MATRIXx

AutoCode" User’s Guide

The MATRIXx products and related items have been purchased from Wind
River Systems, Inc. (formerly Integrated Systems, Inc.). These reformatted user
materials may contain references to those entities. Any trademark or copyright
notices to those entities are no longer valid and any references to those entities
as the licensor to the MATRIXx products and related items should now be
considered as referring to National Instruments Corporation.

National Instruments did not acquire RealSim hardware (AC-1000, AC-104,
PCI Pro) and does not plan to further develop or support RealSim software.

NI is directing users who wish to continue to use RealSim software and hardware
to third parties. The list of NI Alliance Members (third parties) that can provide
RealSim support and the parts list for RealSim hardware are available in our
online KnowledgeBase. You can access the KnowledgeBase at
www.ni.com/support.

NI plans to make it easy for customers to target NI software and hardware,
including LabVIEW real-time and PXI, with MATRIXXx in the future. For
information regarding NI real-time products, please visit
www.ni.com/realtime Or contact us at matrixx@ni.com.

v NATIONAL May 2003 Edition
’ INSTRUMENTS' Part Number 370767A-01

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada (Calgary) 403 274 9391, Canada (Montreal) 514 288 5722, Canada (Ottawa) 613 233 5949,

Canada (Québec) 514 694 8521, Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530,

China 86 21 6555 7838, Czech Republic 420 2 2423 5774, Denmark 45 45 76 26 00,

Finland 385 09 725 725 11, France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427,
India 91 80 51190000, Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970,

Korea 82 02 3451 3400, Malaysia 603 9131 0918, Mexico 001 800 010 0793, Netherlands 31 0 348 433 466,
New Zealand 1800 300 800, Norway 47 0 66 90 76 60, Poland 48 0 22 3390 150, Portugal 351 210 311 210,
Russia 7 095 238 7139, Singapore 65 6226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227,
Thailand 662 992 7519, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support Resources and Professional Services appendix.
To comment on the documentation, send email to techpubs@ni . com.

© 1996-2003 National Instruments Corporation. All rights reserved.

Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,

recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks

AutoCode™, DocumentIt™, LabVIEW™, MATRIXx™, National Instruments™, NI™, ni.com™, RealSim™, SystemBuild™, and Xmath™ are
trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents

For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents. txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Contents

Contents ii
Using This Manual iX
Introduction
1.1 Rapid Prototyping Concept 1-1
1.2 Automatic Code Generation Process. 1-3
1.3 Profile of the Generated Program 1-5
1.4 AutoCode-Generated Reusable Procedures. 1-8
1.5 Using MATRIXy Helpo oo e e 1-8
Using AutoCode
2.1 How to Generate Real-Time Code., 2-1
2.1.1 Generating Code from Within SystemBuild. 2-1
2.1.2 Generating Code from Xmath. 2-2
2.1.3 Generating Code from the Operating System 2-3
2.1.4 Limitations/Restrictions. e 2-3
2.2 Generating Non-Customized Code 2-5

2.3 Generating Customized Code. 2-7

Contents AutoCode User’s Guide

2.4 Applications of AutoCode-Generated Code. 2-9
2.4.1 Standalone Simulation o ... 2-9
Standalone Simulation for UNIX 2-11
Standalone Simulation for Windows 2-12

2.4.2 Simulation Options 2-14
2.4.3 Rapid Prototyping i 2-15
2.4.4 Real-Time Simulation, 2-15
2.4.5 Implement Embedded Real-Time Control. 2-16

3 Managing and Scheduling Applications

3.1 Real-Time Application Scheduler. 3-1
3.1.1 Subsystems. 3-2
3.1.2 Flow of Control in the Generated Program 3-3

3.2 Sequence of Scheduler Operations 3-5
3.3 Properties of Scheduled Subsystems. 3-10
3.3.1 Free-Running Periodic Subsystems 3-10
3.3.2 Enabled Periodic Subsystems 3-11
3.3.3 Triggered Subsystems 3-14

3.4 Properties of Asynchronous Subsystems 3-17
3.4.1 Start-up Procedure 3-18
3.4.2 Asynchronous Trigger Subsystems 3-18
3.4.3 Interrupt Procedure. 3-20
3.4.4 Background Procedure 3-21

3.5 Reentrancy and Preemption: The Dispatcher. 3-21
3.6 Scheduler Examples 3-22
3.6.1 Dispatching and Pre-emption Example 3-23
3.6.2 Pseudo-Rate Scheduler 3-31

AutoCode User's Guide Contents

3.6.3 Operating with Skew 3-33
3.7 Scheduler Errors. 3-35
3.7.1 Scheduler or Subsystem Overflow 3-35
3.7.2 Examples Where Overflow is Irrelevant or Cannot Happen 3-36
4 Code Generation for Discrete Systems
4.1 Introduction 4-1
4.2 How to Generate Code for Discrete Systems. 4-1
4.3 Introduction to Vectorized Code. 4-2
4.4 Introduction to Optimized Code 4-2
4.5 Introduction to Procedural Code 4-3
4.6 Sample Generated Code. i i 4-3
4.6.1 Sample CCode. 4-3
4.6.2 Sample Ada Code.ttt 4-8
5 Code Generation for Continuous Systems
5.1 Introduction e 5-1
5.2 Integrators. e 5-2
5.3 Limitations e 5-3
5.4 How to Generate Code for Continuous or Hybrid Systems 5-3
5.4.1 Generating Code for Continuous Systems from SystemBuild5-3

5.4.2 Xmath Command-Line Options for Continuous Code Generation . 5-4

5.4.3 OS Command-Line Options for Continuous Code Generation. . . .5-5
5.5 Sample Generated CCodettt 5-7
5.6 Sample Generated Ada Code i 5-14
5.7 Hints. . ..o 5-18

Contents

vi

AutoCode User’s Guide

Customizing AutoCode and Generated Code

6.1 Introduction 6-1
6.2 AutoCode Configuration Options. 6-2
6.3 Templates. e 6-2
6.4 BlockScript BlocK e 6-2
6.5 Data Parameterization. o o 6-3
6.6 UserCode Block i i 6-4
6.7 Macro Procedure Block 6-4
6.8 User-Defined Code Comments. 6-5

6.8.1 Using a User-Defined Code Comment 6-5

6.8.2 Limitations 6-6

Introduction to Software Constructs with AutoCode

7.1 Introduction e 7-1
7.2 Standard Procedure SuperBlocks o oL 7-1
7.3 Variable Blocks. o e 7-2
7.3.1 Global 7-2
7.3.2 Localo 7-2
7.4 IfThenElse Block. e 7-2
7.5 Iterator Block o e 7-3
7.6 Explicit Block Sequencing. i i 7-3
7.7 Example Model e 7-3
AutoCode Options
Al Options When Invoking AutoCode. A-1
A2 Using the autostar.optFile A-9
A3 Mapping Options i i e A-10

AutoCode User's Guide

Index

A.3.1
A.3.2
A.3.3
A3.4

Contents
Setting Subsystem Priorities. oo o oL A-10
Setting Subsystem SKews. i i A-12
Setting Processor SubsystemMap A-13
Processor Map Specification on Command Line A-13
index-1

vii

Using This Manual

AutoCode® is a powerful automatic code generator, With AutoCode you will soon be
automatically generating robust, high-quality, real-time C or Ada source code from
SystemBuildTM block diagrams.

Organization

This guide provides the information you need to get started using AutoCode. This
guide is organized as follows.

Chapter 1, Introduction, provides an overview of the rapid prototyping concept,
the automatic code generation process, and the nature of the real-time gener-
ated code.

Chapter 2, Using AutoCode, explains how to generate real-time code by invoking
AutoCode from SystemBuild, the Xmath® Commands window, or the operating
system command line. Generated code applications are also discussed.

Chapter 3, Managing and Scheduling Applications, details the management of
the application control flow via the real-time scheduler. Topics of discussion in-
clude scheduler operation sequence, subsystem properties, subsystem inter-
ruption, and examples of scheduler operation.

Chapter 4, Code Generation for Discrete Systems, describes the scheduler archi-
tecture as it relates to discrete code generation. Topics include IPAR and LPAR.

Chapter 5, Code Generation for Continuous Systems, describes the scheduler ar-
chitecture as it relates to continuous code generation. Topics include fixed-step
integrators, user-defined integrators, and how to generate code for continuous
and hybrid systems.

Using This Manual

AutoCode User’s Guide

= Chapter 6, Customizing AutoCode and Generated Code, provides advanced
methods for customizing AutoCode and its output real-time code using
AutoCode configuration options, templates (see also the Template Programming
Language User’s Guide), BlockScript, and %variables.

= Chapter 7, Introduction to Software Constructs with AutoCode, describes User
Code Blocks, Macro Procedure Blocks, and Procedure SuperBlocks.

= Appendix A, AutoCode Options, describes options that can be used when invok-
ing AutoCode from within the Xmath Commands window. This appendix also
describes how to use an autostart.opt file.

This guide also has an Index.

For more advanced details and information necessary to customize both AutoCode
and the generated real-time output code, see the Template Programming Language
User’s Guide or the AutoCode Reference.

Conventions

This section describes the conventions used in this manual.

Font Conventions

Fonts other than the standard text default font are used as follows:

%
courier

italic

courier italic
courier bold

Bold Helvetica
narrow

<hll>

<HLL>

Represents the C shell system prompt in command examples.
Denotes directory names, file names, menu names, menu op-
tions, commands, Template Programming Language (TPL) seg-
ments, syntax statements, operators, and scope classes within
text. This font type is also used in programming examples.
Italic is used with the default font for emphasis, first instance
of terms, and publication titles.

Denotes placeholders in syntax examples.

Denotes command-line input.

Buttons, fields, and icons in a graphical user interface are set
in bold Helvetica narrow type. Keyboard keys are also set in this
type.

Single-letter abbreviation denoting a high-level language sup-
ported by AutoCode: c (C) or a (Ada).

Abbreviation for the full name of one of the two high-level lan-
guages supported by AutoCode: C or Ada.

AutoCode User's Guide Using This Manual

Format Conventions

This manual uses two special formatting conventions: one to present code and pro-
gramming examples, as well as sample procedures, and one to present sample in-
put/output.

Sample Procedures

Example 1 shows the formatting convention for sample procedures and code and

programming examples.

EXAMPLE 1. Code, Programming, and Sample Input/Output Example Format

#include "XmathLNX.h"
extern void cosine_();

void myfun(nlhs, lhs, nrhs, rhs)
int nlhs, nrhs;
externType **lhs, **rhs;

[*y = cos(x) */

et_matrix *x, *y;

X = (et_matrix*)rhs[0];

y = AllocateMatrix(x->rows, x->columns, 1);

Ihs[0] = (externType*)y;

cosine_(&x->rows, &x->columns, x->real, y->real);

}

static functionData fdata[] = {
{"myfun”, myfun, 1, 1, 1, 1, (char*)0},
{0,0,0,0,0,0,0}

main(argc, argv)
int argc;
char **argv;

XmathMain(argc, argv, fdata, 1);
return O;

}

Xi

Using This Manual AutoCode User's Guide

Sample Input/Output

The formatting convention for sample input/output is shown in the next several
paragraphs.

Sample input is shown in bold and italic (used for placeholders):
makeproject projname

Sample output is shown in Example 1 above.

Mouse Conventions

This document assumes you have a standard, right-handed three-button mouse.
From left to right, the buttons are referred to as MB1, MB2, and MB3. All instruc-
tions assume MB1 unless otherwise noted.

Note and Caution Conventions

Within the text of this manual, you may find notes and cautions. These statements
are used for the purposes described below.

NOTE: Notes provide special considerations or details which are important to the
procedures or explanations presented.

CAUTION: Cautions indicate actions that may result in possible loss of work
performed and associated data. An example might be a system
crash that results in the loss of data for that given session.

How to Access Integrated Systems-Supplied Files

Xii

At several places in this user’s guide, you are asked to execute, study, copy, and/or
modify certain files we provide for your use. This document uses environment vari-
ables (created during the installation) to specify paths. These variables are:

UNIX: $ISIHOME $XMATH $SYSBLD $CASE

Windows: | %ISIHOME%| %XMATH% %SYSBLD% %CASE%

Xmath will process these environment variables properly, but the same call issued
from the Command Prompt may fail if the variable is not set in your working envi-
ronment. In this case the absolute path must be specified in lieu of the environment
variable. For example,

AutoCode User's Guide Using This Manual

Xmath: oscmd("ls $SYSBLD/examples")

UNIX: Is /host/mtx/platform/ver/sysbld/examples
Xmath: oscmd("dir %SYSBLD%\examples")
Windows: dir \host\imtx\version\sysbld\examples

If you want to perform file operations from your operating system (rather than via
MATRIX,) you must know the values of these variables for your installation. Use
oscmd("env”) or oscmd("set") as appropriate for your operating system.

The operating system output will be displayed in the Xmath log area. Locate the ab-
solute path value for the environment variable you want to use and use it in your
file specification. Alternatively, define these environment variables in your personal
work environment using the absolute paths you have identified.

Environment Variables

The Xmath Commands window is the only place that can recognize environment
variables. Xmath commands use $env_var (for example, $SYSBLD or $XMATH)
whereas commands that go directly to the operating system, such as oscmd, use the
operating system convention (for example, %env_var %for Windows).

Related Publications

Integrated Systems provides a complete library of publications to support its prod-
ucts. In addition to this guide, publications that you may find particularly useful
when using AutoCode include the following:

= Xmath Basics

= SystemBuild User’s Guide

= RealSim User’s Guide

= AutoCode Reference

= Template Programming Language User’s Guide
= Documentlt User’s Guide

For additional documentation, see the MATRIXy Help or the Integrated Systems
home page at http://www.isi.com

Xiii

Using This Manual AutoCode User's Guide

Support

Xiv

You can contact MATRIX, Technical Support in any of the three ways listed below.
When Technical Support responds, you will be given a Call ID specific to the prob-
lem you have reported. Please record the Call ID and use it whenever you contact
Technical Support regarding the issue.

Submit a problem report via the ISI web site using the following URL:

http://www.isi.com/Support/MATRIXx

This is the preferred method, as it is the most traceable; your problem report
will be automatically entered into our support database.

Send e-mail to mx_support@isi.com . We can serve you better if you mail us
details on your configuration and the circumstances under which your problem
occurred. We provide an ASCII file that you can use as a template for your email
to support; it can be found in:

MATRIXXversion/vésupport.txt

where

MATRIXXis your MATRIXy product version directory, which is under ISIHOME.
To determine this directory location, from the Xmath Commands window, type
one of the following commands.

On the PC:

oscmd("echo %MATRIXX%");
On UNIX:

oscmd("echo $SMATRIXX");

If you have Xmath running you can use the following Xmath function call to
copy the template to the current working directory:

copyfile("$MATRIXX/version/vesupport.txt”)

Call 800-958-8885 (where 1-800 service is available) or 408-542-1930. Tele-
phone support hours are 7:00 a.m. through 5:30 p.m. PST, Monday through
Friday. We can respond more efficiently if you are ready to provide the informa-
tion requested in MATRIXXversion/vésupport.txt at the time you call.

AutoCode User's Guide Using This Manual

Using the ISI FTP Site

If your problem involves scripts or model file(s), Technical Support may ask you to
FTP your files to us for further examination.

1. Connect to the ISI FTP site:

ftp ftp.isi.com
2. Log on as anonymous , and supply your e-mail address as the password.

3. Change to the /incoming directory:

cd /incoming

4. Use put or mput to specify the file(s) you are transferring. When the transfer is
complete, quit

5. Send an email message to Technical Support that states the Call ID (if avail-
able), the exact name(s) of the file(s) you put in /incoming , and the approxi-
mate time you made the transfer; alternatively, call 800-958-8885 (where 1-800
service is available) or 408-542-1930 and provide this information. It will be a
minimum of 15 to 20 minutes before the transferred file(s) will pass through the
firewall.

XV

Introduction

1.1

This chapter provides an overview of the rapid prototyping concept, the automatic
code generation process, and the nature of the real-time generated code.

Rapid Prototyping Concept

Conventional real-time system development usually takes place in stages, with sep-
arate tools for control design, software engineering, data acquisition, and testing.
The MATRIXX® product family integrates tools for each stage of system development
into a single environment. This allows a design to move easily from one stage to the
next, making it possible to create a working prototype early in the design process.

Within the MATRIX SystemBuild = and Xmath® products, you can build, simulate,
analyze, test, and debug a model. You can then use AutoCode to generate real-time
code in a high-level language (C or Ada) for the model. The generated application
code can be evaluated on the host with SystemBuild simulation or run on the
RealSim controller for hardware in-the-loop testing. The generated application
code can be cross-compiled and linked for implementation on an embedded proces-
sor. You can also use Documentlt to generate documentation. Figure 1-1 shows
AutoCode in the MATRIXy product line.

Introduction AutoCode User’s Guide

MATRIX, Product Family

Xmath
(Analysis/Design)

h 4

SystemBuild
(Modeling/Simulation)

AutoCode
(Code Generation)

Documentlt
(Document Generation)

v
RealSim ASCII Output
(Hardware in-the-loop testing) Document
> v v
v _
Cross-Compilers/ FrameMaker Microsoft Word
Real-Time
Operating System

(e.g., pSOSystem)
Implementated on an
Embedded Processor

FIGURE1-1 AutoCode in the MATRIXy Product Line

AutoCode User's Guide Introduction

1.2

Automatic Code Generation Process

As an integral part of the Integrated System Rapid Prototyping concept, AutoCode
lets you generate high-level language code from a SystemBuild block diagram model
quickly and automatically. A typical sequence for using AutoCode is as follows (this
sequence corresponds to the sequence shown in Figure 1-2 on page 1-4):

1. Build the Model and Validate Through Simulation

You can quickly develop the continuous-time plant model and corresponding
discrete-time controller SuperBlocks using SystemBuild block diagrams. The
SystemBuild model is built up from a large palette of blocks that combine to de-
scribe the way that the model works and how it should be controlled. You can
then analyze and simulate the plant and controller in Xmath; if you find any er-
rors, you can easily amend the model and simulate it again until you are satis-
fied with its performance. You can perform parametric studies in simulation
and pass the values from the Xmath workspace into the generated code.

2. Customize Code Generation

You can tailor your generated code using the template programming language
(TPL), provided in AutoCode. This programming language lets you customize the
code for a wide variety of specialized purposes. Run-time parameterization can
be programmed into the generated program. Also, configuration information can
be entered when the real-time code is generated.

3. Generate the Real-Time Code

You can invoke AutoCode from inside SystemBuild, from the Xmath Commands
window, or from the operating system command line. AutoCode processes dis-
crete-time and continuous-time SuperBlocks to generate high-level language
code in C or Ada.

4. Compile and Link

You can customize the environment in which the generated code runs by editing
standalone Input/Output utilities files included with AutoCode. Additionally,
you can further enhance the functionality of your model by adding UserCode
Blocks. Compile and link the generated code with these standalone files and
any UserCode Blocks that you will be using to produce a standalone real-time
application program for simulation on the host. Refer to Section 2.4 on
page 2-9.

Introduction

AutoCode User’s Guide

Command-Line
Configuration Options

Step 2

UserCode Blocks |—

SystemBuild /Xmath
Model Simulation

Step 1

v
SystemBuild
Model File

(.rtf)
v

AutoCode
High-Level Language
Code Generator

Step 3

C or Ada
Source Code

with %Vars

Compile/Link

Step 4
v

Real-Time
Application

Template File
(.dac)

Step 2

Standalone/
Target-Specific
1/0 Utilities

v

v

v

Simulation on Host
(Compare with
SystemBuild Simulation)

RealSim/Rapid Prototyping
(Hardware in-the-loop Testing)

Step 5

Step 6

Embedded CPU
Target
(Implementation)

Step 7

FIGURE 1-2

AutoCode Automatic Code Generation Process

AutoCode User's Guide Introduction

1.3

5. Validate the Generated Code Through Simulation Comparison

Now you can test and simulate the generated code on the host and feed the re-
sults back to Xmath for comparison with the SystemBuild simulation data.
These steps are described in Section 2.4 on page 2-9.

. Test with Real or Prototyped Hardware

You can use a rapid prototyping tool such as RealSim to implement a real-time
controller, or to perform real-time hardware-in-the-loop testing with actual or
emulated hardware. RealSim customers are provided with special templates
and target-specific utilities to generate and link code specific to RealSim.

Implement the Finished Code on the Target

After you have completed all needed testing and simulation to optimize the
functionality and performance of your application, the perfected code can be
implemented on the target processor.

Profile of the Generated Program

If no user-originated changes are made to the template program, the generated ap-
plication program consists of calls to a time-critical application manager/scheduler,
a re-entrant dispatcher, one or more pre-emptible subsystems, input/output func-
tions, a timer interrupt handler, and a background function (see Figure 1-3 on
page 1-6). The calls to the modules of the generated program are in the template
program, which lets you modify the way the generated program is structured and
expand it as needed. Under control of the default template file, the application pro-
gram is assembled from components taken from a variety of files, with different pro-
visions for user modification, as explained in the following:

Manager/Scheduler

The manager/scheduler is a time-critical routine that performs external
input/output functions for the application program, takes care of various
housekeeping tasks, and generates a dispatch list of the subsystems that are
ready to be executed.

Tailoring: This routine can be customized by modifying or rewriting the sup-
plied real-time scheduler. Under control of the template file, any number or va-
riety of scheduler programs can be used.

Introduction AutoCode User’s Guide

Initial Entry C} Segment from Non-User-Modifiable Template File

[] Segment from User-Modifiable Template File

Background D Segment from Standalone Utilities File

5

Interrupt Handler }

Manager/Scheduler ‘ T L
Dispatcher
A A A
v
[Input/Output } v
Routines v

Pre-emptible
Subsystems

FIGURE 1-3 Components of the Generated Application Program

= Dispatcher

The dispatcher dispatches the subsystems that are ready to be executed from
the dispatch list in a prioritized order. Highest priority subsystems get dis-
patched first.

Tailoring: Dispatcher logic can be customized by modifying the template file.

1-6

AutoCode User's Guide Introduction

= Subsystems

The subsystems contain the code implementing block algorithms generated
from the SystemBuild model. They implement real-time activities by accepting
inputs and posting outputs at times derived from the sampling rates of the Su-
perBlocks in the SystemBuild model, under control of the manager/scheduler.

==

Tailoring: Customization of block code is supported only via the BlockScript
and UserCode blocks. The block code for other block types is proprietary. Refer
to Section 6.4 on page 6-2 for details regarding BlockScript.

= [/0 Routines

The main function of I/O routines is to provide input data to the AutoCode real-
time application on every scheduler cycle and to obtain the computed outputs
from it. The supplied I/O routines read inputs from a MATRIXy formatted ASCII
file and write outputs to a file in the same format.

Tailoring: The input/output routines are part of the standalone utilities file and
are intended to be user modified. Any variety of I/O routines can be user-writ-
ten and invoked as needed under control of the template program.

= Timer Interrupt Handler

The timer interrupt handler calls (or invokes) the manager/scheduler at a spec-
ified time interval. This is not needed for standalone simulation on a host.

Tailoring: This routine is intended to be user-defined, such that it invokes the
scheduler on every minor cycle.

= Background Function

The background function performs idle time non-time-critical tasks such as
self-diagnosis or updating a display; its essential qualification is to be interrupt-
ible. For standalone simulation, it merely calls the scheduler for user-specified
simulation cycles as specified by time vector.

Tailoring: This is part of the standalone utilities file that can be user-modified
or completely rewritten.

