). value is the standard LNX data structure pointer.

XmathSave () and XmathLoad() both work with an array of pointers
to externvars, one for each Xmath variable. The name field of the last
element of such an array must be a NULL pointer.

XmathSave()

XmathSave () has the following prototype:
char *XmathSave (char *filename, externVar *data, int
type)
where
filename is the name of the file to be saved
data is an array of externvar defined previously
type parameter is an integer that lets you select ASCII (value 0) or

binary format (value 1)

XmathSave returns a NULL pointer for success. If this function fails, it
returns a string that describes the error.

XmathLoad()

XmathLoad () has the following prototype:

char *XmathLoad (char *filename, externVar **data)

where
filename is the name of the file to load

data is an array of externvar defined previously

© National Instruments Corporation 8-19 Xmath User Guide

Chapter 8 External Program

Example 8-3 XmathSave

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

Interface

XmathLoad () loads the specified file and constructs an array of
externVars, one for each variable loaded, and stores the address of the
array into data.

XmathLoad () returns the NULL pointer for success. If this function fails,
it returns a string that describes the error.

Standard Library Linkage

XmathSave () and XmathLoad() are declared in the LNX header file
and defined in the LNX library. Therefore, a C or C++ program that calls
XmathSave () and XmathLoad() should be built and invoked as an
LNX or UCI.

For an alternative method of library linkage on UNIX only, refer to the
Advanced Features and Notes section.

Example of XmathSave and XmathLoad

The following example illustrates how to use XmathSave () and
XmathLoad().

() and XmathLoad()

#include "xmathlib.h"

#define N 10
#define NAME "main.ml"
#define FILE_NAME "call5.xmd"

int main(void)
{
int k;

char name[] = NAME;

char * status;
et_matrix * matrix

1;

externVar * my_data, * my_data_1;

/*== Allocate mem. for 2 data struct. type "externvVar" ==*/
my_data = (externVar *)malloc (sizeof (externVar) *2);
== Backup the pointer ==

my_data_1l = my_data;

MUST set field "name" of LAST (#2) structure to NULL

Xmath User Guide

8-20 ni.com

Chapter 8 External Program Interface

—===%/
(my_data + 1)->name = NULL;
/*== Allocate mem. for field "name" of struct. "my data" ==*/
my_data->name = (char *)malloc (sizeof(char) * (strlen(name)+1));
/*== Copy str. NAME to field "name" of struct. "my_ data" ==%*/
strcpy (my_data->name, name) ;
/*== Allocate mem. for "et_matrix" data struct. ==*/
matrixl = AllocateMatrix (N, 1, 0);
/*== Fill in some data ==*/
for (k = 0; k < N; k++) {

(matrixl->real) [k] = k;

(matrixl->imag) [k] = k+1;
}
/*== Fill in field "value" after cast to "externType" ==*/
my_data->value = (externType *)matrixl;

== Save matrixl (Xmath format) in file = FILE_NAME ==
if (status = XmathSave (FILE_NAME, my_data)) {

printf ("status = %s\n", status);
return 1;
}
*== Free each field of every struct. type "externvar"
Do it in for loop until field "name" = NULL ==%*/

for (my_data = my_data_1l; my_ data->name; my_data++) {
free (my_data->name) ;
/*== Free mem. from AllocateMatrix() above ==*/
DeleteAny (my_data->value) ;

/*== Free array of "externvVar" ==%*/
free (my_data_1);

return 0;

}

XmathStart() and XmathStop()

The file $XMATH/include/xmathlib.h defines the xmathStart ()

and XmathStop (), which allow your program to communicate with
Xmath. Each of the following routine description is followed by a
prototype.

© National Instruments Corporation 8-21 Xmath User Guide

Chapter 8 External Program Interface

XmathStart()

XmathStart () starts Xmath. option is a char* that is reserved for

future use. Currently, the option must be an empty string (" "). This
function returns the Xmath process ID (pid) if successful and O if

unsuccessful.

int XmathStart (char *option)

XmathStop()

XmathStop () terminates the Xmath process immediately. Modified
variables will not be saved. This function returns O if successful and 1 if

unsuccessful.

int XmathStop/()

Sample LNX Demonstrating Most Functions (myfun)

myfun () has one input and one output. The syntax to invoke my fun ()

is the same as for any other MathScript function:

y = myfun (x)

Example 8-4 provides sample code for most of the external program

interface functions.
@ Note (UNIX) The filename for an LNX must be in lowercase letters.

Example 8-4 myfun.c

#include "xmathlib.h"

void myfun(int nlhs, externType **1lhs, int nrhs,externType **rhs)

{

et_matrix *x,*y;

/* This function is written to indicate how you would use your

*/

/* own C code to perform operations on Xmath data objects, and is*/

/* thus quite general. In this example, we manipulate the real
/* and imaginary components of the data separately. Note that
/* these elements are DOUBLES. The next line defines storage
/* variables for the real and imaginary components of the

/* output data matrix.

double *val, *ival;
int i; /* a counter variable

/* Do some error checking.

Xmath User Guide 8-22

*/
*/
*/
*/
*/

*/
*/

ni.com

Chapter 8 External Program Interface

if (*rhs[0] != ETMATRIX) {
XmathError (ERROR_FATAL, "Input must be a matrix!",1);
return;
}
x=(et_matrix*)rhs[0];
if (x->columns !=1) {
XmathError (ERROR_FATAL, "Can only work on column vectors!",1);
return;
}

if (x->isReal) {
XmathError (ERROR_WARNING, "Need complex input!",1);
x->imag= (double*)calloc (x->rows, sizeof (double)) ;
x->1sReal =0;

}
/* Pre-allocate the output vy as a matrix having the same size */
/* as input x. */
y=AllocateMatrix (x->rows, 1, x->isReal);
/* The following five lines assign the real and imaginary data */

/* to the variables val and ival respectively. Then 2 is added */
/* to each of the real components and 3 to each of the imaginary */

/* components. Instead of using the dummy example here, you */
/* replace these lines with a call to a more sophisticated */
/* function of your own. */

val = y->real; ival = y->imag;

for (i = 0; 1 < x->rows; i++) {

val[i] = 2.0+x->realli];

ival[i] = 3.0+x->imagl[i];

}
/* Return y as the first--and in this case, only--output of */
/* the left side of the function call. */

lhs[0]=(externType*)y;
}
static char help[]={"This is the Help text.\n No Help yet."};
static functionData fdatal]l={
{"myfun",myfun,1,1,1,1,help},
{0,0,0,0,0,0}
}s

main (argc, argv)
int argc;
char** argv;

{

© National Instruments Corporation 8-23 Xmath User Guide

Chapter 8 External Program Interface

XmathMain (argc, argv, fdata, 0) ;
/* This must always return O. */
return O;

Building and Calling LNX and UCI

In this section, we use the sample LNX file myfun. c (Example 8-4) to
illustrate how to build an LNX. A UCI is built exactly the same as an LNX.

Building on a UNIX System
To build a makefile and call an LNX on a UNIX system:

1. Copy the sample program myfun. c from $XMATH/src to your
working directory as follows:

copyfile "$XMATH/src/myfun.c"

2. $XMATH/src/Makefile is the makefile used to build an LNX or
UCI. Copy the makefile template to your working directory:

copyfile "$XMATH/src/Makefile"

3. Edit the template to put myfun. c on the NAME line and myfun.o on
the USEROBJECTS line. In addition, specify the appropriate compiler
command (for example, acc) on the LINK line and appropriate
compiler libraries (for example, $ (CLIBS)) on the LIBS line.

@ Note You can skip this step and use the expanded form of the make command in the
following step.

4. Enter the make command from the Xmath command area:
oscmd ("make™")
or

oscmd ("make NAME=myfun USEROBJECTS=myfun.o
LIBS='-LS$ (XMATH) /1ib -1Xmath' LINK=acc")

@ Note Use the simple form only if you edited the makefile.
5. After the make has run successfully, you can call myfun() asa

regular Xmath function:

myfun(l + jay)

Xmath User Guide 8-24 ni.com

Chapter 8 External Program Interface

Sample makefile (UNIX)

Example 8-5 provides a sample makefile for an LNX or UCI. This example
includes several lines that are user-editable, such as the NAME and DEFS
lines. Comments in the example explain the required user inputs. In this
sample, my fun. c is the name of the sample LNX. The required user-input
fields appear in bold type, but these are normally blank and require your
modification.

Example 8-5 Sample makefile for Solaris Platform

NAME

USEROBJECTS

LIBS

LINK

USERLIBS

DEFS

UCFLAG

UCCFLAG

UFFLAG

ULDFLAG

INCLUDE

ccC

CCC
FC

HH o o o o o o o H o o H o o H H H FH FH H H H H H H FHE OH*

NAME
USEROBJECTS
USERLIBS
DEFS

UCFLAG

Basic MAKEFILE for creating callable interface/lnx executable

Following fields must be set (Makefile or command line)

Prefix name of program that uses the callable
interface or of the 1lnx file you wish to create
List of .o files you wish to link with

Name of compiler-specific libraries (suggested
Solaris SC4.0 libraries pre-defined in CLIBS, CCLIBS,
and FLIBS

Name of compiler or link editor

Following fields are user-settable

List of library search paths and/or libraries
(e.g. library, -Lpath, and/or -llibname)

C or C++ pre-processor define directive

(e.g. -DXTFUNCPROTO)
User CFLAGS, i.e. options the user wants sent to
C compiler (e.g. -9)
User CCFLAGS, i.e. options the user wants sent to
C++ compiler (e.g. -9g)
User FFLAGS, i.e. options the user wants sent to
FORTRAN 77 compiler (e.g. -g)
User LDFLAGS, i.e. options the user wants sent to
linker (e.g. -v)

List of directories that are searched for
#include files
Name of C compiler
Name of C++ compiler
Name of FORTRAN compiler

myfun
myfun.o

-DSOLARIS

© National Instruments Corporation 8-25 Xmath User Guide

Chapter 8 External Program Interface

UCCFLAG =
UFFLAG =
ULDFLAG =
INCLUDE = -I. -IS(XMATH)/include
CLIBS = -L$(XMATH)/lib -1Xmath
CCLIBS = -L$(XMATH) /1lib -1Xmath_ cxx

F77 and M77 are Solaris Fortran SC2.0 runtime

FLIBS = -L$(XMATH)/lib -1Xmath_cxx -1F77
F77, M77, and sunmath are Solaris Fortran SC3.
libraries
FLIBS = -L$(XMATH)/lib -1Xmath_cxx -1F77
LIBS = $(CLIBS)
CC = acc
CCC = CC
FC = £77 -temp=$ (HOME)
LINK = $(CC)
CFLAGS = $(DEFS) $(UCFLAG) $(INCLUDE)
CCFLAGS = S$(DEFS) $(UCCFLAG) $(INCLUDE)
FFLAGS = $(UFFLAG) $ (INCLUDE)
LDFLAGS = $ (ULDFLAG)
.SUFFIXES : .o .c .cxx .C .f .F
.Cc.o:
$(CC) S$(CFLAGS) -c $< -o s@
.CXX.0:
$(CCC) S (CCFLAGS) -c $< -0 S$@
.C.o
$(CCC) S$(CCFLAGS) -c $< -0 S$@
.f.o
$(FC) S$(FFLAGS) -c $< -o s@
.F.o
$(FC) S$(FFLAGS) -c $< -o s@
$ (NAME) : $ (USEROBJECTS)
$(LINK) ¢ (LDFLAGS) -o $@.1lnx $(USEROBJECTS)
S$@echo " Done."

Xmath User Guide 8-26

libraries
-1M77

0 and SC4.0 runtime

-1M77

¢ (USERLIBS)

-lsunmath

$ (LIBS)

Chapter 8 External Program Interface

Building on a Windows System

Complete the following steps to build a makefile and call an LNX on a
Windows system in Xmath:

1. Copy the sample program myfun. c from $XMATH%\src to your
working directory as follows:

copyfile "$XMATH%\src\myfun.c"

2. Enter the following command from the Xmath command area:

oscmd ("makelnx myfun.c")

In general, to build LNXs and UCIs for Xmath use on a Windows system,
enter the makelnx command with the following syntax:

> makelnx -debug "filel file2 ..."

For the previous command, the default is to build “nodebug” objects unless
you specify the -debug option.

The previous command is a batch file that calls the makefile. Here is the
path to the batch file and makefile:

$XMATH% \bin\makelnx.bat
$XMATH% \bin\makelnx.mk

Typically, you will not need to edit or change these files to perform routine
build tasks. If you do need to customize your build procedures, you can
copy these files to your local project directory and edit them as required.

If you do not specify a source module filename or list of filenames in the
command area, the script by default will look in your local directory for a
specific argument file containing the list of filenames. These default
argument files require a filename extension of . arg and must have a name
that matches the name of the corresponding build command. For example,
makelnx.arg is used by makelnx.bat. In these argument files you
include a list of your files to compile and link.

The filenames can be separated by spaces or placed on separate lines and
any text on a line following ‘\ * (backslash space) will be treated as
comment text.

@ Note Filenames can be separated by spaces or placed on separate lines with a continuation
character ‘\” appended at the end of the previous one.

© National Instruments Corporation 8-27 Xmath User Guide

Chapter 8 External Program Interface

Undefining an LNX

All target filenames specified with the above “make” commands must have
a suitable file extension because this determines the choice of compiler for
each file. The default file extensions currently supported include:

C .c
C++ .cxx Or .cpp Or .cc
FORTRAN for or .f

Like most standard make facilities, the above “make” commands support
conditional compilation and linking of files depending on file creation time
and whether the necessary dependent files currently exist. This means that
recompiles will only be done for files where source is newer than the
corresponding object file. If you need to force recompilation of a source
module, delete the corresponding object file.

The make commands automatically create a log in your current working
directory. The log filename has an extension of . 1og (for example,
makexxx.log). Upon completion of the make, a copy of this file remains
in your local directory in case you need to review the contents of the make.

If you need to customize your builds, each of the make script source files
described above contains a commented section highlighting several
predefined macro strings that you can modify as needed to customize the
build process. Follow the instructions provided in the files.

If an existing resident LNX file is relinked while Xmath is running, use the
undefine command to terminate the current LNX process so that the new
LNX is used upon the next invocation.

Using the User-Callable Interface

Xmath User Guide

The User Callable Interface (UCI) program uses the function
XmathStart () to invoke Xmath. Any inputs that will be used in Xmath
are copied from the user program to Xmath objects using XxmathPut ().
Once all inputs are copied over to the Xmath process, any Xmath statement
can be executed using XmathExecute () or XmathCommand (). Any
data transferred to Xmath and altered can be retrieved using xmathGet ()
or saved to a file using xmathSave (). The Xmath process is terminated
using XmathStopv().

8-28 ni.com

Chapter 8 External Program Interface

Building and Calling a UCI

A UClI is created in the same way as an LNX. A UCI is invoked by
specifying the -call option to the command to start Xmath:

xmath -call myuci.ext

xmath -tty -call myuci.ext
where (UNIX) ext = 1nx and (Windows) ext = exe

Any required arguments to myuci can be supplied at the end of the
command line.

LNX Example

Example 8-6 provides an example of the LNX function negate (). The
negate () function works exactly like the minus (-) operator on matrix
and PDM inputs. The function returns an error if the input is a string.

Example 8-6 negate()

#include "xmathlib.h"
void negate(nlhs, lhs, nrhs, rhs)
int nlhs, nrhs;
/* lhs is a pointer to the return arguments */
/* rhs is a pointer to the input arguments */
externType **1lhs, **rhs;
{
int number_elem, 1i;
et_matrix *input;
et_pdm *in_pdm;
double *in_data;
switch(*rhs[0]) {
case ETMATRIX: {
input = (et_matrix *)rhs[0];
in_data = input->real;
number_elem = input->rows * input->columns;
for(i=0; i < number_elem;i++, in_data++)

*in data = -(*in_data);
1lhs[0] = (externType*)input;
break;

}

case ETPDM: {
in_pdm = (et_pdm *)rhs[0];
in_data = in_pdm->theData->real;
number_ele

© National Instruments Corporation 8-29 Xmath User Guide

Chapter 8 External Program Interface

UCI Examples

=in_pdm->theData->rows*in_pdm->theData->columns;

for(i=0; i < number_elem; i++,
*in _data = -(*in_data);
1lhs[0] = (externType*)in_pdm;
break;
}
default:

XmathError (ERROR_FATAL,
"Data Type not supported in this function",

/* Define the online Help */

#define Help "No Help yet"

/* Holds the function information:

static functionData fdatal]
{"negate", negate, 1, 1,
{0}

Y

main (argc, argv)

int argc;

char **argv;

{

int resident = 0;

1,

{

XmathMain (argc, argv, fdata,

return O;

1,

*/

help},

in_data++)

resident) ;

Example 8-7 is a UCI program that uses the Xmath 1og() function to
calculate the logarithm of an input. This file is found in
$XMATH/src/call.c. Example 8-8 is a UCI example that uses Xmath

graphics in an external C program.

Example 8-7 Xmath as a Computational Engine

Xmath User Guide

#include <math.h>
#include <stdio.h>
#include "xmathlib.h"
int doMyProgram /()

{

et_matrix *x, *y;

8-30

ni.com

Chapter 8 External Program Interface

double *ptx, *pty;
int n, 1i;
n = 10;

/* allocate two matrix structs */

x = AllocateMatrix(n, 1, 1);
y = AllocateMatrix(n, 2, 1);

/* £i1i1ll up some local data */

ptx = x->real;
pty = y->real;

for (i = 0; i < n; i++) {
*ptx = (double)i;
*pty++ = sin(*ptx);

*pty++ = cos (*ptx++);
}
/* send local x and y over to Xmath as variable y.
Check for errors*/

er_string = XmathPut("y", v);
if (er_string != NULL)
printf ("ERROR: %s", er_string);

/* execute an Xmath function */

er_string = XmathExecute("y = log(abs(y));");
if (er_string != NULL)
printf ("ERROR: %s", er_string);

/* Get y back. have to delete the current y since we
* get a new one from XmathGet.*/

DeleteMatrix(y) ;
er_string = XmathGet ("y", (externType**)&y);
if (er_string != NULL)

printf ("ERROR: %s", er_string);

/* Output the new y */
pty = y->real;

for (i = 0; 1 < n; i++)
fprintf (stdout, "%g %g\n", *pty++, *pty++);

© National Instruments Corporation 8-31 Xmath User Guide

Chapter 8 External Program Interface

}

int main(argc, argv)
unsigned argc;
char** argv;

{

XmathStart ("") ;
doMyProgram /() ;
XmathStop () ;

return O;

}

Example 8-8 Xmath as a Graphics Engine

#include "xmathlib.h"
#include <stdio.h>

/* Generate some test data */
double data[8] = {0.0, 1.0, 2.0, 3.0, 4.0,
int number_points = 8;

int DisplayVector (vector, columns)
double *vector;

int columns;

{
et_matrix *thedata;
int real = 1;
char *er_string;
/* Convert the data array to the data type et_matrix,

Xmath will recognize it*/

thedata = WrapMatrix(1l, columns, vector,

0);

3.0, 2.0, 1.0};

SO

/* Copy the data over to the Xmath child process */

XmathPut ("thedata",
(er_string != NULL)
printf ("ERROR:

er_string =
if
%s", er_string);
er_string =
if (er_string != NULL)

printf ("ERROR: er_string) ;

Q "
%s",

/* The plot is now drawn,

the window, adding text, changing colors,

Xmath User Guide 8-32

XmathExecute ("plot (thedata)?") ;

(externType*) thedata) ;

and the user can interact with
etc*/

ni.com

Chapter 8 External Program Interface

XmathExecute ("pause") ;
}
int main(argc, argv)
unsigned argc;
char** argv;

/* Start the Xmath process */
XmathStart ("") ;

/* Send data to be plotted */
DisplayVector (data, number_points) ;5
/* Stop the Xmath child process */
XmathStop () ;
return O;

Any plot can be saved to a PostScript or HPGL file using the hardcopy
command:

XmathExecute ("hardcopy file=\"mygraph\", {ps}");

The C escape character \ (backslash) is necessary for the embedded Xmath
string.

Calling an LNX in Background Mode

If an LNX performs a long calculation, you can invoke the LNX in
background mode so that you can continue to use Xmath for other tasks
while the LNX runs.

Another scenario where a background LNX is useful is where the LNX is
a GUI application. Refer to the Advanced Background LNX Function
(IPCWC) section for information on how to communicate with a

background LNX.

Example

To invoke the LNX myfun () in background mode, issue the following
command:

[output] = (define myfun, {background}) (1000);

The return value, output, will be “busy” during the background LNX’s
execution. In this example, 1000 is the input argument to myfun().

© National Instruments Corporation 8-33 Xmath User Guide

Chapter 8 External Program Interface

Given the above example, typing the command wWHO (which lists variables)
in the Xmath window shows that output is busy:

who

output -- busy (job #13103)

After the background define command for the LNX process has been
entered, the process will be spawned to run in background mode and the
user will have immediate control of the Xmath command area.

Upon completion of the background LNX process, notification of the
process termination status appears in the Xmath log area, after you press the
<Return> key.

[out]=(define myfun, {background}) (1000);
(job 13103) has terminated normally.

Example 8-9 is an example of an LNX program that can run in either
foreground or background mode.

Compile this sample LNX program using the steps described in the
Building on a UNIX System section. To see how to run the sample program
in background mode, refer to the Advanced Background LNX Function
(IPCWC) section.