For a detailed explanation of the flow of control in the generated program, see Chap-
ter 3, Managing and Scheduling Applications.

Introduction AutoCode User’s Guide

14

15

AutoCode-Generated Reusable Procedures

In the earlier sections of this chapter, we looked at the process of generating a real-
time scheduled application program and its nature. However, in some cases, you
might not want to generate scheduler and related data structures. Rather, you
might want to generate merely algorithmic procedures (subroutines). AutoCode pro-
vides an option to let you generate only algorithmic procedures from Procedure
SuperBlocks, without the scheduler and its data structures.

Following are some uses of generating reusable algorithmic procedures:
= Linking them to your own real-time scheduler (executive) or simulator

= Linking them to the SystemBuild simulator for algorithmic verification and
speeding simulation by using integer math in the procedure

The AutoCode generated procedures link to the SystemBuild simulator via a User-
Code Block in the SystemBuild model. The procedure describing how to link them is
provided in Chapters 2 and 3 of the AutoCode Reference.

Using MATRIX , Help

MATRIX, Version 6.X provides a hypertext markup language (HTML) help system.
The MATRIXy Help system is a self-contained system with multiple hypertext links
from one component to another. This help system, augmented by online manuals,
covers most MATRIX topics except for installation. For installation information, see
your online or printed manuals.

The MATRIX Help system requires Netscape Communicator 4.03 (included on the
MATRIX, CD) or later. On UNIX systems, an OEM version of Navigator is automati-
cally included in the MATRIX, installation. On PC systems, Netscape Communicator
must be installed independently using the Netscape installation procedure included
on the MATRIXy CD.

Additional Netscape Information

For more information on Netscape products, see Netscape’s home page at http://
home.netscape.com

Using AutoCode

2.1

211

This chapter explains how to generate real-time code by invoking AutoCode from
SystemBuild, the Xmath Commands window, or the operating system command
line. This chapter also discusses generated code applications.

How to Generate Real-Time Code

Using AutoCode, you can generate C or Ada high-level language code from:

= SystemBuild, which lets you automatically generate a real-time file (.rtf) and
then source code from a model, using a Graphical User Interface. For ease of
use, this is the recommended method of code generation.

= Xmath, which lets you automatically generate an .rtf file and then source code
from a model, using an Xmath command.

= The operating system command line, which lets you generate source code from
an already-existing .rtf file, using the autostar command from the operating
system prompt.

For Xmath Commands window or operating system command-line options, see
Appendix A, AutoCode Options.
Generating Code from Within SystemBuild

To use AutoCode while inside SystemBuild, select a SuperBlock in the Catalog
Browser, and then select Tools -~ AutoCode to open the dialog. Instructions for using
this dialog are in the MATRIX,, Help.

Depending on the template file and command-line options used, the code generated
can be either C code or Ada code.

Using AutoCode AutoCode User's Guide

212

Generating Code from Xmath

The autocode command lets you process a model to generate C or Ada code. Two
possible syntaxes are supported:

autocode, {model = namel, file = name2, ...
language = name3, tpldac = name4, ...
rtf = nameb5, vars, typecheck}

autocode model, {options}

where namel identifies the model to be processed for code generation. The model
will be either:

= A string (must appear in “quotes”), which must be the name of a SuperBlock
that exists in the current SystemBuild Catalog. This SuperBlock is analyzed
and processed to generate code.

= A variable (not in quotes). Variables should be assigned to a string, the string
must be the name of a SuperBlock in the current catalog; it is analyzed and pro-
cessed to generate code.

Whenever a file name or other string is included in a command string, it must be
enclosed in quotes, but a variable name must not be in quotes.

Keywords for the second type of syntax are the same as for the first syntax, except
model . See Appendix A for the Xmath command options.

Examples:

autocode "topSB"

The system generates a real-time file named topSB.rtf . It loads this file and pro-
cesses it to produce C code. The output file name is topSB.c .

autocode "topSB", {tpldac="mytemplet”,!vars}
autocode, {model = "topSB", tpldac = "mytemplet”, vars}

Either syntax processes the SuperBlock topSB in the current catalog to produce C
code, using the direct access template file mytemplet and no Xmath %variables.
The output file name is topSB.c .

AutoCode User's Guide Using AutoCode

213

214

Generating Code from the Operating System

If a model file already exists, it is also possible to execute AutoCode from the operat-
ing system prompt. The file intended for processing must be a real-time file (.rtf).
At the operating system prompt, execute the command:

% autostar {options} model_file.rtf

Many of the options are the same as the fields in the Generate Real-Time Code dia-
log. See Appendix A for the operating system command-line options.

AutoCode runs, creating a high-level language file. When the operating system
prompt returns, the process is complete.

Examples:
% autostar -h
shows a help display.

% autostar -I ¢ SysBId_file.rtf

processes the model file SysBIld_file.rtf to produce a C code file named
SysBId_file.c . All default settings are accepted. It assumes a direct access tem-
plate file named c_sim.dac exists in your working directory.

% autostar -l a -t ada_rt.tpl -sd 6 -0 CodeFile.a MyModel.rtf

processes the ASCII template file ada_rt.tpl and produces a direct access tem-
plate file ada_rt.dac . The model file MyModel.rtf is then processed, producing
ada code in file CodeFile.a , which contains numeric literals encoded using a max-
imum 6 significant digits of precision.

% autostar -l ¢ -t c_sim.tpl

compiles the template file c_sim.tpl to produce a dac file named c_sim.dac

Limitations/Restrictions

= SystemBuild models processed by AutoCode cannot contain algebraic loops.
= AutoCode models cannot accept data that includes complex numbers.

= The input time vector must start at 0.0.

= AutoCode does not support the following blocks:

o The Zero Crossing Block

Using AutoCode

The

AutoCode User’s Guide

o The MathScript Block
« The HDL CoSim Block
o The Implicit UserCode Block

Macro and Inline Procedure SuperBlocks are not supported within Conditional
SuperBlocks.

When a user input Interactive Animation icon is encountered, code is generated,
which assigns a constant value equal to the initial value of the icon.

Only block comments are inserted in the generated-for-display Interactive Ani-
mation icons.

AutoCode does not generate parameterized code for the following blocks even
though parameters within these blocks can be parameterized using the %vari-
able notation. This is because dynamic systems are transformed to optimize
performance and the mapping between the Xmath value and the block variable
is lost. Variable space will be allocated and initialized but the values are hard-
coded.

o State Space Block

e« Num, Den Block

o Gain, Zeros, Poles Block

o Gain, Damps, Freqgs Block

AutoCode software lets you generate ANSI C or Ada code automatically from

SystemBuild models.

You

can generate code from the Catalog Browser in SystemBuild or use the

autocode Xmath command. The generated code represents a complete implemen-
tation of the model. The generated code can be targeted for and run on other com-
puters or an actual controller. The default target is a standalone simulation that you

can
into

execute on your computer; you can then load the results of the simulation back
Xmath for analysis.

AutoCode User's Guide Using AutoCode

2.2 Generating Non-Customized Code

With Xmath running on your PC, generate code for the sample Discrete Cruise Sys-
tem model by taking these steps:

1. Make sure you are in a directory where you want to save your code. If not, enter
the following command from the Xmath Commands window:

set directory =" your_working_directory "

2. From the Xmath Commands window, type the following command to load the
model:

load "$SYSBLD\demo\cruise_demo\cruise_d.cat";

NOTE: The Xmath Commands window is the only place that can recognize
environment variables. For loading with other methods, you must
know that full pathname of the SystemBuild directory. Note also that
Xmath commands use $env_var whereas commands that go directly
to the operating system, such as oscmd, use the operating system
convention (for example, %env_var %for Windows).

3. From the SystemBuild Catalog Browser, select the Discrete Cruise System
SuperBlock.

NOTE: You must generate code from a top level SuperBlock.

Using AutoCode

4,

2-6

AutoCode User’s Guide

From the Catalog Browser, select Tools - AutoCode to bring up the Generate
Real-Time Code dialog.

Generate Aeal-Time Code EHE
Lok in: I 23 cruise_dema j gl

animation. cfg cruize_pic. shf
Cruize. pic read_cruize.me
cruize_d.dat

cruize_d.ms

cruize_ia.dat

E cruize_jzim. ms

File name:

Files of ype: [& Fies (7] 4|

Code Generation O ption

Code Style ISubsystems 'l Block Parameters |°/°\u"ars from ¥math 'l
Language IEI 'l ¥ Typecheck

QK | Advanced | Feset | Cancel | Help |

Enter a name in the File name field or accept the default,
Discrete_Cruise_System

Click OK to start the code generation process.

Raise the Xmath Commands window to monitor the progress of the code gener-
ation.

Once the code generation is complete, look for a statement similar to the follow-
ing in the Xmath log area:

Output generated in d:\user\test\Discrete_Cruise_System.c.

Code generation complete.

(Optional) Display the output file in the Xmath output area by entering a type
command similar to the following in the Xmath Commands window:

oscmd ("type d:\user\test\Discrete_Cruise_System.c")

AutoCode User's Guide

2.3 Generating Customized Code

Using AutoCode

To customize your AutoCode output, click Advanced on the Generate Real-Time Code
dialog; this brings up the Advanced dialog.

Advanced [%]

Farmatting |
Templates

Optimization

Miscellaneous

14LG Dptions

Multi-Processor
| RTOS Options

—E |
General

™ Merge INIT Sections

™ Constant Propagation

™ Reuse Temporary Yars

IAutocode I ame x l

Wectarization

INone 'l

Loop Threshald |2 jl

Array Threshaold |2

=]
5

VAR Block
[Local V&Rs

[Global ¥&Rs

™ Use VAR Block Callouts

Frocedure SuperBlock:
’7|_ Mo L Structures

™ Mo INFO Stucture

™ Mo Emor Check

0K |

Cancel |

Help |

You can use the Advanced dialog from the AutoCode Code Generation dialog or use
keywords with the autocode Xmath command to customize the generated code as

follows:

The Templates tab lets you control the formatting of the output of AutoCode to
meet a variety of software needs; you can modify the overall architecture of gen-
erated code, customize the scheduler, modify data structures and external I/O
calls, add user code, and so forth. Using the Template Programming Language
(TPL), you can tailor any part of the code except the hierarchy logic and the ele-
mentary blocks. Numerous templates are available, including one to customize
the generated code for the pSOSystem real-time operating system. For more in-
formation on templates, see the Template Programming Language User’s Guide.

The Formatting tab lets you set the form of the generated code. You can specify
settings for the number of significant digits, maximum variable name length,
maximum number of characters per line, and other formatting settings.

The IALG Options (Integration Algorithms) tab lets you select an algorithm such
as Euler, Runge Kutta, or Kutta-Merson.

The Multi-Processor tab lets you specify a processor, startup, background,
interrupt, skew, priority, or map file.

2-7

Using AutoCode AutoCode User's Guide

2-8

= The Optimization tab (shown in Section 2.3 on page 2-7) lets you make general,
vectorization, and VAR block settings that affect code size and efficiency (see the
Autocode Reference for details).

= The Miscellaneous tab (shown in Figure 2-1) lets you select an options file, the
type of scheduler, output scope control, and various other settings. For informa-
tion about how to set epsilon , for example, see Appendix A, AutoCode Options.

= The RTOS (real-time operating system) tab lets you specify a configuration file
and set additional options.

Once you have customized your settings, you click OK in the Advanced dialog; then
you generate code by clicking OK in the Generate Real-Time Code dialog.

For information about autocode keywords, see Appendix A, AutoCode Options and
the MATRIX, help.

Advanced E
Templates I Optimization | 18LG Dptions I RTOS Options I
Farmatting Miscellaneous | Multi-Processor

Optionz File I Browse |
; Fixed Paint Overflow lﬁ
Epszilon walue I i [Car] Drefault

— Scheduler

Type IDefauIt vl ™ Enor Checking
I Force Double Buffering ™ Na Structure Map

— Output Scope Control

I Default = l

[~ XREMAP set to False

™ Use RPAP actuals for UCB

Ok Lancel | Help |

FIGURE 2-1 Advanced Dialog, Miscellaneous Tab

AutoCode User's Guide Using AutoCode

24

24.1

Applications of AutoCode-Generated Code

In Section 2.1 you learned how to generate real-time code using AutoCode from
SystemBuild, the Xmath Commands window, and the operating system command
line. These are applications of the AutoCode-generated code:

= Standalone simulation on the host machine
= Rapid Prototyping
» Real-time simulation

» Embedded real-time control

Standalone Simulation

AutoCode lets you execute code as a standalone on the host or PC machine; use the
same input vectors for SystemBuild simulation; test the generated application with
these vectors; and load the output vectors back to Xmath for comparison and anal-
ysis.

NOTE: Use the csi option so generated code will match sim results for
continuous systems.lr

When a system has been modeled in SystemBuild and its source code has been gen-
erated using AutoCode, you can compare the outputs from the generated code
against those obtained from simulating the block diagram. The Standalone Library
is provided in your src distribution directory to support this function.

The Standalone Library is a collection of subroutines that performs the operations
of the target-specific utilities to allow testing of the generated code in a traditional
non-real-time host or PC environment. The Standalone Library provides such ser-
vices as reading in an input data file and producing an output file.

The role of the Standalone Library in testing the generated application code against
the simulations is illustrated in Figure 2-2 on page 2-10.

t For standalone AutoCode, results for generated code will not match sim
unless the csi option is not zero. Typically, set csi to 0.01, the time vector
for standalone sim. Then, results will match.

Using AutoCode AutoCode User's Guide

Standalone C/Ada

v Step 3 v
Step 1 Execute Y b] Step 2
(done once)| compile_sa Compile Compile (optional)
Object Files o Object File
for Library application.o user-code.o
Step 4
Link <
v Step 5

Application Save Xmath
@table) Input Vectors
Step 6 i

file.in
Run (t, u vectors)

file.out

Step 7

Load in Xmath
Compare/Plot Results

FIGURE2-2 Compiling, Linking, and Running the Generated Program

2-10

AutoCode User's Guide Using AutoCode

Standalone Simulation for UNIX
The steps required to test the generated code in a host environment are:

1. Make sure that the Standalone Library files are in your local working directory.
Copy all the $CASE/ACC/src/sa_*.* files to your local working directory. This
must be the original version, not modified for your target installation. Compile
the Standalone Library files. The compile_c_sa.sh is provided to compile the
Standalone Library files. This needs to be done only once in a given system, and
need not be repeated for each model. This step produces object files for the
Standalone Library.

NOTE: Please refer to any comments within the compile script for additional
options and variations of the Standalone Library.

For Ada, the compile_ada_sa.sh creates a library named salib and compiles
the Standalone Library into it.

2. If you have any user code that you want to call from an application, then com-
pile it into an object using your compiler. This is a C example for compiling
user_code.c on a Sun (UNIX) workstation:

% cc -c -DSUN user_code.c

This creates an object file called user_code.o . Here, the option -DSUN defines
symbol “SUN” which is required to indicate the operating system.

NOTE: Refer to the Language-Specific Reference for C in the AutoCode
Reference for the list of platform defines to be used for specific
operating systems.

Similarly, an Ada example for compiling user_code.a on a Sun (UNIX) work-
station using the Verdix Ada compiler is as follows:

% a.mklib -f mylib salib

% ada user_code.a -L mylib

where mylib is the library name of your choice and salib is the library created
by compile_ada_sa.sh

3. Compile and link the generated source code with the Standalone Library. A C
example for compiling and linking code generated in model.c on a Sun work-
station is:

% cc -DSUN -0 executable model.c user_code.o sa_*.0 -Im

2-11

Using AutoCode AutoCode User's Guide

NOTE: The user_code.o is an optional file (see step 2 above).

An Ada example for compiling and linking code generated in model.a on a Sun
workstation is:

% ada model.a -L mylib

% a.ld model -L mylib

where model is the name of the main program.

4. Create an input file, file.in , containing (column) vectors t (time) and u (in-
puts), in MATRIXy ASCII format, using Xmath as follows:

t=1[0:..];
u=[..I

save t u file = "file.in" {matrixx, ascii};

Time vector t should always start with the first element value as zero. t and u
vectors should have the same number of rows.

5. Run your executable from the OS command line and specify the MATRIX, ASCII
filename as file.in and the output file name as file.out , as shown below.

% executable
Enter xmath {matrixx,ascii} formatted input filename: file.in
Enter output filename: file.out

6. Load the output from the generated code file.out back into Xmath and com-
pare it to the simulation. (See Section 2.4.2 on page 2-14 for the simulation op-
tions. Use the [te,ye] extended-time simulation feature to obtain all the
discrete time points.) The file contains two items, the output matrix yrt and the
time vector ytime . The generated code and simulation results should match
very closely. For more details on each subroutine in the Standalone Library, re-
fer to the comments in the source file.

After you have completed all needed testing and simulation to optimize the
functionality and performance of your application, the perfected code can be
implemented onto the target processor.

Standalone Simulation for Windows

The steps required to test the generated code from a Command Prompt in a
Windows environment are:

1. Make sure that the environment variables are setup according to the Microsoft
Visual C++ Getting Started manual. In Windows 98 or Windows 95, this is done
via the autoexec.bat file (using Set envvar = ...). In Windows NT, this is done

AutoCode User's Guide Using AutoCode

from the Environment tab of System Properties in Start- Settings - Control
Panel.

The path should have: C:\MSDEV\BIN.
The include should have: C:\MSDEV\INCLUDE;C:\MSDEV\MFC\INCLUDE.
The lib should have: C:\MSDEV\LIB;C:\MSDEV\MFC\LIB.

2. Copy all the c:\isi\case\acc\src\SA*.h files to your local (working) direc- %
tory. Also, you should copy the file compile_c_sa.bat from the same directory
to your working directory.

3. Execute the batchfile (compile_c_sa.bat , now in your local directory) to com-
pile the utility files to sa_*.obj files.

NOTE: Please refer to any comments within the compile script for additional
options and variations of the Standalone Library.

4. If you have any user code that you want to call from an application, then com-
pile it into an object using your compiler. This is a C example for compiling
user_code.c

CL -Op -O1 -W1 -c -DMSWIN32 -I. -Fouser_code.obj user_code.c

NOTE: This is case sensitive. Also, note that there is no space between the
-Fo and the user_code.obj

This creates an object file called user_code.obj

5. Compile and link the source code. From a Command Window, use the following
(intuitive) command:

CL -Op -O1 -W1 -DMSWIN32 -I. -Femodelname.exe modelname.c
user_code.obj sa_*.obj

NOTE: This is case sensitive. Also, note that there is no space between the
-Fe and the modelname.exe . The user_code.obj is an optional file
(see step 4 above).

6. Create an input file, something.in , containing (column) vectors t (time) and u
(inputs), in MATRIX, ASCII format, using Xmath as follows (for a unit step sin-
gle input system):

t=[0:0.1:1]";u=0nes(t);save "something.in" t u {ascii, matrixx}

Time vector t should always start with the first element value as zero. t and u
vectors should have the same number of rows.

2-13

Using AutoCode AutoCode User's Guide

24.2

2-14

7. To run the model type (at the Command Prompt):

modelname

You will be prompted for the input file name (something.in) containing the
time vector and the inputs that were previously saved from Xmath and the out-
put file name (something.out).

To load the results back into Xmath, load something.out , and to plot it for
comparison to SystemBuild simulations, select the vector to be incremented by
2 so that you plot every other point. For the simulation options, see
Section 2.4.2 . Use the [te,ye] extended-time simulation feature to obtain all
of the discrete time points.

The file contains two items: the output matrix yrt and the time vector ytime .
The generated code and simulation results should match very closely. For more
details on each subroutine in the Standalone Library, refer to the comments in
the source file.

After you have completed all needed testing and simulation to optimize the
functionality and performance of your application, the perfected code can be
implemented onto the target processor.

Simulation Options

Simulation Note: For best results when using the Standalone Library to compare
the generated code with simulation results, you first need to set up the simulator to
imitate the generated code’s real-time behavior. This is done through simulator op-
tions.

The appropriate Xmath command is:

setsbdefault,{actiming,extend,typecheck}

The SystemBuild simulator provides the actiming keyword in order to match
AutoCode results for discrete systems. The simulator accomplishes this by match-
ing AutoCode’s scheduler cycle, system initialization, and execution and posting
times for each subsystem.

Three simulation keyword values are forced so that the initialization and posting of
outputs match AutoCode.

cdelay =1 The output posting is always delayed one minor cycle.

AutoCode User's Guide Using AutoCode

243

244

initmode = 0 This keyword setting disables the initialization that is nor-
mally performed at simulation time. O = Outputs of contin-
uous subsystems only are computed based on initial
conditions and inputs. Outputs of discrete subsystems are
set to e .

dtout =0 No extra output time points are specified. This keyword
forces the outputs of the simulation to be posted only at
the minor cycle of the simulation scheduler, which is de-
fined by the least common multiple of the sampling inter-
vals and timing requirements of the subsystems.

This command can be included in your set-up file. It is a good idea to use these op-
tions whenever your discrete controller model is intended for eventual implementa-
tion on a digital computer. Analyze your top-level SuperBlock from the SystemBuild
menu. For more information, see the MATRIX, Help or the SystemBuild User’s
Guide.

Assuming that you have executed the setsbdefaults statement shown above, you
can execute the simulation with the command:

[te,ye] = sim(model,t,u,{sim keywords});
where:

model is a text string enclosed in double quotes, which is the name of the top-level
SuperBlock in the SystemBuild Editor.

t is the required time vector.

U is an input data matrix.

Rapid Prototyping

AutoCode provides the means for fast implementation of SystemBuild block dia-
grams without lengthy manual coding. You can speed up design iterations by simply
editing the block diagrams and generating new code. For more information on rapid
prototyping, see the RealSim User’s Guide.

Real-Time Simulation

AutoCode lets you create and execute code and perform hardware-in-the-loop simu-
lations for an entire system using RealSim. For details regarding real-time simula-
tion, see the RealSim User’s Guide.

2-15

.

Using AutoCode AutoCode User's Guide

245 Implement Embedded Real-Time Control

AutoCode lets you generate code for real-time controllers. You can cross-compile,
link, and download onto a wide variety of target processors.

Managing and Scheduling

3.1

Applications

This chapter details the management of the application control flow via the real-time
scheduler. Topics include scheduler operation sequence, subsystem properties,
subsystem interruption, and examples of scheduler operation.

Real-Time Application Scheduler

AutoCode builds the scheduler as part of the real-time application program by
means of the template file. The scheduler performs overall direction and control of
inserting inputs, scheduling tasks, posting outputs, and dispatching the tasks that
perform the work of the real-time system. Although you can tailor the scheduler as
well as other parts of the code, the intention of this program is to provide a generic
real-time scheduler, combining high performance with deterministic, prioritized,
pre-emptive scheduling of application tasks that have different timing requirements.

The application scheduler operates on the principle of rate-monotonic scheduling,
deriving priorities for the tasks from the repetition rate for periodic subsystems and
the timing requirement for triggered subsystems. The algorithm assigns higher pri-
ority to the faster sample rate or timing requirement subsystems and lower priority
to slower ones (see Figure 3-1 on page 3-2). The rate-monotonic algorithm maxi-
mizes the number of tasks that get to complete their operations in a given time. Us-
ing the rate-monotonic algorithm, all periodic tasks complete their operations if CPU
task utilization does not exceed about 70%.