Example 8-9 getpi (Runs in Foreground or Background)

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "xmathlib.h"

/* This sample lnx program calculates the value of pi based on the */
/* number of randomly-generated (x,y) points that fall within the */

/* upper right quarter of the unit circle. */
/* */
/* Test using an input value between 500000 and MAXRANDOM. x/

#define REALL
#define MAXRANDOM ((double) (exp (31 * log(2.0))-1)) /* (2**31) - 1 */

void getpi(nlhs, lhs, nrhs, rhs)
int nlhs, nrhs;

externType **lhs, **rhs;

{

externType *data;

Xmath User Guide 8-34 ni.com

Chapter 8 External Program Interface

et_matrix *arg;
et_matrix *out;

long steps;
double X, Y, ¥;
double p_i;
char buffer[255], *errstr;
int count; /* Number of random points inside unit circle */
if (nrhs !'= 1) {
/* User did not provide an integer argument. Go to Xmath's */
/* main partition and get the variable " step_number'. */
errstr = XmathGet ("main.step_number", &data);
if (errstr != NULL) {

sprintf (buffer, "Error getting main.step_number : %s",
errstr) ;
XmathError (ERROR_FATAL, buffer, 1);
free(errstr) ;

return;
}
if (*data != ETMATRIX) {
XmathError (ERROR_FATAL, "Usage: getpi number", 1);
return;
}
arg = (et_matrix*) data;
XmathExecute("main.pi = 0;"); /*create the result variable*/

} else {
/* User provided an integer argument to the lnx */

if (*rhs[0] != ETMATRIX) {
XmathError (ERROR_FATAL, "This LNX requires a number!", 1);
return;
}

arg = (et_matrix*) rhs[0];

}

srandom((int) time(0)); /* Start random number generator */

count = 0;

for (steps = 0; steps < (int) arg->real[0]; steps++) {

/* Get x and y coordinate values between 0 and 1 */
x = random() / MAXRANDOM;
random() / MAXRANDOM;

(

y:
r = sqrt((x * x) + (v *vy));
if (r <= 1.0)

count++;

© National Instruments Corporation 8-35 Xmath User Guide

Chapter 8 External Program Interface

}
p_i = 4.0 * count / steps;
fprintf (stderr, "%1d steps: p_i = %$f\n", steps, p_1i);

out = AllocateMatrix(l, 1, REAL);

nlhs = 1;
out->reall[0] = p_i;
1lhs[0] = (externType*) out;
if (nrhs != 1) {
XmathPut ("main.pi", (externType*) out);

DeleteAny (data) ;

functionData fdatal] =
{{"getpi", getpi, 0, 1, 0, 1, "Help text for getpi" }, {0} };

main(argc, argv)

int argc;

char **argv;

{
fprintf (stderr, "Starting ...\n");
XmathMain (argc, argv, fdata, 0);
fprintf (stderr, "Stopping ...\n");
return O;

Removing an LNX Job

When an LNX is invoked in background mode, Xmath echoes a job
number (which is really its process ID) to the log area. This job number can
be used as input to the REMOVE JOB command.

REMOVE JOB job_ number

The REMOVE JOB command uses the specified job number to terminate the
LNX.

Xmath User Guide 8-36 ni.com

Chapter 8 External Program Interface

Building an LNX to Link a FORTRAN Routine

Xmath provides two ways to create an LNX function based on FORTRAN
code. The preferred approach is to use C as described in the previous
sections and then transfer control to your FORTRAN subroutine from
within C. The second method is to use the special FORTRAN interface
to LNX described in this section. This approach is less complete due to
limitations in FORTRAN, and it is recommended only for users who do
not know C.

Calling FORTRAN from C LNX Files

There are three important points to remember when calling a FORTRAN
routine from C: name linkage, argument linkage, and array ordering.

1. (UNIX) In C, append an underscore (_) to the end of the name of the
FORTRAN routine you need to call. You will need to define the
FORTRAN function as a void external function within your C routine.
Some architectures do not support underscores.

2. FORTRAN expects subroutine arguments to be passed by reference
(address). Here is a sample FORTRAN subroutine:

subroutine fort(n, a)
double precision a(n)
integer n

To call the above subroutine from C, you need:

double *a;
int n;
fort_(&n, a)

Here you pass the address of n. Notice that the variable a is already an
address.

3. FORTRAN stores two-dimensional arrays in column-major, as
opposed to row-major, mode. This means that sequential elements of a
FORTRAN array that comprise the columns and sequential elements
of a C array run along the rows of the array.

Creating FORTRAN LNX Files

The C interface to LNX described in the previous selection is the preferred
method of presenting external FORTRAN code as an Xmath function.
However, for users who may not be familiar with the C language, a
FORTRAN interface that does not require any C programming is also
provided.

© National Instruments Corporation 8-37 Xmath User Guide

Chapter 8 External Program Interface

To get started using FORTRAN LNX you may want to study the file
template. f in $XMATH/src. This file is an example of how to link a
FORTRAN matrix-vector multiply routine into Xmath. You must supply an
initialized common block named fdata declared as:

character *10 name
integer minIn, maxIn, minOut, maxOut
common /fdata/ minIn, maxIn, minOut, maxOut, name

The template does this by using a block data section where it initializes the
common block with data statements. These parameters have the same
meaning as the fields of the functionData structure in the XmathMain()
(for LNX only) section. Currently the name is ignored, and the name of the
LNX function will be the name of the generated LNX executable file.

You must also supply a subroutine named ftnlnx with the calling
sequence. The template ($XMATH/src/template. £) gives an example of
a ftnlnx subroutine.

subroutine ftnlnx(thefun,

! nin, stkin, locin, cmxin, rowin, colin,

! nout, stkout, locout, cmxout, rowout, colout,

! howmuch, error)
integer thefun

integer nin, locin(nin),cmxin(nin),rowin(nin),colin(nin)

integer nout, locout (nout) , cmxout (nout) , rowout (nout) ,colout (nout)

integer howmuch,

error

double precision stkin(*), stkout (howmuch)

The meanings of the parameters are described in Table 8-8.

Table 8-8. ftninx Parameters

Parameter Function

thefun: For future expansion. Set to 1 in this version.

nin The number of input arguments.

stkin A “stack” of the input matrices.

locin An array indicating the index in stkin of each input matrix.
For example, input argument 2 starts at position locin(2), so the (1, 1) element
of input argument 2 is stkin (locin(2)), and the (2,1) element is
stkin(locin(2)+1).

cmxin cmxin (1) is 1 if input argument i is complex. Zero otherwise.

Xmath User Guide

8-38 ni.com

Chapter 8 External Program Interface

Table 8-8. ftninx Parameters (Continued)

Parameter Function

rowin rowin (i) gives the number of rows of input argument i.
colin colin(i) gives the number of columns of input argument 1.
nout The number of output arguments requested by the Xmath user.

stkout, locout, cmxout, rowout, and colout are analogous to stkin, locin, cmxin, rowin,
and colin, except that they pertain to the output arguments. You are responsible for setting these
values completely and correctly.

howmuch Indicates how much space is reserved in stkout. That is, you should regard
stkout as an array declared as double precision stkout (howmuch).

error a user-settable error flag.
if error > 0 - fatal error
if error < 0 - warning
if error == 0 - no error

The typical sequence in ftnlnx will be to:

1. Unpack the input stack (stkin).
2. Pass control to your desired FORTRAN subroutine.
3. Pack the output arguments in stkout (and set locout, cmxout,

rowout, and colout).

The routines discussed in previous sections (XmathError,
AllocateMatrix, and so on) are not available in FORTRAN LNX.

Debugging

Debugging procedures for LNXs and UCIs involve setting breakpoints and
then analyzing errant behavior versus expected behavior as described in the
following sections.

Debugging an LNX with dbx (on UNIX Systems)

1.

© National Instruments Corporation

Create an LNX called myfun . 1nx with debug information.

You can modify the make command itself (refer to the Enter the make
command from the Xmath command area: section) by adding the
debug option (for example, UCFLAG = -g) or by changing the
appropriate user-defined flag within the makefile itself (for example,
UCFLAG = -g or UCCFLAG = -g) (refer to Example 8-5).

8-39 Xmath User Guide

Chapter 8 External Program Interface

Xmath User Guide

2. You must indicate that you want the debugger to ignore the USRI
interprocess signal handler.

¢ (Sun0S) For dbx create a file called .dbxinit with this line:
ignore USR1
¢ (HP-UX) Create a file called .xdbrc with this line:
z l6sr
3. Issue the Xmath DEBUG command:
debug myfun
4. Now call the function:
myfun (l+jay)

Xmath displays the debug LNX dialog window and then pauses. The
debug message dialog will have a message similar to,

dbx ./myfun.lnx 8134
where dbx is followed by the LNX function and the process ID.

5. To start the dbx process with the LNX process attached, type or copy
the previous command into a UNIX shell.

6. In dbx, set a breakpoint in myfun () with the command:
stop in myfun

7. Issue the dbx continue command by typing cont in the debugger.
Return to Xmath and dismiss the debug LNX dialog.

Immediately, dbx breaks at the breakpoint previously set. You can start
debugging the function.

9. When you finish debugging the function, issue the dbx CONT
command.

Xmath returns with the output of the LNX function.

10. When the debug session is complete, use the dbx DETACH command to
detach the LNX process from dbx.

For resident functions, Xmath automatically turns off debug mode for
LNXname after it returns. If you want to debug the LNX function with
another set of inputs, call LNXname again. This time, however, Xmath will
not display the debug dialog. On the other hand, if you haven’t removed the
breakpoint in dbx, the LNX process will break at the same breakpoint. The
function can then be debugged with the new inputs.

Specifying an LNX to be nonresident means that the LNX is automatically
undefined after it finishes. Therefore, the debugging mode is forgotten.

8-40 ni.com

Chapter 8 External Program Interface

This makes MSF and LNX debug mode behavior consistent, because
undefining an MSF also makes Xmath forget everything about the MSF,
including the debug mode.

Debugging LNXs (on Windows Systems)

To debug an LNX, complete the following steps:

1.

Create an LNX called my fun. exe with debug information as
described in the Building on a Windows System section:

makelnx (-debug) myfun.c

This creates an LNX called myfun.exe.

Go to Xmath Commands window and call the LNX:
debug myfun

myfun (l+jay)

A dialog box (myfun.exe-Application Error) appears with the
message:

A breakpoint has been reached. Click Cancel to go into the debugger.

Then another dialog appears with the message:

Break caused by hard coded breakpoint instruction.
Click OK in this dialog box.

Now, select Debug»Breakpoints.

A Breakpoints dialog appears.

In the Location area, enter myfun. Click Add to add the name to the
breakpoints column. Click OK to dismiss the dialog.

Select Debug»Go from the Debug pull-down menu.
The debugger will now stop at the breakpoints you have specified.

When you are finished debugging, select Debug»Breakpoints. When
the Breakpoints dialog appears, click Clear All to clear the
breakpoints. Click OK to dismiss the dialog box. Select Debug»Go.

The LNX will run to completion.

@ Note Do not exit the debugger until the LNX runs to a completion.

8.

© National Instruments Corporation

To exit the debugger window, select File»Exit.

8-41 Xmath User Guide

Chapter 8 External Program Interface

Debugging UCIs (on UNIX Systems)

To debug a UCI on a UNIX system, complete the following steps:

@ Note

1.

Create a UCI with debug information as described in the Building on
a UNIX System section.

Debug the UCI using dbx:

xmath -call dbx uci.lnx

Now, set a breakpoint in myfun. c with the command:

stop in myfun

For each function you want to debug.

Enter run.

The debugger will now stop at the breakpoints you have specified.

When you are finished debugging, clear the breakpoints and type cont
to let the UCI run to completion.

Do not exit the debugger until the UCI runs to a completion.

6.

To exit the debugger, type quit.

Debugging UCIs (on Windows Systems)

To debug a UCI on a Windows system, complete the following steps:

Xmath User Guide

1.

Create a UCI with debug information as described in the Building on
a Windows System section.

Debug the UCI using MSVC:
xmath -call msdev uci.exe
Now, select Debug»Breakpoints.
A Breakpoints dialog box appears.

In the Location area, enter the name of the function you want to debug.
Click Add to add the name to the breakpoints column. Keep doing this
for all of the desired breakpoints. Click OK when you have finished.

Select Debug»Go.
The debugger will now stop at the breakpoints you have specified.

When you are finished debugging, select Debug»Breakpoints. When
the Breakpoints dialog appears, click Clear All to clear the
breakpoints. Click OK to dismiss the dialog. Select Debug»Go from
the Debug pull-down menu to let the UCI run to completion.

8-42 ni.com

Chapter 8 External Program Interface

E Note Do not exit the debugger until the UCI runs to a completion.

7. To exit the debugger, select File»Exit.

Advanced Topics

Handling an Aborted LNX

The following MathScript command

set debugonerror off

allows a script to resume execution after an LNX that it calls terminates
abnormally. Without using this command, a script will be aborted if the
LNX that it calls terminates abnormally.

For example:

command callsegv
set debugonerr off # allow this script to resume if segv () aborted
out = [] # assuming segv() never returns a []
out = segv() # an LNX that terminates abnormally
if out == [] # 1if segv() aborted,
display "segv() failed."
else
display "segv() returned successfully."
endif
endcommand

If an LNX process terminates abnormally, Xmath prints out a message
similar to the following:

Process name has terminated abnormally (Signal #)
The signal number is the UNIX error code. These codes are standard on

UNIX systems and are described in the file /usr/include/
sys/signal.h.

@ Note XmathPanic should be in your LNX or UCI program’s <Ctrl-C> signal handler to
clean up after an abnormal stop. The syntax is as follows:

void XmathPanic ()

© National Instruments Corporation 8-43 Xmath User Guide

Chapter 8 External Program Interface

Advanced Features and Notes
On UNIX systems only:

When an XmathSave () or XmathLoad () linkis called, an Xmath
process called xmaths1 is invoked. To avoid this overhead, you can
link with the 1ibxms1 . a library in addition to 1ibXmath.a
(libXmath.a must follow 1ibxms1.a in the 1ink command). You
will need the standard C++ library supported for your platform for the
link, typically by including -1 in the link command line.

That is, the stand-alone saveload document references the last line of
this file:

S(CC) -o s$@.1nx $(USEROBJECTS) -LS$S(LIBS) $(USERLIBS)
-1Xmath

which must be changed to the following:

$(CC) -o $@.1nx $ (USEROBJECTS) -L$(LIBS) $(USERLIBS)
-1xmsl
-1Xmath -1C

LNX and UCI use the signal USRI as part of communications
processes; do not modify this signal’s handler.

Advanced Background LNX Function (IPCWC)

1pcwC allows you to communicate with a background LNX process that is
also a windows client. First, a message is sent to the LNX with the specified
window ID (wid) and the process ID (pid). Additional data (the arguments
listed) is then sent to the LNX (formatted according to the specifiers in the
format string, as applicable). The calling syntax is:

IPCWC wid, pid, format_string, arg_list ...

wid Window ID (a number).

pid Process ID (a number).

format_string A string with format specifiers (as
described below).

arg_list The values to be sent. You can have as

Xmath User Guide

many values as you like, as long as they
are separated by commas and each one
maps to a format specifier in
format_string.

8-44 ni.com

Chapter 8 External Program Interface

* The format specifiers are codes consisting of the percent sign (%) and
a character. They are:

%c A single character.
d A decimal number.
%s A string.

oe

* All non-format specifiers are sent as individual characters.

* The LNX process receives data with the calls shown in Table 8-9.
XmathIPCgets returns a malloc'ed string. Remember to free it when
done.

Table 8-9. Background LNX Functions

Function Description and Prototype

XmathIPCgetc() XmathIPCgetc () returns a character from the IPC stream to the
LNX process.
char XmathIPCgetc ()

XmathIPCgeti() XmathIPCgeti () returns an integer from the IPC stream to the
LNX process.
int XmathIPCgeti ()

XmathIPCgets() XmathIPCgets () returns a malloc string from the IPC stream to

the LNX process. Remember to free the string when you are done.

char *XmathIPCgets ()

* S$XMATH/include/xmathlib.h contains the definition for optional
flags, such as LNX_USE_IPC. In a background call,
XmathReleaseIPC() detaches an LNX. The last argument in the
XmathMain () call sets the LNX_USE_1pC flag. The callback LNX
function, defined in the functionData structure, is responsible for
calling XmathReleaseIPC().

Sample IPCWC Calling Sequence

The following sample IPCWC calling sequence sends the character H
followed by the number 104 to an LNX that has window ID 9999 and
process ID 99:

ipcwc 9999, 99, "H%d", 104

The next step is to send the character B followed by character A, the string
"Test1", and then the ID number 5 to an LNX that has window ID 9999 and
process ID 99.

© National Instruments Corporation 8-45 Xmath User Guide

Chapter 8 External Program Interface

ipcwc 9999, 99, "B%c%s%d", "A", "Testl", 5

@ Note To ensure proper handshaking between the client and server in sophisticated LNXs,
the client program should wait for a status from the client; when the client has finished
reading it should return the status via XmathIPCputs(). For example:

ipcwc 9999, 99, "B%c%s%d&s", "A", "Testl", 5, status

Example 8-10 shows a pseudocode LNX example that uses some of the
XmathIPCget call. Example 8-11 is pseudo-code for a sample LNX
program using IPCWC.

Example 8-10 Sample Usage of ipcwc to Communicate with a Background LNX

#

action = SaveFile or LoadFile

#

Command SendAction action, file_name

wid = 9999;
pid = 99;
if (!is(action, {string}))
error ("Argument 'action' must be a string", "F")
endif
if (!is(file_name, {string}))
error ("Argument 'file_name' must be a string", "F")
endif
ipcwc wid, pid, "%c %s", stringex(action, 1, 1), file_name
endCommand

Example 8-11 Pseudo-Code for an LNX that Responds to ipcwc

#ifdef UNIX
#include <X11/Xlib.h>

/* This is how the ipcwc command actually sends to the client window */
void Send_ipcwc_window_message (Window wid)
{

XEvent xclient;

extern Display *dpy;

Xmath User Guide 8-46 ni.com

xclient.xclient.message_type = 0;
xclient.xclient.type = ClientMessage;
strcpy (xclient.xclient.data.b, "XMATH");
xclient.xclient.format = 8;

Chapter 8

XSendEvent (dpy, wid, 0, NoEventMask, &xclient);

XFlush (dpy) ;

External Program Interface

/* This is how to detect a window message sent by the ipcwc command */

/* The following is a typical X event loop

XEvent event;

switch (event.type) {

case ClientMessage:

if (Is_ipcwc_window_message (&event)) {
action = XmathIPCgetc ()
switch (action) {

case 'S':
savefile = XmathIPCgets/()
case 'L':
loadfile = XmathIPCgets/()
default:
}
}
else {
/* other ClientMessage messages
}

int Is_ipcwc_window_message (XEvent *event)

{

extern Display *dpy;

XClientMessageEvent *xclient;

Atom wmpAtom, wmdAtom;

xclient = (XClientMessageEvent *) event;
wmpAtom = XInternAtom(dpy, "WM_PROTOCOLS",
wmdAtom = XInternAtom(dpy, "WM_DELETE_WINDOW"

return ((wmpAtom == None || wmdAtom == None ||
xclient->message_type != wmpAtom ||
xclient->data.l1[0] !'= wmdAtom)

&& !strcecmp("XMATH", xclient->data.b));
}

© National Instruments Corporation 8-47

’

True
True

)

*/

*/

Xmath User Guide

Chapter 8 External Program Interface

#else
#include <windows.h>

/* This is how the ipcwc command actually sends to the client window */
void Send_ipcwc_window_message (HWND hwnd)

{
PostMessage (hwnd, WM_USER, 0, 0);
}

/* This is how to detect a window message sent by the ipcwc command */
/* The following is a typical Windows event loop */

switch (message) {
case WM_USER:

/* ipcwc Window message detected */

#endif

Xmath User Guide 8-48

ni.com

Graphical User Interface

This chapter introduces Xmath’s fully programmable graphical user
interface (PGUI or GUI).

The GUI is available on all MATRIXx platforms. The GUI allows arbitrary
windows to be created and manipulated using only Xmath source code
(MathScript). GUI windows might contain, for example, sliders, buttons,
menus, and plot areas, all of which can accept user input from the mouse.
Xmath simultaneously supports user interaction in any number of newly
created GUI windows, as well as through each of its standard windows.

The GUI provides a number of predefined dialogs that can be used to
interact with the user. These dialogs are a collection of modal dialogs that
are used by most applications. When called they suspend command
execution until the user responds to the dialog. Once the user responds, the
response is returned and command execution resumes.

Finding Out About the GUI

GUI Tool Users

GUI Developers

Whether you are a GUI tool user or a developer, you will want to learn
about the GUI, although the ultimate learning will be at different levels.

GUI tools are simple and intuitive to use, but there are a few basic things
you should know. You should run guidemo and look at some of the
examples, especially 1eadlag, to get a feel for the features and capabilities
of GUI tools. Each GUI tool has extensive Help menus describing its use.
Browsing through Help messages is a good way to learn what a tool does.

You might also want to develop your own GUI tools. For example, you
might add a graphical user interface to an existing Xmath command script.
Programming with the GUI is more difficult than writing your own Xmath
commands and functions, so delay trying this until you are quite
comfortable programming in Xmath and using GUI tools.

© National Instruments Corporation 9-1 Xmath User Guide

Chapter 9 Graphical User Interface

To develop your own simple tools using the GUI, we recommend that you
run the GUI demos while looking at the corresponding source code, which
is in $XMATH/demos /gui. The next step is to read the Help entries for the
GUI functions in the MATRIXx Help. Each function has an example,
consisting of an Xmath command that creates a PGUI tool. Start with
uiToolCreate(). For this and other examples where an Xmath
command is defined:

e Use a text editor to create a new Xmath command file.
e Copy the example command script into the file.

¢ Name the file commandname.msc and save it to a folder included in the
lookup path.

* Execute the command by typing its name in the Xmath command area.

For example, to run the uiToolCreate () example, copy the entire
ex_uiTool command to a file named ex_uiTool.msc. Save that file to
afolder in your lookup path. In the Xmath command area, type ex_uiTool
and press <Enter>.

Running the GUI Demos

Xmath User Guide

To see a menu of Programmable GUI examples, type guidemo in the
Xmath command area. This displays the menu shown in Figure 9-1.

9-2 ni.com

Chapter 9 Graphical User Interface

1 Programmable GUI Ezxamples

“ Yariable Binding

+ More Variable Binding

+ Fourier Fnalysis

+ Puzzle Game

+ Madratic Optimization

+ Lead-Lag Control Designer
+ Hinf/L(QG Control Desigmer
+ <Return to Previous Mexwn>

+ <Exit Demo>

Figure 9-1. Programmable GUI Examples

Figure 9-1 lists a number of GUI demos. You can run several demos at
once.

To run a demo:
1. Select a demo (for example, Variable Binding).
2. Click OK.

In a few seconds the demo appears. Your window manager may require
you to position the window(s) generated by the demo.

Each demo has a Help menu in its menu bar (near the upper right side
of the window). The Help messages explain how to interact with the
demo and what it does. It may be helpful to read the rest of this chapter
before (or while) you try the demos.

3. To exit a demo, select Special»Exit or File»Exit from the individual
demo window.

To see another example of a GUI implementation, type ifilter in the
Commands window command area.

© National Instruments Corporation 9-3 Xmath User Guide

Chapter 9

Graphical User Interface

Interacting with a GUI Application

This section describes the mechanics of interacting with GUI windows.
First, we create an example dialog and then we discuss the various kinds of
GUI objects that you can place in a dialog or window and how to use them.