For consistent and deterministic operation in a real-time environment, the task
subroutines are scheduled and dispatched as encapsulated objects, which accept
inputs and post outputs strictly under control of the scheduler. For this reason, all
external input and output operations are handled by the scheduler directly and in-
ter-task data transfer is performed via input sample and hold. The scheduler is re-

Managing and Scheduling Applications AutoCode User's Guide

311

short sample period,
high priority

X

Higher
= longer sample period,
5 lower priority
= X
Lower
sample period or

Shorter Longer timing requirement

FIGURE3-1 Rate-Monotonic Scheduling Algorithm

entrant except for the critical section, which must not be interrupted. The scheduler
can be called externally by means of an interrupt handler (for real-time applications)
or by a background task (for simulation).

Subsystems

The term subsystem refers to the entities that are scheduled and dispatched for ex-
ecution by the generated scheduler. The terms subsystem and task can be used in-
terchangeably. By definition, a subsystem is an independently-scheduled program
object, consisting of a single computational thread, which accepts inputs and posts
outputs under the control of the scheduler at scheduler-specified times and which
can be pre-empted.

Subsystems are constructed by AutoCode from all SuperBlocks in a system that have
the same computational timing requirements or attributes (sample rates, skew, timing
requirements, enable signals, and triggers). AutoCode has four types of subsystem:

Continuous subsystem Dispatched every time the dispatcher is invoked.

Free-running periodic Executed repetitively at a fixed frequency.
subsystem

Enabled periodic Executed repetitively, but only while its enabling signal
subsystem remains active.

Triggered subsystem Executed as and when its trigger is detected.

Throughout this discussion, the behavior of the scheduler and of the subsystems is
explained in terms of interrupts or scheduler interruptions. These interruptions are
implementation-dependent, involving a hardware timer interrupt, a wakeup call, or
some other method of invoking the scheduler. The operation of the generated code is
the same, regardless of which method of invoking the scheduler is used.

AutoCode User's Guide

312

Managing and Scheduling Applications

Flow of Control in the Generated Program

On start-up, initialization software (part of the standalone utilities) establishes a
wakeup interrupt timing, time lines, priority queues, and initial conditions for the
pre-emptible subsystems, and the manager/scheduler enters a ready state. As illus-
trated in Figure 3-2, initial entry is to the background, which waits for the first in-
terrupt or other wakeup action.

inished or

Interrupt . nterrupt_—

N

Interrupt

Initial Entry L
Main
Function/
Initialization
Background <
Interrupt
v Any new
Interrupt Manager/
(A)—>| andier | > Scheduler ey
No
Yes i
_ New
Dispatcher
Dispatcher Any subsystems No
with higher priority
th_a? the rtméSt retcently N inter%%/ted
» interrupted system
ready topbe d|s}lpatched SUbSyg ems
Yes¢ Yes
¢—¢ Restore rlnost
-) recent
Pre-emptible Pre-emptible interruptgd
Subsystem Subsystem subsystem
Finished _~Finishedor . _~Finished or

- nterrupt

~

FIGURE 3-2

Flow of Control in the Generated Program

Managing and Scheduling Applications AutoCode User's Guide

When the wakeup is received, the interrupt handler saves the interrupted context, if
necessary, and passes control to the manager/scheduler. The scheduler checks ex-
ternal inputs and establishes a list of subsystems to be dispatched. It then posts
any external outputs and performs certain housekeeping before passing the dis-
patch list to the dispatcher.

The dispatcher is bascially a big switch that passes control to the subsystem in the
dispatch list that has highest priority. It always checks to see if there are any previ-
ously dispatched, but interrupted, subsystems with higher priority before dispatch-
ing a newly scheduled subsystem from its dispatch list. If there are, the most
recently interrupted subsystem (which should be of highest priority among previ-
ously interrupted subsystems and newly scheduled subsystems) is restored by the
interrupt handler and allowed to continue.

When the subsystem is finished, it passes control back to the dispatcher, which dis-
patches or restores the next-highest-priority subsystem, and so on. If all the cur-
rently dispatched subsystems and previously interrupted subsystems finish before
a new timer interrupt is received, the interrupt handler returns control to the back-
ground. However, if a subsystem is still processing when the next timer
interrupt is received, control passes to the interrupt handler, which again passes
control to the manager/scheduler, which executes again.

In the case of Ada code with tasks representing subsystems, the dispatcher simulta-
neously dispatches all tasks that are ready. The Ada tasks have priorities associated
with them which determine the CPU availability for each task.

If the manager/scheduler has nothing to schedule at the next timer interrupt, the
scheduler passes control back to the interrupt handler. The interrupt handler then
restores whatever was running at the time of the interrupt. If any subsystems or the
dispatcher were interrupted part-way through their execution, the interrupt handler
passes control back to whatever was running (subsystem or dispatcher) at the time
of the interrupt. If no such dispatchers or subsystems remain, control returns to the
background.

AutoCode User’s Guide Managing and Scheduling Applications

3.2

Sequence of Scheduler Operations

Figure 3-3 on page 3-6 illustrates the sequence of operations of the real-time appli-
cation scheduler. The scheduler is represented as a bubble diagram (although it is
not strictly a finite state machine), because during the “dispatch subsystems” phase
(Bubble 9 in Figure 3-3), operations can be interrupted. During the critical section,
however (Bubbles 1-8), it operates in the manner of a state machine. In the discus-
sion that follows, the term scheduler is sometimes used to refer to the critical sec-
tion and dispatcher refers to the interruptible section.

Because the first eight steps in the scheduler's operation are non-interruptible, crit-
ical steps, it is an Integrated Systems policy to optimize critical code for maximum
performance and to execute in the same amount of time on every cycle. This mini-
mizes output jitter and avoids performance problems.

1. Read External Inputs

Bubble 1: On entry or re-entry, the scheduler collects the system external in-
puts so they can be used by the scheduled subsystems without a minor cycle
delay. By definition, the minor cycle time of the application is the minimum
scheduler cycle, a timing interval created from the sampling rates and timing
requirements of all of the SuperBlocks in the system. The scheduler executes
exactly once during each minor cycle.

2. Check Triggers and Enables

Bubble 2: The scheduler prepares for scheduling the subsystems by first deter-
mining which triggered and enabled subsystems are eligible to execute during
this minor cycle. This step is not performed for systems that have no enabled or
triggered subsystems. For enabled subsystems, the scheduler checks the sub-
system state. If the state is blocked (that is, ready to run but waiting for an
enable signal), the subsystem is ready to execute. If the enable signal is set, the
scheduler queues it for execution.

However, if the subsystem is in an idle state and the enable signal is true, the
subsystem scheduler must determine whether the correct time has arrived for
this subsystem to execute. If it is not yet time, the subsystem waits in the idle
state until it is time to execute. See Section 3.3.2 on page 3-11 for further
details.

For triggered subsystems, if the trigger signal is true, the scheduler checks the
subsystem state and proceeds appropriately for the subsystem type. At this
stage, when a triggering signal is received and the triggered subsystem is in a
blocked state waiting for a trigger, the scheduler queues it for execution. If the

Managing and Scheduling Applications AutoCode User's Guide
At the start of every Minor Cycle
1 Read External
Inputs
2 Check.
Enable/Trigger
Signals
Critical
Section

________________________________ .
7 Update

6 Signal Remote
Dispatch*

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-

Interruptible
Section

Conditional Step

O Required Step Executes only if

Required

P————- Steps Duplicated in
O The Scheduler Proper | Secondary Processors in

Required Step |
(Expanded later)

* |f available on system

______ + Multiprocessing Environment*

FIGURE 3-3

Scheduler Operation

AutoCode User’s Guide Managing and Scheduling Applications

triggered subsystem is in an idle state, the subsystem is also queued for execu-
tion, but the outputs are posted or not posted, depending on the type of the
subsystem. See Section 3.3.3 on page 3-14 for further details.

3. Clear the Ready Queue

Bubble 3: The scheduler clears the ready queue for all the subsystems. The
ready queue is established by the scheduler in Bubble 4 and used in Bubble 8
to determine which subsystems are to have their input sample-and-holds
updated.

4. Schedule the Subsystems

Bubble 4: The scheduling algorithm is performed. For scheduling each of the
subsystems, the scheduler checks for timing overflow (when a subsystem is still
running, even though it is time to start running its next cycle; that is, the dura-
tion of the subsystem’s execution has lasted longer than its cycle time). For
each subsystem, the scheduler also checks all the criteria that determine
whether the subsystem is to be dispatched.

These criteria are:
. Continuous

The continuous task is dispatched (through the integrator) every time the
dispatcher is invoked.

An element of the scheduler is the Integrator (see Figure 3-4 on page 3-9). It
performs continuous, fixed-step integration of states and implicitly dis-
patches the continuous subsystem to perform the state and output up-
dates. The integrator/continuous task pair is by default treated as the
fastest task to be dispatched by the scheduler. You can also specify the rate
with the -csi option, but it must be at least as fast as the fastest periodic
task in the model. For details regarding continuous code generation, see
Chapter 5.

o Free-Running Periodic

The appropriate time has arrived, as determined by the time line table and
the elapsed time counter.

« Enabled

The correct time has arrived, the enable signal is still true, and the sub-
system was in the Idle State in the previous minor cycle (the state in which
the enable signal is true, but the correct time has not yet arrived).

Managing and Scheduling Applications AutoCode User's Guide

or:

The enable signal has just become true and the subsystem was in the
Blocked State in the previous minor cycle (the state in which the enable sig-
nal is false).

Triggered

The trigger signal has transitioned from false to true since the start of the
last minor cycle. This condition is also checked for in Bubble 2. If the trig-
gered block type is Asynchronous, and if the subsystem is to be dispatched
by the Scheduler (that is, if the triggering signal is not an External Input),
the subsystem triggers if the triggering signal has transitioned either from
false to true or from true to false since the start of the last minor cycle. If
the triggering signal for the Asynchronous subsystem is an External Input,
the subsystem is dispatched separately from the Scheduler; see Properties
of Asynchronous Subsystems on page 3-17 for details.

Based on these criteria, the scheduler builds up the ready queue and adds
the subsystems that are to execute to the dispatch list. The difference be-
tween the dispatch list and the ready queue is that subsystems that were
on the dispatch list, but not dispatched on the previous cycle, are brought
forward on the dispatch list for dispatching on this cycle or later. By con-
trast, the ready queue is cleared and built up again on every cycle.

As indicated in Bubble 4 and explained in more detail in the section that
follows, the scheduler uses the computational attributes of the subsystems
to establish the priority for dispatching the subsystems. The computational
attributes include the sample rate and the type of the subsystem. The prior-
ity sequence established using the computational attributes runs from fast-
est sample rate or timing requirement to slowest. For a tie in sample rate or
timing requirement, the priority for execution is based on the type of sub-
system, from highest to lowest:

Continuous

Free-Running Periodic
Enabled Periodic

Triggered Asynchronous
Triggered As-Soon-As-Finished

Triggered At-Timing-Requirement

AutoCode User’s Guide Managing and Scheduling Applications

Triggered At-Next-Trigger

Using the above priority rules, the subsystems are assigned their task IDs
in the sequence 1, 2, 3, ... NTASKS, with the highest priority subsystem get-
ting the lowest ID number (that is, 1) and the lowest priority subsystem get-
ting an ID of NTASKS. NTASKS is the number of tasks in the system and is
also the name of the variable in the code which represents that number. The
task IDs are assigned at code generation time.

Scheduler

Dispatcher

v v

Discrete Tasks Integrator

Continuous
Task

FIGURE 3-4 Scheduler Architecture

5. Write External Outputs and Signal Remote Dispatch

Bubbles 5 & 6: The scheduler calls the external output routine to post all sub-
system outputs at every minor cycle. In multiprocessor implementations only,
the dispatch list and a remote dispatch signal are posted to the secondary pro-
cessors (Bubble 6) to signal the availability of the dispatch list and mark the
start of subsystem execution.

6. Update Elapsed Time and Sample & Hold

Bubbles 7 & 8: In multiprocessor implementations, every secondary processor’s
scheduler subsystem may or may not need to perform an elapsed time update

Managing and Scheduling Applications AutoCode User's Guide

3.3

331

(Bubble 7), but will be required to perform a “sample and hold” subsystem input
(where the scheduler reads the inputs and latches them for use by the sub-
system, Bubble 8) and a subsystem dispatch (Bubble 9). The scheduler updates
the elapsed time counter (Bubble 7), if required. Bubble 8: the scheduler in each
processor consults the ready queue to perform a sample-and-hold on the sub-
system inputs for the subsystems that have been added to the dispatch list. For
determinacy reasons, subsystems remaining in the dispatch list from a prior cy-
cle will not have their inputs sampled again. This step is the end of the critical
section.

7. Dispatch Subsystems

Bubble 9: The dispatcher is re-entrant and it can be interrupted at any point in
its operations. This re-entrant step accepts the dispatch list and queues the
subroutines for execution. This step also includes the execution of subroutines,
which can be interrupted/pre-empted at any time.

Properties of Scheduled Subsystems

A scheduled subsystem is viewed as a finite state machine that is represented as a
State Transition Diagram (STD). A finite state machine always exists in exactly one
of its defined states, where it remains until some change forces it to transition to an-
other state. No more than one transition can take place on each cycle of the sub-
system in which the STD resides. These STDs have the same timing conventions as
other state machines in SystemBuild. The STDs are illustrated in Figure 3-5, Figure
3-6 on page 3-12, and Figure 3-8 on page 3-15; associated timing diagrams are
shown in Figure 3-7 on page 3-13 and Figure 3-10 on page 3-17.

Free-Running Periodic Subsystems

Figure 3-5 shows the operation of a free-running periodic subsystem. A free-run-
ning subsystem is always enabled and it exists in its idle state until the scheduler
decides it is time for the subsystem to run (i.e., that its sample time has arrived). At
that time, the subsystem posts its outputs and enters the running state. This also
applies on start-up, when the subsystem theoretically has not yet executed and has
no outputs to post; the simulation user can control the way that this start-up out-
put is generated by using the sim...{initmode} command (see the SystemBuild
User’s Guide).

A subsystem accepts its inputs just before starting; this event is associated with the
transition before the running state is entered. With specified exceptions, the sub-
system posts its previous outputs at that same time (that is, just before running).

AutoCode User’s Guide Managing and Scheduling Applications

332

T Task Finished Executing

¢y

Time to Run;
Post Outputs of
Previous Execution; If Time to Run Again,
Read Inputs Overflow

FIGURE3-5 Free-Running Periodic Subsystem as a State Machine

The exceptions are associated with enabled and triggered subsystems and are
shown in the State Transition Diagrams.

When a subsystem is running (that is, manipulating its outputs), the outputs of the
previous cycle are latched (double-buffered) and can be read. Note the overflow con-
dition that occurs when a subsystem is in the running state and it becomes time for
it to start running again. This means that it did not finish its execution in time. This
is a fatal error in systems that must operate in a real-time environment. When the
subsystem finishes, it performs the appropriate housekeeping subsystems and then
returns to the idle state; but for reasons of determinacy, it does not post its new
outputs until it is started up again.

Enabled Periodic Subsystems

Figure 3-6 on page 3-12 shows the state diagram for an enabled periodic sub-
system, illustrating the blocked state during which it is disabled.

In simulation, these subsystems can be scheduled to run only on a predefined time
line established by the subsystem’s sample rate and when the subsystem is enabled
at the same time. If a disabled subsystem is enabled after its synchronous start time
in the time line, it has to wait until its next major cycle (the repetition time of the en-
abled periodic subsystem) to run. The blocked state is used in the generated code to
eliminate latencies that would occur if a disabled subsystem were to receive its en-
able signal several minor cycles before its synchronous start time in the time line
(its major cycle).

When the enable goes true while the subsystem is in the blocked state, the sub-
system is scheduled to run at the next minor cycle; if it has priority over other con-
tending subsystems, it is executed immediately, at the same minor cycle of the real-

3-11

Managing and Scheduling Applications AutoCode User's Guide

1

BLOCKED
STATE

Enable False

Enabled;
Post Outputs of Previous
Run and Go

Task Finished

Enabled & Time to Run;
Post Outputs

If Time to Run Again,
Overflow

FIGURE3-6 Enabled Periodic Subsystem as a State Machine

time scheduler. The behavior of the scheduler can differ, however, depending on
whether the enable signal is generated internal to the system (as the output of an-
other subsystem) or presented as an external input to the system. See the timing di-
agram (Figure 3-7 on page 3-13) for these distinctions.

In the example shown in Figure 3-7, the major cycle is three times as long as the
minor cycle of the system. When an external enable signal is detected at the begin-
ning of a major cycle, (as shown at point A); the enabled subsystem is dispatched for
execution immediately.

In Figure 3-7, item B shows the case in the generated code concerning enables that
are presented as external inputs, asynchronous to the original time line. The sched-
uler attempts to process these inputs as quickly as possible. This is also shown in
Bubble 2 of Figure 3-3 on page 3-6, where external inputs are gathered immediately
upon initialization of the scheduler, so they can be processed without delay. In
Figure 3-7 at B, in the generated code the subsystem is queued for execution at the
minor cycle following the instant when the enable signal was detected true. Note the
timing window indicated at C. During that interval, it does not matter whether the
external enable is presented synchronously with the minor cycle or before it; both
the simulation and the generated code operate identically.

At D, the signal appears at the start of a major cycle and is applied immediately. At
E, the signal appears one minor cycle after the start of a major cycle and incurs a
two-minor-cycle delay.

AutoCode User's Guide

Managing and Scheduling Applications

Scheduler
Minor Cycle

Enable Signal

Enable Signal

Enable Signal
(Synchronous)

(continued)

Enabled Subsystem
Time Line Major Cycle

Externally Generated

Subsystem Scheduling
for External Enables

Internally Generated

Subsystem Scheduling
in the Internal Case

Internally Generated

Subsystem Scheduling
in the Internal Case

FIGURE3-7 Enabled Subsystem Timing

At F, the enable occurs one minor cycle before the beginning of the major cycle and
consequently, the delay is one minor cycle. By contrast, at points D, E, and F, illus-
trating the operation of generated code, the internally generated enable signal is
also synchronized through the application scheduler. It is always delayed exactly
one minor cycle before being applied. The reason for this delay is implied in Bubble
8 of Figure 3-3. Here, input sample-and-holds are performed after the determina-
tion of which subsystems are to be dispatched for execution on this (the first) minor
cycle, so the application of the synchronous enable in generated code is always de-
ferred for one minor cycle.

3-13

Managing and Scheduling Applications AutoCode User's Guide

3.3.3

3-14

Triggered Subsystems

Figure 3-8 on page 3-15 shows the State Transition Diagrams for triggered, asyn-
chronous subsystems. The types of triggered subsystems differ mainly in the man-
ner in which they post their outputs. Just like enabled subsystems, certain types of
triggered subsystems have a blocked state, from which they can be invoked immedi-
ately when the trigger is detected. (By default, the trigger is defined as the positive-
going edge of the triggering signal, but provision is made in the template files for
changing it to detect a negative-going edge.) The properties of the types of triggered
subsystems are illustrated as State Transition Diagrams in Figure 3-8 on page 3-15,
and Figure 3-9 on page 3-16 (for aysnchronous), and in a consolidated timing dia-
gram in Figure 3-10 on page 3-17. These properties are summarized as follows:

At Timing Requirement (ATR) Specify a timing requirement (number of system
minor cycles) in the SuperBlock block form. The
outputs are always posted exactly that number of
cycles after the subsystem is triggered for execu-
tion. ATR is used especially in systems where de-
terminacy must be guaranteed.

At Next Trigger (ANT) The subsystem only posts its outputs when it is
next triggered for execution, however long that
may be. ANT is used for modeling certain kinds of
variable rate, but repetitive activities, such as a
shaft that rotates at a variable speed. This type of
subsystem has no blocked state.

As Soon As Finished (SAF) The outputs are posted at the beginning of the mi-
nor cycle after the subsystem finishes running.
SAF is used for maximum performance, but might
compromise determinacy.

Asynchronous (ASYNC) If dispatched by the scheduler, the outputs are
posted at the beginning of the next minor cycle af-
ter the subsystem finishes running. This will occur
if the triggering signal is an output of another sub-
system. If dispatched as a result of an aysnchro-
nous interrupt, the outputs are posted as part of
the interrupt handler, and are available to sched-
uled systems immediately.

In Figure 3-10 on page 3-17, a timing requirement equal to four scheduler minor
cycles has been established. When the trigger signal is received, the subsystem is
started at the next scheduler minor cycle (point Al). In this example, although the

AutoCode User’s Guide Managing and Scheduling Applications

AT TIMING REQUIREMENT (ATR)
1

Trigger Detected ATR No Trigger, but Time
BLOCKED to Post Outputs
STATE

Time to Post Outputs
& New Trigger Detected >
New Trigger,
but not yet
time to post
outputs

New Trigger,
Overflow

Task Finished

AT NEXT TRIGGER (ANT) New Trigger; Post Outputs
and Restart Task

Task Finished

New Trigger, Overflow

AS SOON AS FINISHED (SAF)

No Trigger;
Post Outputs

1
2
New Trigger; Post Outputs
and Restart Task

Task Finished

Trigger Detected

8

RUNNING
STATE

New Trigger,
Overflow

FIGURE 3-8 Triggered Subsystems as State Machines

3-15

Managing and Scheduling Applications AutoCode User's Guide

timing requirement is four (point A2), the subsystem actually completes execution
in slightly less than three cycles. This illustrates the kinds of output posting:

= ASYNC - The output is seen at point B, three cycles after the subsystem was
started, assuming this subsystem was dispatched by the scheduler.

= SAF - The output is seen at point B, three cycles after the subsystem was
started.

= ATR - The output becomes available at point C, exactly four cycles after start-
up.

= ANT - The output is not available until point D, when the subsystem is next trig-
gered for execution.

ASYNCHRONOUS (ASYNC)

New Trigger,| RUNNING New Trigger,
Overflow STATE but not yet
time to post
outputs

12

Trigger Detected ASYNC No Trigger;
BLOCKED Post Outputs
STATE

10 New Trigger; Post Outputs

and Restart Task

Task Finished

FIGURE3-9 ASYNCHRONOUS Triggered Subsystems as State Machines

AutoCode User's Guide

Managing and Scheduling Applications

Timing Requirement

Scheduler Minor Cycle

Asynchronous
Trigger Detected

Asynchronous
Subsystem’s
Actual Execution

Output Availability
Under SAF

Output Availability
Under ATR

Output Availability
Under ANT

| AL

FIGURE 3-10 Timing of Triggered Subsystems

3.4

Properties of Asynchronous Subsystems

Asynchronous subsystems (procedures or asynchronous trigger subsystems) are so
called because of their noncyclic or unscheduled execution in a real-time applica-
tion. These subsystems should be viewed as special purpose entities and should be

used accordingly.

The asynchronous subsystems are not directly managed or scheduled by the appli-
cation scheduler as are the synchronous subsystems. Scheduled subsystems can
execute only at the start of a scheduler minor cycle and not instantaneously (for ex-
ample, at the arrival of an external event). This adds latency to the execution of cer-

3-17

Managing and Scheduling Applications AutoCode User's Guide

341

342

tain subsystems, which absolutely cannot wait until the next minor cycle for
execution. Asynchronous subsystems are designed to solve this problem.

The kinds of asynchronous subsystems (see Figure 3-11 on page 3-19) that you can
generate in an AutoCode application are:

= Start-up procedure
= Asynchronous subsystem
= Interrupt procedure

= Background procedure

Start-up Procedure

This procedure is defined in SystemBuild using the Start-up Procedure SuperBlock.
The purpose of this start-up procedure is to initialize the application data at start-
up time. This data includes variable block data and %variables represented by vari-
able blocks. It is only via the Startup SuperBlock that you can initialize the %vari-
ables in SystemBuild at run time. Usually, the start-up procedure is called at the
system initialization phase. Refer to the SystemBuild User’s Guide for more details
on the Startup SuperBlock description.

Asynchronous Trigger Subsystems

Subsystems formed by collections of Asynchronous Triggered SuperBlocks (ATSBs)
with the same triggering signal are handled differently depending upon the source of
the triggering signal.

If the triggering signal is internal to the model (that is, if the triggering signal is not
an external input), these subsystems function similarly to the Triggered - Soon As
Finished subsystems with the following exceptions:

= The ATSB subsystems have higher priority than the SAF triggered subsystems
(that is, they are executed before other triggered subsystems).

= The triggering signal to ATSB subsystems is double-edged; the ATSB subsystem
will be scheduled if its triggering signal transitions from low to high or
from high to low during the previous scheduler cycle. This is to maintain com-
patibility with the use of these subsystems in simulation.

If the triggering signal is external to the model (that is, the triggering signal is an ex-
ternal input), then the ATSB subsystem is handled specially in the template. In this
case, two pieces of code are generated; the regular (nonreentrant) triggered sub-
system code, and a small (reentrant) wrapper that is designed to function as an
interrupt service routine (ISR). This wrapper is wholly generated in the template,

AutoCode User’s Guide Managing and Scheduling Applications

Power On

!

System
Hardware Initialization

(Start—up Procedure>

i
al

4

Background
Procedure

Interrupt Requests
(can go to any @)

Asynchronous Interrupts C

N
0)

Interrupt Service
C

v Interrupt Service

Interrupt Service B
Routine A

@ Timer Interrupt

l

AutoCode

Scheduler v\
Periodic Triggered Enabled
100 Hz 50 Hz 10 Hz

FIGURE 3-11 AutoCode Real-Time Application Execution Sequence

3-19

Managing and Scheduling Applications AutoCode User's Guide

343

3-20

and can be customized for the user’s application. In the templates provided by Inte-
grated Systems, the wrapper for the ATSB subsystem does the following:

= Checks for reentrancy, and reports an error if the wrapper is reentered. Note
that the wrapper could instead queue calls to the subsystem code, but under no
circumstances should the subsystem code be reentered.

= Gathers the subsystem inputs from external inputs and outputs from other
subsystems.

= Invokes the ATSB subsystem.

= Posts the ATSB’s subsystem outputs, updating the external output structures
as necessary.

In the default template, the ATSB wrapper is a procedure requiring neither inputs
nor return values.

Note that ATSB subsystems differ from Interrupt Procedure SuperBlocks (see Asyn-
chronous Trigger Subsystems) in the following ways:

=« The inputs and outputs to these subsystems can be represented in the model
like those of other standard SuperBlocks without incurring processing overhead
at interrupt time.

= These subsystems are simulatable by the SystemBuild simulator.

= States are supported in ATSB subsystems, but not in Interrupt Procedure
SuperBlocks.

= Calls to Procedure SuperBlocks are supported on ATSB subsystems.

= These subsystems are not reentrant, even though the wrapper is reentrant, and
thus can be designed in such a way to support asynchronous interrupts that
may occur before the processing of the ATSB subsystem code is complete.

For more information on Asynchronous Trigger SuperBlocks, see the SystemBuild
User’s Guide.

Interrupt Procedure

This procedure is defined in SystemBuild using the Interrupt Procedure
SuperBlock. The purpose of this SuperBlock is to model the Interrupt Service Rou-
tine (ISR). This ISR model in SystemBuild is generated as an interrupt procedure by
AutoCode and can be executed on arrival of a specific interrupt signal. Using vari-
able blocks, implicit communication can be established to any other subsystem in
the application.

AutoCode User’s Guide Managing and Scheduling Applications

344

3.5

The execution of the interrupt procedure is done directly on arrival of an external
interrupt or an event; the AutoCode scheduler does not manage, monitor, or sched-
ule this procedure. However, since the AutoCode scheduler, as supplied, employs
rate monotonic scheduling principle, it is possible that interrupt procedure execu-
tion will overflow the synchronous task execution. Interrupt procedure users should
keep the interrupt procedure execution time to a minimum and should keep enough
time buffer in each scheduler cycle for possible execution of interrupt procedures.
Please refer to the SystemBuild User’s Guide for more details on the Interrupt Proce-
dure SuperBlock description.

Background Procedure

This procedure is defined in SystemBuild using the Background Procedure
SuperBlock. The purpose of the background procedure is to represent the logic exe-
cuted when the system is idle, in the background mode of operation. Typically, the
background procedure should be executed as the lowest priority task and only if no
other tasks need to be performed in the system. Please refer to the SystemBuild
User’s Guide for more details on the Background Procedure SuperBlock description.

Reentrancy and Preemption: The Dispatcher

The generated application program is interruptible except at the critical section of
the scheduler. The scheduler is automatically created by AutoCode, using the tem-
plate file, to provide input/output calls, scheduling, error handling, and dispatching
services for the generated application program. All the services, except for dispatch-
ing of the subsystems, are performed in the critical section. The critical section is
kept as brief as possible; one of several reasons for this minimization is to allow
maximum time for the subsystems to execute.

The subsystems operate under different constraints as compared to those of the
time-critical scheduler. A subsystem cannot execute more frequently than the
scheduler does and in many cases, it will run far less often. However, the subsystem
may require considerable time for each execution pass. Consequently, it can be in-
terrupted repeatedly by scheduler execution. Thus, the subsystem code must be
completely interruptible. It must be able to be interrupted by the scheduler and
thus to be pre-empted by higher priority subsystems. It must also be able to restart
at any point in its operations.

The only timing requirement of the subsystem is that it must finish executing before
the next time it is to be queued for execution. A subsystem being ready to run and
simultaneously not finished running, defines the condition called “subsystem tim-
ing overflow.” This is a catastrophic error in any system that requires deterministic
operation.

3-21

Managing and Scheduling Applications AutoCode User's Guide

3.6

3-22

The scheduler can add subsystems to the dispatch list at any cycle of the sched-
uler’s operations. However, the dispatcher only removes the subroutine from the list
when the subsystem has begun its operations. Determinacy and proper operation of
a pre-empted subsystem both demand that the inputs receive a sample-and-hold to
a subsystem only once per execution, when first queued. As a result, a second list,
the ready queue, is employed to determine which subsystems will have their inputs
sampled and held this cycle. The ready queue is cleared and set up by the applica-
tion scheduler once every minor cycle.

When the ready queue is cleared, the scheduler determines which subsystems are
to be queued for dispatch this cycle and places the subsystems into the ready queue
and the dispatch list. Note that the scheduler never removes a subsystem from the
dispatch list; only the dispatcher has that duty. The following examples explore
these ideas graphically, following the scheduler and dispatcher through a few cycles
of operation, showing how the subsystem states, the ready queue, and the dispatch
list change over time.

Other examples show the operation of a scheduler with more complex timing require-
ments (“pseudo-rate scheduler”) and its special conditions and error conditions.

Scheduler Examples

The examples presented in the subsections that follow describe scheduler operation
both when sampling rates and timing requirements for all subsystems are common
multiples and when they are not common multiples, thus requiring a pseudo-rate
for the scheduler. Operating with skew is also discussed.

AutoCode User’s Guide Managing and Scheduling Applications

36.1

Dispatching and Pre-emption Example

The illustrations, starting with Figure 3-12, show a system with five subsystems:
three periodic, one enabled, and one triggered. The subsystem list identifies which
subsystems are periodic, enabled, or triggered, and shows them in priority order.

Subsystem List Subsystem State
1| PERIODIC Highest Priority 1] IDLE
2 | PERIODIC 2| IDLE
3| ENABLED 3 | BLOCKED
4 | PERIODIC 4 | IDLE
5| TRIGGERED Lowest Priority 5 | BLOCKED
Ready Queue Dispatch List
EMPTY READY COUNT =0 1| FALSE
2 | FALSE
3| FALSE
4 | FALSE
DISPATCH COUNT =0 5| FALSE

FIGURE 3-12 Scheduler Data Structures at Initialization: 1

The subsystem state list identifies the state of the subsystem. The ready queue is
used by the scheduler to determine which subsystems are to have their inputs sam-
pled and held. When the scheduler determines that a subsystem is to be dispatched
for execution, the subsystem is placed into this list. When a subsystem is dis-
patched for execution, it is removed from the list by the dispatcher. In Figure 3-12,
the subsystems are idle or blocked, each awaiting its condition to start running.

3-23

Managing and Scheduling Applications

3-24

AutoCode User's Guide

In Figure 3-13, the time has arrived for subsystem 1 to execute and the enable sig-
nal for subsystem 3 has been received. The numbers of the two subsystems are en-
tered into the ready queue in reverse order of priority and the ready count is set to
equal the number of subsystems that are ready (that is, 2). The corresponding en-
tries in the dispatch list are marked true. The dispatch count (which is the pointer
to the lowest priority subsystem that is ready for dispatch) is set to 3. The immedi-
ate effect of this is that the inputs for subsystems 1 and 3 are sampled and held,
and control is passed to the dispatcher.

Subsystem State Ready Queue
1 | RUNNING 3
2| IDLE 1
3 | RUNNING READY COUNT =2
4| IDLE
5 | BLOCKED
SUBSYSTEMS 1 and 3 READY

Dispatch List

1| TRUE

2 | FALSE

3| TRUE

4 | FALSE

5| FALSE

DISPATCH COUNT =3

FIGURE 3-13 Scheduler Data Structures: 2

AutoCode User’s Guide Managing and Scheduling Applications

The action of the dispatcher is shown in Figure 3-14, where subsystem 1 (the high-
est priority subsystem) is actually executing and subsystem 3 is waiting to be dis-
patched. The dispatch count is still equal to 3, pointing to the subsystem of lowest
priority that is still either running or in the dispatch list. When subsystem 1 com-
pletes its operations (is no longer running), the system moves to the state shown in
Figure 3-15 on page 3-26.

Subsystem State Dispatch List
1| RUNNING 1| FALSE
2| IDLE 2| FALSE
3| RUNNING 3| TRUE
4| IDLE 4| FALSE
5| BLOCKED 5| FALSE
SUBSYSTEMS Land3 DISPATCH COUNT = 3

FIGURE 3-14 Scheduler Data Structures: 3

3-25

Managing and Scheduling Applications AutoCode User's Guide

3-26

In Figure 3-15, subsystem 1 is marked idle in the subsystem state table and sub-
system 3 is dispatched and running. All the entries in the dispatch list are marked
false, indicating that no subsystems currently need to be dispatched. However, the
dispatch count pointer is still pointing to subsystem 3, indicating that it is not finished
executing. Now, while subsystem 3 is still working, a scheduler interruption occurs.

Subsystem State Dispatch List
1| IDLE 1| FALSE
2| IDLE 2 | FALSE
3| RUNNING 3| FALSE
4| IDLE 4 | FALSE
5| BLOCKED 5| FALSE
SUBSYSTEM 3 RUNNING DISPATCH COUNT =3

FIGURE 3-15 Scheduler Data Structures: 4

AutoCode User’s Guide Managing and Scheduling Applications

The scheduler is re-entered and, as a part of the scheduling loop, subsystems 1, 2,
and 5 are all marked ready (see Figure 3-16). Subsystems 1, 2, and 5 have been en-
tered into the subsystem state list as running and the interrupted subsystem 3 re-
mains in a running state. Therefore, subsystems 1, 2, and 5 are placed in the ready
queue to have their inputs sampled and held. Note that subsystem 3 cannot be
placed in the ready queue, because it has already received its inputs for this operations
cycle. Now, subsystem 1 and then subsystem 2 will be dispatched for execution.

Subsystem State Ready Queue Dispatch List

1| RUNNING 5 1| TRUE

2 | RUNNING 2 2 | TRUE

3 | RUNNING 1 3| FALSE

4| IDLE READY COUNT =3 4 | FALSE

5| RUNNING E} 5| TRUE
SUBSYSTEMS 1, 2, and 5 DISPATCH COUNT =5
ARE MARKED RUNNING

FIGURE 3-16 Scheduler Data Structures: 5

3-27

Managing and Scheduling Applications

3-28

AutoCode User's Guide

When subsystems 1 and 2 are both finished (see Figure 3-17), the dispatcher notes
that subsystem 3 is in a running state, but is not in the dispatch list. The dis-
patcher checks its records and determines that subsystem 3 was actually in the
process of executing when the next scheduler cycle occurred. Thus, the subsystem
needs to have its context restored by the interrupt handler, not by the real-time ap-
plication scheduler. Therefore, the scheduler dispatcher performs an exit, which
passes control back to the operating system interrupt handler. The interrupted sub-
system is restored from there.

4

5

Subsystem State

IDLE

IDLE

RUNNING

IDLE

RUNNING

SUBSYSTEMS 3 and 5
ARE RUNNING

.

4 | FALSE

Dispatch List

1| FALSE

2 | FALSE

3| FALSE

5| TRUE

ISPATCH COUNT =5

FIGURE 3-17 Scheduler Data Structures: 6

AutoCode User’s Guide Managing and Scheduling Applications

When subsystem 3 is finally finished executing, as shown in Figure 3-18, sub-
system 5 is dispatched and executes.

Subsystem State Dispatch List
1| IDLE 1| FALSE
2| IDLE 2 | FALSE
3| IDLE 3 | FALSE
4 | IDLE 4 | FALSE
5| RUNNING 5| FALSE
SUBSYSTEM 5 IS RUNNING E>DISPATCH COUNT =5

FIGURE 3-18 Scheduler Data Structures: 7

3-29

Managing and Scheduling Applications AutoCode User's Guide

3-30

Finally, when subsystem 5 is also finished, the situation is as represented in
Figure 3-19. At this point, no subsystems are running, nothing is to be dispatched,
and the next interruption for scheduler operation is sometime in the future. The dis-
patcher responds by passing control to the operating system interrupt handler,
which restores and passes control to the background subsystem.

Subsystem State Dispatch List
1| IDLE 1| FALSE
2 | IDLE 2 | FALSE
3| IDLE 3| FALSE
4 | IDLE 4 | FALSE
5| IDLE 5| FALSE
ALL SUBSYSTEMS ARE IDLE DISPATCH COUNT =0

FIGURE 3-19 Scheduler Data Structures: 8

This background subsystem consists of interruptible code that does not return, but
walits to be interrupted. It might be nothing but a loop that waits to be interrupted,
or it might perform any of a range of low-priority program tasks, such as self-
diagnosis and updating displays. For example, some Interactive Animation displays
are updated by the background subsystem.

AutoCode User’s Guide Managing and Scheduling Applications

The operation of the scheduler and the subsystems in this example are shown in the
form of a timing diagram in Figure 3-20. The numbers in circles correspond to the
numbers at the end of each figure title associated with each of the figures for this
example.

Re-entrant Dispatcher

irst Interrupt Interv:
Second
Interru
Operating System /GD /@>/Q)’> ¢ Interva%tl)@ r Time

(Interrupt Handler) /

Critical Scheduler
e 22 Y

Subsystem 1

Subsystem 2

Subsystem 3

Subsystem 4

/!
Subsystem 5 G_I/{

Background

Key: ¢ Timer Interrupt — Computational Thread Context Switch

FIGURE 3-20 Dispatcher Example as a Timing Diagram

3.6.2

Pseudo-Rate Scheduler

The previous example assumed that the repetition rate of the scheduler (the sched-
uler minor cycle) was the same as the sampling rate of the fastest subsystem, sub-
system 1. This correspondence holds true only if the sampling rates and timing
requirements of all of the subsystems are common multiples. Thus, in the example,
the sampling rate of subsystem 1 might be 1 unit, the sampling rate of subsystem 2
might be 2 units, and that of subsystem 4 might be 3 or more units.

3-31

Managing and Scheduling Applications AutoCode User's Guide

However, if the sampling rates or timing requirements of the subsystems are not
even multiples, AutoCode establishes a “pseudo-rate” for the scheduler, based on
the least common multiple of the rates of the subsystems. The simplest case of a
pseudo-rate is shown in Figure 3-21, where there are two free-running subsystems:
subsystem 1 with a sampling rate of 2 and subsystem 2 with a rate of 3. At time
step 1, the scheduler places both subsystems into the dispatch list and they are
both executed. But at step 2, the time to execute has arrived for neither of them and
nothing runs; the same thing is true at step 6. However, the scheduler still must
complete its cycle of operations, that is, the first 7 steps of Figure 3-3 on page 3-6,
even though there is nothing ready to be scheduled. The cycles thus wasted might
have a negative impact on system performance. For this reason, use sampling rates
that are all even multiples in systems where performance is an issue.

Time Step 1 2 3 4 5 6 7

Scheduler
Minor Cycle ‘ ‘ ‘ ‘ ‘ ‘ ‘

Subsystem 1 ‘ X ‘ ‘ f ‘

\ !
The Scheduler has nothing to schedule.

Subsystem 2 ‘ ‘ ‘

FIGURE 3-21 Dispatcher Operation with a Pseudo-Rate Scheduler

What happens at the beginning of step 2 depends on whether or not the subsystems
had completed running before the end of the last cycle. If a subsystem (subsystem
2, presumably) had still been running when the scheduler interruption occurred, at
the time the scheduler completed its cycle with nothing in the dispatch list, the dis-
patcher would pass control back to the interrupt handler. The interrupt handler
would invoke the operating system to restore the interrupted subsystem and pass
control to it. If all subsystems had finished operation, then it would have been the
background subsystem that was interrupted. The operating system would restore
this subsystem instead and pass control to the background.

3-32

AutoCode User’s Guide Managing and Scheduling Applications

3.6.3

Operating with Skew

Skew, or First Sample in the SuperBlock block form, is a method for controlling
the operation of the subsystems on the time line. The sampling interval lets you
specify the periodicity of the subsystem, and the first sample lets you establish an
offset from the beginning of the minor cycle on which the subsystem first becomes
eligible to execute. One of the uses for skew is to force a slower-rate subsystem to
execute before a faster-rate one, when either could run on the same cycle.

Refer to Figure 3-22. At A, subsystem 1 is running at twice the sampling interval of
subsystem 2. Therefore, subsystem 1 has priority. It is assumed that both sub-
systems receive external input data and that each subsystem posts outputs to the
other. At time step 1, when the system is started, both subsystems receive as inter-
nal, sampled-and-held inputs whatever initial states you might have defined. But at
time step 3, the outputs of subsystem 2 from its first major cycle are latched as in-
puts to subsystem 1 and the system is running in sync. The outputs from sub-
system 1’s operations during its secondary cycle are latched and fed to subsystem 2
to serve as its inputs at time step 3. From that time forward, the outputs of every
major cycle of subsystem 2’s operations are presented as inputs for the next (odd-
numbered) cycle of subsystem 1’s operations (steps 3, 5, etc.). Those same inputs
are still visible to subsystem 1 on its next even-numbered cycle (steps 4, 6, etc.).

3-33

==

Managing and Scheduling Applications AutoCode User's Guide

3-34

And subsystem 1’s outputs from the even-numbered (minor) cycle serve as inputs to
subsystem 2 on the odd-numbered (minor) cycle (latched at steps 3, 5, etc.).

Time Step 1 2 3 4 5 6 7

Scheduler Minor Cycle ‘ ‘ ‘ ‘ ‘ ‘ ‘
without Skew

Subsystem 1

Subsystem 2

Time Step 1 1.5 2 25 3 35 4 45 5 55 6 6.5 7

Scheduler Minor Cycle ‘ ! ‘ ‘ ‘ [‘ [‘ [‘ [‘
with Skew

Subsystem 1

Subsystem 2

FIGURE 3-22 Operation of Skew

Subsystem 2 never sees the outputs of subsystem 1 from its odd-numbered cycle,
for there is no sample-and-hold performed between the end of subsystem 1’s odd-
numbered step and the beginning of subsystem 2’s operations. In the bottom part of
the figure, at B, a skew of 0.5 has been added to the timing properties of subsystem
1 and no other change has been made. But the system will operate quite differently
from A. First, the scheduler minor cycle is now a pseudo-rate, introduced so that
the start-up of subsystem 1 can be scheduled and dispatched correctly. Also, char-
acteristic of pseudo-rate schedulers, there are steps where the scheduler has no
scheduling to do (steps 2, 4, 6, etc.). Even so, the critical part of the scheduler must
go through its full cycle of operations. This, of course, has an impact on overall sys-
tem performance.

Observe that even though subsystem 1 would have priority, subsystem 2 starts exe-
cuting before subsystem 1 in this example, because subsystem 2’s time to run
arrives before that of subsystem 1. Thus, at step 1, subsystem 2 starts up with

AutoCode User’s Guide Managing and Scheduling Applications

3.7

371

initial states as its inputs and posts its outputs at time step 3 to be latched and
made inputs to subsystem 1 at time step 3.5.

Now, as at A, subsystem 1 will run through two full cycles of its operations before
subsystem 2 can run again. When subsystem 1 starts at timestep 1.5, its outputs
are posted at timestep 2.5, and when it starts at timestep 2.5, its outputs are posted
at timestep 3.5, etc. Unlike example A, the outputs from subsystem 1’s odd num-
bered cycles are visible to subsystem 2 at time steps 3, 5, etc., and the outputs of
subsystem 2 posted at time steps 3, 5, etc. are presented to subsystem 1 at time
steps 3.5, 5.5, etc. Consequently, the subsystems are synchronized differently in
the two examples and the two systems can be expected to behave in very different
ways at the micro-level.

Scheduler Errors

The exact method for controlling the scheduler minor cycle interruptions is imple-
mentation-dependent. In the absence of standardization of the hardware and soft-
ware for this and other functions within an embedded system, Integrated Systems
has not attempted to furnish a timing simulator, choosing instead to emphasize
functional simulation. This is one major reason for our emphasizing the develop-
ment of rapid prototyping or test bed systems, which can help you evaluate the per-
formance aspects of systems where simulation cannot easily reach. However, we can
postulate two kinds of timing problems that could be detected. The application
scheduler traps both: scheduler overflow and subsystem overflow.

Scheduler or Subsystem Overflow

= Scheduler Overflow - If the non-interruptible critical section of the scheduler is
running and an interruption for the scheduler occurs, then the scheduler is re-
ceiving more interrupts than it can handle. To prevent this, the length of the
scheduler minor cycle must be increased, the interrupt timer rate must be de-
creased, or a faster processor must be obtained.

= Subsystem Overflow - Might be intermittent or rare, might or might not be a ca-
tastrophe in the context of a given system, and flexible means for dealing with it
are provided. Subsystem overflow is defined as a subsystem ready to run and

3-35

Managing and Scheduling Applications AutoCode User's Guide

372

3-36

still not finished running. Figure 3-23 shows a graphical representation of this
condition.

Time Step 1 2 3 4

Scheduler Minor Cycle

Subsystem 1 (Triggered) |

Subsystem 2 (Free-Running) | » |7 ? 4—‘

2 wants to start here But slips to here and breaks here

Task State Ready Queue Dispatch List
IDLE 2 ‘ 1| FALSE
RUNNING READY COUNT =1 2| TRUE

Task 2 RUNNING DISPATCH COUNT = 2

FIGURE 3-23 Subsystem Overflow Example

In Figure 3-23, subsystem 2 is free-running with an intermediate sampling rate.
Subsystem 1, with a shorter timing requirement and therefore higher priority
than subsystem 2, is triggered and runs only occasionally. When it does run, at
step 2, it takes a considerable amount of time. When it finishes and subsystem
2 starts, there is not enough time for subsystem 2 to finish before the sched-
uler’s interruption for step 3 is received. This would be acceptable, because
subsystem 2 is required to be interruptible. However, at step 3, the scheduler
notes that it is time for subsystem 2 to run again and enters it into the ready
queue and the dispatch list. The scheduler also notes that subsystem 2 is not
finished and that is where the problem begins. The scheduler cannot post sam-
ple-and-hold inputs for a subsystem that is not finished, resulting in a sub-
system overflow. For some systems, the subsystem overflow is not critical.