Creating an Example Dialog

Tools that use the GUI create windows that contain control elements such
as buttons, sliders, pull-down menus, plots, and lists. Some of these
elements are shown in Figure 9-2, the PGUI Example dialog.

~ A=

Do It | _| Toggle Buttom
vvahml T 11
wvahm_lﬂ

Figure 9-2. PGUI Example Dialog

If you are a user only, you might want to just create the dialog without
paying much attention to the individual commands that follow. If you are a
developer, this is another example from which you can learn.

To create the dialog in Figure 9-2, type the following in the Xmath
command area:

tl = uiToolCreate("guiexhelp");
mw = uiWindow (tl, {title="PGUI Example"});
tb = uiTable (mw, {height = 200, columns = 2});
void = uiButton(tb,{ text = "Do It"});
void = uiButton(tb,{ type = "toggle", text = "Toggle Button"});
void = uiLabel (tb,{ text = "v value"});
void = uiSlider (tb, {varname = "main.v", min = 0, max = 10});
void = uiVarEdit (tb, {varname = "main.w", text = "w value" });
void = uiShow (mw) ;
main.v = 5;
main.w = 12;
To kill the dialog in Figure 9-2 type:
uiDestroy ("guiexhelp")
Xmath User Guide 9-4 ni.com

Chapter 9 Graphical User Interface

Controlling GUI Objects

You can control most functions with the left mouse button. For example,
you can activate a button by placing the cursor anywhere on the button and
clicking the left mouse button. The PGUI Example dialog has two buttons:
Do It and 12.

Other objects behave as follows:

© National Instruments Corporation

A toggle button (square shaped) is either on or off. Its indicator is filled
in when it is on. It can be toggled by pointing and clicking the left
mouse button. The toggle button shown in Figure 9-2 is off. Activating
a toggle button causes some action to be performed.

Radio buttons (diamond shaped) are a group of buttons with radio
behavior. Like the station selection buttons on a radio, selecting one
button automatically turns off any other button that is on.

A pull-down menu is displayed by depressing and holding the left
mouse button. As the mouse is dragged, the various menu selections
(usually buttons) are highlighted. Releasing the mouse activates the
selected button.

A cascade menu is indicated by a small arrow to the right of the text in
the button. The cascade menu is displayed by moving the mouse to the
right.

A text entry area behaves like the command input area in Xmath. Input
is terminated by a newline character. Before you can type into a text
entry area, you must focus on the area by placing the cursor in the area
and clicking the left mouse button. Focus is indicated by a border
highlight.

A list is a vertical list of items (strings) that can be selected
(highlighted). Depending on the application, a list can be configured to
allow various types of selection:

— A single-selection list allows only a single line to be selected.
Clicking the left mouse button selects a line.

— A multiple-selection list allows multiple lines to be selected. The
selection of a single line is toggled by clicking with the left mouse
button.

— An extended-selection list also allows multiple lines to be
selected. A contiguous range of items can be selected by clicking
the left mouse button, dragging the mouse, and releasing. Pressing
the <Shift> key while clicking the left mouse button selects all the
items from the current item to the previous item that was selected
with the left mouse button. Pressing the <Control> key while

9-5 Xmath User Guide

Chapter 9

Graphical User Interface

Xmath User Guide

clicking the left mouse button augments (rather than replaces) the
existing selections. This allows discontiguous ranges of items to
be selected. This type of list is used in the history sorting and
history column dialogs in the 1eadlag demo.

Once you select one or more items from a list, you then choose some
action such as Delete or Display.

A dialog is a small window that can contain a message and one or more
buttons. For example, a dialog might have a single button and a
message giving a warning or indicating an error.

Usually a dialog is modal—that is, you cannot interact with any other
GUI or Xmath window until the dialog has been closed. If you find you
cannot interact with Xmath or other GUI windows, then look for a
modal dialog that might have been accidently covered by another
window.

Help messages are often listed under a Help pull-down menu at the
top-right of the GUI window. The Help message appears in a new
window that provides scrollbars as needed. The scrollbars are operated
with the left and middle mouse buttons. The window is dismissed by
selecting the Close button.

A variable edit box appears in a GUI window as a button that displays
some value. The value can be changed by selecting the button,
whereupon a text entry area appears in place of the button. You can
type a new value followed by <Return>. If the GUI tool does not like
your new value, it reserves the right to change it to an acceptable value
that is displayed again on the button.

The button labeled 12 shown in Figure 9-2 is a variable edit box
(displaying the value of the variable w). If you click this button, it is
replaced by the w value text entry area as shown in Figure 9-3. After
entering a value from the keyboard, the text entry area is replaced by a
button that contains the new value.

- BE
Do It | _| Toggle Button
v value 10
I L]
oW valusl 19 ‘

Figure 9-3. PGUI Example Dialog after Pressing the 12 Button

9-6 ni.com

© National Instruments Corporation

Chapter 9 Graphical User Interface

A slider resembles a linear potentiometer and its value is changed by a
linear motion of the handle. The position of the slider’s handle
represents its value. Usually the limits of the slider are shown at its
ends. Figure 9-3 shows a slider with minimum value 0 and maximum
value 10. Its current value is about 6. You can change the value of a
slider in several ways:

— Place the cursor on the handle, click the left mouse button, and
drag the handle to the desired location. Some GUI tools might do
something (for example, change a plot) as you drag the handle. In
other cases, nothing happens until you release the handle at the
new value.

— Click the middle button at the new value.

— Click the left button away from the handle to increase or decrease
the value a small amount. Holding the button down makes the
handle steadily move towards the cursor.

Often a value is displayed with a slider and a variable edit box (for
example, the 1eadlag demo). This allows the value to be changed
either by dragging the slider or entering a new value via the keyboard.

Plots, which can accept graphical input from the user, can also appear
in GUI windows. You can use the left mouse button for graphical input,
the middle for plot zooming, and the right for plot data value viewing:

— The function of the left mouse button depends upon the particular
tool and plot. Often a tool allows a curve to be grabbed and
dragged by clicking the left mouse button with the cursor near the
curve, dragging the mouse with the button down, and then
releasing at a new position.

— Clicking the middle mouse button anywhere in the plot creates a
box containing a magnification of a small area of the plot centered
at the cursor. The middle mouse button can be held down and
dragged, which creates an effect similar to dragging a magnifying
glass across the plot. The center of the zoomed window
corresponds to the tip of the cursor.

* Pressing the <Ctrl> key while clicking the middle mouse
button increases the size of the magnified box. Pressing the
<Shift> key while clicking the middle mouse button increases
the zoom factor. Pressing <Shift-Ctrl> with middle mouse
button yields a large zoom box with a large magnification
factor.

— By pointing at or near a curve or object in a plot and clicking the
right mouse button, a small window appears; it identifies the curve

9-7 Xmath User Guide

Chapter 9 Graphical User Interface

or object and gives the coordinates and index of the nearest data
value.

* Ifyouclick and drag the right mouse button, the selected curve is
tracked, even if another curve comes close.

* Pressing the <Shift> key while clicking the right mouse button
allows the user to get values on the piecewise line curve that
interpolates the data values. In this case index 45.7 means that the
selected plot point is between the 45th and 46th curve index
entries.

GUI Programming Overview

The Programmable GUI allows you to perform the following tasks:

Design the layout and appearance of windows.
Create, destroy, and manipulate these windows.
Bind Xmath variables to various objects in the windows.

Arrange for Xmath code to be executed when the user interacts with
the windows.

These tasks are accomplished as follows:

Windows are created, destroyed, and manipulated using a number of
Xmath functions.

Bindings between Xmath variables and sliders, buttons, plotted curves,
and other objects in the GUI windows are specified by setting the
appropriate widget attribute.

The execution of particular pieces of Xmath code when the user
interacts with a GUI window is also specified by setting the
appropriate widget attribute.

These tasks are described in more detail later in this chapter and in the
MATRIXx Help.

Concepts and Terminology

Xmath User Guide

A single GUI application is called a tool. The components that make up a
complete tool are described in the following section. Usually a user
explicitly starts a tool by sending a command (MSC) to Xmath. The MSC
calls some Xmath functions that tell the GUI to create a new tool, one or

9-8 ni.com

Chapter 9 Graphical User Interface

more windows, and their children widgets. This is what happens when you
type guidemo. After the MSC creates one or more initial windows, the
MSC returns and Xmath is again idle. Tools can be launched in other ways.
For example, an MSF, script file, or another tool can launch new tools.

Once a tool is created, it is then used as the parent of all subsequent
windows created. Each window is then in turn used as the parent of each
widget in that window. In this way a hierarchy of the tool is defined. As it
is created, each object is given various attributes that define different
aspects of appearance and behavior, including the binding hooks back to
Xmath. The binding of variables to various objects on a window is a key
feature of the GUI. For example, a variable can be bound to a slider in a
window. Whenever the user moves the slider, the Xmath variable is
updated. Similarly, whenever the Xmath variable is updated, the slider
moves. Variables can also be bound to plotted curves: whenever the
variable is changed, the plotted curve changes accordingly. With variable
binding, you do not have to explicitly update a display; merely changing the
value of the variable (reassigning it) causes all displays bound to the
variable to update automatically.

A second key feature of the GUI is the Xmath callback. In itself, updating
a variable when the user moves a slider is not useful. Every time the user
interacts with a window (that is, moves a slider or selects a button), you can
specify certain Xmath code to be executed through an Xmath callback. An
Xmath callback simply means that the tool’s MSC is called with arguments
that describe what the user just did. Based on these arguments, the MSC can
take whatever action is required.

The GUI is event driven. Normally, Xmath is idle. When the user does
something to a GUI window, variables, if any, are updated, and Xmath
callback(s), if any, are executed. Once the Xmath callbacks finish (that is,
the MSC returns), Xmath is again idle, waiting for a new event.

Conceptual Example

A conceptual example can show how these features work together to form
a simple tool. Suppose we have some Xmath code computey.msc that
computes some value y given some parameter value x. Our tool arranges
for the variable y to be bound to a read-only slider and the variable x to be
bound to an interactive slider. The tool arranges for the Xmath code
computey.msc to be executed when the interactive slider is released.

When our tool is invoked, a window containing the sliders appears. When
the user moves and releases the interactive slider, the variable x is first
updated (assigned its new value) and then the Xmath code is executed

© National Instruments Corporation 9-9 Xmath User Guide

Chapter 9 Graphical User Interface

(using the new value of x). The Xmath code assigns a new value to the
variable y. Since y is bound to the read-only slider, the read-only slider
changes to reflect the new value of .

It is interesting to compare the original Xmath code with the tool described
above from the user’s point of view. The user interacts with the original
code by repeatedly typing commands into the Xmath Command window
such as x=3 . 2 followed by computey followed by y, which prints the new
value of y to the Xmath log area. Thus, user input and output are via the
Xmath command and log areas, respectively, and both are alphanumeric in
form.

In contrast, the user interacts with the tool described above by simply
grabbing and moving the interactive slider. After it is released, the new
value of y is displayed on the read-only slider. Thus, user input and output
are via the sliders in the tool’s window and graphical in form. In effect, we
have implemented a completely graphical interface for our original Xmath
code computey .msc. In fact, once the graphical tool is running, we can
iconify all of the standard Xmath windows, and someone completely
unfamiliar with Xmath can use the code computey through the slider and
bargraph.

Anatomy of a GUI Tool

Xmath User Guide

It is possible to type commands directly in the Xmath Command window
that instruct the GUI to create a tool and windows. Usually, however, a GUI
tool consists of MathScript Command files (MSCs), MathScript Function
files (MSFs), and a Help file (.h1lp):

e An MSC contains the code for starting the GUI tool and all the code
for the Xmath callbacks. An Xmath callback simply calls the MSC
with particular arguments, and the MSC takes the corresponding action
based on these arguments. If the tool is smaller, the MSC may also
contain all the widget creation code as well. A large tool can consist of
multiple MSCs. Usually though all the tool callbacks are in one MSC.
The tool’s MSC filename is the tool name followed by the extension,
msc.

e MSEFs are often used if the tool is quite large. An MSF can help
organize and group widget creation code to a particular window or
functionality. The MSC can call an MSF at the appropriate time to
create portions of the tools GUI as needed.

e A Help file contains one or more Help messages or strings. The tool’s
Help file is the tool name followed by the extension, .hlp.

9-10 ni.com

Chapter 9 Graphical User Interface

These files are described in more detail in the following sections. Refer to
the GUI demos in $XMATH/demos /gui for examples of each of these files.
Each of the demos is implemented as an MSC script, possibly an MSF
script, and an ASCII file that contains the Help message text and global plot
options. You can develop and debug GUT applications rapidly with Xmath’s
interactive environment and debugger.

MSC File

The tool’s MSC is declared with three arguments:

command MSC name {fragname, widgetname, instance}

When an Xmath callback occurs, the MSC is called with two strings
(fragname and widgetname), and an integer (instance). The string
fragname is the name of the Xmath code fragment to execute. The string
widgetname is the name of the widget that caused the callback (usually
this will be ignored, unless a single Xmath code fragment needs to handle
user input into different widgets). Finally, the instance number uniquely
identifies multiple instances of the same window. For example, if two
identical windows are instantiated (refer to the the uiWindow topic of the
MATRIXx Help) and the user selects a button on each window, one Xmath
callback will have instance = 1, and the other will have instance = 2.

Usually each Xmath code fragment is executed using goto, so each Xmath
code fragment name is written as a goto label. Also, when the MSC is
invoked with no arguments, it is often convenient (but not necessary) to
arrange that the tool itself be launched. Therefore, a template MSC appears
as follows:

Command MSC _name {fragName, widgetName, instance}

if (exist (fragName))
goto *fragName;

else # start tool
[CODE LAUNCH TOOL GOES HERE]
return;

endif

<ButtonPressed> #executed when fragname == "ButtonPressed"
[CODE TO EXECUTE WHEN BUTTON IS PRESSED]
return;

<SliderMoved> #executed when fragname == "SliderMoved"
[CODE TO EXECUTE WHEN SLIDER IS MOVED]
return;

© National Instruments Corporation 9-11 Xmath User Guide

Chapter 9 Graphical User Interface

<DoQuit> # executed when fragname == "DoQuit"
[CODE TO QUIT TOOL]
return;

endCommand

Help File

The tool’s Help file is where the tool’s Help messages are stored. Each
Help message (or Help fragment) is preceded by a name or label. The name
is used to refer to the particular Help fragment. The order of the Help
fragments in the Help file is not important. The Help file can be quite large
if necessary; fragments are read only when needed.

Each Help fragment has the form:

<helpFragName>
This is the Help text that will be displayed.
The Help text can contain many lines. The indent of
the initial line is stripped from all lines.
comment lines (lines starting with '#') are ignored,
although an embedded '#' will not be treated
specially. Use '\#' at the start of a line if
you need a '#' at the start of a non-comment line.

The Help fragment name helpFragName is any string of your choice. The
indent of the initial line of the Help fragment will be stripped off all the
lines in the Help fragment when the Help fragment is displayed. This
assists in the legibility of the Help file.

One Help fragment can be included inside another with an include
directive:

<helpFragl>
Note that:
'#include <helpFragl>
That's all folks!

<helpFrag2>
This Help text contains two
lines.

Xmath User Guide 9-12 ni.com

Chapter 9 Graphical User Interface

The extra indent of the include line is applied to the entire included
fragment, so the above is equivalent to:

<helpFragl>
Note that:
This Help text contains two
lines.
That's all folks.

The include facility is useful for grouping Help messages on specific topics
into a single large overview message. For an example, see the help file for
the leadlag demo ($XMATH/demos/gui/leadlag.hlp).

The Help fragment name can be followed by an optional title:

<helpFragName> Help Dialog title
This is the Help text that will be displayed.
The Help text can contain many lines.

Depending on the windowing system you use, the title should be displayed
in the top border of the Help window.

The Help file is really a database of strings accessed by name. The Help file
can be used to store strings or string arrays that a tool needs. Long options
tothe uiPlo() function, for example, can be placed in the Help file. This
feature is shown in the binding1 demo ($XMATH/demos/gui/
bindingl.hlp).

Xmath GUI Functions

The Xmath GUI functions are categorized as follows:

e uiToolCreate()—creates a function for a tool.
* uiWindow()—creates a function for a top-level window of a tool.
e uyiPanel(),uiTab(), and uiTable()—-create container

regions in a window or other container.

* uiMenu() and uiMenuItem()—create menu bars, pull-down
menus, context menus, and menu items.

. uiButton(), uiComboBox(),uiList(),uiSeparator(),
uiSlider(),uiText(),uiVarChoic()e,uiVarEdit(),
uivarView(), and uiLabel ()—are controls for windows and
containers for user interaction and displaying data.

* uiPlotArea()—creates a special control for displaying
two-dimensional graphical plots.

© National Instruments Corporation 9-13 Xmath User Guide

Chapter 9 Graphical User Interface

Tutorial

* uiDestroy(),uiExist(),anduiHandle()—are PGUI object
operations for checking existence, handle/name conversions, and
generic destruction.

* uiHide() and uishow()—display and hide a PGUI object.

* uiGetvalue() anduiSetValue()—getor set a PGUI object’s
resources.

* uiFlush()—forces the update of the objects displayed.

* uiTimer ()—invokes an Xmath callback after a given amount of

time has elapsed.

e uiPlot() and uiPlotGet ()—are commands for generating
two-dimensional plots in auiPlotArea and getting user’s input to the
plot.

¢ uiFileSelection(),uiMessage(), and uiPrompt ()—are
predefined dialogs for selecting files, displaying messages, and
prompting the user for input.

* uiWindowDeiconify() and uiWindowIconify()-—deiconify
and iconify a window.

e uiwindowLower () and uiwindowRaise ()—lower and raise a
window.

For more information on PGUI functions, refer to the MathScript
Programming, Programmable GUI topic of the MATRIXx Help.

Pushbutton

In this section we discuss two tools: the button and the calculator examples.
These tools perform trivial functions; the point is not their purpose but their
operation.

Example 9-1 shows the ex1 .msc file, located in the $XMATH/demos/gui
directory.

Example 9-1 Button Creation

Xmath User Guide

command exl {fragname, widgetname, instance}
alias T "exl"

if(exist (fragname))
goto *fragname;
else

9-14 ni.com

Chapter 9 Graphical User Interface

tl = uiToolCreate("exl");

wn = uiWindow(tl, {name = "win", title = "Tutorial"});
void = uiButton (wn, {

text = "Press This Button",

xmath = "ButtonPress"});

1;
void = uiShow (wn) ;

main.count

return;
endif

<ButtonPress>
main.count = main.count + 1;
display sprintf ("Button Press count: %d",
main.count) ;
if (main.count >= 5)
void=uiDestroy ("exl") ;
endif;
return;

endcommand
When the user types ex1, The ex1 tool window appears.

Let’s investigate the steps that produced this window. When the user types
ex1, the MSC ex1 .msc is invoked with no arguments. Therefore, the if
conditional if (exist (fragname)) fails, and the else clause is
executed. The statement t1 = uiToolCreate("ex1"); createsthe new
tool ex1. (If the tool already existed, this step would first destroy the tool
and all its windows before creating a new tool.) The value returned and
stored in t1 is the tool’s handle. All GUI creation routines return an object
handle that is used when creating the tool’s windows; the object handle can
also be used to reference the tool for other GUI functions, such as
uiExist () and uiDestroy (.In addition to the handle, some
operations on a tool can also be invoked with the tool’s name.

The next statement:

wn = uiWindow (tl, {name = "win", title = "Tutorial"});

actually creates a new window. The keyword arguments provide attribute
information about a widget, the window in this case. You can provide a
widget name—win in this case—so that you can reference the widget by
its name instead of its handle.

void = uiButton(wn, {text = "Press This Button",
xmath = "ButtonPress"});

© National Instruments Corporation 9-15 Xmath User Guide

Chapter 9 Graphical User Interface

Xmath User Guide

creates a single button as a child of the window. Since no type keyword is
specified, the default type button is created. The text keyword specifies
the text to appear on the button face and the xmath keyword designates the
callback fragment to execute when the button is clicked.

At this point, the window is still not visible. The call to uiShow () makes
the window appear when desired. In this case, note that the call to
uishow() takes the handle returned from the uiwindow () call. The
call to uishow() could just as well appear as follows, which uses the
name passed into the uiwindow () function.:

uiShow("exl", "PushBWin")

While handles are slightly more efficient at times, they are less convenient.
Therefore, both methods are provided.

Finally, the MSC initializes a global variable that is used to count button
clicks and then returns:

main.count = 1;

return;

When the user clicks the button, the button checks to see if it has a value for
its xmath attribute. In this case it is set to *“ButtonPress” so the button
will invoke the tool’s MSC as:

ex]l "ButtonPress", "Push"

We use the term Xmath callback to describe the calling of the tool’s MSC
in this way. The first argument is the argument value set as the xmath
attribute, the second argument is the button’s name, and the third argument
is the instance number of the window, which will always be 1, unless we
create multiple instances of the same window. Therefore, when the user
activates the button, it is equivalent to typing:

ex]l "ButtonPress", "Push"

When called with these arguments, the MSC executes the code

main.count = main.count + 1;
display sprintf ("Button press count: %$d", main.count) ;
if (main.count >= 5)
void = uiDestroy("exl");
endif;

return;

9-16 ni.com

Chapter 9 Graphical User Interface

This increments the count variable and displays a message in Xmath’s log
area. If the button has been clicked five times, you can see the following
messages in the log area:

Button press count:
Button press count:
Button press count:

u B wN

Button press count:
Then the tool is destroyed, which causes the window to disappear.

We use a global variable (main.count) so that its value is maintained
between calls to the tool’s MSC. Local variables in an MSC disappear when
the MSC returns. You might notice that most GUI tools create their own
partitions for storing all their global variables.

Calculator

Example 9-2 shows the ex2 .msc file, located in the $XMATH/demos /gui
directory.

Example 9-2 Calculator
command ex2 {fragname, widgetname, instance}
alias T "ex2"

if(exist(fragname))
goto *fragname;

else
tl=uiToolCreate("ex2")

wn=uiWindow (tl, {name = "win", title="Tutorial"});

tb=uiTable (wn, {columns = 2});

void = uiLabel (tb, {text = "Operand 1"});

void = uiSlider (tb, {varname = "opl",
xmath="NewOperand",
xmathdrag="NewOperand", flags = "hdm",
min = -1, max = 1})

void =uiVarChoice(tb, {text="Operation",
xmath="NewOperation",
varname= "operation", flags = "H",
items=["plus", "minus", "times"],
values=[1,2,31});

uiLabel (tb, {text="Operand 2"})

void = uiSlider (tb, {varname = "op2",

void

xmath="NewOperand",

xmathdrag="NewOperand", flags "hdm" ,

© National Instruments Corporation 9-17 Xmath User Guide

Chapter 9 Graphical User Interface

min = -1, max = 1})
void = uiSeparator (tb, {colspan = 2});
void = uiLabel (tb, {text="Result"})

void = uiSlider (tb, {varname = "result",
xmath="NewOperand",
xmathdrag="NewOperand", flags = "bhdms",
readonly, min = -2, max = 2})

void = uiSeparator (tb, {colspan = 2});

void = uiButton(tb, {text = "Quit",
col = 1, xmath = "DoQuit"});

main.opl=0;

main.op2=0;

main.operation=1;

ex2 "NewOperation";

void = uiShow (wn) ;

return;
endif
<NewOperation>
<NewOperand>
if(main.operation == 1)
main.result = main.opl + main.op2;
elseif (main.operation == 2)
main.result = main.opl - main.op2;
elseif (main.operation == 3)
main.result = main.opl * main.op2;
endif
return;
<DoQuit>

uiDestroy ("ex2") ;

return;

endcommand

When the user types

ex2

a window showing a selectable operation between two operands appears.
This window is created using the same steps as the previous tutorial.
However, it uses a few more widgets, the first of which is the uiTable ().
A table is used for laying out a number of other objects in regular rows and
columns.

tb = uiTable(wn, {columns=2}) ;

Xmath User Guide 9-18 ni.com

Chapter 9 Graphical User Interface

The keyword columns does two things:
e It sets the number of columns the table will have

» It specifies that the table will fill rows first

Widgets will be added across the table, one per column.

void = uiLabel (tb, {text = "Operand 1"});

creates a label containing text string, “Operand 1”.

void = uiSlider (tb, {varname = "opl", xmath="NewOperand",
xmathdrag="NewOperand", flags = "hdm", min = -1, max = 1})

creates a slider bound to the Xmath variable op1. Each time the user sets
the slider to a new value, and each time the slider is dragged, the variable
opl is updated and the Xmath callback NewOperand is called. (Similarly,
if the variable opl1 is set to a new value, the slider moves to the
corresponding position.) The flag hdm specifies that the slider is horizontal.
The Xmath variable is updated as the user drags the slider, and the
minimum and maximum of -1 and 1 are enforced (even if the Xmath
variable is set by the programmer to a value outside this interval).

void uiVarChoice (tb, {text="Operation",xmath="NewOperation",
varname = "operation", flags="H", items=["plus", "minus",
"times"], values=[1,2,311});

creates two entries in the table:
* A label containing the text “Operation”

. A box containing three radio buttons with the choices "plus™",
"minus", and "times" bound to the Xmath variable operation.

When the user selects one of these choices, the values 1, 2, and 3,
respectively, are assigned to the variable operation. Similarly, if the
variable is set to one of these values, the corresponding radio button is
set.

Whenever the user selects a new toggle button, the Xmath callback
NewOperation is called.

void = uiLabel (tb, {text="Operand 2"})

creates a label containing the text string, “Operand 2.”

void = uiSlider (tb, {varname = "op2", xmath="NewOperand",
xmathdrag = "NewOperand", flags = "hdm",
min = -1, max = 1})

© National Instruments Corporation 9-19 Xmath User Guide

Chapter 9 Graphical User Interface

void

xmathdrag =

Xmath User Guide

creates a slider bound to the Xmath variable op2. This slider is otherwise
the same as the first.

void = uiSeparator (tb, {colspan = 2});

draws a horizontal line in the row. The colspan = 2 keyword expression
causes it to occupy both columns in the table.

void = uiLabel (tb, {text="Result"})

creates a label containing the text “Result.”

uiSlider (tb, {varname = "result", xmath="NewOperand",
"NewOperand", flags = "bhdms",
readonly, min = -2, max = 2})

creates a read-only slider bound to the Xmath variable result. The user
cannot drag this slider because of the readonly keyword, but, whenever
the Xmath variable result is set to a new value, the slider changes
accordingly. The limits of this slider are -2 and 2.

When the user sets the Operand 1 slider to a new value, the variable op1 is
set to the new value, and the Xmath callback NewOperand is called. If the
new value is, for example, 0.75, these operations are identical to the user
typing the statements:

main.opl = 0.75;
ex?2 "NewOperand", "dontcare",1l;

The actual widgetname argument will be different, but this is not relevant
to the discussion.

This callback causes the following Xmath code to be executed:

<NewOperation>
<NewOperand>
if(main.operation ==)
main.result = main.opl + main.op2;

elseif (main.operation == 2)
main.result = main.opl - main.op2;

elseif (main.operation == 3)
main.result = main.opl * main.op2;

endif

return;

Based on the operation, the new result is computed. Since the variable
main.resultis bound to the bottom slider, the new value is automatically

9-20 ni.com

Chapter 9 Graphical User Interface
displayed when the variable is assigned. Similarly, when the user changes
the operation, the same Xmath code is called to compute the new result.

For additional examples and descriptions, see the MATRIXx Help.

Translating Version 5.X GUI Files to Version 6.X PGUI
Files

This section describes the two utilities for translating Version 5.X GUI files
to Version 6.X PGUI files, instructions on executing these scripts, details
on using the translator, and some minor limitations.

Overview

Due to the significant changes in the Xmath Programmable GUI (PGUI)
syntax in MATRIXx Version 6.X, the to60pgui utility has been created
to facilitate the transition of old graphical tools to the new syntax (refer to
the Anatomy of a GUI Tool section). This utility consists of a pair of Perl
scripts that convert the resource and MSC or MSF files from Version 5.X
syntax to the Version 6.X syntax.

@ Note MSC and MSF files are translated in place. Make sure you have a backup.

Execution

The easiest way to execute these Perl scripts is to copy them to a working
directory. Ensure that Perl is in your path and copy the tool to be translated
to that working directory. Then execute the main script with the following
command:

perl to60pgui.pl Mytool mytool.msc

where My tool is the X resource file used by mytool.msc. A resource file
is a collection of resource settings that describe the appearance of the
windows,

E Note The tool could also be an MSF in which case you provide the appropriate name and
extension.

This script modifies the original mytool.msc file (make sure you have
a backup) and creates a new file named mytool_build.msf from the
resource file. You can then compare the files and make any needed
modifications. After that you should be able to run the MSC as before.

© National Instruments Corporation 9-21 Xmath User Guide

Chapter 9 Graphical User Interface

Details

Xmath User Guide

The Perl script restopgui .pl converts the X resource file, Mytool, to an
MSF file in the new format. To run the resource translator restopgui .pl
independently, use the following syntax:

perl restopgui.pl Mytool
where Mytool is the X resource file.

This script creates a new MSF file with the name mytool_build.msf.

The MSc translator scans through an MSc file and changes any Version 5.X
GuiFunction() toa Version 6.X uiFunction() with the exception
of GuishellCreate() and GuiDialogCreate(). These functions
have no counterpart in the Version 6.X PGUI because there is no need to
create a shell separately from creating a window. However, in the old GUI
these calls caused the window and its children to be created, so they are not
just omitted from the new file. Instead they are changed to a call to an MSF
file that is generated from the tool’s X resource file. This call to the new

MSF file has the same result as calling GuiShellCreate() or
GuiDialogCreate () in that the window specified and its children are
created.

For example, in our Fourier tool a GuiShellCreate() call such as:

GuiShellCreate("fourier", "MainWin", "Fourier Tool",
"fourier tool");

becomes

Fourier_build("fourier", "MAINWIN", "Fourier Tool",
"fourier tool");

Notice that the second argument is converted to uppercase because the
second argument in the fourier_build.msf file is used as the fragment
label. The third and fourth arguments are optional as they are in
GuiShellCreate(). Refer to the Limitations section.

The resource file conversion results in a new MSF file named
resourcefile_build.msf. For example, Fourier becomes
fourier_build.msf. The resource file conversion is the biggest

task of the translator. It takes all of the X resource specifications and
creates a hierarchy of Xmath calls to build the desired user interface.
The commands in the resulting MSF file are grouped by window and
indented to show the hierarchy. Fragment labels separate the code
associated with each window so each window can be created as needed.

9-22 ni.com

Chapter 9 Graphical User Interface

Limitations

The PGUI translators have some minor limitations because some features
are not supported by PGUI or X resource settings need human intervention
to be properly assigned. More specifically, X resources set in a global
sense, such as a Motif class of widget, are not handled. Also, X resources
set to affect all children of a certain widget are not handled. Examples of
these are:

*MyTool*background: red

and

*MyTool*MainWin*background: redvisible

Specific X resources, such as the following, are not supported:

*MyTool*MyText .marginwidth: 4

In general, anything that cannot automatically be translated is set as a
comment using uiSetvalue. The generic comments appear in the
beginning of the MSF file and the more specific ones appear after the
creation of the widget in question.

Within an MSC, calls to GuiSetvalue() are not translated if they are
of the form

GuiSetValue (T, "resource block");

where resource block is one or more X resource settings to be
applied to the resource database. For both GuiSetvalue() and
GuiGetvalue(), if the resource block is not known, then the
command is not translated.

© National Instruments Corporation 9-23 Xmath User Guide

X Windows and Motif

This appendix introduces X Windows and the Motif window manager. If
you are not using Motif, much of the Motif material will still be useful to
you, as Xmath uses Motif

The material in this appendix gives general information that allows an
inexperienced X Windows or Motif user to use Xmath and X at a novice
level. However, it is not a replacement for X Windows documentation or
documentation appropriate to your window manager.

X Window System

What is X Windows? “The X Window System, commonly referred to as X,
is a network-based graphics window system that was developed at MIT in
19841

Xmath can be used with any window manager that runs as a layer over X
Windows. X is largely transparent from Xmath; usually, you only notice it
while logging in or out.

Your X installation can be very complicated. If you are unfamiliar with X,
you should consult the documentation or ask your system manager about
your installation.

You should know the answers to the following questions:

* Does your installation have an autostart procedure for X Windows, or
must you start X Windows manually?

* Ifyou start manually, what is the command to initialize X Windows at
your site? (Usually it is xinit.)

* Are X Windows, window manager, and Xmath available locally, or
must you access them across a network? If you are getting these
applications from a remote source, what special instructions apply?

! Quercia, Valerie & O’Reilly, Tim, The Definitive Guides to the X Window System, Volume 3: X Window System User’s Guide
(O’Reilly & Associates, Inc., 1988, 1989), p. 5.

© National Instruments Corporation A-1 Xmath User Guide

Appendix A X Windows and Motif

Starting X

X Terminology

Xmath User Guide

You should see your system manager to verify the correct way to start X at
your installation. The normal procedure for starting X is as follows:

1. Log in at the system prompt.
2. Type xinit.

This section defines some general terms this manual uses to direct your
interaction with Xmath windows and menus. For comprehensive
information, consult X Windows documentation or man pages.

Software Terms

Creating an environment for Xmath requires several types of software that
are usually transparent to you. They are mentioned briefly here so that you
have a point of reference if you see these terms in error messages, default
files, and so on.

The lowest-level software is the operating system—currently we assume
UNIX. On top of that you must have X Windows and a window manager
(such as Motif).

X Windows is a windowing system. A windowing system allows many
processes to exist simultaneously, each running in a different window. X
keeps track of input and output data for all windows.

A window manager is a client (an application) that describes how a window
looks and allows you to manipulate windows (move, resize, stack, and so

on). Xmath could be run without a window manager, but there would be no
borders, the windows couldn’t be moved or resized, and so on.

The final element is the server. In this context, the server communicates X
graphics instructions to the screen.

In general, X tells how a window is drawn, a window manager defines its
appearance and activity, and the server implements these instructions on
your graphics display.

A-2 ni.com

Appendix A X Windows and Motif

Mouse Terms

Refer to the Mouse Conventions section of Chapter 1, Introduction, for a
list of the mouse conventions. Some common mouse instructions are:

* click—Press and quickly release a mouse button. If click is used
without a button designation, MB1 is assumed. For example, “click the
root window.”

* double-click—Two clicks in quick succession. Double-click without
a button designation assumes MB1.

* drag—Hold down a mouse button while moving the mouse. This
action is used for movement and resizing. Release the button when the
desired result is obtained. Drag assumes MB1.

* press, push—““Press” or “push” can be used interchangeably with
“click MB1.” These terms are often used for buttons. For example,
“press the Lock button.”

Motif Window Manager

As discussed earlier, a window manager allows you to manipulate
windows. In theory, you should be able to use any window manager that is
compatible with X11 (refer to the System Administrator’s Guide for your
operating system; this documents UNIX window managers under which
Xmath has been tested). The window manager creates frames and is also
responsible for any window functions in X Windows and Xmath. The
graphics in this manual use standard Motif frames.

Motif Frame Components

The frame is basic to all windows. Figure A-1 shows an xterm and labels
each feature in the frame.

* The rectangular button shown in Figure A-1 activates the Default
Window Menu. This button has seven selections to change the
window’s appearance or position. These are discussed in the Default
Window Menu section.

© National Instruments Corporation A-3 Xmath User Guide

Appendix A X Windows and Motif

Title Bar —»

Default Window Menu Title Area Minimize Maximize

v ' vy

sxterm st

werms {21 }daw]

Xmath User Guide

Figure A-1. Window Frame

* The title area displays the name of the window. Click on this area (not
including the buttons), then drag to move the window.

e The title bar is the title area and the buttons.

¢ The Minimize button turns the window into an icon (a small
manageable graphic). To minimize (or iconify) a window, click MB1
on the Minimize button. The resulting icon has the same name as the
window. To bring the window back, click MB1 on the icon.

* The Maximize button enlarges a window to fill the screen (it is not the
opposite of Minimize). To maximize a window, click MB1 on the
Maximize button. To return the window to its former size, click the
Maximize button again.

Default Window Menu

To view this menu, click MB1 over the rectangle. You can see the selection
box move as you run the mouse up and down the menu. Click MB1 to
select. If an item is not available, it will be grayed out. If you don’t want to
make a selection, move the mouse off the menu and release the mouse click
in a neutral area (the root window, for example).

e Restore returns a minimized or maximized window to its original state.

e Move enables you to position a window anywhere you wish. The
cursor will attach to the center of the window.

* Size resizes the window.
* Minimize reduces a window to an icon.
e Maximize enlarges a window so that it fills the entire screen.

* Lower puts the current window in back of any window(s) sharing the
same space.

A4 ni.com

Appendix A X Windows and Motif

* Close terminates the client. In Xmath it is preferable to use File»Quit
for the Xmath Commands window or File»Close Window from other
Xmath windows, rather than closing from the Default Window Menu.

For instructions on making menu selections using keystrokes, refer to the
Using Menus Without the Mouse section.

Frame Buttons
Minimize
Reduces the window to an icon; double-click or select Restore from the

Default Window Menu to return it to original size. Has the same effect as
Minimize on the Default Window Menu.

Maximize

Enlarges the window to fill the entire screen; click the Maximize button
again, or select Restore from the Default Window Menu to restore it to
original size. Has the same effect as Maximize on the Default Window
Menu.

Window Operations

These operations can be accomplished without using the Default Window
Menu. Move the cursor over a window’s frame. Notice the changes in the
cursor. The cursor symbols are shown in Figure A-2.

X

>< A large X is visible when the cursor is over the root window.
I The "I-beam" appears when the cursor is over an area that accepts text.

For resize, the cursor changes to a symbol appropriate to the selection:

s

k2l
Ly

4

b

If an edge is selected, the chosen edge is displayed.

If a corner is selected, the chosen corner is displayed.

For movement, changes to a fleur.

For menus, points opposite direction from selection arrow.

Figure A-2. Cursor Symbols

© National Instruments Corporation A-5 Xmath User Guide

Appendix A X Windows and Motif

Resize and move require you to drag:

* resize—To change the size in one direction, place the cursor over an
edge, then drag to the desired dimension. To simultaneously change
two dimensions, place the cursor over a corner, then drag to new size.

* move—To move a window, place the cursor in the title area, then drag
to the desired location.

A window is raised (brought to the front) whenever you click on its Title
area. The only way to lower a window (send it to the back) is from the
Default Window menu.

Mouse Focus and the Cursor

When you move the mouse, the cursor moves on the display. cursor
position governs input focus (that is, where keyboard input appears). That
is, the cursor determines the active window.

In Motif (and most other window managers) there are two ways to give
input focus. For simplicity, let’s describe them as point and point-and-click.
The point method means that input is directed to the window under the
cursor. For point-and-click, you must position the cursor over the target
window, and then click before you have focus.

There are several cursor symbols to become familiar with. The cursor
symbol changes according to the context, as described in Figure A-2.

Consult your window manager documentation or see your system manager
for more information.

Copying and Pasting with Motif

Xmath User Guide

You may find it easier to cut and paste available text (such as pathnames,
and so on) instead of retyping. Your machine’s selecting, copying, and
pasting methods are valid for both X Windows and Xmath.

The standard Motif method is:

1. Point to the desired text and drag until everything you want is
highlighted. Avoid highlighting extra characters.

2. Point to the destination and click MB2.

As an alternative to dragging, use one of the following three mouse-click
selection sequences. To select a word, point anywhere within the desired
word and double-click. To select a line, point anywhere on the line and click

A-6 ni.com

Appendix A X Windows and Motif

three times. To select all text in an Xmath window, point and click four
times.

These click sequences are often used in the Xmath Commands window to
copy text from the log area and paste it into the command area.

Using Menus Without the Mouse

The Motif window manager makes it possible to use Xmath menus via the
keyboard. To make a menu selection you normally place the cursor over the
menu, drag down MB1, and release when the desired selection is
highlighted. If you look at the Commands window menu bar, you will see
that the first character of each pull-down is underlined.

1. To invoke a menu, make sure the proper window has focus.

Press the <Meta> key (refer to Table 1-5 for equivalents across
platforms), followed by the character underlined in the menu bar. For
example, press <Meta-e> to invoke the Edit menu. Notice that although
the underlined letter is capitalized, only lowercase letters will work
(this is a Motif limitation). Use the up and down arrow keys to travel
up and down the available options. Press <Return> to invoke an option.

2. Once you are in the menu bar, use the left and right arrow keys to move
along the menu bar.

3. If a submenu is available, an arrow points to the right at the end of the
entry. Cursor up or down to the submenu and press the right arrow key
to open the submenu. To go to a top-level menu, keep pressing the left
or right arrow keys.

4. Press <Esc> or <F10> to dismiss the latest menu.

The above option works with any Xmath window.

Using a Motif File Selection Dialog

Figure A-3 shows a typical dialog that uses the Motif file selection dialog.
Most dialogs have the same fields, but some actions may not require all
fields. The instructions below show UNIX file paths.

1. The first step is usually to make a selection from the Directories, the
column on the left. Either click a selection and click Filter, or
double-click on the selection. You may need to use the scrollbars to
bring the name in view.

Alternatively, type in the Filter field to alter the search parameters.
However, you must have a file specification, even if it is only the

© National Instruments Corporation A-7 Xmath User Guide

Appendix A

X Windows and Motif

Files meeting the filter criteria are displayed in the Files field. To

search for the same parameters in another place, double-click on a new
entry in the Directories field. Notice that both columns can be scrolled
to view long names.

e Exec Fle Selection

Filter

|fhnmefdawnftest[*.ms

Directories Files
/hone fdawn/ test/ . ControlExecs.ms
fhome fdasm/ test/ .. Filter.ms

IndexList.ms
LQGcontroller.ms
LeadNetwork.ms
ParanVar.mns
RobotTraj ectory.ms

SIMOsystem.ms

Selection

|fhnwe/dawnftest{\

Figure A-3. Exec File Selection Dialog

Changing Resource Parameters

wildcard *. To start the search, either press <Return> or click the Filter
button at the bottom of the dialog box.

To make a selection from the Files field, either click on an entry and
press <Return>, or click an entry and click OK, or double-click the
file. Notice that the selected file will be displayed in the Selection field.

If you want to change Xmath’s appearance (color, and so on), you must be
familiar with how X Windows works. The way Xmath looks is defined in a

resource file, which contains hundreds of settings. Xmath looks for a

resource file that isolates resources that directly affect Xmath (refer to

Table A-1); this file often resides in your home directory and is read when
X windows is started. If you are on a network, you may not have a copy in
your home directory.

Xmath User Guide

A-8

ni.com

Appendix A X Windows and Motif

Table A-1. Recouse File Default Location

ISI Top Level Resource File

UNIX SMTXHOME $XMATH/etc/Xmath

The $XMATH/etc/Xmath file contains default settings for Xmath that you
may want to change or override. Do not modify the $XMATH/etc/Xmath
file. Instead, use a local version in your home directory to specify any
changes. Your version only needs to contain settings that differ from the
defaults. Example A-1 shows a sample Xmath file.

Example A-1 Sample Xmath File

1A local Xmath file must reside in your home directory. This file

lchanges window sizes and has them appear staggered on the right side

lof the screen:

! COMMAND WINDOW
*main.geometry:
*main*log.rows:
*main*command.rows :

! GRAPHICS WINDOW
*graphicsW.geometry:

! HELP WINDOW

535x695-5+85
32
7

545x450-13+93

*helpW.geometry: -21+101
*helpW*text.rows: 40
! DEBUGGER WINDOW
*debuggerW.geometry: -29+109
*debuggerW*text.rows: 30

Example A-1 deals with window dimension and placement only, but other
common changes might be changes to the key bindings or window colors.
To make your own Xmath file, complete the following steps:

1. Copy xmath from its default location (refer to Table A-1) to your
home directory.

2. Use a text editor to alter the local Xmath file.

If you are changing the key bindings to a style other than emacs, the
settings will be commented out with exclamation marks (!); make sure
these are removed in your personal file.

© National Instruments Corporation A-9 Xmath User Guide

Appendix A X Windows and Motif

3. After making changes, delete all unchanged portions.

Your changes will be implemented the next time you invoke Xmath.
When you start Xmath, the Xmath file in the default installation
location is read first, followed by the Xmath file in your home
directory. This is why duplications should be deleted; startup will be
slower if they exist.

Remapping Your Keyhoard

Example A-2

Xmath User Guide

Because the keyboards used with X workstations vary so much between
platforms, vendors, and countries, you may at some point wish to change
the key bindings Xmath uses.

Changing Key Bindings in X

A machine-specific key code is associated with each key on your keyboard.
Within the X Window system, you can use keysyms (key symbols) to make
this machine-specific code produce whatever key-binding code you need.

To get the complete list of key codes for all the keys on your keyboard, type:

xmodmap -pk
xmodmap gives output similar to that shown in Example A-2.

(UNIX) If xmodmap is not in your path, contact your system administrator.