Examples Where Overflow is Irrelevant or Cannot Happen

A triggered subsystem with output posting As Soon As Finished cannot over-
flow.

The background cannot overflow.

AutoCode User’s Guide Managing and Scheduling Applications

In a subsystem where timing is not really critical, you might wish to disable the
overflow indication, or to give it a slower sampling rate. Provision is made for
customizing handling of the subsystem overflow error in the template files.

Most blocks in SystemBuild operate in a largely synchronous manner, executing
once each time the subsystem is dispatched and contributing little to the generation
of intermittent overflows. Even so, several conditions can contribute to the genera-
tion of subsystem overflows:

A heavy load of triggered asynchronous events (see Figure 3-23 on page 3-36).

While blocks execute a user-defined number of times in a given subsystem. If
the number of iterations is variable, the amount of time to execute the sub-
system becomes nondeterministic.

If/else blocks have different logic depending on which branch is selected. If
some branches have significantly more processing than others, the amount of
time to execute the subsystem becomes less deterministic.

User-supplied I/0 drivers, which have variable execution time, such as a pulse-
width-modulation driver that immediately returns if the duty cycle has not
changed. Integrated Systems avoids this practice in its implementation systems
to the greatest degree possible.

Your system might be over-extended. The code that is generated for
SystemBuild blocks is optimized for performance, but any system can be over-
loaded by too many tasks doing too much work in a given cycle. Naturally, if
this kind of overload occurs, the situation is likely to be catastrophic and rea-
sonably easy to detect. But on a heavily loaded system, minor perturbations
such as triggered subsystems or heavily loaded if/else constructs could cause
an occasional overflow, which would be hard to debug.

3-37

Code Generation for Discrete

4.1

4.2

Systems

This chapter introduces features of the generated code for discrete systems. This in-
cludes scheduler architecture as it relates to discrete code generation.

Introduction

A discrete system is a model that does not contain any Continuous SuperBlocks.
The general categories are single-rate, multi-rate, and procedural discrete systems.

Single-rate discrete system — This system contains SuperBlocks that use the exact same
timing attributes.

Multi-rate discrete system — This system contains SuperBlocks with different timing at-
tributes.
Procedural discrete system — This system contains only procedure SuperBlocks and

therefore has no timing attributes.

A table describing all the options that control code generation can be found within
Appendix A, AutoCode Options. For more information about the structure and con-
tent of the generated code, see the AutoCode Reference.

How to Generate Code for Discrete Systems

The minimum options required to generate code for a discrete subsystem are: choice
of language and top-level SuperBlock or real-time file (.rtf). This is shown in Chap-
ter 2, Using AutoCode. Additional options are specified along with the required op-
tions. A separate options file can be used as a replacement to specify options
directly to AutoCode.

Code Generation for Discrete Systems AutoCode User's Guide

4.3

4.4

4-2

Introduction to Vectorized Code

A vectorized discrete system is a discrete system that uses array variables in the
generated code to implement vectors for the purposes of bundling signals together
to enable loops within the generated code. The resultant vectorized code is more ef-
ficient in terms of code size and performance as compared to the nonvectorized
equivalent. There is no need to generate vectorized code unless you are interested in
gaining performance improvements and reducing code size on your target hardware.
In other words, there is no difference in numerical results between vectorized and
non-vectorized code, but how those results are obtained is significantly different.

By default, AutoCode generates nonvectorized code. You must specify an option to
produce vectorized code (see the -Ov entry in Table A-1 on page A-1). That option
controls two variations of vectorization which are summarized below.

Maximal Vectorization — This option directs AutoCode to create vectors everywhere pos-
sible. Traceability in the generated code is reduced as only one name can be
used to represent many signals from the same block.

Label-based Vectorization — This option directs AutoCode to selectively create vectors for
only those signals that have a vector name or label as specified in the diagram.
This variation lets you specify exactly what signals are to be generated as a vec-
tor and exactly what the name of the array is within the generated code. Any
signal that does not have a vector name or label will be generated as a scalar
variable.

Introduction to Optimized Code

AutoCode produces generated code that is nearly one-to-one compared to the blocks
used in the diagram. However, performance constraints of target hardware require
optimization of the generated code. One would expect the target compiler to optimize
the code, but many target compilers provide minimal optimization capabilities.
Therefore, AutoCode can be directed to perform some optimizations that favor better
executable code. Of course, there is a price to be paid; traceability back to the
model’s diagram is significantly reduced when optimized.

By default, AutoCode does not perform any special optimizations. You must specify
which type of optimizations you desire. Some of the optimizations are summarized
below.

Variable reuse — Reuse local variables within the code as the outputs of more than one
block.

AutoCode User’s Guide Code Generation for Discrete Systems

4.5

4.6

46.1

Norestart — Generate code that cannot be restarted on the target unless the object
code is reloaded.

Variable Block read propagation — Directly reference the Variable Block variable for read
operations.
Constant propagation — Blocks that compute a constant are eliminated and the con-

stant value is used directly.

Introduction to Procedural Code

Procedural code is the generated code for only the Procedure SuperBlocks within a
model. The code is typically used for two purposes: 1) to subsequently treat the gen-
erated code as a module that is plugged into a much larger code stream; 2) the first
step toward linking generated code back into the SystemBuild Simulator to improve
its performance as a UserCode Block.

Sample Generated Code
The following section contains sample generated code. The code was generated with
maximal vectorization and the no-restart optimization. Examples have been edited

to eliminate the scheduler and other code not relevant for this example.

Sample C Code

EXAMPLE 4-1: SAMPLE_MODEL.c

/

*

* Kkkk * Kkkk * *

AutoCode/C (TM) Code Generator V6.X

I
INTEGRATED SYSTEMS INC., SUNNYVALE, CALIFORNIA

rtf filename : SAMPLE_MODEL.rtf
Filename : SAMPLE_MODEL.c

Dac filename : c_sim.dac

Generated on : Mon Mar 17 18:26:36 1999

Dac file created on : Thu Mar 6 12:09:32 1999

Number of External Inputs : 4
Number of External Outputs: 8

Scheduler Frequency: 10.0

SUBSYSTEM FREQUENCY TIME_SKEW OUTPUT_TIME TASK_TYPE

1

10.0000 0.00000 0.00000 PERIODIC

43

==

Code Generation for Discrete Systems

#include <stdio.h>
#include <math.h>
#include "sa_sys.h"
#include "sa_defn.h"
#include "sa_types.h"
#include "sa_math.h"
#include "sa_user.h"
#include "sa_utils.h"
#include "sa_time.h"
#include "sa_fuzzy.h"

[k System Ext /O type declarations. **k*x/

struct _Subsys_1_out {
RT_FLOAT limited_values_1[4];

I3

struct _Sys_ExtIn {

I3

[k Gystem Ext 1/O type definitions, *rxxxsx/

RT_FLOAT limited_values_1_1[4];

RT_FLOAT SAMPLE_MODEL_1[4];

AutoCode User's Guide

struct _Subsys_1_out subsys_1_out = {{-EPSILON, -EPSILON, -EPSILON, -EPSILON},

{-EPSILON, -EPSILON, -EPSILON, -EPSILON}};

struct _Sys_ExtIn sys_extin;

[rxexiixx Procedures’ declarations xx**xxx/

[x*xxxxx Procedure: value_added **xx++x/

/¥ Inputs type declaration. *****/

struct _value_added_u {
RT_FLOAT gainfactor_1[4];

h

[Feeex Qutputs type declaration, ****x/

struct _value_added_y {
RT_FLOAT limited_values_1[4];
2

[x**x |nfo type declaration, ***+*/

struct _value_added_info {
RT_INTEGER iinfo[5];
RT_FLOAT RP[16];

3

[xxxxixxx Procedures’ definitions ***xxx*x/

4-4

AutoCode User’s Guide Code Generation for Discrete Systems

[rrxxxxx Procedure: value_added *rxxxxx/

void value_added(U, Y, I)
struct _value_added_u *U;
struct _value_added_y *Y;
struct _value_added_info *I;

{
RT_INTEGER *iinfo = &I->iinfo[0];

[Parameters. ****/
RT_FLOAT *R_P = &I->RP[0];

[***** Algorithmic Local Variables. *****/
RT_INTEGER ilower;

RT_INTEGER iupper;

RT_FLOAT uval;

RT_INTEGER i;

RT_INTEGER k;

RT_FLOAT alpha;

[x OQutput Update. ***++/
* Linear Interp */

/*{value_added..2} */
for (i=1; i<=4; i++) {
if (U->gainfactor_1[-1+i] < R_P[-2+2*]) {
ilower = 1;
iupper = 0;

else if (U->gainfactor_1[-1+i] >= R_P[-1+2*i]) {
ilower = 0;
iupper = 1;

else {

ilower = (RT_INTEGER)((U->gainfactor_1[-1+i] - R_P[-2+2*])/(R_P][
-1+2%] - R_P[-2+2%i]));

iupper = ilower + 1;

alpha = (U->gainfactor_1[-1+i] - R_P[-2+ilower+2*i])/(R_P[-2+iupper+2*
i] - R_P[-2+ilower+2*i]);
Y->limited_values_1[-1+i] = (1.0 - alpha)*R_P[6+ilower+2*] + alpha*
R_P[6+iupper+2*i];

}

iinfo[1] = 0;

EXEC_ERROR: return;
}

[rrxiirx Tasks declarations **xxxx*x/

45

Code Generation for Discrete Systems

/******** TaSkS COde ********/

/******* Subsystem 1 *******/

void subsys_1(U, Y)

{

struct _Sys_ExtIn *U;
struct _Subsys_1_out *Y;

static RT_INTEGER iinfo[4] ={0, 1, 1, 1};

[Fxx Parameters. ¥/
static RT_FLOAT R_P[8] ={4.3, 5.2, 3.5, 2.3, -4.3, -5.2, -3.5, -2.3};

[****x |_ocal Block Outputs. *****/

RT_FLOAT gainfactor_1[4];
RT_FLOAT inverse_factor_1[4];

[eeeex Algorithmic Local Variables. ***+x/

RT_INTEGER i;

static struct _value_added_u value_added 4 u;

static struct _value_added_y value_added_4_y;

static struct _value_added_info value_added_4_i = {{0, 1, 1, 1, 1},
{-10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -1.5, 1.5, -1.5,
15,-15,1.5,-1.5,1.5}};

static struct _value_added_u value_added_14 u;

static struct _value_added_y value_added_14 vy;

static struct _value_added_info value_added_14_i = {{0, 1, 1, 1, 1},
{-10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -1.5, 1.5, -1.5,
15,-15,15,-1.5, 1.5}

[xxxx Qutput Update. *****/
* Gain Block */
[* {SAMPLE_MODEL.gf1.1} */
for (i=1; i<=4; i++) {
gainfactor_1[-1+i] = R_P[-1+i]*U->SAMPLE_MODEL_1[-1+i];
}

/* Procedure SuperBlock */
/* {value_added.4} */

RT_INTEGER k = 0;
for(k=0;k<4;k++) {
value_added_4_u.gainfactor_1[k] = gainfactor_1[K];

}

}
value_added(&value_added_4 u, &value_added_4_y, &value_added_4 i);

RT_INTEGER k = 0;

4-6

AutoCode User's Guide

AutoCode User’s Guide Code Generation for Discrete Systems

for(k=0;k<4;k++) {
Y->limited_values_1[k] = value_added_4_y.limited_values_1[K];

}

}
iinfo[0] = value_added_4 i.iinfo[0];
if(iinfo[0] '=0) {
value_added_4_i.iinfo[0] = 0; goto EXEC_ERROR,;
}
I* Gain Block */
/* {SAMPLE_MODEL.gf2.2} */
for (i=1; i<=4; i++) {
inverse_factor_1[-1+i] = R_P[3+i]*U->SAMPLE_MODEL_1[-1+i];
}
I* Procedure SuperBlock */
/* {value_added.14} */

RT_INTEGER k = 0;
for(k=0;k<4;k++) {
value_added_14 u.gainfactor_1[k] = inverse_factor_1[K];

} }
value_added(&value_added_14 u, &value_added_14 vy, &value_added_14 i);

RT_INTEGER k = 0;
for(k=0;k<4;k++) {

Y->limited_values_1_1[k] = value_added_14_y.limited_values_1[K];
}

}
iinfo[0] = value_added_14 i.iinfo[0];
if(iinfo[0] 'I=0) {
value_added_14 i.iinfo[0] = 0; goto EXEC_ERROR;
}

if(iinfo[1]) {
SUBSYS_INIT[1] = FALSE;
iinfo[1] = 0;

return;

EXEC_ERROR: ERROR_FLAG[1] = iinfo[0];
iinfo[0]=0;

Code Generation for Discrete Systems AutoCode User's Guide

4.6.2 Sample Ada Code

EXAMPLE 4-22 SAMPLE_MODEL.a

-- AutoCode/Ada (TM) Code Generator V6.X
-- INTEGRATED SYSTEMS INC., SUNNYVALE, CALIFORNIA -

-- rtf filename : SAMPLE_MODEL..rtf

-- Filename : SAMPLE_MODEL.a

-- Dac filename :ada_rt.dac

-- Generated on : Mon Mar 17 18:27:44 1999

-- Dac file created on : Mon Mar 10 17:03:32 1999

-- Number of External Inputs : 4
-- Number of External Outputs: 8

-- Scheduler Frequency: 10.0

-- SUBSYSTEM FREQUENCY TIME_SKEW OUTPUT_TIME TASK_TYPE

-1 10.0000 0.00000 0.00000 PERIODIC

with SYSTEM,;
with UNCHECKED_CONVERSION;
with SA_TYPES; use SA_TYPES;
with SA_DEFN; use SA DEFN;
with SA_TIME; use SA_TIME;
package SYSTEM_DATA is
NUMIN : constant RT_INTEGER := 4;
NUMOUT :constant RT_INTEGER := 8;
Extin : RT_FLOAT_AY(0..NUMIN);
ExtOut . RT_FLOAT_AY(0..NUMOUT) := (others => -EPSILON);

SUBSYS_ PREINIT RT_BOOLEAN_AY(0..NTASKS);

-------- System Ext I/O type declarations. --------
type Subsys_1 out_t is record
limited values 1:RT_FLOAT_AY(0..3);
limited values 1 1:RT_FLOAT_AY(0..3);
end record;

type Sys_ExtIn_t is record

SAMPLE_MODEL_1 : RT_FLOAT_AY(0..3);
end record;

4-8

AutoCode User’s Guide Code Generation for Discrete Systems

-------- System Ext I/O type definitions. --------

subsys_1 out: Subsys_1_out_t:= ((-EPSILON, -EPSILON, -EPSILON, -EPSILON),
(-EPSILON, -EPSILON, -EPSILON, -EPSILON));

sys_extin : Sys_ExtIn_t;

end SYSTEM_DATA,;

-------- Procedures package declarations --------

with SYSTEM;

with UNCHECKED_CONVERSION;

with SA_TYPES; use SA_TYPES;

with SYSTEM_DATA, use SYSTEM_DATA,;

package value_added_pkg is

------ Inputs type declaration. ------
type value_added_u_t is record

gainfactor_1 : RT_FLOAT_AY(0..3);
end record;

------ Outputs type declaration. ------

type value_added_y tis record
limited_values_1 : RT_FLOAT_AY(0..3);

end record;

------ Info type declaration. ------
type value_added_info_t is record
iinfo : RT_INTEGER_AY(0..4);

RP : RT_FLOAT_AY(0..15);
end record;

type value_added_u_t_P is access value_added_u_t;
function ptr_of is new UNCHECKED_CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => value_added_u_t_P);
type value_added_y t P is access value_added vy t;
function ptr_of is new UNCHECKED_CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => value_added_y t_P);
type value_added_info_t_P is access value_added_info_t;
function ptr_of is new UNCHECKED_CONVERSION

(SOURCE => SYSTEM.ADDRESS, TARGET => value_added_info_t_P);

-------- Procedure: value_added --------
procedure value_added(U : value_added_u_t P;
Y :value_added_y t P;
| : value_added_info_t P
)
end value_added_pkg;

-------- Subsystems’ declarations --------

with SYSTEM,;

with UNCHECKED_CONVERSION,;

with SA_TYPES; use SA TYPES;

with SYSTEM_DATA; use SYSTEM_DATA;

4.9

Code Generation for Discrete Systems AutoCode User's Guide

with value_added_pkg; use value_added_pkg;
package SUBSYSTEMS is

———————— Subsystem 1 Package --------
package subsys 1 pkg is
type Sys_ExtIn_t_P is access Sys_ExtIn_t;
function ptr_of is new UNCHECKED_CONVERSION
(SOURCE => SYSTEM.ADDRESS, TARGET => Sys_ExtIn_t_P);
type Subsys_1_out_t P is access Subsys_1_out _t;
function ptr_of is new UNCHECKED_CONVERSION
(SOURCE => SYSTEM.ADDRESS, TARGET => Subsys_1_out_t_P);
U : Sys_Extin_t P := ptr_of(sys_extin'address);
Y : Subsys_1 out_t P :=ptr_of(subsys_1_out'address);

procedure subsys_1;
end subsys_1_pkg;
end SUBSYSTEMS;

with SA_DEFN; use SA_DEFN;
with SA_TYPES; use SA_TYPES;
with SYSTEM_DATA; use SYSTEM_DATA;

package body SUBSYSTEMS is
package body subsys_1_pkg is separate;
end SUBSYSTEMS;

with SA_TYPES; use SA_TYPES;

with SYSTEM_DATA; use SYSTEM_DATA,;
with SA_UTILITIES; use SA_UTILITIES;
separate (SUBSYSTEMS)

package body subsys_1 pkg is

SUBSYS_ID : constant := 1,

-------- Tasks code --------
iinfo : RT_INTEGER_AY(0..3) := (0, 1, 1, 1);

------ Parameters. ------

R_P : RT_FLOAT_AY(0..7) := (4.3,5.2, 3.5, 2.3, -4.3,-5.2, -3.5, -2.3);

value_added_4 u :value_added_u t;

value_added_4 vy : value_added_y t;

value_added_4 _i: value_added_info_t :=((0, 1, 1, 1, 1), (-10.5, 20.5,
-10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -1.5, 1.5, -1.5, 1.5, -1.5, 1.5,
-1.5, 1.5));

value_added_14 u:value_added_u_t;

value_added_14 vy : value_added_y t;

value_added_14 i: value_added_info_t :=((0, 1, 1, 1, 1), (-10.5, 20.5,
-10.5, 20.5, -10.5, 20.5, -10.5, 20.5, -1.5, 1.5, -1.5, 1.5, -1.5, 1.5,
-1.5, 1.5));

procedure subsys_1 is

4-10

AutoCode User’s Guide Code Generation for Discrete Systems

gainfactor_1: RT_FLOAT_AY(0..3);
inverse_factor_1: RT_FLOAT_AY(0..3);

------ Algorithmic Local Variables. ------
i_2:RT_INTEGER;

-- Gain Block --
-- {SAMPLE_MODEL.gf1.1} --
fori_2in RT_INTEGER range 1..4 loop
gainfactor_1(-1+i_2) := R_P(-1+i_2)*U.SAMPLE_MODEL_1(-1+i_2);
end loop;
- Procedure Super Block --
-- {value_added.4} --
value_added_4_u.gainfactor_1(0..3) := gainfactor_1(0..3);
value_added(ptr_of(value_added_4 u’address), ptr_of(
value_added_4_y’'address), ptr_of(value_added_4_i'address));
Y.limited_values_1(0..3) := value_added 4 y.limited_values_1(0..3);
iinfo(0) := value_added_4 _i.iinfo(0);
if iinfo(0) /= 0 then
value_added_4_i.iinfo(0) := 0; raise EXEC_ERROR;
end if;
- Gain Block --
-- {SAMPLE_MODEL.gf2.2} --
fori_2in RT_INTEGER range 1..4 loop
inverse_factor_1(-1+i_2) := R_P(3+i_2)*U.SAMPLE_MODEL_1(-1+i_2);
end loop;
- Procedure Super Block --
-- {value_added.14} --
value_added_14 u.gainfactor_1(0..3) := inverse_factor_1(0..3);
value_added(ptr_of(value_added_14 u’address), ptr_of(
value_added_14_y’address), ptr_of(value_added_14_i'address));
Y.limited_values_1 1(0..3) := value_added_14 y.limited_values_1(0..3);
iinfo(0) := value_added_14 i.iinfo(0);
if iinfo(0) /= 0 then
value_added_14 i.iinfo(0) := 0; raise EXEC_ERROR,;
end if;

if iinfo(1) > O then
iinfo(1) :=0;
SUBSYS_INIT(1) := false;
end if;

exception
when EXEC_ERROR =>
ERROR_FLAG(1) := iinfo(0); iinfo(0) := 0;
when NUMERIC_ERROR | CONSTRAINT_ERROR =>
ERROR_FLAG(1) := MATH_ERROR;
when OTHERS =>
ERROR_FLAG(1) := UNKNOWN_ERROR,;
end subsys_1;
end subsys_1_pkg;

4-11

Code Generation for Discrete Systems AutoCode User's Guide

-------- Procedures package bodies --------

with SA_TYPES; use SA_TYPES;
with SA_DEFN; use SA_DEFN;
with SYSTEM_DATA,; use SYSTEM_DATA,

package body value_added_pkg is
-------- Procedure: value_added --------
procedure value_added(U : value_added_u_t_P;
Y :value_added y t P;
| : value_added_info_t P
)is
iinfo: RT_INTEGER_AY_5_P := ptr_of(l.iinfo’address);

------ Parameters. ------
R_P: RT_FLOAT_AY_16_P := ptr_of(l.RP’address);

------ Algorithmic Local Variables. ------
ilower : RT_INTEGER,;

iupper : RT_INTEGER;

uval : RT_FLOAT;
i_1:RT_INTEGER;
k_1:RT_INTEGER,;

alpha_1: RT_FLOAT,;

-- Linear Interp --
-- {value_added..2} --
fori_1in RT_INTEGER range 1..4 loop
if U.gainfactor_1(-1+i_1) < R_P(-2+2*i_1) then

ilower := 1;
iupper :=0;
elsif U.gainfactor_1(-1+i_1) >= R_P(-1+2*i_1) then
ilower := 0;
iupper = 1;
else

ilower := ITRUNCATE((U.gainfactor_1(-1+i_1) - R_P(-2+2*i_1))/(R_P(
-1+2%_1) - R_P(-2+2*_1)));

iupper = ilower + 1;
end if;
alpha_1 := (U.gainfactor_1(-1+i_1) - R_P(-2+ilower+2*i_1))/(R_P(
-2+iupper+2*i_1) - R_P(-2+ilower+2*i_1));
Y.limited_values_1(-1+i_1) := (1.0 - alpha_1)*R_P(6+ilower+2*i_1) +
alpha_1*R_P(6+iupper+2*i_1);

end loop;

iinfo(1) :=0;

exception
when EXEC_ERROR =>
null;
when NUMERIC_ERROR | CONSTRAINT_ERROR =>
iinfo(0) := MATH_ERROR,;

4-12

AutoCode User’s Guide Code Generation for Discrete Systems

when OTHERS =>
iinfo(0) := UNKNOWN_ERROR;
end value_added,;
end value_added_pkg;

4-13

Code Generation for

5.1

Continuous Systems

This chapter discusses the scheduler architecture as it relates to continuous code
generation. Topics include fixed-step integrators, user-defined integrators, and how
to generate code for continuous and hybrid systems.