Sample KeySym Output

There are 2 KeySyms per KeyCode; KeyCodes range from 8
to 132.

KeyCode KeySym (Keysym)
Value Value (Name)
61 0x0051 (Q)
62 0x0057 (W)
63 0x0045 (E)
64 0x0052 (R)
65 0x0054 (T)
66 0x0059 (Y)
67 0x0055 (U)
68 0x0049 (1)
69 0x004f (0)
70 0x0050 (P)
71 0x005b (bracketleft) 0x007b (braceleft)

A-10 ni.com

Appendix A X Windows and Motif
72 0x005d (bracketright) 0x007d (braceright)

The KeyCode value in the first column is machine-specific and cannot be
changed. However, you can change the Keysym value globally (so that the
key’s function is changed in all applications) or locally.

For example, some keyboards do not include the []{ } characters, which are
used widely within Xmath. On the SunOS and Solaris platforms, if you
want to bind the [{ characters to the F1 key and the]} characters to the F2
key, go to the command line and type:

xmodmap -e "keycode 12 = bracketleft braceleft"
xmodmap -e "keycode 13 = bracketright braceright"

This means F1 will type “[” and Shift-F1 will type “{”, and so on. Notice
that you should modmap to keys you do not use, rather than to
alphanumeric or punctuation keys. Also, the key code values may be
different on different platforms. For example, on the HP platform, F1 is key
code 16 and F2 is key code 24.

These xmodmap settings will be lost when you log out, so if you want them
to be a standard part of your environment, save the settings to a file and call
this file up as part of your . login file.

Changing an Xmath Key Binding

To get the list of all key bindings local to Xmath, look at the default Xmath

file. There you can see that the emacs style keyboard translation settings are
the default.

Notice that there are two translations—XmTextField.translations
and *XmText .translations. Text field translations are active in dialog
boxes (where all input is appended on a single line) such as the Load dialog.
Text translations, (the longer list) are active in multiline environments such
as the commands window command area and the debugger edit area. For
this reason a key may have different assignments. For example, look at the
assignments for Key<Home>. In the Text field translation it is set to
beginning-of-1line. In the text translation it is set to
beginning-of-file.

1. Create afile called Xmath in your home directory (this can be the same
file discussed in Table A-1).

2. Go to the operating system and use xmodmap to identify the KeySym
name for the key you are rebinding.

3. Locate the key binding to assign to the chosen keycode.

© National Instruments Corporation A-11 Xmath User Guide

Appendix A X Windows and Motif

4. To change a binding, put a line of the following form in your personal
Xmath file:

*defaultBinding:yourKeyBinding:<Key>yourKeySymName

5. Save your Xmath file and restart Xmath to see the change.

Sizing and Placing Windows

Xmath User Guide

X Windows uses a geometry option to size and place windows. The
standard geometry string is:

width X height * xoffset £ yoffset.

As shown in Example A-1, there are full geometry strings for the
Commands window and the Graphics window (dimensions are specified in
pixels). You can size and place the Graphics window in one step, because
it is a single window.

It takes two steps, however, to do the same for the Commands window,
(which handles text in three areas). For it, you specify the number of
character columns (the default is 80), then specify the number of rows of
text you want to see in each area. Xmath builds a window that reflects your
changes. Consequently the width X height dimensions are unknown. This
means the dimensions shown in the example may not necessarily work on
your machine, because the true dimension of a window is affected by
factors Xmath does not control, such as border width and shadowing
settings specified for your window manager. If the sizes do not agree with
what X Windows knows, it may use the defaults instead; or you may see
that the size was changed as you desired, but the window is not in the place
you want it.

To find out the true window size, restart Xmath with the new settings. When
the window appears, go to an xterm and type xwininfo.

When you get a crosshairs cursor, click on the window you need to control,
and notice the width and height dimensions.

Notice that in the sample on Example A-1 only the placement dimensions
need to be supplied for windows other than the Commands window; your
window manager, may, however, require a full geometry. See your

X Window documentation for a full description of this process. Edit

your Xmath file so that it contains the correct dimensions for the
windows you want to move. Save your file and restart Xmath.

A-12 ni.com

Xmath HP-GL Driver

Xmath supports Hewlett-Packard Graphics Language (HP-GL) hardcopy
devices. You can choose to either print to a file (that is, save the output in a
file), or print to a printer. To write an HP-GL file, go to the graphics window
and select File»Save to print to a file or File»Print to print to an output
device, or use the hpgl keyword in the HARDCOPY command.

E Note The HPGL driver does not support hidden surfaces. For 3-dimensional plots, you
must remove the surfaces by suppressing the face keyword (! face or face=0).

Supported Devices

All devices supporting the HP-GL language (for example, HP plotters
models HP7550A, 7470, 7475, 7580, 7585, and 7586) should be able to
plot the . hp file created by Xmath. The following plotters have been tested:
HP7440A, HP7575, and the ENCAD SP2800 plotter.

Setting the Aspect Ratio

Xmath assumes a paper size of 8.5 by 11 inches on the HP7440A,
corresponding to a plotting area of 25 by 18.1 cm. The aspect ratio of the
hardcopy output might change if you use a different plotter or paper size.
You can use the Print Scale options in the Print dialog box to change the
aspect ratio of the plot.

Color Pen Specifications

Xmath expects the following color pens to be in the specified stalls in the
pen carousel, as indicated in Table B-1.

Table B-1. Color Pen Specifications

Pen Number Expected Color
1 black
2 blue

© National Instruments Corporation B-1 Xmath User Guide

Appendix B Xmath HP-GL Driver

Xmath User Guide

Table B-1. Color Pen Specifications (Continued)

Pen Number

Expected Color

3

green

cyan

red

magenta

yellow

o | N|laa|lwv| s~

digitizing sight

Xmath attempts to map plot colors to these eight colors.

B-2

ni.com

Xmath for MATLAB Users

Xmath is a numerical problem-solving application similar to MATLAB®
and other numerical software. While many of the constructs for storing and
manipulating data are similar to MATLAB, you will find that Xmath
extends both the amount of information stored with a given object and the
number of actions a command or function can take, depending on the type
of data passed. The Xmath work environment retains the configurable
nature you are accustomed to in MATLAB, but syntax changes have been
made to make Xmath more consistent, intuitive, and flexible.

This appendix describes changed features, explains the motivation for
changes, and in general helps smooth your transition from MATLAB to
Xmath. The Syntactic Differences section describes basic changes in the
punctuation and syntax used in the software. The Object Differences
section describes objects that were represented as vectors or matrices in
MATLAB but are represented as full-fledged data types in Xmath. The
Interpretation Differences section describes differences that affect
environment settings, data representations, and programming issues. The
Comparison of Frequently Used Commands section provides a comparison
between Xmath and MATLAB of frequently used commands. Moreover,
tables illustrating equivalent expressions in MATLAB and Xmath appear
throughout this appendix.

Syntactic Differences

Continuation

This section details Xmath features that have the same functionality as
MATLAB features, but are invoked in a slightly different way.

If a MATLAB function cannot fit onto a single line, it can be split over
multiple lines with two adjacent periods to signal a continuation.

In Xmath, a continuation is seldom needed; if an unmatched parenthesis or
brace exists, or the line ends in a comma, Xmath assumes that the
expression will continue. Aside from this, the Xmath command area can
take a line of nearly infinite length (2731-1). Most users break their
instructions for readability rather than necessity. Xmath uses an ellipsis (...)

© National Instruments Corporation c-1 Xmath User Guide

Appendix C Xmath for MATLAB Users

Output Display

Xmath User Guide

when an explicit continuation is required. Because strings must be
complete on a line, they are the most frequent candidates for continuation.
Table C-1 shows examples of command continuation in MATLAB and
Xmath.

Table C-1. Command Continuation Examples

MATLAB Xmath
plot(1:10, .. plot (1:10, {!grid,
'b") title="An Easy Plot"})
title('An Easy Plot') plot (x,

{title="A very"+...
" long string"})

In MATLAB, variables are by default displayed to the MATLAB
Command window as soon as they are created; output is suppressed if a
semicolon is placed at the end of the expression that generated the variable.

Xmath’s default display mode behaves similarly. This mode can be
explicitly set with the command set display on.

Alternatively, you can specify set display off. In display-off mode,
any variable created with an expression containing an equality sign is not
displayed to the Xmath Commands window log area. For example,
A=sin(pi) does not generate any output in the commands window log
area if the display is Off. If you want to display a value as soon as it is
created, place a question mark (?) at the end of the expression. If you want
to see the value of a previously-created variable, type its name; because the
name is not an expression (does not contain an equality sign), its value is
displayed. Table C-2 shows examples of output display in MATLAB and
Xmath.

Table C-2. Output Display Examples

Xmath (set
MATLAB display on) Xmath (set display off)
A = SIN(PI); A = sin(pi); A = sin(pi)
A = SIN(PI) A = sin(pi) A = sin(pi)?
A A A

c-2 ni.com

Matrix Punctuation

String Punctuation

Logical Not

© National Instruments Corporation C-3

Appendix C Xmath for MATLAB Users

Matrices are created and entered in the same basic manner, with one
important difference—all matrix elements in Xmath must be separated by
commas, as shown in Table C-3, whereas commas are optional in
MATLAB.

Table C-3. Matrix Punctuation Examples

MATLAB Xmath

A= [1-12;-4 3 12] A= [1,-1,2;-4,3,12]
or
A= [1,-1,2;-4,3,12]

When you specify matrix elements separated only by spaces, it is unclear
whether the element specification [1 — 1] represents two separate numbers
or the single number O (the result of the arithmetic operation 1 — 1 =0).
Because matrix elements in Xmath must be explicitly delineated by
commas, the value of a given element is always clear both to you and to the
Xmath interpreter. You still use semicolons and new lines to mark the end
of a matrix row.

To avoid confusion with the transpose operator, Xmath uses double
quotation marks rather than the single quotation marks used in MATLAB.
Table C-4 illustrates.

Table C-4. String Punctuation Examples

MATLAB Xmath

str = 'This is a string' str = "This is a string"

The treatment of string variables is discussed in more detail later in this
appendix.

In MATLAB the operator denoting a logical not is a tilde (~); in Xmath it
is an exclamation point (!). To express an inequality relation in Xmath, use
<> (the greater-than and less-than signs); in MATLAB ~= (tilde-equality
sign) denotes inequality. Table C-5 shows the logical not operators for
MATLAB and Xmath.

Xmath User Guide

Appendix C Xmath for MATLAB Users

Comments

Table C-5. Logical Not Operators

MATLAB Xmath

if ~(A > 0) if '(A > 0)
disp('A is negative') display "A is negative"
end endif

A ~= B A <> B

The single-line comment symbol has been changed from % in MATLAB to
in Xmath. Unlike MATLAB, Xmath supports block comments, which are
delineated with # { at the beginning and } # at the end. Instead of beginning
each line of a section of comments with #, you can place the # { marker at
the beginning of the first comment line and the } # marker at the end of the

last comment line. Table C-6 shows comment examples for MATLAB and
Xmath.

Table C-6. Comment Examples

MATLAB Xmath

o

This is a comment. # This is a comment.

o° o° o° o°

o

Should you feel the need

to describe what you have
written at greater length
you have to comment each
line individually in MATLAB.

#{ This is a block comment. Anything
inside the markers is interpreted as
a comment. Most programming

languages support this construct.}#

Function Names

Xmath User Guide

Xmath tends to preserve the full names of functions performing a given
operation. Where the Hessenberg-decomposition and random-value
generation functions in MATLAB are HESS () and RAND(),
respectively, the Xmath equivalents are hessenberg () and random().
These names are less cryptic and more descriptive to the new user.

For your convenience, however, Xmath also recognizes a function called
using only the first four letters of its name, or as many more as needed to
specify the function uniquely. For example, you can call random() as
rand(), but would need to use polyn() to distinguish
polynomial () from polyfit().

C-4 ni.com

Appendix C Xmath for MATLAB Users

In addition, you can take advantage of Xmath’s alias command to alias
lengthy function names or command statements to shorter ones of your
choosing. For example:

alias sdon set display on

Refer to the Useful Aliases section for a listing of aliases that you might
want to have predefined in a startup file.

RAND, ONES, ZEROS, and EYE

Another syntax change concerns the matrix-building functions RAND (),
ONES(), ZEROS(),and EYE(). These functions operate in one of two
ways depending on the type of input provided. They either create a random,
ones, or identity matrix of the same size as the input, or a matrix of the
dimensions specified in the input. This causes some ambiguity when the
function argument is a scalar—should the output matrix also be a scalar, or
should it be a square matrix whose dimensions have the same value as the
scalar?

When these functions are used with one argument in Xmath, the output
matrix always has the same dimensions as the input object. Table C-7

illustrates.
Table C-7. Examples With RAND
MATLAB Xmath

RAND(1) random(4) # (a 1x1
matrix)

RAND (4) random(4,4) # (a 4x4
matrix)

RAND(2, 3) random(2,3) # (a 2x3
matrix)

IF, FOR, and WHILE

In executable files, MathScript functions, commands, the IF...END,
FOR...END, and WHILE...END loops, and conditional structures have
been modified slightly. Conditional statements starting with If in Xmath
should be closed with endI £, rather than END. Because functions and
commands are case-insensitive, any capitalization scheme will work with
these constructs. Similarly, Xmath For and while loops terminate with

© National Instruments Corporation C-5 Xmath User Guide

Appendix C Xmath for MATLAB Users

endFor and endwhile, making it much easier for a user reading
MathScript to decipher which ending statements close which loops.
Table C-8 shows examples of conditional statements in MATLAB and
Xmath.

Table C-8. Conditional Statement Examples

MATLAB Xmath

FOR variable=vector DO, For variable=vector
commands ; commands

END endFor

WHILE expression DO, While expression
commands ; commands

END endWhile

IF relationl THEN, If relationl
commands ; commands

ELSEIF relation2 THEN elseIf relation2
commands commands

ELSE, else
commands ; commands

END endIf

Pure Imaginary Number

The variable representation of the pure imaginary number—the square root
of —1—is jay in Xmath, following engineering standards, as opposed to i
in MATLAB.

Object Differences

Strings

Xmath User Guide

Several objects that were represented as vectors or matrices in MATLAB
are represented as full-fledged data types in Xmath.

Xmath’s real character strings can be manipulated more easily than strings
implemented in MATLAB, which are essentially vectors of ASCII values.
For example, in Xmath you can append one string to another one of any
length using the + operator. You can also create matrices where elements
are all strings of differing sizes. This is a handy way to create a table where
text entries are neatly aligned.

C-6 ni.com

Appendix C Xmath for MATLAB Users

Table C-9. String Examples

MATLAB Xmath

STR='A string' str = "A string"

Polynomials

In Xmath, polynomial coefficients and roots are stored as one of two types
of polynomial objects instead of vectors. When you create a polynomial,
both the roots and the coefficients of that polynomial are stored internally
for use in future computations for greatest efficiency and accuracy.

Table C-10 gives examples of polynomial creation in MATLAB and
Xmath.

Table C-10. Polynomial Examples

MATLAB Xmath
% Creating a polynomial by | # Creating a polynomial by
% listing its # listing its
coefficients: coefficients:
Cp = [1 4 4] cp = makepoly([1,4,4])
% Creating a polynomial by | # Creating a polynomial by
% listing its roots: # listing its roots:
RP = POLY([-2 -21) rp = polynomial([-2,-21)

Dynamic Systems

Xmath stores dynamic systems as single objects containing all state-space
or numerator/denominator information, as well as any sampling rate
information. In MATLAB you need to keep track of different commands
for building different types of systems. In Xmath, everything is grouped in
the system object. A brief comparison of these representations is shown in
Table C-11.

© National Instruments Corporation C-7 Xmath User Guide

Appendix C Xmath for MATLAB Users

Table C-11. Dynamic Systems Examples

MATLAB Xmath
% For statespace systems # Creating a system from
sys = ss(A, B, C, D); # matrices A, B, C, and D:

o sys = system(A,B,C,D)

% For transfer function
sys = tf(num, dem); # Same command for
transfer fn

sys = system(num, dem);

The system(), makepoly(), and polynomial () functions are far
more flexible, and can encompass more information, than their MATLAB
equivalents. See the MATRIXx Help for a complete reference on these
functions.

Interpretation Differences

The differences described in this section are by-products of Xmath’s more
complete user environment. In general, these are conceptual changes that
involve learning new terms rather than word-for-word syntax changes.

Environment Commands

Xmath User Guide

Xmath has a highly customizable user environment. Many environment
settings in Xmath replace functionalities that existed as individual
commands in MATLAB. These include creating session and command
diaries, changing display format in the commands window, setting random
number distribution and generator seeds and more. In Xmath, settings are
treated as parameters that are changed with the SET command; each
parameter is a keyword. Help for the SET command describes many new
capabilities not included in MATLAB. Read the MATRIXx Help to
understand the full range of settings available. A setting remains in its
current mode until it is explicitly changed. To see the status of a particular
environmental setting, you can use SHOW. For example:

show echo # (default is off)
set echo on

The settings discussed below map closely to MATLAB capabilities you are
probably familiar with.

Cc-8 ni.com

Appendix C Xmath for MATLAB Users

Creating Diaries

Once a diary file has been created, it collects input from your Xmath or
MATLAB session until it is closed. The presence or absence of a diary is
thus a mode of operation. The DIARY () function used to start a diary
session in MATLAB has been replaced with the set sessiondiary and
set commanddiary syntax shown in Table C-12.

Table C-12. Creating Diaries

MATLAB Xmath
% Creating diaries # Creating diaries
DIARY 'stamen' set sessionDiary="sdname"
DIARY off remove sessionDiary
% MATLAB can't
% keep a set commandDiary =
% command diary "cdname"
remove commandDiary

Random Seeds and Distribution

The MATLAB RaAND () function is ambiguous because it returns an output
like a standard function when called with purely numeric input, but also
takes string input and uses it to set the distribution mode and initial seed. In
these cases there is no logical function output. Xmath’s handling of these
functionalities through the SET command is more consistent, as shown in
Table C-13. The Xmath random() function always returns purely
numeric output.

Table C-13. Random Seeds and Distribution Examples

MATLAB Xmath
% Setting random # Setting random
$ number seed # number seed

randn ('SEED',100) set seed 100

% Setting distribution # Setting distribution
randn ('NORMAL ') set distribution normal

The default seed is 0 and the default distribution is uniform.

© National Instruments Corporation c-9 Xmath User Guide

Appendix C Xmath for MATLAB Users

Number Formatting

The Xmath equivalent to the MATLAB commands SHORT, SHORT E, LONG,
LONG E, HEX, BANK, COMPACT, LOOSE and RAT iS set format
formatname. An advantage of the Xmath syntax is that it allows a wider
range of formatting options without the need to add a new command each
time. Table C-14 gives an example.

Table C-14. Number Formatting Examples

MATLAB Xmath
% Set number format # Set number format
long set format long

[}

s Or

format long

The Xmath format names are: compact (the default format),
engineering, fixed, long, longe, scientific, short, and shorte.
Note that the format can also be set interactively using the
Options»Format menu option in the Commands window.

Note that £ixed is slightly different in that you must set fwo parameters;
you must specify the format name f£ixed, and the precision:

set precision 4;set format fixed

The precision is the number of characters allowed. Remember that both
settings remain the same until you reset them; if you use the previous
settings and then set another format, the precision will still be 4 the next
time you SET format to fixed.

User-Defined Functions and Commands

While MATLAB allows you to define optional arguments to a user-defined
function or command, delineating them with single quotation marks,
Xmath offers related but much richer ways to extend the user input to a
MathScript function or command.

In Xmath, optional arguments and keywords are specified following the
required argument list when the function is declared.

* Keywords must be delineated with curly braces { }. They can take any
values and be specified in any order, but the name of the keyword must
always be used so that the Xmath interpreter knows which keyword is
being sent. If you are writing your own function or command using
keywords, you should provide default values for any keywords where

Xmath User Guide Cc-10 ni.com

Appendix C Xmath for MATLAB Users

values are not user-supplied. Refer to the Command and Function
Calling Syntax section of Chapter 3, MathScript Basics, for more on
function syntax.

* Optional arguments can be specified by their value or variable name
alone, and are assigned to the optional variables in the order that they
are listed. When a function is called with optional arguments, they are
listed directly after the required arguments and are not enclosed in
curly braces.

In both MATLAB and Xmath, you can define functions and commands that
override existing functions and commands, including intrinsic ones. In
Xmath, you can place the function or command in the search path or use
the DEFINE command to determine which one you want to use (refer to the
Using User-Defined MSFs and MSCs section of Chapter 6, MathScript
Programming); in MATLAB, a user-defined function has priority over a
function supplied by MATLAB.

plot()

In Xmath, plot () is afunction that returns an output variable (a graphics
object, as discussed in the Using the plot() Function section of Chapter 4,
Graphics). This variable can be subsequently replotted to regenerate a plot,
kept to form a background or template for subsequent plots, and augmented
via interactive changes to the graphics.

MATLAB option strings are replaced in Xmath by plot () keywords.
Referring to the online Help will give you a good idea of the scope of
plot () parameters that you can set in Xmath, but Table C-15 illustrates

briefly.
Table C-15. Plot Examples
MATLAB Xmath
PLOT(1:10, 'b") plot(1:10, {line_color=4}) # or
plot(1:10,{line_color="Blue"})

Transpose Operators

The transpose operator is interpreted differently in Xmath. MATLAB offers
only one transpose operator, the apostrophe (‘). When used with a complex
matrix, the transpose operator performs a Hermitian, or complex-conjugate
transpose.

© National Instruments Corporation c-11 Xmath User Guide

Appendix C Xmath for MATLAB Users

Convolve

Xmath offers two transpose operators:

e The Xmath apostrophe operator (') performs a regular transpose,
leaving complex values untouched.

e The Xmath complex-conjugate transpose operator is the
asterisk-apostrophe (*').

For purely real matrices these two transpose operators perform the same
function.

Table C-16 illustrates Xmath and MATLAB equivalents.

Table C-16. Transpose Operator Examples

MATLAB Xmath
A = [1+1i 142*1i; A = [l+jay,l+2*jay;
3-6*1 249*1] 3-6*jay,2+9*jay]
A' A*
CONJ (A") A

The conv() function, which performs polynomial and vector
convolution in MATLAB, has been replaced by the convolve () function
and the * operator in Xmath. convolve () is equivalent to CONV ()
when used on two vectors or two polynomial objects; however, the *
operator performs exactly the same operation on polynomials as
convolve () does and is easier to use.

Series and Parallel

Simulation

Xmath User Guide

The MATLAB functions SERIES () and PARALLEL () have been
replaced by the Xmath operators * and + respectively, when these operators
are used with dynamic systems. You will find the Help and the Using
Operators with Dynamic Systems section of Chapter 5, Data Objects and
Operators useful for a quick but thorough overview of the extended role
operators play in Xmath.

The MATLAB continuous- and discrete-time simulation primitives LSIM
and DLSIM have been replaced with the system*PDM construct. The
parameter-dependent matrix [PDM] is a highly useful data type unique to
Xmath. It allows you to store multiple sets of matrix information (input
values) that are dependent on a parameter [time]. For a complete

c-12 ni.com

Appendix C Xmath for MATLAB Users

explanation of PDMs, refer to the Parameter-Dependent Matrix (PDM)
section of Chapter 5, Data Objects and Operators. This construction finds
the system response to the input values contained at each point in the PDM.
The syntax inherits from terminology frequently used in the linear systems
field: Y = H*U, where U represents system input, H represents the
mathematical model of the system’s dynamics, and Y is the output of the
system. This is a brief description. For more information, refer to the Time
Response section of Chapter 5, Data Objects and Operators.

Note that where MATLAB generally offers two separate functions for
discrete- and continuous-time system representations, Xmath only offers
one. This is because sampling-rate information (which is by default zero,
thus describing a continuous system) is stored with the system object itself.
For example, the Xmath function bode (), which encompasses all the
functionality of the MATLAB functions BODE () and DBODE(),
automatically checks whether your system is continuous or discrete and
then performs the appropriate operations in either case. You can write
similarly flexible MathScript functions.

Eval (Executable Strings)

Xmath offers a facility (similar to the MATLAB EVAL () function) that
allows you to create strings containing valid Xmath commands and then
execute the contents of the strings. It can be used for creating macros or
customizing functions. You can create strings directly or append them
using the + operator, then use Xmath’s EXECUTE command. The only
constraint is that the string must form a complete Xmath statement by itself
and be terminated by a semicolon or question mark to indicate its end.
Table C-17 illustrates.

Table C-17. Executable String Examples

MATLAB Xmath
x = pi x = pi;
s = 'y = sin(x) ;"' s = "y = sin(x)?"
eval (s) execute s

As mentioned in the String Punctuation section, MATLAB does not allow
string concatenation. In Xmath, the + operator is overloaded to perform
string concatenation. In addition, numbers can be converted to strings using
the string () function.

© National Instruments Corporation C-13 Xmath User Guide

Appendix C Xmath for MATLAB Users

Executable Files

Finding Files

Xmath User Guide

Executable files (often referred to as script files in Xmath) function similar
to script.mfiles in MATLAB. A small change is that the names of these
files must terminate with the extension .ms in Xmath. The syntax to
execute files is slightly different as well, as shown in Table Executable
Filename Examples, for an executable file called testexec.ms in Xmath
and testexec.min MATLAB.

Table C-18. Executable Filename Examples

MATLAB Xmath

TESTEXEC execute file="testexec"

Xmath has the ability to use files that are not in the working directory. It
does this in a more flexible manner than that employed in MATLAB. In
MATLAB, the MATLABPATH environment symbol defining the accessible
directories is generally set up before you start your MATLAB session. The
MATLABPATH could be changed during a session using the MATLABPATH
command, but it had to be completely changed at once. In Xmath you can
alter the directory search path at any time during your Xmath session, and
you can add or remove paths separately, without having to redefine the
entire path each time a modification is desired.

SET path is used to specify a list of directories that Xmath will
automatically search to find MathScript functions and commands (MSFs
and MSCs). You can use the corresponding REMOVE path command to
remove paths you no longer want or need.

If you write an MSF in one of the directories in the path, you can call it
immediately from within Xmath. When you call a function you have
written, Xmath searches your current directory and all the directories in
your path until it finds a function file where name matches the function you
called. Upon finding the file, Xmath compiles it to a low-level operational
code and it runs immediately. If a function or command file is not in a
directory listed as one of your path directories, you need to define it
explicitly and specify the directory where it resides.

Table C-19 compares these facilities in Xmath and MATLAB.
The operating system commands shown are for a version of
MATLAB running under a UNIX operating system.

Cc-14 ni.com

Appendix C Xmath for MATLAB Users

Table C-19. Examples of Finding Files

MATLAB Xmath
pwd show directory
'cd /home/new set directory =

" /home/new"

'echo SMATLABPATH % or show path
matlabpath
matlabpath ("~me/myfuns") set path = "~me/myfuns"
(no analogous feature) remove path 2

In MATLAB, the exclamation-point notation (!) can be used to send out an
operating-system command and display its output. Xmath offers an
analogous oscmd function, as shown in Table C-20.

Table C-20. Operating System Command Examples

MATLAB Xmath

'ls -1 oscmd("ls -1")

Debugging Files (on UNIX systems)

MATLAB’s debugging facility consists primarily of keyboard commands.
Xmath provides an interactive debugger for MathScript files. It can be used
in either of two modes:

* The Xmath debugger is automatically invoked when you try to run a
function containing a syntax error. The offending statement is
highlighted. You can fix the mistake, save the file, and rerun the
function, all from the debugger window.

* The second debugging mode is useful when you have written a
function and want to halt execution at some point to examine variable
values. To do this, type debug functionName in the Xmath
Commands window. The debugger will then appear when you call the
function, allowing you to step through any portion of the MSF one
statement at the time, or to set breakpoints and jump to them. You can
use the Commands window to look at local variable values or evaluate
expressions.

For more on the debugger window, refer to the Using the Xmath Debugger
section of Chapter 6, MathScript Programming.

© National Instruments Corporation C-15 Xmath User Guide

Appendix C Xmath for MATLAB Users

Save and Load

Xmath User Guide

The commands for saving and loading data also differ somewhat.
MATLAB offers flags that enable you to save data in either a
MATLAB-written binary format or a short or long ASCII format. Xmath’s
SAVE command has a number of keywords associated with it to determine
what type of format to use to save the data. Xmath’s LOAD command can be
used to load in data saved by Xmath or MATRIXx (FSAVE-format data).
Table C-21 compares the commands.

Table C-21. Save and Load Examples

MATLAB Xmath
SAVE 'filename' VAR1 save varl var2...
VAR2... file = "filename" {keyword}

The keyword is optional and
may be set for binary, ASCII,
or MATRIXx formatted saves

LOAD 'filename' load "filename"

No equivalent feature | load a b "filename"

In Xmath, as in MATLAB, if a list of variables to be saved or loaded is
omitted, all variables are saved or loaded. Xmath data files terminate with
the suffix .xmd (MATLAB uses the .mat suffix). MATLAB always loads
all the data stored in a .mat file; Xmath can load either all or part of the data
stored in a . xmd file.

Xmath’s 1oad command cannot directly load MATLAB data; however, as
described in Chapter 8, External Program Interface, you can create a
linked executable (LNX) that can. $XMATH/src/matload.c is a sample
LNX that loads MATRIXx 3.X format, which is similar to older MATLAB
formats, into Xmath data objects. This file is commented to assist you in
making any changes. To make a local copy of matload. c in the Xmath log
area and create a local copy, go to the command area and type:

copyfile "S$XMATH/src/matload.c"

Loading In External Data (read)

Loading in data generated by external programs other than Xmath,
MATRIXx, and MATLAB is also possible. If you have data written to a
non-Xmath file by another program and you know the size and type of the
data in the file, you can use the read () function to read from the data file
into an Xmath matrix variable. The input arguments you pass to read ()

C-16 ni.com

Appendix C Xmath for MATLAB Users

describe how large the matrix should be, the format of the data in the
external file, and how many bytes of data (if any) you choose to skip before
reading data into the target variable. This allows you to create data files that
are easily readable by a variety of programs, not necessarily just Xmath.
This function is described in more detail in the Xmath Help, and the
$XMATH/demos directory contains sample files that you can use to test
read().

Writing Data to an External File (print, fprintf)

In addition to the Xmath-formatted SAVE command, Xmath provides two
other functions that are useful for writing data to external files—print ()
and fprintf().

print () writes any Xmath data object to an external file you specify. The
data is written exactly as it appears when displayed in the Commands
window log area.

fprintf () converts scalar numeric values to a string representation, then
writes them to the file you specify. A wide range of format specifiers
(identical to the ones used for the C-language fprintf () function) can
be used to specify field width, zero-padding, tabs, and new lines, among
other formatting options.

Useful Aliases

You may want to define the following aliases in a startup . ms file so that
you can use familiar names for the following Xmath commands. Some
examples follow.

alias clear delete
alias ss2tf numden
alias tf2ss abcd

The MATLAB function names 1yap () and conv() invoke their Xmath
counterparts lyapunov() and convolve(), but the Xmath functions
have a different set or order of inputs. Along these lines, Xmath has both a
rootlocus() and rlocus() function. rlocus() is the one
analogous to MATLAB rootlocus (). To create an alias enter the
following:

alias rlocus rootlocus

© National Instruments Corporation C-17 Xmath User Guide

Appendix C Xmath for MATLAB Users

Xmath versions do not necessarily take exactly the same inputs in exactly
the same order as their MATLAB namesakes. When in doubt, refer to the
Xmath Help.

You are, of course, not limited to these aliases. Xmath commands and
functions tend to be as descriptive as possible without being excessively
long. As you acquire expertise with Xmath, you will probably want to alias
other frequently used commands, as well. To obtain a list of all the aliases
currently set up in an Xmath session, type alias on a line by itself in the
command area.

Notice that aliases can cause some problems; for example, if you have
clear defined as an alias for delete, you will not be able to use clear
as a keyword in a function. We recommend that you use aliases to speed
your transition from MATLAB to Xmath, and then learn the Xmath syntax
as you go along.

Comparison of Frequently Used Commands

Table C-22 summarizes some of the most frequently used Xmath and
corresponding MATLAB commands. Both Xmath and MATLAB
commands are case insensitive.

Table C-22. Xmath and MATLAB Summary of Frequently Used Commands

Xmath Command

MATLAB Command

or Operator or Operator Description

cond (A) cond (A) Finds the condition number.

convolve or * conv Performs polynomial and vector
convolution.

cos (x) cos (x) Calculates the trigonometric cos
function.

bode bode or dbode The Xmath function bode checks
whether your system is continuous or
discrete and then performs the
appropriate operation.

det (A) det (a) Finds the determinant.

eig(a) eig(A) Computes eigenvalues and
eigenvectors for real and complex
square matrices.

Xmath User Guide C-18 ni.com

Appendix C

Table C-22. Xmath and MATLAB Summary of Frequently Used Commands (Continued)

Xmath Command
or Operator

MATLAB Command
or Operator

Description

execute

eval

Xmath and MATLAB versions
perform similar functions. Refer to
the MathScript Batch Files section of
Chapter 3, MathScript Basics.

execute file

file.m

Executable files are similar. Refer to
the MathScript Batch Files sectio nof
Chapter 3, MathScript Basics.

In MATLAB, execution of a script
can be done directly from the script’s
name. In Xmath, execution must be
done with the execute () function.
(This prevents ambiguous code or
accidental execution.)

exp (x)

exp (x)

Computes the exponent of (x).

For matrix exponentiation,
MATLAB requires the format
expm (A).

eye (A)

eye (A)

Generates the identity matrix.

GuiPlotGet

ginput

Get the current pointer selection and
coordinates.

hessenberg

hess

Converts a matrix to Hessenberg
form.

hilbert (n)

hilb(n)

Creates a Hilbert ill-conditioned
matrix.

hilberttransform No MATLAB equivalent { Apparently this command is
available but not documented. }

inv(A) inv(a) Finds the inverse matrix.

load load Xmath and MATLAB versions
perform similar functions. Refer to
the Saving and Loading Data section
of Chatper 3, MathScript Basics.

log (x) log (x) Computes natural logarithm.

© National Instruments Corporation

c-19

Xmath User Guide

Xmath for MATLAB Users

Appendix C Xmath for MATLAB Users

Table C-22. Xmath and MATLAB Summary of Frequently Used Commands (Continued)

or Operator

Xmath Command

MATLAB Command

or Operator

Description

command

makepoly No corresponding Create a polynomial from its
command coefficients. MATLAB reformats

polynomials by using the
corresponding vector with its
coefficients.

norm norm Calculates the norm of a vector,
matrix, or PDM (Xmath only).

No corresponding null The NULL (A) command in

command? MATLAB calculates an orthonormal
basis for the null space of A.

ones ones Xmath and MATLAB have some
minor syntactical differences (refer
to the MATRIXx Help).

ortho orth Used as ortho (A) to give the
orthonormal basis for A.

pinv pinv Used as pinv (A) to give the
pseudoinverse for A.

plot (0:10) plot (0:10) The basic plot command is the same,
but the keyword syntax is different.

polyfit polyfit Both commands fit a polynomial, but
the Xmath command uses a PDM as
input. PDMs are not supported in
MATLAB.

polynomial poly Create a polynomial from its roots.

polyval polyval Evaluates a polynomial.

No corresponding quads Estimates an integral numerically.

quad -dblgquad

random

rand

Generates random numbers or
matrices.

residue (sys)

residue (b, a)

Expands a partial fraction.

roots (p)

roots (p)

Returns the roots of a polynomial.

Xmath User Guide

C-20

ni.com

Appendix C Xmath for MATLAB Users

Table C-22. Xmath and MATLAB Summary of Frequently Used Commands (Continued)

Xmath Command
or Operator

MATLAB Command
or Operator

Description

round

round

Round matrix values to the nearest
integer.

rref

rref

Transforms a matrix into reduced
echelon form.

save

save

Xmath and MATLAB versions
perform similar functions. Refer to
the Saving and Loading Data section
of Chapter 3, MathScript Basics).

schur

schur

Calculates the Schur factorization.

set format name

format name

short, short e, long,
long e, hex, bank,
compact, loose, rat

Xmath format names are compact

(the default), engineering,
fixed, long, longe, scientific,
short, and shorte

set seed num

rand('seed', num)

Setting the random number seed. For
MATLAB 5, rand (' State), 3j)
gives the jth state. rand (' State',
s) makes the actual state equal to s
(state = s).

sin (x)

sin (x)

Calculates the trigonometric sin()
function.

sgrt (x)

sgrt (x)

Calculates the square root of x.

zZeros

zZeros

Generates a matrix of zeros.

Point preceding operator means
elementwise operation.

Transpose operators. The operators
on the left (' and .") are for regular
transpose and The operators on the
right are for complex-conjugate
transpose.

parallel

The overloaded Xmath + operator
performs the same function as the
MATLAB parallel() function.

© National Instruments Corporation

c-21

Xmath User Guide

Appendix C

Xmath for MATLAB Users

Table C-22. Xmath and MATLAB Summary of Frequently Used Commands (Continued)

Xmath Command
or Operator

MATLAB Command
or Operator

Description

* series The overloaded Xmath * operator
performs the same function as the
MATLAB series() function.

... # % Indicates a comment. MATRIXx

or supports block comments that span

multiple lines. The second # is only

needed for a multiple-line comment.

#

"string" 'string' MATRIXx uses double quotes to
avoid confusion with the transpose
operator.

A <> B A~=B Logical NOT EQUAL operators.

‘A ~A Logical NOT operators.

x = A\b x = A\b Computes the least squares

approximation (Ax =b).

Xmath User Guide

c-22

ni.com

Xmath to Mathematica Interface

Overview

This appendix describes how to set up and use the Xmath to Mathematica
Interface.

Mathematica is a powerful symbolic manipulation program from Wolfram
Research, Inc. (WRI). It performs operations such as differentiation and
integration symbolically, achieving exact general solutions to many
problems. This capability can be coupled with Xmath’s powerful numerical
analysis and design capabilities, resulting in a very strong joint analysis
tool.

Xmath was developed with an open architecture, which simplifies
communication with other programs and processes. The interface between
Xmath and Mathematica is based on Xmath’s LNX (link external)
capability and Mathematica’s Mathlink facility. When Mathematica is first
invoked from Xmath, Mathematica’s Mathlink facility establishes a
process running Mathematica, and maintains a link to that process for all
subsequent calls from the same Xmath session, allowing Xmath the use of
intermediate variables in Mathematica. Furthermore, the Mathlink facility
allows Mathematica to be invoked on a different computer than the Xmath
host. This is completely transparent to the user.

When a valid Mathematica command is entered in the Commands window
command area, a separate Mathematica process computes the answer
(commands that produce graphics should never be used). The resulting text
output that would normally appear in Mathematica is converted to an
Xmath string object that is displayed in the Commands window log area. If
the answer is a numeric matrix, it can be passed directly to Xmath. Matrices
can also be passed from Xmath to Mathematica. All Mathematica warnings
and other messages are transmitted to Xmath and displayed in the
Commands window message area.

For a more detailed explanation of the LNX process, refer to Chapter 8§,
External Program Interface. The source for the Xmath to Mathematica
interface can be found in $XMATH/src/mathlink.c.

© National Instruments Corporation D-1 Xmath User Guide

Appendix D Xmath to Mathematica Interface

Setup

These instructions apply to setting up Xmath, and the Xmath to
Mathematica interface on an Xmath host. If you encounter problems
related to Mathematica functionality, contact Wolfram Research, Inc.
Their Web site is http: //www.wri . com, their e-mail address is
support@wolframi . com, and their Technical Support phone number in
the USA is 217-398-6500.

To use the Xmath to Mathematica interface the following conditions must
be met.

e Mathematica must be installed and accessible to you, the Xmath user.
The Mathematica version must be 3.0 or later.

* Only UNIX versions of Xmath and Mathematica are supported.

* Your UNIX execution path must include the path to your Mathematica
installation directory. For example,

set path = ($path /home/Mathematica/Executables/SPARC)

where the above path points to the Mathematica installation at your
site.

Because the Mathematica interface LNX must be linked with the local
Mathlink libraries on your target system, Integrated Systems cannot deliver
an executable interface. However, we have provided all of the necessary
routines to quickly create an executable interface LNX.

To allow all users access to the Xmath to Mathematica interface, a system
administrator must perform the steps in the Setting Up the Xmath to
Mathematica Interface for All Users section. Users who do not have system
privileges can perform the steps in the Creating a Local LNX (Single User)
section to create a local LNX.

Setting Up the Xmath to Mathematica Interface for All Users

Xmath User Guide

These instructions assume the SMTXHOME environment variable was
properly set at installation time to the path to the root MATRIXx product
family installation.

1. Change directory to $MTXHOME/platform/xmath/src.
2. Edit the mma . mk file as follows:

a. Define the XMATH variable to be
$ (MTXHOME) /platform/xmath.

D-2 ni.com

Appendix D Xmath to Mathematica Interface

b. Replace PATH_TO_1ibML.a with the path to the Mathlink
libraries. Ror example:

* /Mathematica/AddOns/MathLink/DevKits/SPARC/Comp
ilerAddOns

3. To create mmalnx.1lnx, run the makefile as follows:

make -f mma.mk

4. Copy mmalnx.lnx to $MTXHOME/platform/xmath/modules/
mathematica.

All Xmath users will now be able to use the Xmath to Mathematica
interface.

Creating a Local LNX (Single User)

Although it is preferable to have a system administrator set up the Xmath
to Mathematica interface, a user with no root privileges can set up an LNX
for his personal use. To use the Mathematica interface without modifying
the Xmath source directories, the user can copy SMTXHOME/ platform/
xmath/src/mma.mk andmathlink.c to a local directory, and then
perform steps 2 and 3 described in the Setting Up the Xmath to
Mathematica Interface for All Users section. However, before using the
interface, the user must tell Xmath not to look in the modules directory for
the LNX. To do this type the following Xmath commands in the Xmath
Commands window command area:

undefine mma
define mma {directory="path_to_Inx"}

For future usability, these lines can be placed in your personal Xmath
startup.ms file, along with a set path command that points to the
location of your local mmalnx.1nx file, so that if you start Xmath from
another directory you will still be able to use the LNX. For example:

set path="path_ to_Ilnx"

Refer to the startup.ms (on UNIX systems) section of Chapter 3, MathScript
Basics, for more on startup.ms, and the Search Paths section of
Chapter 6, MathScript Programming.

© National Instruments Corporation D-3 Xmath User Guide

Appendix D Xmath to Mathematica Interface

Syntax

Xmath provides three functions, which perform the following tasks:

1. Send a command to Mathematica (a Mathematica session is started if
one does not exist):

mma ("valid_Mathematica_cmd")

mma is actually an accepted abbreviation for mmaexecute.
2. Transfer a matrix from Xmath to Mathematica:

mmaput ("mma_matrix_name", xmath matrix_name)
3. Transfer a matrix from Mathematica to Xmath:

xmath_matrix_name = mmaget ("mma_matrix name")

Note that you can assign the output of a Mathematica command to a
Mathematica variable and an Xmath variable in one step:

xmath_var = mmaget ("var=Mathematica_numerics_cmd")
4. Close the Mathematica session:

mma ("quit")

The lowercase string "quit" causes the LNX to close the

Mathematica process. However, the LNX stays resident and active. If

you issue another Mathematica command, the existing LNX will
restart Mathematica. When you exit Xmath, the LNX will be killed.

Passing Xmath Data to Mathematica

Xmath User Guide

You can pass scalars, vectors, or matrices from Xmath to Mathematica.
These forms all qualify as matrix objects in Xmath.

Mathematica assumes all incoming values are matrices and places them in
nested Lists. For example, the Xmath matrix [1,2;3, 4] is represented as
{{1,2}, {3,4}} when passed to Mathematica, and the Xmath scalar 7.2
is represented as {{7.2}}.

Xmath vectors should always be passed to Mathematica as row vectors. If
a column vector is passed, the resulting nested list will not be as readily
useful. After a row vector is passed to Mathematica, it can be extracted
from anested List to a single List using x=x [[1]]. Scalars can be extracted
from a nested List to a true scalar using s=s[[1,11].

D-4 ni.com

Appendix D Xmath to Mathematica Interface

Passing Mathematica Data to Xmath

Lists or nested Lists can be passed to Xmath from Mathematica. The Lists
can only contain numerical data, never symbolic data. In the case of nested
Lists, the component List lengths must be equal so that Xmath can convert
the List to a matrix.

A Mathematica symbolic matrix can be converted to a numerical equivalent
using the command x=N[x], and the result can then be passed to Xmath.
For example:

mma ("x = Table[EllipticK[i], {i, 0, 2/3, 1/6}1")
x=mmaget ("N[x]")

To pass a scalar to Xmath it must first be placed in a List of length one. This
can be done using the command a={a}.

Examples

The following Xmath inputs and Mathematica responses demonstrate how
data is passed between the applications.