Introduction

AutoCode supports code generation for continuous or hybrid (continuous and dis-
crete) systems. The AutoCode scheduler supports continuous subsystems in the
same manner in which it supports discrete subsystems.

For continuous subsystems, at each minor cycle, the scheduler:

= Schedules the continuous subsystem to run.

= Posts continuous subsystem’s outputs.

= Performs sample and hold on the continuous subsystem’s inputs.

= Dispatches the continuous subsystem if ready.

= Handles vectorization and optimization the same as for discrete systems.

An element of the scheduler is the Integrator (see Figure 5-1 on page 5-2). It per-
forms continuous, fixed-step integration of states and implicitly dispatches the con-
tinuous subsystem to perform the state and output updates. The integrator/
continuous task pair is, by default, treated as the fastest task to be dispatched by
the scheduler.

Code Generation for Continuous Systems AutoCode User's Guide
Scheduler
v
Dispatcher
Discrete Tasks Integrator
Continuous
Task

5.2

FIGURE5S-1 Scheduler Architecture

Integrators

AutoCode supplies four fixed-step integrators:

= First order Runge-Kutta (Euler)

= Second order Runge-Kutta (Modified Euler)

= Fourth order Runge-Kutta (Simpson’s 2nd rule)

» Kutta-Merson

All of these integrators are located in the templates directory in the integrator tem-
plate file language _intgr.tpl. There is also the capability to insert a user-sup-
plied integrator. Instructions for using your own integrator are provided in

Section 5.4.2 on page 5-4.

AutoCode User’s Guide Code Generation for Continuous Systems

5.3

5.4

54.1

Limitations

When using continuous code generation, keep these limitations in mind:
= Only fixed-step integrators are supported.

= There is a slight mismatch of sim and continuous application outputs (i.e., the
subsystem external inputs at time't and at time t+h , where h is the integra-
tion step, are assumed to be unchanged inside AutoCode integrator algorithms).

= Continuous task states and derivatives are always of float data type.
= Algebraic loops are not supported.

= Only sim initialization mode O (initmode O; see sim help for details) is sup-
ported.

= You cannot generate procedures-only continuous code (procedure around a top-
level continuous hierarchy).

How to Generate Code for Continuous or Hybrid Systems

As described in Section 2.1 on page 2-1, using AutoCode, you can generate C high-
level language code from SystemBuild, the Xmath Commands window, or from the
operating system command line. The subsections that follow discuss each of these
methods of code generation in terms of those options that are unique to generating
code for continuous or hybrid systems.

You need both c_sim.tpl and c_intgr.tpl template files for C or ada_rt.tpl
and ada_intgr.tpl for Ada (supplied in the templates directory). The
c_sim.tpl and ada_rt.tpl template files include continuous subsystems-related
parameters and the integrator template file. The integrator template file contains the
code for the four integrators and a stubbed routine, usrintegrator , which pro-
vides the means for user-defined integrator implementation.

Generating Code for Continuous Systems from SystemBuild

To use AutoCode while inside SystemBuild, select Tools - AutoCode on the Catalog
Browser to open the dialog. Instructions for using this dialog are in the MATRIXy
Help.

Depending on the template file used, the code generated can be either C code or Ada
code.

Code Generation for Continuous Systems AutoCode User's Guide

5.4.2

Xmath Command-Line Options for Continuous Code Generation

The method for generating code for a continuous or hybrid system using the Xmath
command line follows the procedure described in Section 2.1.2 on page 2-2. Two
command line options that are unique to continuous code generation are ialg and
csi. ' Although not for exclusive use in continuous code generation, the minsf op-
tion is useful for increasing the rate of a continuous task. See Table 5-1 for a sum-
mary of these options.

TABLE 5-1 Xmath Command Options for Continuous Code Generation

Option Description

ialg Specifies the integrator selection

0 = user-defined integrator

1 = first order Runge-Kutta integrator

2 = second order Runge-Kutta integrator (default)
3 = fourth order Runge-Kutta integrator

4 = Kutta-Merson integrator

csi Specifies the continuous task sample interval

minsf Specifies the minimum AutoCode scheduler frequency in sec-
onds (0.0 is the default)

As indicated in Table 5-1, ialg specifies the selected integrator. The option takes an
integer argument of 0, 1, 2, 3, or 4. The default integrator is the second order
Runge-Kutta.

When using O (user-defined integrator) for this command-line option, the integrator
function should be implemented inside the function usrintegrator located in
c_intgr.tpl for C or ada_intgr.tpl for Ada.

Because the integrator is invoked at each scheduler interval and the continuous
task is dispatched via the integrator, an implicit frequency (that of the scheduler) is
associated with the continuous task. If the system is all continuous, the scheduler
cycle is 1 Hz. For hybrid systems, the implicit frequency of the continuous task is
always the least common multiple of all of the frequencies of the discrete tasks. For
continuous only modes, the implicit frequency of the single continuous defaults to

t For standalone AutoCode, results for generated code will not match sim
unless the csi option is not zero. Typically, set csi to 0.01, the time vector
for standalone sim. Then, results will match.

AutoCode User’s Guide Code Generation for Continuous Systems

543

1 Hz. The command-line option csi specifies the sample interval for a continuous
task. This option is useful for adjusting the rate of the continuous task.

The command-line option minsf specifies the minimum AutoCode scheduler fre-
quency. This option is useful for increasing the rate of a continuous task. The real-
time scheduler frequency is set to the larger value of the frequency determined by
the block diagram application and the value specified by the minsf option. The
default value for this option is 0.0 , which allows the application to set its own
scheduler frequency. Deviation from this default should be approached with cau-
tion, as a consistent scheduler frequency should normally be based on a least com-
mon multiple of the application timing requirements.

For example, to generate code for a model with a continuous subsystem, using the
fourth order Runge-Kutta integrator method, and minimum scheduler frequency of
300.0 Hz in file model.c , use the following Xmath command:

autocode, model=" model", {ialg=3, minsf=300.0}

In this case, the autocode command automatically generates the file model.c in
the directory from which Xmath was invoked.

0S Command-Line Options for Continuous Code Generation

The method for generating code for a continuous or hybrid system using the operat-
ing system command line follows the procedure described in Section 2.1.3 on
page 2-3. Two command-line options that are unique to continuous code generation
are -i and -csi . Although not for exclusive use in continuous code generation, the
-minsf option may be useful for increasing the rate of a continuous task. See
Table 5-2 for a summary of these options.

TABLE 52 Operating System Command Options for Continuous Code Generation

Option Description

-1 Specifies the integrator selection

0 = user-defined integrator

1 = first order Runge-Kutta integrator

2 = second order Runge-Kutta integrator (default)
3 = fourth order Runge-Kutta integrator

4 = Kutta-Merson integrator

Code Generation for Continuous Systems AutoCode User's Guide

TABLE 52 Operating System Command Options for Continuous Code Generation

Option Description
-csi Specifies the continuous task sample interval
-minsf Specifies the minimum AutoCode scheduler frequency in sec-
onds (0.0 is the default)

As indicated in Table 5-2, -i specifies the selected integrator. The option takes an
integer argument of 0, 1, 2, 3, or 4. The default integrator is the second order
Runge-Kutta.

When using O (user-defined integrator) for this command-line option, the integrator
function should be implemented inside the function usrintegrator() located in
c_intgr.tpl for C or ada_intgr.tpl for Ada.

Because the integrator is invoked at each scheduler interval and the continuous
task is dispatched via the integrator, an implicit frequency (that of the scheduler) is
associated with the continuous task. For hybrid systems, the implicit frequency of
the continuous task is always the least common multiple of all the frequencies of
the discrete tasks. The command-line option -csi specifies the sample interval for a
continuous task.

The command-line option -minsf specifies the minimum AutoCode scheduler fre-
quency. This option is useful for increasing the rate of a continuous task. The real-
time scheduler frequency is set to the larger value of the frequency determined by
the block diagram application and the value specified by the minsf option. The
default value for this option is 0.0 , which allows the application to set its own
scheduler frequency. Deviation from this default should be approached with cau-
tion, as a consistent scheduler frequency should normally be based on a least com-
mon multiple of the application timing requirements.

To generate code for a model with a continuous subsystem, using the fourth order
Runge-Kutta integrator method, and minimum scheduler frequency of 300.0 Hz,
use the operating system command shown in Example 5-1 (C) or Example 5-2 (Ada):

EXAMPLE 5-1: Sample Operating System Command for C

% autostar -l ¢ -i 3 -minsf 300.0 -0 model.c model.rtf

AutoCode User’s Guide Code Generation for Continuous Systems

5.5

EXAMPLE 521 Sample operating system command for Ada

% autostar -l a -i 3 -minsf 300.0 -0 model.a model.rtf

Sample Generated C Code

The following example is a file that lists the generated model and default integrator
(Runge-Kutta 2) code for the block diagram model located in the file mws_demo.dat
in the classical_demo directory located in the SystemBuild demo distribution di-
rectory. The block diagram is shown in Figure 5-2.

The sample generated code (Example 5-3) has been edited for brevity, showing only
the most important features.

As code can change slightly from one release to the next, please refer to the current
example in your demo directory for an exact code listing.

NOTE: If you need to review the steps required to create an executable, refer to
Section 2.4.1 on page 2-9.

Code Generation for Continuous Systems AutoCode User's Guide

Continuous SuperBlock ExtInputs Ext.QOutputs
BUILT _MODEL 0 1

Actuator

feedforward compensator onlinesrdts systen dynamics
=] iz 7 i1} [25] 2]
f— e e
E s+ 30 2 % 20015 + 2
Step Linear H0=0

o]

-

a7
Quantizer

FIGURE5-2 Built_Model SuperBlock

EXAMPLE 5-3: File built_model.c

/ *kkFhh*KK *kkFhh*KK

| AutoGen/C (TM) Code Generator V6.X |
| INTEGRATED SYSTEMS INC., SUNNYVALE, CALIFORNIA |

*kkkkkkkk * *% * *kkkkkkkk *% *%

Modelname : built_model

Filename : built_model.c

Generated on : Wed Aug 4 16:43:28 1999
Dac file created on : Tue Jul 27 20:48:17 1999
*

/

#include <stdio.h>
#include "sa_intgr.h"

[System Data ***/

#define SCHEDULER_FREQ 300.0
#define NTASKS 1

AutoCode User’s Guide Code Generation for Continuous Systems

#define NUMIN O
#define NUMOUT 1
#define IALG 2

enum TASK_STATE_TYPE { IDLE, RUNNING, BLOCKED, UNALLOCATED };

enum SUBSYSTEM_TYPE { CONTINUOUS, PERIODIC, ENABLED_PERIODIC,
TRIGGERED_ANT, TRIGGERED_ATR, TRIGGERED_SAF, NONE };

Jrs Global declarations. *+/
J System Ext I/O structs. declarations.*******/
[System Ext 1/O structs. definitions.*******/

[**Continuous Subsystem states and info structs. declarations.**/
struct _Subsys_1_states {

RT_FLOAT system_dynamics_S1;
RT_FLOAT system_dynamics_S2;
RT_FLOAT BUILT _MODEL_2_S1;
RT_FLOAT BUILT_MODEL_2_S2;
RT_FLOAT feedforward_compensator_S1;
h

struct _Subsys_1_info {

RT_INTEGER iinfo[5];

RT_FLOAT rinfo[5];

b

[**Continuous Subsystem states and info structs. definitions.***/
struct _Subsys_1_states subsys_1 _states[2] = {0.,0.,0.,0., 0.0,
0., 0.,

0,0}

struct _Subsys_1_info subsys_1 info={0, 1, 1,1, 0, 1., 0.};
);"****** Task’s declarations. ***x*¥**/

[rrxxeexx (Continuous) Subsystem 1 **xxxx/
extern void subsys_1();

/******* Task’s COde *******/

[rrreeexex (Continuous) Subsystem 1 ***xxkx]
void subsys_1(Y, S, 1)

struct _Subsys_1_out *Y;

struct _Subsys_1_states *S;

struct _Subsys_1_info *I;

{

RT_INTEGER *iinfo = &l->iinfo[0];
RT_FLOAT *rinfo = &I->rinfo[0];
RT_INTEGER INIT = iinfo[1];
RT_INTEGER STATES =iinfo[2];
RT_INTEGER OUTPUTS =iinfo[3];

Code Generation for Continuous Systems

RT_INTEGER CALLER = iinfo[4];
const RT_DURATION TIME = rinfo[0];

[***** Current and Next States Pointers. *****/

struct _Subsys_1_states *X = &SJ0];
struct _Subsys_1_states *XD = &S[1];

[+ Parameters. *rrrx/
[F*xx | ocal Block Outputs. *****/

|f(OUTPUTS) { /* Output Update. */

Num - Den Coeffs. */

/* {BUILT_MODEL.system dynamics.4} */

Y->system_output = 0.5*X->system_dynamics_S1;

Y->system_output = Y->system_output + 1.5*X->system_dynamics_S2;
[* Nth Order Integrator */

/* {BUILT_MODEL..2} */

BUILT_MODEL_2_1 = 1.4*X->BUILT_MODEL_2_S1;

I* Step Function */
BUILT_MODEL_8 1=1;
* Quantization */

/* {BUILT_MODEL..10} */

BUILT_MODEL_10_1 = 0.7*ROUND(Y->system_output/0.7);
sgn = SGN(Y->system_output);

ushift = fabs(Y->system_output) + 0.35;

remain = fmod(ushift,0.7);

alpha = remain - (1.0 - RELTOL)*0.7;

if (alpha > 0.0) {

}

BUILT_MODEL_10_1 = BUILT_MODEL_10_1 + sgn*alpha/RELTOL;

}

|f(STATES) { /* State Update. */

Num - Den Coeffs. */

/* {BUILT_MODEL.system dynamics.4} */

XD->system_dynamics_S1 = 0.0;

XD->system_dynamics_S2 = 0.0;

XD->system_dynamics_S1 = XD->system_dynamics_S1 - 20.1

*X->system_dynamics_S1;

XD->system_dynamics_S1 = XD->system_dynamics_S1 - 2.0

*X->system_dynamics_S2;

XD->system_dynamics_S2 = XD->system_dynamics_S2 +
X->system_dynamics_S1;

XD->system_dynamics_S1 = XD- >gystem_dynamics_S1 +
2.0*BUILT_MODEL_2_1;

[* Nth Order Integrator */

[* {BUILT_MODEL..2} */

XD->BUILT_MODEL_2_S1 = X->BUILT_MODEL_2_S2;

XD->BUILT_MODEL_2_S2 = Actuator_Nonlinearity_1;

AutoCode User's Guide

AutoCode User’s Guide Code Generation for Continuous Systems

}

INIT =0;

iinfo[1] = O;

return;

ERROR: ERROR_FLAG]I1] = iinfo[0];
iinfo[0]=0;

}
/* The function rungekutta2 employs the second-order Runge-Kutta
method with Kutta's coefficients to integrate a system of n
simultaneous first order ordinary differential equations dxdt[j] =
dx[j})/dt, (j=1,2,...,n), across one step of length h in the
independent variable t, subject to initial conditions X[j],
(=1,2,...,n). Each dxdt[j], the derivative of x[j], must be computed
two times per integration step by calling the state derivatives and
output equations function (sybsys_1()). savex()) is used to save
the initial value of x(j) and phi(j) is the increment function for
the j(th) equation. As written, n may be no larger than 5. (Modified
Euler)
*/
void rungekutta2(n,x,dxdt,t,h)

RT_INTEGER n;

RT_FLOAT *x,*dxdt,t,h;
{

RT_FLOAT phi[5];

RT_FLOAT savex[5];

RT_INTEGER j, retval;

RT_FLOAT hh =t;

ss1_rinfo[0] = hh; ss1_rinfo[1] = 0.0;
ssl_iinfo[2]=1; ss1_iinfo[3]=1; ss1_iinfo[4]=8;
subsys_1(&subsys_1 out, subsys 1 states, &subsys_1_info);
for (j=0; j<n; j++) {

savex[j] = x[j];

phi[j] = dxdt[j];

x[j] = savex[j] + h*dxdt[j];
hh=t+h;
ssl_rinfo[0] = hh; ss1_rinfo[1] = 0.0;
ssl_iinfo[2]=1; ss1_iinfo[3]=1; ss1_iinfo[4]=0;
subsys_1(&subsys_1_out, subsys_1_states, &subsys_1_info);

for (j=0; j<n; j++) X[j] = savex[j] + (phi[j] + dxdt[j])*h/2.0;
-- SCHEDULER --

void Init_Scheduler()
{

5-11

Code Generation for Continuous Systems AutoCode User's Guide

}
void SCHEDULER()
{

register RT_INTEGER NTSK;
register RT_INTEGER J;

RT_INTEGER ITSK;
RT_INTEGER |,

TIME_COUNT = TIME_COUNT + 1,

[¥** System Input ***/

);** Task Scheduling ***/

for(NTSK=NTASKS; NTSK>=1; NTSK--){

switch(TASK_STATE[NTSK]){
case IDLE :

switch(TCB[NTSK].TASK_TYPE){
case CONTINUOUS :
case PERIODIC :
if(TCB[NTSK].START == 0){
Queue_Task(NTSK);
Update_Outputs(NTSK);
TCBI[NTSK].START = TCB[NTSK].SCHEDULING_COUNT;
telsef
TCB[NTSK].START = TCB[NTSK].START - 1;
break;

case ENABLED_PERIODIC :

break;
case RUNNING :

}

[*** System Output ***/

)"*.** Update elapsed time ***/
ELAPSED_TIME = ((RT_DURATION)TIME_COUNT)*SCHEDULER_INTERVAL,;

[*** Task Input Sample and Hold ***/

AutoCode User’s Guide Code Generation for Continuous Systems

[*** Signal End of Critical Section ***/

[*** Task Dispatching ***/

while(ITSK < CURRENT_PRIORITY && ITSK <= DISPATCH_COUNT){
Disable;
if(DISPATCHIITSK]){
LEVEL++;
PRIORITY[LEVEL] = CURRENT_PRIORITY;
CURRENT_PRIORITY = ITSK;
DISPATCHIITSK] = FALSE;
Enable;
switch (ITSK){
case 1:
subsys_1 (&subsys_1 out, &subsys_1_states,
&subsys_1_info);
rungekutta2(5,
(RT_FLOAT *)(&subsys_1_states[0]),
(RT_FLOAT *)(&subsys_1_states[1]),
(RT_FLOAT)SUBSYS_TIME[1],
0.003);

break;

default : break;

5-13

Code Generation for Continuous Systems AutoCode User's Guide

5.6

5-14

Sample Generated Ada Code

The following example is a file that lists the generated model and default integrator
(Runge-Kutta 2) code for the block diagram model located in the file mws_demo.dat
in the classical_demo directory located in the SystemBuild demo distribution di-
rectory. The block diagram is shown in Figure 5-2.

AutoCode automatically generates built_model.a in the directory from which
Xmath was invoked. The sample generated code (Example 5-4) has been edited for
brevity, showing only the most important features.

As code can change slightly from one release to the next, be sure to refer to the cur-
rent example in your demo directory for an exact code listing.

NOTE: If you need to review the steps required to create an executable, refer to
Section 2.4.1 on page 2-9.

EXAMPLE 5-4: File built_model.a

- AutoCode/Ada (TM) Code Generator V6.X

-- INTEGRATED SYSTEMS INC., SUNNYVALE, CALIFORNIA
-- Modelname : built_model

-- Filename - built_model.ada

-- Dac filename :ada_rt.dac

-- Generated on :Wed Dec 1 20:59:39 1998

-- Dac file created on : Wed Dec 1 18:01:31 1998

package SUBSYSTEMS is

-------- (Continuous) Subsystem 1 Package --------
package subsys_1_pkg is

procedure subsys_1;

procedure rungekutta2(n :in RT_INTEGER,;
X :in out RT_FLOAT_AY_5_P;
dxdt :RT_FLOAT_AY_5_P;
t:in RT_FLOAT;
h :in RT_FLOAT);
end subsys_1_pkg;

end SUBSYSTEMS;

AutoCode User's Guide

b.éckage body Subsys_1_pkg is

SUBSYS_ID : constant := 1;

begin
if iinfo(1) > 0 then

INIT := TRUE; iinfo(1) := 0;

end if;
if iinfo(2) > 0 then

STATES := TRUE; iinfo(2) := 0;

end if;
if iinfo(3) > 0 then

OUTPUTS := TRUE; iinfo(3) := 0;

end if;

if OUTPUTS then

- Num - Den Coeffs. --
-- {BUILT_MODEL.system dynamics.4} --

Code Generation for Continuous Systems

Y.system_output := 0.5*X.system_dynamics_S1 + 1.5*

X.system_dynamics_S2;

- Nth Order Integrator --

- {BUILT_MODEL..2} --

BUILT_MODEL_2_1:=1.4*X.BUILT_MODEL_2_S1;
-- Step Function --

-- {BUILT_MODEL..8} --

BUILT_MODEL_2_1=1;
-- Quantization --

- {BUILT_MODEL..10} --

BUILT_MODEL_10_1 := 0.7*ROUND(Y.system_output/0.7);

sgn := SGN(Y.system_output);

ushift := ABS(Y.system_output) + 0.35;
remain := ((ushiftyMOD(0.7));

alpha_1 :=remain - (1.0 - RELTOL)*0.7;

if alpha_1 > 0.0 then

BUILT_MODEL_10_1 := BUILT_MODEL_10_1 + sgn*alpha_1/RELTOL;

end if;

5-15

Code Generation for Continuous Systems AutoCode User's Guide

end if;

------ State Update. ------
if STATES then
-- Num - Den Coeffs. --
-- {BUILT_MODEL.system dynamics.4} --
XD.system_dynamics_S1 := 0.0;
XD.system_dynamics_S2 := 0.0;
XD.system_dynamics_S1 := XD.system_dynamics_S1 - 20.1*
X.system_dynamics_S1;
XD.system_dynamics_S1 := XD.system_dynamics_S1 - 2.0*
X.system_dynamics_S2;
XD.system_dynamics_S2 := XD.system_dynamics_S2 +
X.system_dynamics_S1,;
XD.system_dynamics_S1 := XD.system_dynamics_S1 + 2.0*
BUILT_MODEL_2_1;
-- Nth Order Integrator --
-- {BUILT_MODEL..2} --
XD.BUILT_MODEL_2_S1 := X.BUILT_MODEL_2_S2;
XD.BUILT_MODEL_2_S2 := Actuator_Nonlinearity_1;

end if:

INIT := FALSE;
exception
when EXEC_ERROR =>
ERROR_FLAG(1) :=iinfo(0); iinfo(0) := 0;
when NUMERIC_ERROR | CONSTRAINT_ERROR =>
ERROR_FLAG(1) := MATH_ERROR;
when OTHERS =>
ERROR_FLAG(1) := UNKNOWN_ERROR;
end subsys_1;

-- The function rungekutta?2 employs the second-order Runge-Kutta method
-- with Kutta's coefficients to integrate a system of n simultaneous
-- first order ordinary differential equations dxdt(j) = dx(j)/dt,
-- (j=1,2,...,n), across one step of length h in the independent
-- variable t, subject to initial conditions x(j), (:=1,2,..,n). Each
-- dxdt(j), the derivative of x(j), must be computed two times per
-- integration step by calling the state derivatives and output
-- equations function (subsys_1()). savex(j) is used to save the
-- initial value of x(j) and phi(j) is the increment function for the
-- j(th) equation. As written, n may be no larger than 5.
-- (Modified Euler)
procedure rungekutta2(n :in RT_INTEGER;
X :inoutRT_FLOAT_AY_ 5 P;
dxdt :in RT_FLOAT_AY_5_P;
t :in RT_FLOAT;
h :in RT_FLOAT) is

AutoCode User’s Guide Code Generation for Continuous Systems

phi : RT_FLOAT_AY(0..5);
savex : RT_FLOAT_AY(0..5);
i :RT_INTEGER;

retval : RT_INTEGER;

hh : RT_FLOAT :=t;

begin

I.rinfo(0) := hh; -- TIME

l.rinfo(1) :=h; -- SAMPLE INTERVAL
l.rinfo(2) := 0.0; -- SKEW

I.rinfo(3) := 0.0; -- START TIME
liinfo(2):=1; L.iinfo(3):=1, l.iinfo(4):=1,;
subsys_1;

forjin 0..n loop

savex(j) = x(@);

phi(j) := dxdt(j);

X(j) := savex(j) + h*dxdt(j);
end loop;
hh:=t+h;

l.rinfo(0) := hh; -- TIME

l.rinfo(1) :=h; -- SAMPLE INTERVAL
I.rinfo(2) := 0.0; -- SKEW

l.rinfo(3) := 0.0; -- START TIME
liinfo(2):=1; Liinfo(3):=1; Liinfo(4):=1;
subsys_1;

forjin 0..n -l loop
X(j) := savex(j) + (phi(j) + dxdt(j))*h/2.0;
end loop;
end rungekutta2;

end Subsys_1_pkg;

5-17

Code Generation for Continuous Systems AutoCode User's Guide

5.7

Hints

When dealing with a system containing a single continuous subsystem, AutoCode
generates a SCHEDULER_FREQf 1.0 (that is, the inherent rate of the continuous
subsystem is that of the scheduler, 1.0). Additionally, when dealing with a hybrid
system, AutoCode, by default, treats the continuous subsystem as the fastest task
to be dispatched (again, the inherent rate of the continuous subsystem is that of the
scheduler). This value might not reflect the true dynamics of the system. In order to
obtain an approximate rate for the continuous task, you need to use sim iteratively
(or lin for predominantly linear systems) to arrive at an optimal step size for the in-
tegration algorithm, and thus, an approximate sampling interval for the continuous
task. For a continuous system (represented by differential equations), the step size
is related to its eigenvalues (the eigenvalues vary in time for nonlinear systems).
Therefore, AutoCode cannot calculate the average step size.