When we ask for the Mathematica version, Xmath receives a string:
mma ("$Version")

ans (a string) = SPARC 3.0 (April 26, 1997)

The following call to Mathematica asks for a numeric result with a
precision of 40.

str=mma ("N[EulerGamma, 40] ")

str (a string) =
0.5772156649015328606065120900824024310422

We can convert this simple string to a number in Xmath and compare the
displays. First, we set the format to 1onge, the longest output Xmath can
display. Then we can convert the string to a scalar with makematrix:

set format longe
s=makem (str)

s (a scalar) = 5.772156649015329e-01

Symbolic output (strings containing superscripts or a mixture of text and
numbers) can be viewed in the Xmath Commands Window log area, but not
used as Xmath inputs:

mma ("Integrate[x”2 Sin[x]"2,x]")

© National Instruments Corporation D-5 Xmath User Guide

Appendix D Xmath to Mathematica Interface

ans (a string) =
3 2
4 x - 6 x Cos[2 x] + 3 Sin[2 x] - 6 x Sin[2 x]

Create a matrix in Xmath and send it to Mathematica:

set format compact
m=[pi,42,0;7,tiny,6;17,huge, .02]

m (a square matrix) =

3.14159 42 0
7 2.22507e-308 6
17 1.79769e+308 0.02

mmaput ("m",m)

You can use Mathematica functions to manipulate the matrix and pass
numeric versions of the matrix manipulations back to Xmath:

mRev=mmaget ("mRev=N[Reverse[m],9]");
mRot=mmaget ("mRot=N[RotateLeft[m,2],9]");

Display the matrices (in compact form):

mRev?

17 Inf 0.02
7 2.22507e-308 6
3.14159 42 0

mRot?

mRot (a square matrix) =

3.14159 42 0
17 Inf 0.02
7 2.22507e-308 6

For more examples, execute the following files
$XMATH/demos /mathematica/mma.ms and
SXMATH/demos/mathematica/elliptic.ms.

Xmath User Guide D-6 ni.com

Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

Support—Online technical support resources at ni . com/support
include the following:

Self-Help Resources—For immediate answers and solutions,
visit the award-winning National Instruments Web site for
software drivers and updates, a searchable KnowledgeBase,
product manuals, step-by-step troubleshooting wizards, thousands
of example programs, tutorials, application notes, instrument
drivers, and so on.

Free Technical Support—All registered users receive free Basic
Service, which includes access to hundreds of Application
Engineers worldwide in the NI Developer Exchange at
ni.com/exchange. National Instruments Application Engineers
make sure every question receives an answer.

Training and Certification—Visit ni . com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni . com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni . com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation

E-1 Xmath User Guide

Index

Symbols

,9-1

-, 3-4

- 3-6

1,3-3, 3-5, 3-6, 3-17
%, 3-8

&, 3-3, 3-5, 3-6

* 3.4,3-6,3-8

*% 3.5,3-6
*3-4,3-6

+, 3-4, 3-6

+ operator, 2-25
-5

¥ 3-4,3-6

ke 03.5.3-6
*.,3-5,3-6

. 3-14

A, 3-4,3-6
J.,3-5,3-6

\, 3-4

A, 3-5

Z,3-5,3-6
/,3-4,3-6

: (variable arguments), 6-29
: in regular vector specifier, 2-26
: index operator, 3-6
5 3-13,3-23

<, 3-3,3-5,3-6

<=, 3-3, 3-5, 3-6
<>, 3-3, 3-5,3-6,7-6
=, 3-5

==, 3-3, 3-5, 3-6
===, 6-35

>, 3-3, 3-5,3-6

© National Instruments Corporation

>=, 3-3,3-5
?7,3-23,3-27

@, @str, @int, @:1, @str:l, @str:p,@ @,

@@:p, 1-23
[], 2-25, 2-26, 3-5
\, 3-4
A 3-5
#,3-14
#{ 1#,3-14
(), 3-5
{1},3-5,3-17
l, 3-3, 3-5, 3-6
’,2-26, 3-4, 3-6

A

abcd, 5-48

abort Xmath (Ctrl-\, UNIX), 1-9
advanced topics, 6-29

alias, 3-16, 3-26

AllocateList, 8-10
AllocateMatrix, 8-6
AllocateNull, 8-10
AllocateStringMatrix, 8-7

ans, 2-3, 3-10

apostrophe operator (), C-12
argn, 6-29

argv, 6-30

arrays, C versus FORTRAN, 8-37
ascii, 5-51

assignment statement, 3-1
asterisk-apostrophe (*”°), C-12
autocompile, 3-23

axes, 4-26

Xmath User Guide

Index

background LNX, 8-2, 8-33
function assignment syntax, 6-33
terminating, 8-36

batch file, 3-27
creating, 3-29, 3-30
running, 3-30

beep, 6-21

behavior
GUI objects, 9-5

binary operators, 3-4

breakpoint
remove, 6-26
set, 6-24, 6-26
show, 6-26

breakpoints, 6-26

button
radio, 9-5
toggle, 9-5

C

C language
arrays versus FORTRAN, 8-37
LNX function file format, 8-3, 8-4
resident functions, 8-40
cascade menu, 9-5
channels, 5-28, 5-39, 5-41
char, 5-51
check, 5-48, 6-17
class
variables
computed, 7-4
optional, 7-4
required, 7-4

clear

logarea, 1-17
click, 4-51, A-3
client, A-2

Xmath User Guide -2

colon (%)
in regular vector specifier, 2-26
index operator, 3-6, 5-8, 5-9, 6-29
color map
current, 4-15
using your own, 4-16
colorind function, 4-4
column vector, 2-26, 5-9
comma (,), 5-5
command
area, 1-17, 2-2
editing text, 1-19
recall, 1-22
declaration, 6-3
diary, 3-30
intrinsic, 2-11, 3-15
syntax rules, 3-16
using, 2-11
Commands window, 1-14
comment, 2-4, 3-9
add via dialog, 3-11
partition, 3-9
variable, 3-9
commentof, 3-9
comments, 2-4
multiple lines (#{ }#), 3-14
single lines (#), 3-14
comparator, 3-3
complex
conjugate transpose ("*), 3-4
matrix, 5-3
number, 5-3
concatenate, 5-5, 5-50, 5-53
concatenation
lists, 5-53
matrix, 5-4
PDM, 5-35
strings, 5-50

ni.com

connection

parallel, 5-45

series, 5-45
continuing Xmath command lines, 3-14
contour plot, 4-46
convert using check, 5-48
copy, 2-15
copying and pasting text

in Motif, A-6

within Xmath, A-6
Ctrl-\, 1-9
Ctrl-Break, 1-9
Ctrl-c, 1-9

D

data structure
et_list, 8-10
et_matrix, 8-5
et_null, 8-10
et_pdm, 8-7
et_string, 8-6
data type
list, 8-10
matrix, 8-5
null, 8-10
PDM, 8-7
string, 8-6
dbx, 8-39
debug, 6-24
off, 6-27, 6-28
set, 6-26
debugger window, 2-39, 6-22
debugging mode, 6-24
setting breakpoints, 6-26
setting watchpoints, 6-27
debugging an LNX, 8-39
declaration line, 6-2, 6-3, 6-5

© National Instruments Corporation -3

Index

default values, 6-6
DEFINE, 6-10
#define, 8-13
defTimeRange, 5-49
DeleteAny, 8-10
DeleteList, 8-10
DeleteMatrix, 8-6
DeleteNull, 8-10
DeletePDM, 8-9
DeleteString, 8-7
delsubstr, 5-52
demo
debugger, 2-40
graphics, 2-23
guidemo, 2-41
leadlag, 9-1
diagnostic tools (NI resources), E-1
diagonal, 5-12
diagonal matrix, 5-12
dialog, 9-6
modal, 9-6
diary
command, 3-30
session, 3-32
directory
pathnames, specifying in Xmath
Command area, 1-17
set, 1-7, 3-18
show, 3-18
directory, 6-34
discretize, 5-48
DISPLAY, 5-51
display environment variable, 3-23
distribution, random, 3-23
documentation, NI resources, E-1
domain, 2-34, 5-21, 5-23, 5-32
double-click, A-3
drag, 4-51, A-3

Xmath User Guide

Index

drivers (NI resources), E-1
dynamic system, 5-41, C-7
indexing, 5-46
operators, 5-45
size, 5-44
state-space form, 5-42
transfer function form, 5-42, 5-43

E

echo
set, 3-30
show, 3-27
editing text in Xmath, 1-19
ellipsis, 3-14, C-1
environment variable
expanding in script files, 3-25
set, 3-22
XMATH_PRINT, 3-27, 3-28
eps, 3-9
ERASE, 4-4, 4-48
erase, logarea, 1-17
err (permanent variable), 3-9
error
codes, 8-43
handling, LNX, 8-11, 8-15
error, 6-18, 6-20
et_list, 8-10
et_matrix, 8-5
et_null, 8-10
et_pdm, 8-7
et_string, 8-6
EVAL, C-13
examples (NI resources), E-1
executable string, 3-27
execute, 3-26, 3-27, 3-31
exist, 6-16

Xmath User Guide -4

exponentiation, 3-5
expression, 3-2
extended-selection list, 9-5
eye, 5-13, C-5

F

face_color, 4-36

face_style, 4-36

fg_color, 4-36

file selection dialog, 1-17, A-7

filenames, specifying in Xmath Command
area, 1-17

find, 2-27, 6-21

find variable, 3-12

fonts, 4-29

for, 3-14, 6-14, C-5

format, numerical display, 3-24

FORTRAN, 8-38

FORTRAN LNX, 8-37

fprintf, 3-21

ftnlnx, 8-38

functions
intrinsic, 3-15
MIMO, 3-17

nonresident, 8-40
resident, 8-40
syntax rules, 3-16
using, 2-10

void, 6-6, 6-7

G

general simulation, 2-37
get, path, 3-25
getchoice, 6-19

getline, 6-18

ni.com

goto, 6-16
graph object, 4-8
bind to variable, 4-9, 4-56
graphical user interface. See GUI
graphics window, 2-13, 4-1, 4-49
colors, 4-16
grids, 4-28
grip, 1-13
GUI
Help menus, 9-1
objects, 9-5
tools
developing your own, 9-1
using, 9-1
guidemo, 2-41

H

HARDCOPY, 4-5
hardcopy (graphics), 4-57
HARDCOPY command, 4-57
Help
xmath
Windows, 1-9
help
messages, 9-6
technical support, E-1
window, 1-23
xmath
UNIX, 1-8
hessenberg, 5-14
Hessenberg matrix, 5-14
history. See recall
huge, 3-9

icon bar, 4-51
iconify, A-4
identity matrix, 5-13
if, 3-15, 6-15, C-5

© National Instruments Corporation -5

Index

improper transfer function, 5-42
impulse, 5-49
independent parameter, 5-23
index, 5-52, 6-21
list, 5-7, 5-53, 5-54, 6-21
operator, 7-11
indexing
dynamic systems, 5-46
functions, 6-21
matrices, 2-27, 5-7
PDMs, 2-36
Inf, 3-9
initial, 5-49
initializer function, 7-2
input names, extracting, 5-48
instrument drivers (NI resources), E-1
interrupt
Ctrl-Break, 1-9
Ctrl-c, 1-9
intrinsic functions, 3-15
ISIHOME, 1-4

J

Jay, 3-9, C-6

K

keep, 2-15
key bindings

changing, 1-22

default, 1-20
keyboard, remapping, A-10
keywords, 3-17, 4-9

assigning default values, 6-6
KnowledgeBase, E-1
Kronecker product, 3-5

Xmath User Guide

Index

L

label, 6-16
leadlag demo, 9-1
length, 5-50
licenseinfo, 1-11

line

feed, 1-18, 2-3, 5-4
styles, 4-18
widths, 4-18

list, 9-5

extended-selection, 9-5
multiple-selection, 9-5
object, 2-37, 5-53
single-selection, 9-5

list, 5-53
LNX

Xmath User Guide

background
function assignment syntax, 6-33
mode, 8-2, 8-33
terminating, 8-36
windows client, communicating
with, 8-44
building and calling, §8-24
C function format, 8-3, 8-4
data type. See data type
debugging with dbx, 8-39, 8-41
definition, 8-1
FORTRAN, 8-37
function
communicating with Xmath, 8-12
sample, 8-22, 8-29
functions, 8-11
AllocateList, 8-10
AllocateMatrix, 8-6
AllocateNull, 8-10
AllocateStringMatrix, 8-7
DeleteAny, 8-10
DeleteList, 8-10
DeleteMatrix, 8-6
DeleteNull, 8-10

-6

DeletePDM, 8-9
DeleteString, 8-7
WrapMatrix, 8-6
WrapPDM, 8-9
WrapString, 8-7
WrapStringMatrix, 8-7
XmathIPCgetc, 8-45
XmathIPCgeti, 8-45
XmathIPCgets, 8-45
XmathLoad, 8-19, 8-20
XmathSave, 8-19
handling aborted, 8-43
include file, required, 8-5
interfacing Xmath with
Mathematica, D-1, D-2, D-3
limitations on passing variables, 7-15
loading MATLAB data, C-16
makefile, 8-24
nonresident functions, 8-40
program, sample, 8-2, 8-34
prototype, 8-3
resident functions, 8-40
speeding execution for MSOs, 7-11
string data type, converting to, 8-7
UCI comparison, 8-1
undefining, 8-28
user function structure, 8-2, 8-4
USRI signal handler, 8-40
utility, 8-2
version compatibility, 8-5
load, 1-11, 3-19, C-16
log area, 1-16
clear, 1-17
logical, 3-3
logspaced vector, 2-26, 5-10
loop, 3-14
for, 6-14
if, 3-15
if, 6-15
while, 6-14
lower triangular matrix, 5-14

ni.com

makecontinuous, 5-48
makefile, 8-24, 8-27
for an LNX program, 8-24, 8-27
template, 8-24, 8-27
makematrix, 5-36, 5-51
converts strings to numbers, 6-19
makepoly, 2-29, 5-19
markers, 4-19
Mathematica to Xmath Interface, D-1
MathScript, 2-38, 3-1
files, 3-26
batch, 3-27
execute, 3-27
format, 6-4
function. See MSF
object. See MSO
programming, 6-6
punctuation, 3-13
scoping rules, 6-7
search paths, 6-8
MATLAB
data, using LNX to load, C-16
to Xmath translator
aliases, C-17
syntax difference, C-1
matload.c, C-16
matrix, 5-3
building, 2-25
brackets, 5-3
commas, 5-3
line feed, 5-3
semicolons, 5-3
concatenation, 5-4
data type, 8-5
diagonal, 5-12
Hessenberg, 5-14
identity, 5-13
indexing, 2-27, 5-7
operators, 5-5, 5-6

© National Instruments Corporation -7

Index

punctuation, 5-3

square, 5-10

string, 2-24

symmetric, 5-11

Toeplitz, 5-13

triangular, 5-14
MATRIXx Help, 1-4
MATRIXXx, block diagram, 9-4
menu

bar, 1-13

cascade, 9-5

pulldown, 9-5

selection from keyboard, A-7
message area, 1-23
Meta key, 1-14
MIMO, definition and representation, 2-31
mma, D-4
mmaget, D-4
mmaput, D-4
modal dialog, 9-6
mouse

click, A-3

double-click, A-3

drag, A-3

instructions, A-3

press, push, A-3

selecting text

by clicking, 1-19, A-6
by dragging, 1-20, A-6

move, 4-35

graphic objects, 4-51

window, A-4, A-6
MSC, 6-2

building, 6-4

command declaration, 6-3

example, 6-12, 6-13

file format (figure), 6-5

inputs, 6-2

inputs (syntax), 6-3

scoping rules, 6-7

Xmath User Guide

Index

user-interface functions, 6-18

variable arguments, 6-29
MSF, 6-1

building, 6-4

calling syntax, 3-15

file format (figure), 6-4

function declaration, 6-2

help, 6-2

inputs, 6-2

optional block comment, 6-2

scoping rules, 6-7

user-interface functions, 6-18

variable arguments, 6-29
MSO, 7-1

defining, 7-3

index operators, 7-9

initializer function, 7-3

member entities, 7-15

object instantiation, 7-2

operator overloading, 7-7

scoping (nested objects), 7-5

speeding execution with LNXs, 7-11

type declaration, 7-6
multiple-selection list, 9-5

names, 5-32, 5-48

names, specifying directory pathnames and
filenames, 1-17

naming rules, 3-2

NaN, 3-9

National Instruments support and
services, E-1

negation operator (!), 3-17

new partition, 3-6, 3-7

NI support and services, E-1

nomenclature, 1-3

nonresident, 8-12

null, 3-9

numden, 5-48

Xmath User Guide -8

0

ones, C-5
operators, 3-4
and PDMs, 5-37
indexing, 2-27
matrix, 5-6
precedence, 3-6
with dynamic systems, 5-45
with polynomials, 2-29
optional arguments, assigning default
values, 6-6
oscmd, 2-8, 3-18
expanding path names, 3-25
output
keywords, 6-6
names, extracting, 5-48

P

PARALLEL, C-12
parallel connection, 5-45
parameter—dependent matrix. See PDM
parentheses, 5-7
partition, 3-6, 3-7, 3-9

changing via variables window, 3-11

delete, 2-6, 3-8

handling, 2-5

lock, 3-12

name, 3-2

new, 2-5

set, 2-5, 3-24

show, 2-6, 3-6

size, 3-11

viewing variables, 2-6, 3-11
partition, definition, 2-5
pasting selected text in Motif, A-6

ni.com

path, 6-9
adding (set path), 6-9
overriding (define), 6-10
removing (remove path), 6-9
set, 6-9
specifying, 1-17
viewing (show path), 6-9
path name, expanding in script files, 3-25
pathnames, 3-25
pause, 6-20
PDM, 5-21
allocate for LNX or UCI, 8-8
channel, 5-28, 5-39
concatenation, 5-35
convert to matrix, 5-36
creating, 5-23, 5-24
dimensions, 5-29
domain,extracting, 5-32
independent parameter, 5-23
indexing, 5-29, 5-32
substitution, 5-34
modifying, 5-34
names, 5-23, 5-32
extracting, 5-32
operators, 5-37
using with functions, 5-39
pdm, 5-24
PDM, definition, 2-34
pdmplot function, 4-5
period, 5-48
permanent variables, 3-9
pi, 3-9
plot, 2-12, 4-1, 4-5, 4-9
complex data, 4-5
copy, 4-23
datestamp, 4-58
drawing tools, 4-53
edit graphics window, 4-58
font sizes, 4-59
icon bar, 4-58

© National Instruments Corporation -9

interactive tools, 4-51
keep, 4-23
timestamp, 4-58
toolbar, 4-51
zoom, 4-53

plot keywords
animate, 4-33
axes, 4-26
axisfix, 4-26
bg_color, 4-36
colors, 4-15
contour, 4-46
defaults, 4-10
edge, 4-36
face, 4-36
face_color, 4-36
face_style, 4-36
fg_color, 4-36
grid, 4-28
hold, 4-39
increments, 4-27
keep, 4-24
keepsubplot, 4-24
labels, 4-14
legend, 4-14, 4-58
light, 4-38, 4-58
line, 4-18
marker, 4-19
move, 4-35
polar, 4-47
position, 4-35
projection, 4-34, 4-58
reset, 4-39, 4-58
rotate, 4-34
rows and columns, 4-21
scale, 4-34
strip, 4-42
text, 4-29
tic labels, 4-27
tics, 4-27

Index

Xmath User Guide

Index

titles, 4-14 R
zero lines, 4-26
plot, and mouse buttons, 9-7
plot2d function, 2-12, 4-1, 4-2
plotting commands, 4-4

radio button, 9-5
raise to a power, 3-5
random

distribution (set), 3-23

plotting functi.ons, 4-1 . seed (set seed), 3-24
comparatlve analysis, 4-3 random, C-5, C-9
special purpose, 4-4 read, 3-22

plus (+) operator, 5-50, 5-53, 7-10

point (verb), A-6

polar plot, 4-47

polynomial, 2-29, 5-18, C-7
addition, 2-30
default variable, 2-29
indexing, 2-30

recall
@ sequences, 1-22
ctrl sequences, 1-21
regular vector, 2-26, 5-9
remove, 3-24
break, 6-26
commanddiary, 3-31

multiplication, 2-29 path, 6-9

operators, 5-19 sess{ondiary, 3-32
polynomial, 2-29, 5-18 watch, 6-27
polyval, 2-30 resident ’
position, 4-35 function, 8-12, 8-40

power, raise to, 3-5

precision (set format fixed), 3-24
press, A-3

print, 2-8, 3-20

process, 8-12
resize window, A-4, A-6
resizing window, 1-13

restore, A-4
print a graphics file, 4-57 roots, 2-30
PRINTER, 1-6, 4-57 rotate, 4-34
programming examples (NI resources), E-1
proper transfer function, 5-42
pulldown menu, 9-5 S
punctuation, MathScript, 3-13 sample period, extract with period, 5-48
push, A-3 save, 1-11, 2-7, 3-19, C-16
all, 1-16
0 PDMs as matrices, 5-37
qplot function, 4.5 simulation data, 5-37
qufistion mark (?), 3-23 z::lea:n;c_li 51 10,319
quit, 1-10 scale, 4-34

in batch .ms files, 3-30 scoping (in scripts), 6-7

scroll bars, 1-13
search path, 6-8, 6-9

Xmath User Guide 1-10 ni.com

selecting
object
by clicking, 2-13
by Shift-clicking, 2-13
text
by clicking, A-6
by dragging, A-6
semicolon (), 3-13, 3-23, 5-5
SERIES, C-12
series connection, 5-45
set, 3-22, 3-23
autocompile, 6-11
break, 3-23
buffering, 3-23
commanddiary, 3-23, 3-31
debugonerror, 3-23
directory, 1-7, 3-18, 3-23, 3-25
display, 3-23
echo, 1-17, 3-23, 3-27, 3-30
format, 3-24
logarea, 1-16
partition, 2-5, 3-24
path, 3-24
path, 6-9
pause, 3-24, 6-20
seed, 3-24
sessiondiary, 3-24, 3-32
timestamp, 3-24
uiupdate, 3-24
watch, 3-24
Shift-Enter, 2-4
Shift-Return, 2-4
show, 3-25
break, 6-26
echo, 3-27
logarea, 1-17
partition(s), 3-6
path, 6-9