Typically, a continuous system needs to be sampled 5 to 15 times faster than the
smallest time constant in the system (depending on the order of the integration al-
gorithm). This time constant is the reciprocal of the largest eigenvalue in the system
and this information can be obtained with lin.

Customizing AutoCode and

6.1

Generated Code

This chapter provides advanced methods for customizing AutoCode and its output
real-time code using AutoCode configuration options, templates, BlockScript, and
%variables.

Introduction

You can customize the AutoCode process and the generated output code to suit your
specific needs. The different ways you can do this are listed below and described in
detail in the sections that follow:

= AutoCode configuration options allow you to specify indentation, coding of sig-
nificant digits for numeric literals, minimum scheduler frequency, and output
file name as described in AutoCode Configuration Options on page 6-2.

= Templates allow you to modify the overall architecture of generated code, cus-
tomize the scheduler, modify data structures and external I/O calls, add user
codes described in Templates on page 6-2.

= BlockScript enables you to create your custom block algorithm and generate it
in-line in the output source file s described in BlockScript Block on page 6-2.

= Data parameterization (%variable) allows the numeric literals in the block algo-
rithms to be represented by named variables (%variables) as described in Data
Parameterization on page 6-3.

= Using existing code libraries and interfaces to hardware are accomplished by
using a UserCode Block as described on page 6-4 or Macro Procedure as de-
scribed on page 6-4.

Customizing AutoCode and Generated Code AutoCode User's Guide

6.2

6.3

6.4

6-2

AutoCode Configuration Options

You can specify the AutoCode configuration from a SystemBuild form (see Chapter
2), by using Xmath Commands window options or by using operating system com-
mand-line options. For information on Xmath Commands window or operating sys-
tem command-line options, see Appendix A, AutoCode Options.

Templates

Templates serve as the front end to AutoCode. They determine completely what the
output code should be for a given model (.rtf file) and command-line options. You
use the Template Programming Language (tpl) to specify the templates, which are
merely TPL programs. We provide templates for both C and Ada code generation
that, when compiled, will produce what is called a standalone simulation execut-
able.

Templates and the template programming language (TPL) are described in the Tem-
plate Programming Language User’s Guide.

BlockScript Block

The block algorithms for supplied blocks cannot be modified or customized through
AutoCode templates. However, you can create your own block by specifying the algo-
rithm in a BlockScript Block (BSB). A BSB uses a scripting language called
BlockScript that is translated into C or Ada code and it is generated along with the
other blocks in the system. BlockScript is documented in the AutoCode Reference
and the SystemBuild User’s Guide.

Example 6-1 shows a user-defined BlockScript algorithm calculating the average of
5 numbers (using BlockScript while loop).

EXAMPLE 6-1: Example BlockScript Using While Loop

Outputs: y;
parameters: p;
Floaty, p(5);
Float sum;

sum=0.0;

k=1;

While k<p.size Do
sum=sum-+p(K);
k=k+1;

AutoCode User's Guide Customizing AutoCode and Generated Code

6.5

EndWhile;
y=sum/p.size;

Resulting generated C Code segment:

[*emmmmnee BlockScript */
[*{gplvar.Thru_Var.3} */
sum = 0.0;
k=1,
while (k < 5) {
sum = sum + myvar[-1+k];
k=k+1;

}
Y->Thru_Var_1 = sum/5;

Resulting generated Ada Code segment:

.......... BlockScript --
--{gplvar.Thru_Varl.3} --
sum := 0.0;

k:=1;

while k < 5 loop
sum := sum + myvar(-1+k);
k:=k+1;

end loop;

Y.Thru_Var_1 := sum/RT_FLOAT(5);

The parameters: p; statement causes the Parameters View in the BlockScript
form to include a new 5-by-1 Parameter p . A %variable %omyvar has been defined
for this parameter. This causes AutoCode to replace all occurrences of p in the pre-
vious and following scripts to be replaced by myvar .

For more information about programming BlockScripts, see the AutoCode Reference
and the SystemBuild User’s Guide.

Data Parameterization

AutoCode users have a choice of generating block data with constant values entered
in the Block form or to use Xmath variables (%variables) to represent the data sym-
bolically. While generating code from the SystemBuild menu, this choice is made via
the Block Parameters option, which can have values of % Xmath vars or
Block Defaults . Example 6-2 shows generated code for a gain block using block
default data, and Example 6-3 shows generated code for a gain block using an
Xmath variable called gainvar , which is initialized to 5.6 in the Xmath partition.

Customizing AutoCode and Generated Code AutoCode User's Guide

6.6

6.7

EXAMPLE 6-2: Generated Code for a Gain Block Using Block Default Data

y=23%*u;

EXAMPLE 6-3: Generated Code for a Gain Block Using Xmath Initialized Variable

0 C generated code:
VAR_FLOAT gainvar = 5.6;

y = gainvar * U->gainvar_1;

CAUTION: Changing of %variables values can in certain cases, such as feed-
back loops, cause the blocks to be executed in an incorrect order.
The result of the application might not match the SystemBuild
simulation.

UserCode Block

A UserCode Block (UCB) provides a strict interface between an AutoCode-generated
system and some other code. The idea is that you can implement a particular func-
tionality more efficiently by supplying code rather than attempting to model it
within SystemBuild. Such functionality includes operations dealing with hardware
or reusing existing code found in libraries.

A UCB can also be used to increase the performance of the SystemBuild Simulator
by linking back code within a UCB directly to the simulator. The code can be either
handwritten or discrete procedural code generated by AutoCode.

For more information about the UCB interface and linking back into the Simulator,
see the AutoCode Reference.

Macro Procedure Block

A Macro Procedure block provides a C-macro like capability in the generated code.
The macro’s functionality is to be modeled within SystemBuild so that the simula-
tion matches, but within the generated code, only a macro name will be generated.
For example, you can model a function that returns the maximum of 2 numbers,
but it is much more efficient to use the MAX macro provided in C. Therefore, the im-
plementation of a macro procedure must be supplied by you in the generated code
for the code to compile. Macro procedures provide an inline capability for small code

AutoCode User's Guide Customizing AutoCode and Generated Code

6.8

6.8.1

fragments. See the AutoCode Reference for more details about the code generated for
a Macro Procedure block.

NOTE: AutoCode supports macro procedure blocks for Ada as well as C.
However, there is no standard C-macro like capability in Ada. Therefore,
we recommend that you implement the Macro Procedure as a standard
procedure and use the INLINE pragma.

User-Defined Code Comments

AutoCode provides the following tokens for adding comments within generated code:
= blk_code_cmt for blocks

= sb_code_cmt for SuperBlocks

= ds_code_cmt for DataStores

These code-comment tokens are predefined user parameters, which are especially
useful if you plan to generate documentation as described in the Documentlt User’s
Guide. For additional information on user parameters, see the SystemBuild User’s
Guide.
Using a User-Defined Code Comment
To use a code-comment token, take the steps described in the following phases.
Phase One
Before code generation:

1. Create an appropriate user-parameter.

2. Within a block, create a user-parameter with the name blk_code_cmt_s

NOTE: Within a SuperBlock, create the user-parameter with the name
sb_code_cmt_s and for a DataStore, create a user-parameter with
the name ds_code_cmt_s

3. Repeat this process for each of the blocks, SuperBlocks, and DataStores where
you want comments to appear in the generated code.

Phase Two

The second phase occurs during code generation. To insert the comments you cre-
ated within the user-parameters into the generated code, do one of the following:

Customizing AutoCode and Generated Code AutoCode User's Guide

6.8.2

= Generate code by selecting the Enable Documentlt Block Comments option from the
Formatting Tab of the Advanced Dialog of the AutoCode code generation dialog.

= Use the docit AutoCode keyword.
= Use the -doc Xmath command option.

After code is generated, the comments placed within a block’s blk_code_cmt_s
user-parameter appear where the block appears in the generated code. For
SuperBlocks, only Procedure SuperBlocks have the comments placed within the
generated code. Those comments from the sb_code_cmt S user-parameter are
placed at the definition of the function that represents the Procedure SuperBlock.
For DataStores, the comments within the ds_code_cmt_s are placed at the defini-
tion of the DataStore.

ISI recommends that the content of the user-parameters be plain-text, rather than
Rich Text Format or other formatted text content, because the contents are placed
within code.

Limitations

The code-comment tokens have the following limitations:

= Any “basic block” can use the blk_code_cmt_s user-parameter, including the
SuperBlock Block (that is, a SuperBlock reference).

= Any DataStore can use the ds_code_cmt_s user-parameter.

= Any SuperBlock definition can use the sb_code_cmt_s , but only for Procedure
SuperBlocks (all variations) will the comments appear in the code.

Introduction to Software

7.1

1.2

Constructs with AutoCode

This chapter is an introduction to the blocks that implement typical software con-
structs just as loops and decision statements. This includes UserCode Blocks,
Macro Procedure Blocks, and Procedure SuperBlocks.

Introduction

We call blocks that implement typical software logic (such as loops and decision
statements) software constructs to differentiate from other blocks that compute a re-
sult (that is, functional blocks). In other words, software construct blocks deal with
the control flow of the program rather than the data flow of the model, allowing the
automatically generated code to more closely mimic handwritten code.

NOTE: Unless otherwise noted, these blocks are not supported in Continuous
SuperBlocks.

Standard Procedure SuperBlocks

Standard Procedure SuperBlocks are included in the discussion of software con-
structs because a procedure represents good software engineering by creating a
modular piece of code that can be reused throughout the model. When procedures
are reused, code size can be greatly reduced. Maintenance of your design is made
easier as fixes are made only in one place. Testing is more tractable as a procedure
defines an encapsulated unit that can be independently tested, validated, and veri-
fied. ISI recommends that you use Standard Procedures within your model.

Introduction to Software Constructs with AutoCode AutoCode User's Guide

7.3

731

732

7.4

Variable Blocks

Variable Blocks represent actual variables within the generated code. SystemBuild
has two types of Variable Blocks, one that represents a global variable and the other
that represents a local variable.

Global

A Global Variable Block is used for a variety of purposes. Traditionally, it has been
used to communicate information between Asynchronous Procedure SuperBlocks
and subsystems. Also, data shared across multiple processors can be easily ac-
cessed. Another usage of Global Variable Blocks is to provide persistent data during
execution of the system. Standard Procedures can use Global Variable Blocks as
well.

Global Variable Blocks represent global variables in the code. Therefore, Global Vari-
able Blocks are implemented to preserve determinancy. This is only an issue for
multi-rate and multi-processor systems. However, even for single-rate systems,
overhead and special semantics are associated with a Global Variable Block when
data is read and written.

Generally speaking, all reads from a Global Variable Block occur at the beginning of
the subsystem for that time point or activation frame, while all writes to the Global
Variable Block occur at the end of the subsystem or activation frame. See the
AutoCode Reference for more details.

Local

A Local Variable Block is similar to a Global Variable Block, except Local Variable
Blocks represent local variables in the generated code. Therefore, a Local Variable
Block cannot hold persistent data, and cannot be used to communicate information
across processors, subsystems, and procedures. Local Variable Blocks provide effi-
cient communication within a subsystem, and are used with the Iterator and
IfThenElse Blocks.

[fThenElse Block

The IfThenElse Block implements a decision within the generated code, and then ex-
ecutes one sequence of blocks. This type of block is like an if statement in C or
Ada.

AutoCode User's Guide Introduction to Software Constructs with AutoCode

1.5

1.6

1.7

lterator Block

The While Block provides a container that defines blocks that will continue to exe-
cute until a condition or set of conditions is met. This type of block is like a while
loop in C and Ada.

Explicit Block Sequencing

The SystemBuild Analyzer and AutoCode automatically determine the sequence in
which blocks are executed. However, there may be algorithms you design that re-
quire a set of blocks to be executed before another set of blocks. You control the se-
quencing of blocks by using the Sequencer Block to divide the diagram into frames;
the frame on the left side executes before the frame on the right side. No code is gen-
erated for a Sequencer Block.

Explicit sequencing is critical for managing blocks such as Global and Local Vari-
able Blocks, IfThenElse Blocks, and possibly Standard Procedure SuperBlocks.

Example Model

Figure 7-1 shows a model with software constructs, and Example 7-1 on page 7-4
shows the code generated for this model.

7-3

Introduction to Software Constructs with AutoCode AutoCode User's Guide

Dizcrete SuperBlock Zample Period Sample Skew Inputs Outputs Enahble Signal

5_W Nodel 0.1 0. 3 1 Parent
1221
T o=t 1 1]
while 5]
|LLE) [ELE)
1
[ELI
eite ta &
s WRRIMELT Fead fron
ramlt SRIAELT 8
=@ lobals e imlt T+
n Elohale .,
]
wlas [} ! Meite ta
7 WRISELT
— oeimlt
»3labals
]
Write ta
[weRispLn
ciimlt
>@lohal
=)
Weite ta
1-1 WEINELD
Logp_ et
Halohals

FIGURE7-1 Sample Model with Software Constructs

The following C code (Example 7-1) was generated from the model in Figure 7-1 on
page 7-4 with the Variable Block Read and Constant Propagation optimizations.

EXAMPLE 7-1: Generated Software from Software Constructs Model (excerpt)

/
AutoCode/C (TM) Code Generator V6.X |
| INTEGRATED SYSTEMS INC., SUNNYVALE, CALIFORNIA

* *

rtf filename : S_W_Model.rtf

Filename :S_W_Model.c

Dac filename : c_sim.dac

Generated on :Wed Jun 2 19:10:16 1999
Dac file created on : Thu Mar 25 10:10:09 1999

Options t-le

-- Number of External Input : 3
-~ Number of External Output: 1

7-4

AutoCode User's Guide Introduction to Software Constructs with AutoCode

-- Scheduler Frequency: 10.0

-- SUBSYSTEM FREQUENCY TIME_SKEW OUTPUT_TIME TASK_TYPE

-1 10.0 0.0 0.0 PERIODIC

#include <stdio.h>
#include <math.h>
#include "sa_sys.h"
#include "sa_defn.h"
#include "sa_types.h"
#include "sa_math.h"
#include "sa_matrix.h"
#include "sa_user.h"
#include "sa_utils.h"
#include "sa_time.h"
#include "sa_fuzzy.h"

[*** System Data ***/
[rrrxxex Gtrycture to drive disconnected input/output. ***xxxx/

struct _DcZero {
RT_FLOAT dzero;

5

static const struct _DcZero dczero = {0.0};
#define EPSILON 1.49011611938476562E-08
#define EPS (4.0 * EPSILON)
#define ABSTOL EPSILON
#define XREMAP 1

#define SCHEDULER_FREQ 10.0
#define NTASKS 1

#define NUMIN 3

#define NUMOUT 1

#define SCHEDULER_ID 0
#define PREEMPTABLE 2

enum TASK_STATE_TYPE { IDLE, RUNNING, BLOCKED, UNALLOCATED };

static RT_INTEGER ERROR_FLAG [NTASKS+1];

static RT_BOOLEAN SUBSYS_PREINIT [NTASKS+1];
static RT_BOOLEAN SUBSYS_INIT [NTASKS+1];

static enum TASK_STATE_TYPE TASK_STATE [NTASKS+1];

s System Ext 1/O and Sample-Hold type declarations. ****+*/
struct _Sys_ExtOut {
RT_FLOAT dzero;

h

7-5

Introduction to Software Constructs with AutoCode AutoCode User's Guide

struct _Sys_ExtIn {
RT_FLOAT S W_Model_1;
RT_FLOAT S_W_Model_2;
RT_FLOAT S_W_Model_3;

h

struct _Subsys_1_in {
RT_FLOAT S_W_Model_1;
RT_FLOAT S_W_Model_2;
RT_FLOAT S_W_Model_3;

5

[**** System Ext 1/0 and Subsystem 1/O type definitions and ~ ****
**x Pointers to SubSystem Outputs ReadOnly/Work areas. Fxkk|
struct _Sys_ExtOut sys_extout;

struct _Sys_ExtIn sys_extin;

struct _Subsys_1_in subsys_1_in;

static RT_FLOAT ExtIn [NUMIN+1];
static RT_FLOAT ExtOut [NUMOUT+1];

/* Model variable definitions. */
VAR_INTEGER loop_cnt;
VAR_FLOAT result;

/* Model variable declarations. */
extern VAR_INTEGER loop_cnt;
extern VAR_FLOAT result;

[rxxxirxx Tasks declarations *xxxskx/

/******* Subsystem l *******/
extern void subsys_1(struct _Subsys_1_in *U);

/******** Tasks Code ********/
/******* Subsystem 1 *******/

void subsys_1(struct _Subsys_1_in *U

static RT_INTEGER iinfo[4];
[x*xx | ocal Block Outputs. *****/

RT_INTEGER S_W_Model _23_1;
RT_FLOAT S_W_Model_1_1;
RT_FLOAT S_W_Model_13 1;
RT_FLOAT S_W_Model_4_1;
RT_INTEGER S_W_Model_3_1;
RT_INTEGER S_W_Model 97 1;
RT_FLOAT S_W_Model_15_1;

7-6

AutoCode User's Guide

RT_INTEGER S_W_Model_20_1;
RT_INTEGER S_W_Model_16_1;

[eexexsx nitialization. **xxxx/

if (SUBSYS_PREINIT[1]) {
iinfo[0] = O;
iinfo[1] = 1;
iinfo[2] = 1;
iinfo[3] = 1;
SUBSYS_PREINIT[1] = FALSE;
return;

}

[**** Qutput Update. *****/

I* IfThenElse */
I*{S_W Model..2} */
if(U->S_W_Model 2'!=0.0){

1* ElementDivision */
/*{S_W Model..1} */

S W_Model_1_1=U->S W_Model_1/U->S_W_Model_2;

1* Write to Variable */
/*{S_W Model..14} */
result=S W_Model_1_1;

else {

I* Write to Variable */
/*{S_W Model..12} */
result = U->S_W_Model_2;

}

I* Algebraic Expression */
I*{S_W Model..23} */

S W_Model_23 1 =1,

I* Write to Variable */
I* {S_W Model..99} */
loop_cnt=S_W_Model_23_1;

1* While */
I*{S_W Model..5} */
while (TRUE) {

I* Read from Variable */

/*{S_W Model..13} */

S W_Model_13_1 =result;

I* Summer */
/*{S_W Model..4} */

Introduction to Software Constructs with AutoCode

S W_Model_ 4 1=S W_Model_13 1-U->S W_Model_3;

7-7

Introduction to Software Constructs with AutoCode

I* Write to Variable */

/* {S_W Model..21} */

result=S W_Model_4 1,

* Read from Variable */
/*{S_W Model..3} */

S_W_Model_3 1 =loop_cnt;

I* Algebraic Expression */
/*{S_W Model..97} */

S_W_Model_97_1 =5;

/* Relational Operator -- LT-EQ-GT */

test=S W_Model_3 1>S W_Model_97_1,
1* Break */
/*{S_W Model..98} */
if(test) {

break;
}
1* Algebraic Expression */

/* {S_W Model..20} */

S W_Model 20 1=1;

/* Summer */

/*{S_W Model..16} */
S_W_Model_16_1=S_W_Model_3_1+S_W_Model_20_1;
I* Write to Variable */

/* {S_W Model..10} */

loop_cnt=S_W_Model_16_1;

}

if(iinfo[1]) {
SUBSYS_INIT[1] = FALSE;
iinfo[1] = 0;

return;

EXEC_ERROR: ERROR_FLAG[1] = iinfo[0];
iinfo[0]=0;

}

AutoCode User's Guide

7-8

AutoCode Options

This appendix describes options that can be used when invoking AutoCode from
within Xmath or from the OS command line. This appendix also describes how to
use an autostart.opt file. This appendix supplements Chapter 2, Using
AutoCode.

A.1 Options When Invoking AutoCode

As described in Chapter 2, AutoCode can be invoked from the Catalog Browser, the
Xmath Commands window, or the operating system command line. Table A-1 lists
the various AutoCode command-line options. The code generator is invoked by us-
ing the autocode command (Xmath) or the autostar command (command line).

TABLE A-1 Options When Invoking AutoCode

Option from Xmath Option from Description
0/s

allgscope -allgscope Force all Output Scopes to be Global and all proce-
dure Input Scopes to be Local.

arraymin {Oarray n Minimum size of vectorized arrays. (default: 2)

backpmap -bmap map A string specifying the map associating background
procedures with processors. The syntax parallels that
specified for the subsysmap option, except procedure
numbers are used rather than task numbers.

config Replaced by options

A-l

AutoCode Options

AutoCode User’s Guide

TABLE A-1 Options When Invoking AutoCode (Continued)

Option from Xmath

Option from
0/s

Description

csi

-cSi n

csi specifies the continuous task sample interval (see
Section 5.4.2 on page 5-4 for details.).