© National Instruments Corporation I-11

Index

path, 6-9
seed, 3-24
watch, 6-27
simulation, general, 2-37
single-selection list, 9-5
SISO, definition and representation, 2-31
slider, 9-7
software (NI resources), E-1
square matrix, 5-10
start Xmath, 1-1, 1-7
startup.ms, 3-28, 3-29
state names, extracting, 5-48
statement, 3-1
state-space system, 2-31, 2-32, 5-42
decompose with abcd, 5-48
step, 5-49
string, 2-24, 5-50, C-6
breaking across lines, 2-25
concatenation, 5-50
converting numbers, 5-51
data type, 8-6
executable, 3-27
matrix, 5-50
plus (+) operator, 5-50
size of, 5-50
special characters, 5-51
stringex, 5-52
strip plots, 4-42
support, technical, E-1
symmetric matrix, 5-11
sys*u (time domain sim), 5-43
system, 2-31, 5-43, 5-44
system. See dynamic system

T

target directory, 3-18
technical support, E-1
template.f, 8-38
text, 1-19

entry area, 9-5

Xmath User Guide

Index

tics, 4-27

time response, 5-49

timestamp, 3-24

tiny, 3-9

Toeplitz matrix, 5-13

toolbar, 4-51

training and certification (NI resources), E-1

transfer function, 2-31, 5-42
converted to state space before

decomposition, 5-48

transpose (’), 2-26, 3-4

transpose, complex conjugate (*’), 3-4

triangular matrix, 5-14

tril, 5-14

triu, 5-14

troubleshooting (NI resources), E-1

U
UCI, 8-4, 8-28
building and calling, 8-24
cleanup after termination with
-clean,1-8,1-9
functions, 8-11
include file, required, 8-5
LNX comparison, 8-1
start with -call, 1-8, 1-9, 8-1, 8-29
Xmath
computational engine, 8-30
graphics engine, 8-30
XmathExecute, 8-16
XmathGet, 8-16
XmathPanic, 8-43
XmathPut, 8-17
XmathStart, 8-22
XmathStop, §-22
uiPlot function, 2-12, 4-1, 4-2
uiPlotArea function, 4-5
uiPlotGet function, 4-5
unalias, 3-26
unary operator, 3-4, 3-6

Xmath User Guide 1-12

UNDEFINE, 6-11, 8-28

upper triangular matrix, 5-14
user interface functions, 6-18
user-callable interface. See UCI
USRI signal handler, 8-40, 8-44

v

variable, 2-2, 2-4
comment, 3-9
creating, 2-2
edit box, 9-6
environment, changing, 3-22
find, 3-12
load, 3-12
lock, 3-10, 3-12
name includes partition name, 3-6
naming, 3-2
permanent, 3-9
print to file (print), 2-8, 3-20
save, 3-12
show, 2-6
size, 3-11
temporary (ans), 3-10
type, 3-11
using wildcards with, 3-8
viewing, 2-7
Variables window, 2-8, 3-10
vector, 5-8
creating, 2-25
expand with [], 2-26, 3-5
logspaced, 2-26, 5-10
regular, 2-26, 5-9
reversing, 2-26
transpose (°), 2-26, 3-4
void function
calling, 6-7
declaration, 6-6

ni.com

Index

1) XMATH, 1-5, A-9
Xmath

watchpoint, 6-27
abort (Ctrl-\, UNIX), 1-9

‘Web resources, E-1

whatis, 3-15, 6-10 cut and paste, 1-20
while, 3-14, 6-14, C-5 debugger, exiting, 8-41, 8-42, 8-43
WHO, 8-34 default key bindings, 1-20
who, 3-8 editing text, 1-19
wildcard ﬁle, A-9
asterisk, 3-8 nterrupt
colon, 5-8 Ctrl-Break, 1-9
percent, 3-8 Ctrl-c', 1-?
window Mathematica interface, D-1, D-2
close, A-5 quitting, 1-10, 1-11
default window menu, A-4 running across the network, 1-7
frame, A-3 starting
iconify, A-4 displaying to a local host, 1-7
lower, A-4 from a remote host (-host), 1-7

with UCI, 8-1, 8-29
syntax differences from MATLAB, C-1
tty version, 1-8
xmath command

manager, A-2, A-3
maximize, A-4
minimize, A-4

move, A-4, A-6
raise, A-6 help
resize, A-4, A-6 UNIX, 1-8
Windows, 1-9
restore, A-4
Xmath, 1-13 XMATH_PRINT, 1-5, 3-27, 3-28, 4-57

XMATH_STARTUP, 1-5, 3-28, 3-29
XmathError, 8-11, 8-15
XmathExecute, 8-16
XmathGet, 8-11, 8-16, 8-17
xmathlib.h, 8-5
XmathLNX.h, 8-11, 8-15
XmathLoad, 8-19
XmathMain, 8-1, 8-11, 8-12
XmathPanic, 8-43
XmathPut, 8-17
XmathSave, 8-19
XmathStart, 8-11, 8-22

X XmathStop, 8-11, 8-22

X Windows, A-2 xmodmap, A-10
starting, A-2

Commands, 1-14
debugger, 6-22
Graphics, 4-1, 4-49
resizing, 1-13
Variables, 3-10
working directory, 3-18
WrapMatrix, 8-6
WrapPDM, 8-9
WrapString, 8-7
WrapStringMatrix, 8-7

© National Instruments Corporation I-13 Xmath User Guide

Index

Z

zero lines, 4-26
zeros, C-5

Xmath User Guide 1-14 ni.com

	Xmath User Guide
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Conventions
	Contents
	Chapter 1 Introduction
	Using This Manual
	Document Organization
	Commonly Used Nomenclature
	Related Publications
	MATRIXx Help

	Environment Variables
	MTXHOME
	XMATH
	XMATH_STARTUP
	XMATH_PRINT
	PRINTER

	Starting and Stopping Xmath
	Starting Xmath
	Starting Xmath on UNIX Systems
	Table 1-1. Commonly Used Startup Options for UNIX
	Starting Xmath on Windows Systems
	Table 1-2. Commonly Used Startup Options for Windows

	Interrupting or Terminating Xmath
	Exiting Xmath
	Figure 1-1. Quit Confirmation Dialog

	Stopping and Restarting Xmath

	Licensing
	Using Xmath Windows
	Table 1-3. Major Xmath Windows
	Mouse Conventions
	Table 1-4. Common Mouse Instructions

	Scrollbars
	Resizing Xmath Windows
	Menus
	Meta Key
	Table 1-5. Meta Key

	Xmath Commands Window
	Figure 1-2. Xmath Commands Window (UNIX view)
	Menus
	Table 1-6. Xmath Menus

	Log Area
	Command Area
	Specifying Directory Pathnames and Filenames
	Figure 1-3. Save Dialog (UNIX version)
	Entering Multiple Lines of Information
	Table 1-7. Linefeed Key
	Editing Text by Selecting, Copying, and Pasting
	Key Bindings Used in Editing Text
	Table 1-8. UNIX Default Key Bindings
	Table 1-9. Windows Key Bindings
	Changing the Key Bindings (on UNIX systems)
	Recalling Previous Commands
	Table 1-10. Command Area Recall Keystrokes

	Message Area

	Help Window
	Figure 1-4. MATRIXx Help Window Topics Hierarchy and Master Index

	Chapter 2 JumpStart: A Tutorial
	Starting Xmath for the Tutorial
	Basic Data-Handling
	Creating Variables
	Using Command Recall
	Sending Multiple Lines of Data at Once

	Variables and Partitions
	Viewing Data
	Saving Data
	Table 2-1. Save Commands and Functions
	Save Command
	Print Command

	Loading Data
	Load Command
	Read Command

	Cleanup

	Functions and Commands
	Function Syntax
	Command Syntax

	Graphics
	Plot()
	Keywords
	Graph Objects

	Working in the Xmath Graphics Window
	Using Plot and Graph Objects
	Using 2D Plotting Capabilities
	Figure 2-1. Overlaid Graph Objects
	Using 3D Plotting Capabilities
	Figure 2-2. 3D Plot with Labels and Title

	Using Different Plot Types
	Strip Plots
	Figure 2-3. Strip Plot with Two Curves in Each Strip
	Polar Plots
	Figure 2-4. Polar Plot
	Bar Plots
	Figure 2-5. Overlaid Bar Plots
	Contour Plots
	Figure 2-6. 3D Plot with 2D Contour

	Displaying Multiple Plots at Once
	Figure 2-7. Different Plot Types Positioned with row and column Keywords

	Animating Plots
	Finishing the Graphics Tutorial

	Objects
	Strings
	Matrices and Vectors
	Creating Matrices and Vectors
	Matrix Index Operations
	Using Matrix Functions

	Polynomials
	Dynamic Systems
	Transfer Functions
	State-Space Systems
	Analyzing Dynamic Systems
	Table 2-2. Time Display Functions

	Parameter Dependent Matrices
	Figure 2-8. PDM Plotted with the strip Keyword
	Figure 2-9. PDM Impulse and Step Responses Plotted Separately

	Lists

	MathScript
	MathScript Features
	Debugger Window (on UNIX Systems)
	Figure 2-10. Debugger Window (on UNIX Systems)

	GUI Tools
	Conclusion

	Chapter 3 MathScript Basics
	MathScript Statements
	Assignments
	Rules for Names
	Expressions
	Logical Expressions
	Table 3-1. MathScript Logical Operators
	Logical Expressions with Matrices

	Operators
	Table 3-2. Uses of Operators in Expressions
	Table 3-3. Xmath Operators
	Operator Precedence
	Table 3-4. Operator Precedence

	Partitions
	Listing Defined Variables
	Wildcards

	Variable and Partition Comments
	Permanent Variables
	Table 3-5. Permanent Variables

	ans
	Xmath Variables Window
	Figure 3-1. Xmath Variables Window (UNIX version)
	Fields
	Menus

	Punctuation
	Table 3-6. Punctuation Mark Usage

	Iterative Conditional Statements
	Figure 3-2. For and While Loops
	Figure 3-3. If Statements

	Using Predefined Functions and Commands
	Command and Function Calling Syntax
	Aliases
	Input Arguments
	Keywords
	Single and Multiple Output Arguments

	Operating System Interface
	Manipulate and Show Current Directory

	Saving and Loading Data
	ASCII Versus Binary Considerations
	Saving Data in Non-Xmath Formats
	print
	fprintf()

	Reading Non-Xmath Data Files into Xmath

	MathScript Environment
	Changing Environment Settings
	Table 3-7. Environment Variables Controlled with SET

	Expanding Pathnames in MathScript Files
	Abbreviating Command Names (alias and unalias)

	MathScript Batch Files
	Executing a Batch File
	Echoing an Executable File
	startup.ms (on UNIX systems)
	startup.ms (on Windows Systems)
	I/O Redirection

	Recording an Xmath Session (Diaries)
	Recording Inputs (Command Diary)
	Recording Inputs and Outputs (Session Diary)

	Chapter 4 Graphics
	Xmath Plotting Functions and Commands
	General Purpose Plotting Functions
	plot()
	uiPlot()
	plot2d()

	Comparative Analysis: plot() versus plot2d()
	Table 4-1. plot() Advantages
	Table 4-2. plot2d() Advantages (these features also available with uiPlot)

	Plotting Commands and Special Purpose Functions
	colorind
	ERASE
	HARDCOPY
	pdmplot
	qplot
	uiPlotArea
	uiPlotGet

	Using the plot() Function
	Plot One Input
	Plot Two Inputs
	Plot Three Inputs
	Color as a Fourth Dimension
	Creating and Displaying a Graph Object

	Using Keywords with plot
	Table 4-3. Keyword Types
	Table 4-4. Keyword Categories
	Table 4-5. Plot Keywords (Alphabetized Listing)*
	Labels and Legend
	Table 4-6. Label and Legend Keywords
	Figure 4-1. Label Locations and Legends

	Colors
	Table 4-7. String Color Names for Xmath Supported Colors

	Line and Marker Specifications for Data
	Table 4-8. Line Specification Keywords
	Figure 4-2. Line Styles and Widths
	Table 4-9. Marker Specification Keywords
	Figure 4-3. Line and Marker Styles with Varying Widths and Sizes

	Multiple Graphs and Graph Positioning
	Table 4-10. Graph Specification Keyword
	Figure 4-4. Plots Placed with row, column, and graph_number Keywords

	Adding New Data to Existing Plots (keep, copy)
	Table 4-11. Data Keywords
	Figure 4-5. Combination of Graph Objects

	Axis and Zero Lines
	Table 4-12. Axis and Zero Line Keywords
	Figure 4-6. Zero Lines and Axes for 2D and 3D Plots

	Tics and Grids
	Table 4-13. Tic and Grid Keywords
	Figure 4-7. Changing Tic and Grid Settings

	Free Text and Global Text Settings
	Table 4-14. Free Text and Global Text Keywords
	Figure 4-8. Text Changes and Text String Placement

	Axis Limits and Logarithmic Scaling
	Table 4-15. Axis Limits and Logarithmic Scaling Words
	Figure 4-9. Axis Maximums and Minimums

	Animate
	Placement, Scaling, and Rotation
	Table 4-16. Placement, Scaling, and Rotation Keywords
	Figure 4-10. Stretched and Orthographic Projections

	Background, Edge, and Face Settings
	Table 4-17. Background, Edge, and Face Setting Keywords
	Figure 4-11. Edge and Face Styles

	Lighting Source Settings
	Table 4-18. Lighting Source Setting Keywords
	Figure 4-12. Edge and Face Styles with Light Added

	Reusing plot Attributes
	Hold Keyword
	Table 4-19. Holding Graph Attributes
	Figure 4-13. Results of First and Second plot Commands Using hold
	Figure 4-14. Results of the Third and Fourth plot Commands Using !hold
	Using an Alias in the Keyword String

	Strip Plots
	Figure 4-15. Frequency Responses

	Bar Plots
	Figure 4-16. Bar Plot

	Contour Plots
	Table 4-20. Contour Plots Keywords
	Figure 4-17. 3D Contours with Different Intervals

	Polar Plots
	Table 4-21. Polar Plot Keywords

	Clearing the Xmath Graphics Window
	Figure 4-18. Polar Plot

	Interactive Xmath Graphics Window
	Figure 4-19. Xmath Graphics Environment (UNIX)
	Working Interactively
	Toolbar
	Figure 4-20. The Toolbar (UNIX and Windows)
	Selection Arrow
	Text Tool
	Figure 4-21. Using the Text Tool and the Xmath Palette
	Drawing Tools
	Zoom In/Zoom Out
	Rotation Tools
	Figure 4-22. Default View of 3D Vector
	Figure 4-23. Rotated View of 3D Vector

	Menus
	File
	Edit
	View
	Options
	Font (UNIX Only)
	Point (UNIX Only)
	Tools (Windows Only)
	Windows

	Xmath Palette
	Figure 4-24. Xmath Palette: UNIX and Windows Versions

	Chapter 5 Data Objects and Operators
	Data Hierarchy
	Figure 5-1. Object Relationships
	Data Object Descriptions

	Matrix
	Matrix Concatenation
	Matrix Operators
	Table 5-1. Matrix Operations

	Matrix Indexing
	Indexing with the Colon Operator (:)

	Vector
	Regular Vector
	Logspaced Vector

	Square Matrix
	Table 5-2. Functions That Are Only Valid for Square Matrices
	Symmetric
	Diagonal()
	Identity
	Toeplitz
	Hessenberg()
	Triangular
	Scalar

	Polynomial()
	Polynomial Operators
	Table 5-3. Polynomial Handling Functions

	Parameter-Dependent Matrix (PDM)
	Figure 5-2. Structure of a PDM
	PDM Organization
	Figure 5-3. Parts of the PDM radar

	Creating PDMs
	Default PDM Behavior
	PDM Channels
	Indexing to Extract Portions of a PDM
	PDM Dimensions
	Dependent Matrices
	Domain and Name Information
	Figure 5-4. PDM Plotted with strip

	Modifying PDMs
	Substitution
	Concatenation
	Converting PDMs to Matrices

	Using PDMs with Operators
	Using Functions with PDMs
	Figure 5-5. Functions of PDMs
	Figure 5-6. Functions of a PDM Over Channels

	Dynamic System
	State-Space Systems
	Transfer Functions
	Creating Systems
	Using Operators with Dynamic Systems
	Table 5-4. Operations on Dynamic Systems
	Creating Subsystems by Indexing into Dynamic Systems
	Table 5-5. Indexing Into a Dynamic System

	Functions for Manipulating Dynamic System Objects
	Table 5-6. Functions Commonly Used to Manipulate Systems

	Time Response
	Table 5-7. Time Response Functions

	Strings
	Converting Strings and Numbers
	Special Characters in Strings
	Manipulating Substrings

	Lists
	Index Lists

	Chapter 6 MathScript Programming
	Overview
	Creating a Sample MSF
	Creating a Sample MSC
	General Rules for MathScript Programs
	MathScript File Formats
	Figure 6-1. MSF File Format
	Figure 6-2. MSC File Format

	MathScript Programming
	Assigning Default Values
	Output Keywords
	Calling Void Functions
	Variable Scoping

	Creating Online Help for User-Defined MSFs and MSCs
	Using User-Defined MSFs and MSCs
	Search Paths
	Manipulating Search Paths
	DEFINE
	MathScript Program Compilation and Execution (.xf, .xc)
	Figure 6-3. Compile Process for an MSF

	Examples
	Programming
	Iterative and Conditional Looping Statements
	For
	While
	If
	Goto and Labels

	Object Query Functions
	exist()
	check()
	is()

	User Interface Functions
	getline()
	getchoice()
	pause()
	error()
	beep()

	Indexing Functions
	index()
	find()

	Using the Xmath Debugger
	Figure 6-4. Xmath Debugger Window in Debug Mode (UNIX)
	Debug
	Debug Mode
	Setting, Showing, and Removing Breakpoints
	Setting and Removing Watchpoints
	Debugger Window Interface

	Advanced Topics
	Variable Arguments
	argn()
	argv()
	Using argn and argv

	Executing a Function at a Specific Directory
	Partition and Variable Directory Functions
	MathScript Command Output and Error Capture
	Programming for Platform Independence

	Chapter 7 MathScript Objects
	MSO Overview
	Object Instantiation
	MSO File Format
	Using MSOs in Xmath

	Initializer Function
	Class Variables
	Nested Objects
	Type Declaration

	Operator Overloading
	Member Functions
	Sample MSO
	Limitations

	Chapter 8 External Program Interface
	Overview
	Table 8-1. LNX and UCI Comparison
	LNX
	Figure 8-1. Typical C Language LNX Program Format

	UCI Programs
	Figure 8-2. Calling Xmath from an External Program (UCI)
	Figure 8-3. Typical C Language UCI Program Format

	Compatibility

	externType Data Types
	Matrix Data Type
	Table 8-2. et_matrix Functions

	String Data Type
	Table 8-3. et_string Type Functions

	PDM Data Type
	Figure 8-4. Mapping the et_pdm Structure to a PDM
	Figure 8-5. et_pdm Data Structure
	Table 8-4. et_pdm Functions

	List Data Type
	Table 8-5. et_list Functions

	Null Data Type
	Table 8-6. et_null Functions

	LNX and UCI Functions
	Table 8-7. LNX Functions
	XmathMain() (for LNX only)
	XmathCommand()
	XmathDisplay()
	XmathError()
	XmathExecute()
	XmathGet() and XmathPut()
	XmathGet()
	XmathPut()

	Example Using XmathGet(), XmathPut(), and XmathExecute()
	XmathSave() and XmathLoad()
	XmathSave()
	XmathLoad()
	Standard Library Linkage
	Example of XmathSave and XmathLoad

	XmathStart() and XmathStop()
	XmathStart()
	XmathStop()

	Sample LNX Demonstrating Most Functions (myfun)

	Building and Calling LNX and UCI
	Building on a UNIX System
	Sample makefile (UNIX)
	Building on a Windows System
	Undefining an LNX
	Using the User-Callable Interface
	Building and Calling a UCI
	LNX Example
	UCI Examples
	Calling an LNX in Background Mode
	Removing an LNX Job
	Building an LNX to Link a FORTRAN Routine
	Calling FORTRAN from C LNX Files
	Creating FORTRAN LNX Files
	Table 8-8. ftnlnx Parameters

	Debugging
	Debugging an LNX with dbx (on UNIX Systems)
	Debugging LNXs (on Windows Systems)
	Debugging UCIs (on UNIX Systems)
	Debugging UCIs (on Windows Systems)

	Advanced Topics
	Handling an Aborted LNX
	Advanced Features and Notes
	Advanced Background LNX Function (IPCWC)
	Table 8-9. Background LNX Functions

	Chapter 9 Graphical User Interface
	Finding Out About the GUI
	GUI Tool Users
	GUI Developers
	Running the GUI Demos
	Figure 9-1. Programmable GUI Examples

	Interacting with a GUI Application
	Creating an Example Dialog
	Figure 9-2. PGUI Example Dialog

	Controlling GUI Objects
	Figure 9-3. PGUI Example Dialog after Pressing the 12 Button

	GUI Programming Overview
	Concepts and Terminology
	Conceptual Example
	Anatomy of a GUI Tool
	MSC File
	Help File

	Xmath GUI Functions
	Tutorial
	Pushbutton
	Calculator

	Translating Version 5.X GUI Files to Version 6.X PGUI Files
	Overview
	Execution
	Details
	Limitations

	Appendix A X Windows and Motif
	Figure A-1. Window Frame
	Figure A-2. Cursor Symbols
	Figure A-3. Exec File Selection Dialog
	Table A-1. Recouse File Default Location

	Appendix B Xmath HP-GL Driver
	Table B-1. Color Pen Specifications

	Appendix C Xmath for MATLAB Users
	Table C-1. Command Continuation Examples
	Table C-2. Output Display Examples
	Table C-3. Matrix Punctuation Examples
	Table C-4. String Punctuation Examples
	Table C-5. Logical Not Operators
	Table C-6. Comment Examples
	Table C-7. Examples With RAND
	Table C-8. Conditional Statement Examples
	Table C-9. String Examples
	Table C-10. Polynomial Examples
	Table C-11. Dynamic Systems Examples
	Table C-12. Creating Diaries
	Table C-13. Random Seeds and Distribution Examples
	Table C-14. Number Formatting Examples
	Table C-15. Plot Examples
	Table C-16. Transpose Operator Examples
	Table C-17. Executable String Examples
	Table C-18. Executable Filename Examples
	Table C-19. Examples of Finding Files
	Table C-20. Operating System Command Examples
	Table C-21. Save and Load Examples
	Table C-22. Xmath and MATLAB Summary of Frequently Used Commands

	Appendix D Xmath to Mathematica Interface
	Appendix E Technical Support and Professional Services
	Index
	Symbols
	A
	B-C
	D
	E-G
	H-K
	L
	M
	N-P
	Q-S
	T
	U-V
	W-X
	Z