NOTE: Use the csi option so generated code will
match sim results for continuous systems.

docit

doc

Enables the Documentlt tokens as described in the Tem-
plate Programming Language User’s Guide.

doublebuf

doublebuf

Force double-buffering for single-rate systems.

epinfo

epi

Boolean (default=0). Generate extended procedure infor-
mation data structures. Procedures generated with this
option should not automatically be mixed with those
generated without it.

epsilon

-eps

Float (default is machine epsilon). Set the value of
epsilon used in the generated code. This option is
used to initialize model outputs. epsilon is set to a
very small value so that inital outputs will be near
zero; this prevents division by zero problems. The
AutoCode token epsilon_r is used to access the
epsilon value. If epsilon is left blank, a default
value is used.

errcheck

Boolean (default=0). Enables error checking in the
generated code. Default is O, error checking disabled.

file

-0 file

The default name is taken from the name of the model
file; the default extension is .c or .a , depending on
the language chosen.

fmarker

Boolean (default=0). When true (1), this option’s
value forces single-precision floating-point markers
for encoded numbers (C language option only).

Example:

no -f option, generated code looks like
y=2.3*u;

with -f option, generated code looks like
y=2.3f * u.

A-2

AutoCode User's Guide

AutoCode Options

TABLE A-1 Options When Invoking AutoCode (Continued)

Option from Xmath

Option from
0/s

Description

foverflow

-Q

vip n

Integer (default=2). Indicate state of overflow protec-
tion for integer and fixed-point calculations.

0 = overflow protection disabled
1 = overflow protection forced
2 = overflow protection selected by block’s option

glbvarblkopt

-O

varblk

Optimize read-from global varblocks.

See ?on

page A-8.

-h

Obtains a help display.

ialg

ialg specifies the selected integrator as one of the
following;:

1. First order Runge-Kutta -- Euler
2. Second order Runge-Kutta -- Modified Euler

3. Fourth order Runge-Kutta -- Simpson’s Second
Rule)

4. Kutta-Merson
5. User Integrator

See Section 5.4.2 on page 5-4 for details.

indent

-indent n

This integer value specifies the amount of indentation
in output between levels. Default is 3.

initmerge

Dinitmerge

Merge block INIT sections into one INIT section, if pos-
sible.

interpmap

imap map

A string specifying the map associating interrupt proce-
dures with processors. The syntax parallels that of the
backpmap option.

ipath

| pathname

Adds a pathname to the list of directories in which to
search for template @include files. Can be used
multiple times on the command line (limit 10).

krstyle

Generate old-style (Kernighan and Ritchie) C function
prototypes.

language

H lang

The language for generating the code: C or Ada. The
following are accepted: ¢, C; a, ada, Ada, ADA

linesz

-linesz n

This integer value specifies the maximum number of
output characters per line. The integer value must be
> 78. The default is 80.

AutoCode Options

AutoCode User’s Guide

TABLE A-1 Options When Invoking AutoCode (Continued)

Option from Xmath

Option from
0/s

Description

loopmin

rOloop n

Loop threshold for vectorized code (default: 2).

locvarblkopt -O

varblk

Optimize read-from local varblocks.

mapfile

-pfile file

A string defining the map file associating subsystems
and background, startup, and interrupt procedures
with processors. The subsysmap, backpmap, startp-
map, and interpmap options override the specifica-
tions in this file, and if none of these options is
supplied and the file doesn’t exist, it’s created using a
default map. A single-line comment is indicated using
// characters.

minsf

-minsf n

Specifies minimum AutoCode scheduler frequency.
The real-time scheduler frequency is set to the larger
value of the frequency determined by the block dia-
gram application and the value specified by -minsf
Normally, the default value of 0.0 should be used,
which allows the application to set its own scheduler
frequency. Deviation from this default should be ap-
proached with caution, as a consistent scheduler fre-
quency should normally be based on a least common
multiple of the inverse of the application timing re-
quirements (i.e., frequencies).

namelen

-nl n

This integer value adjusts the maximum variable

length in the generated code. The integer value must
be > 20 (the default is 48).

nodiscon

odiscnout

Optimize away disconnected outputs.

noerr

Fnoerr

Do not generate error detection code after a procedure
call is made.

nogscope

-nogscope

Force all Output Scopes to be Local.

noinfo

noinfo

If possible, eliminate a procedure’s INFO structure.

noicmap

-noicmap

Sets the constant variable XREMAP to False, which
prevents initial values of states from being set.

nomap

-nomap

Boolean (default=0). Turn off the structure map indi-
cating subsystem and system external inputs and
outputs by setting the nobusmap_b token to True.

1
O

norestart

bnorestart

Optimize out the restart capability.

nosmooth

-nosmooth

Turn off floating-point constant number smoothing.

A4

AutoCode User's Guide

AutoCode Options

TABLE A-1 Options When Invoking AutoCode (Continued)

Option from Xmath

Option from
0/s

Description

nouy

-nouy

Pass procedure input and outputs as actual argu-
ments to the function.

numproc

-np n

Integer (default=1). The number of processors to gen-
erate code for.

options

-opt file

Specifies the name of the options file. Options are en-
tered in the file using the same syntax as if they were
specified in the command line. The exception is that
map specifications are not enclosed between quotes.
Options c an be on one line, separate lines or a combi-
nation. Command-line options override all of the op-
tions in the -opt file. The rtf file name cannot be
specified in the -opt file. Single line comments are
done by using // characters. See Section A.2 on

page A-9 for more information about the options file.

parname

Boolean (default=0). When true (1), specifies use of
parameter names specified by scripts in language
blocks instead of RP and IP arrays.

priomap

-prio

A string defining the priority of the subsystems. It has
a form similar to that of the skewmap option (see
above), except <skew value> is replaced by an integer
priority. Provided that AutoCode can assign each sub-
system a unique priority while obeying the priomap,
range and list operators in the priomap are permitted
for both subsystems and priorities.

procs_only

procs

Sets the template parameter procs_only b astrue ,
and default template only generates Procedure
SuperBlocks and generates UCBs and subsystem
wrappers for each of these procedures.

- prompt

Prompt for command-line options.

propconst -

Opc

Propagate constants across blocks.

reuse

-Oreuse n

Strategy for reusing subsystem local outputs.
0 : Do not reuse (default)
1 : Reuse by matching named outputs
2 : Reuse whenever possible.

roundfloat -r

bund

Force an implicit float-to-integer conversion to be
rounded rather than truncated.

AutoCode Options

AutoCode User’s Guide

TABLE A-1 Options When Invoking AutoCode (Continued)

Option from Xmath

Option from
0/s

Description

rtf

See note "on
page A-8.

The name of the generated real-time file (.rtf).
Default: modelname.rtf

rtos

rrtos

Boolean (default=0). Read the default Real-Time Oper-
ating System configuration file, ac_rtos.cfg , to ob-
tain RTOS parameter information (or create
ac_rtos.cfg if it doesn't exist). This option is incom-
patible with the rtosfile, subsysmap, startpmap,
backpmap, interpmap, and priomap options. More in-
formation is given in Chapter 2 of the AutoCode Refer-
ence.

rtosfile

nsf file

A string specifying the name of the file from which to
read the Real-Time Operating System configuration
information. This option is incompatible with the
RTOS, subsysmap, startpmap, backpmap, interpmap,
and priomap options.

scheduler

sched n

Choose a scheduler type:
0 : one-stage output posting (default)
1 : pre&post output posting

sd

-sd n

Integer. Specifies the number of significant digits for
encoded numbers. Default: long constants are emitted
to full machine width.

skewmap

-skew n

A string defining the skew of each subsystem. It has
the form:

<skewmap> :== <subsystem #> <skew value> { <skew-
map> ... }

<subsystem #>:== An integer naming the subsystem
<skew value> :== A float defining the skew

Subsystem numbers and skew values must be sepa-
rated by a single space in the string. Optionally, a
range or list of subsystem numbers can be used in-
stead of <subsystem #> above.

smcallout

5MCO

Boolean (default=0). Generate call-outs for access to
all elements in shared memory. Turn on the shared
memory function call out.

startpmap

smap map

A string specifying the map associating startup proce-
dures with processors. The syntax parallels that of the
backpmap option.

A-6

AutoCode User's Guide

AutoCode Options

TABLE A-1 Options When Invoking AutoCode (Continued)

Option from Xmath Option from Description
oIS

subsysmap -pmap map A string specifying the map associating subsystems
with processors. The map contained in the string has
the form:
<map> :== <prsr #> <list> { <map> ... }
<prsr #> :== a processor number

(starting at 1)

<list> == <task #>, { <task #> ... }
<task #> :== a task number (starting at 0)
Processor numbers and lists must be separated by a
single space, while elements of the list must be sepa-
rated by a single comma.

tpldac 4d file A direct access template file (see Chapter 4).
Default: $CASE/ACC/templates/c_sim.dac for C
$CASE/ACA/templates/ada_rt.dac for Ada

tplsrc -1 file This is a template source file (see Chapter 4).
Default: $CASE/ACC/templates/c_sim.tpl for C
$CASE/ACA/templates/ada_rt.tpl for Ada

typecheck See note ° Boolean (default=1). Enables data type checking. See
the SystemBuild online help for simulation for details
about data typing. For AutoCode the default is 1; type
checking is enabled. If typecheck is set to false, all
the variables in the model are hardcoded with float
data type.

ucbparams -ucbparams Use RP/IP temporaries as actuals to UCB call instead
of %var variables.

vars See note ¢ on Boolean (default=1). Same functionality as the sim

page A-8.

keyword by that name (see the sim chapter of the
SystemBuild User’s Guide). The default is 1, meaning
that %vars are included in the model. Note that if the
code is generated from a model, the model is pro-
cessed using the vars keyword. However, if the
AutoCode function is invoked from the operating sys-
tem command line using an existing .rtf , the vars
keyword is ignored. To turn off vars , specify !vars

AutoCode Options

AutoCode User’s Guide

TABLE A-1 Options When Invoking AutoCode (Continued)

Option from Xmath

Option from
0/s

Description

vbcallout

-vbco

Boolean (default=0). Generate call-outs around the
critical section of variable block accesses in the gener-
ated code.

vectormode

tOv

Vectorization option:
0 : Scalar code generation (default)
1 : Vectorize based on labeling
2 : Maximal vectorization

a. There is no keyword, but has the command help autocode for Netscape help.

b. The name of the rtf

file must always be specified when invoking from the command line.

c. The typecheck feature applies only to the creation of the rtf file, thus there is no
equivalent option from the command line.

d. This Xmath option is used for creation of the rtf . When invoking from the O/S, the rtf
must already exist; therefore, there is no O/S option equivalent.

A-8

AutoCode User's Guide AutoCode Options

A2

Using the autostar.opt File

If you invoke AutoCode with the same options consistently, you can put these op-
tions into an options file, saving a lot of error-prone, repetitive typing each time you
invoke AutoCode. AutoCode reads the options file at startup, and performs the op-
tions as though you had entered them on the command line. Although you can use
an options file whether you invoke AutoCode from the Xmath Commands window or
the operating system command line, the only options that you can specify in the op-
tions file are operating system command-line options.

The default options file is autostar.opt . If you have an autostar.opt file in the
current working directory from which you invoke AutoCode, the options in that file
will be executed when you invoke AutoCode. If you specify an option on the com-
mand line that is also in the options file, the command line option overrides the
same option in the options file (see Example A-1 and the paragraphs following).

For different applications, you might need to invoke AutoCode differently. For this
reason, you can have multiple options files. To invoke AutoCode with an options file
other than autostar.opt , specify the name of the options file when you invoke
AutoCode (see Example A-2 and the paragraphs following).

Options are entered into the options file using the same syntax as if they were spec-
ified in the command line. The exception is that map specifications are not enclosed
between quotes. Options can be on one line, separate lines or a combination. The
rtf file name cannot be specified in the options file. Single line comments are done
by using // characters.

Example A-1 shows an options file.

EXAMPLE A-l: Example autostar.opt Options File

/l Sample options file //
-lc

-t ¢386_c860_mb2.tpl
-0 myoutput

To use this file, invoke AutoCode as follows:

autostar model.rtf

This invokes AutoCode with the autostar.opt options file. Output is in file
myoutput .

AutoCode Options AutoCode User's Guide

A3

A3l

A-10

Consider the following command:

autostar -o myoutput3 model.rtf

The options file is again used, but the output file option (-0) is specified on the com-
mand line, so it overrides the corresponding command in the options file. The out-
put documentation will be in file myoutput3 , not in file myoutput as specified in
the options file.

Example A-2 shows an options file called myopt.opt

EXAMPLE A-2. Example Options File Called myopt.opt

/I Sample options file //
-lc

-t ¢386_c860_mb2.tpl
-0 myoutput2

To use this file, invoke AutoCode as follows:
autostar -opt myopt.opt model.rtf
This invokes AutoCode with the myopt.opt options file.

So, if you have both of the above option files (shown in Examples A-1 and A-2) in
your directory, invoking autostar without the -opt option puts the generated code

into file myoutput (the autostar.opt options file is used). Invoking autostar with
the -opt myopt.opt option as shown above puts the generated code into file
myoutput2

Mapping Options

This section describes the options for controlling subsystem execution.

Setting Subsystem Priorities

If you do not specify any priorities, AutoCode allocates priorities to the subsystems
in the following manner. For C it allocates priority O to the scheduler, and 1, 2, ...,
total number of subsystems to subsystem 1, subsystem 2, ..., respectively. For Ada
by default, it allocates the number equal to the total number of subsystems to the
scheduler, and grows downward for subsystem 1, subsystem 2, ... , respectively.

AutoCode User's Guide AutoCode Options

‘For C or Ada, if you specify only the scheduler priority using the -prio option, the
subsystems will be given the priority 1 plus the scheduler priority. Or, if at least one
more subsystem is specified, depending on the sequence of priorities you establish
in specifying subsystems, the priority order will be ascending or descending.

Depending on the operating system you are using, you might need to change the
default mapping. In some operating systems, the smaller the number, the higher the
priority, but in others, the opposite sequence might prevail. You can change the pri-
orities by using the option -prio . Syntax:

-prio subsystem# priority

When specified in the command line, the syntax is

-prio "subsystem# priority"
Example:

-prio 0 30 1..3 29 3..n 28.

In command line the above example would be:

-prio "0 30 1..3 29 4..n 28"

This example sets the priority 30 to scheduler subsystem O and 29 to subsystems
1,2 and 3 and priority 28 to subsystem 4 onwards. n is always 65535. Be sure to
place the scheduler priority at the beginning of the -prio option. The subsystem#
and priorities must be given in pairs and delimited by a space.

The priority of a subsystem, if not specified, depends on the previous and successor
subsystems. The system will not allocate a priority greater than the successor sub-
system. AutoCode will not allocate a negative subsystem ID. Every subsystem prior-
ity must be less than the scheduler subsystem priority, whether the sequence of
priority numbers is ascending or descending. ‘.." is used to specify the range and *,
is for listing. In -pfile the option can be:

-prio O 30
1,3 29
4..7 28

As no subsystem can have more than one priority, the priorities cannot have the

I

range or list operators *..’, ‘,’.

A-11

AutoCode Options AutoCode User's Guide

Example:
-prio 0 30
1 28..26
2 25,24 is INVALID, but
Example:
-prio O 30
1.n 9..2 is VALID and subsystems 1 to n will be assigned priorities between 9 and
2.
A3.2 Setting Subsystem Skews

The -skew option allows skews specified in SystemBuild to be changed. One use of
this option is to reset the skews which have been applied to SuperBlocks in order to
split a large subsystem into two or more parts. A reason for splitting up such a sub-
system is that the parts can be run in parallel on multiple processors. Resetting the
skew ensures that they all start at the same time.

The syntax of the skew option is similar to that of -prio option.
-skew subsystem# skew

Example:

-skew 1.1 2 .002 and -skew "1 .1 2 .002" for command line.

Only the subsystems can use the range and list operators “..’, *,’.
Example:
-skewl .1

2.5 .002

6,8 .003

A-12

AutoCode User's Guide AutoCode Options

A33

A3.4

Setting Processor Subsystem Map

When generating code for multiple processors, a subsystem-to-processor map must
be specified. If no mapping is specified, AutoCode will map the subsystems to differ-
ent processors using the following rule:

Processor No. = ((subsys_id-1)% max. no. of processors) + 1

For a system with six subsystems and 2 processors, this would assign subsystems
1, 3, and 5 to processor 1 and subsystems 2, 4, and 6 to processor 2. Scheduler O is
always assigned to processor 1. When the default mapping rule is used, the map-
ping is saved in file autocode.pmp in the working directory. You can edit this file
and specify this file name for future invocations of AutoCode using the -pfile op-
tion.

If the -pfile option is specified but the file does not exist, AutoCode will create the
file and save the default mapping to it rather than to autocode.pmp . Note that
-pmap specifications are not saved to the file specified by the -pfile option.

To change the default processor mapping, use the -pmap option. The syntax is sim-
ilar to that of -prio and -skew options.

-pmap processor# subsystem#
Example:
-pmap 1 022,3,435,6

-pmap "1 02 2,3,435,6" (Command Line)

The above example allocates subsystem O to processor 1 and 2, 3, and 4 to 2 and 5,
6 to 3.

-pmap 1 0,1

2 2.6

B

The subsystems can have the range and list operators *..’, *,".

Processor Map Specification on Command Line

This section describes the command-line processor mapping for subsystem tasks,
background, startup and interrupt procedure SuperBlocks. The mapping is speci-
fied by using the -pmap, -bmap, -smap, and -imap options.

A-13

AutoCode Options AutoCode User's Guide

The following is the format of these options:
<option> "<map>"

where: <option>:==[-pmap, -bmap, -smap, -imap]

<map> == <prsr #> <list> { <map> ... }
<prsr #>:== <processor nhumber starting at 1>
<list> :== <task/procedure numbers>

example:
autostar -l ¢ -pmap "1 0,1,3 2 2,4" -np 2 test.rtf

You can use the -pfile option to generate a default set of mappings. The example
maps subsystems O (the scheduler), 1, and 3 to processor 1 and subsystems 2 and
4 to processor 2.

A-14

Index

A

ac_timing option
ada_intgr.tpl 5-3
ada_rt.tpl 5-3
Advanced dialog 2-7

2-3, 5-3
algorithmic procedures 1-8

2-14

algebraic loops

allgscope option A-1
application program 3-1
arraymin option A-1

asynchronous subsystems 3-14, 3-17
background procedure 3-18, 3-21
interrupt procedure 3-18, 3-20
procedures 3-17
start-up procedure 3-18
triggered 3-18

AutoCode

automatic code generation 1-4
blocks 6-4
BlockScript 6-2
global variable blocks 7-2
IfThenElse 7-2
local variable blocks 7-2
sequencing 7-3
Standard Procedure SuperBlocks
7-1
UCB 6-4
UserCode Blocks 6-4
variable blocks 7-2
While 7-3

2-2,2-3
6-1, 6-2
customizing process 6-1

command options
configuration options

generated code applications 2-9

generated reusable procedures 1-8
invoking 1-3
model limitations 2-3
model restrictions 2-3
options
see individual option names. A-1
options file A-9
real-time application 1-5, 1-7
sequence for using 1-3
simulation 1-3
Tools Menu pulldown 2-4
Xmath command, autocode 2-4, 2-7

autocode command A-1
examples 2-2
options 2-2

autostar command 2-1, A-1
example command for Ada 5-7
example command for C 5-6
examples 2-3
options 2-3

autostar.opt A-9

B
background function 1-7, 3-2
backpmap option A-1

block sequencing 7-3

index-1

Index

blocked state 3-5, 3-8, 3-11
BlockScript 1-7, 6-1
BlockScript block 6-2

BSB 6-2

bubble diagram 3-5

C

categories of discrete systems 4-1
code generation 2-4
automatic 1-3
continuous systems 5-1
generated code sample - Ada
5-14
generated code sample - C 5-7
hints 5-18
how to generate 5-3
implicit frequency 5-4
limitations 5-3
customize 1-3
discrete systems 4-1
example Ada code 4-8
example C code 4-3
optimized code 4-2
procedural code 4-3
vectorized code 4-2
from OS
for continuous systems 5-5
from OS command line
for discrete systems 2-3
from within SystemBuild
for discrete systems 2-1
from Xmath
for continuous systems 5-4
for discrete systems 2-2
hybrid systems
how to generate 5-3

index-2

AutoCode User’s Guide

code-comment tokens

limitations 6-6

using 6-5
compile

standalone utility file 2-11

user code 2-11
compile_ada_sa.sh file 2-11
compile_sa.sh file 2-11
computational thread 3-2
config option A-1
configuration file A-9
configuration options 6-2
continuous code generation

integrators 5-2

limitations 5-3
continuous subsystem 3-7, 3-8
continuous systems 3-7

code generation

from OS 5-5
from Xmath 5-4

generated code sample - Ada 5-14

generated code sample - C 5-7

generating code 5-3

hints 5-18

implicit frequency 5-4

integrator 3-7, 5-1, 5-2
continuous-time model 1-3
conventions x
CPU task utilization 3-1
critical section (scheduler) 3-2, 3-10
csi - standalone 5-5
csioption A-2
customizing AutoCode 6-1

AutoCode User's Guide

D

data parameterization 6-3
discrete systems
categories 4-1
discrete time points 2-12, 2-14
discrete-time
controller SuperBlocks 1-3
dispatch list 3-4, 3-8
dispatcher 1-6, 3-4, 3-5, 3-10, 3-21, 3-22
division by zero = A-2
doublebuf option A-2
double-buffered outputs 3-11

E
elapsed time counter 3-10
3-2, 3-5, 3-11, 3-13

enabled periodic subsystem as a state
machine 3-12

enable signal

enabled periodic subsystems 3-2, 3-8,
3-11
enabled subsystems 3-7
epinfo option A-2
epsilon option A-2
epsilon.r A-2
errcheck option A-2
€rrors
customizing overflow handling 3-37
scheduler 3-35
subsystem overflow 3-35
examples
autocode command 2-2
autostar command 2-3

generated code (continuous) - Ada
5-14
generated code (continuous) - C 5-7

extended time [te,ye] 2-12, 2-14

Index

F

file option A-2

files
ada_intgr.tpl 5-3
ada_rt.tpl 5-3
compile_ada_sa.sh 2-11
compile_sa.sh 2-11
c_intgr.tpl 5-3
c_sim.tpl 5-3
sa_utils.<hll> 2-9
utilities

standalone 2-9

finite state machine 3-5, 3-10

first sample
See skew

fmarker option A-2

foverflow option A-3

free-running periodic subsystem 3-2,
3-7, 3-8, 3-10
as a state machine 3-11
FTP to ISI Technical Support xv

G

generated application 1-1

compiling 2-10

components 1-6

implementing 1-5

nature of 1-5
generated code

applications 2-9

comparing with sim results 2-14
1-3, 2-13
compile header files 2-13

compile and link

compile user code 2-13
compiling and linking 2-11
keywords 2-14

validate 1-5

index-3

Index

generated code applications 2-9
generated program
passing control 3-4
generating code 2-4
customizing 2-7
generating real-time code 2-1
glbvarblkopt option A-3
graphical user interface 2-1

H

hardware in-the-loop testing 1-5
help system 1-8
high-level language

Ada 1-1

c 1-1

code 1-3,2-1
hints

continuous systems 5-18
hybrid system 3-7
generating code 5-3

I

ialg option A-3

IALG options 2-7

ID (subsystems) 3-9

idle state = 3-5, 3-7, 3-10

IfThenElse block 7-2

implicit frequency 5-4

indent option A-3

initmerge option A-3

integrator 3-7, 5-1, 5-2
first order Runge-Kutta 5-2
fourth order Runge-Kutta 5-2
Kutta-Merson 5-2
second order Runge-Kutta 5-2
user-supplied 5-2

index-4

AutoCode User’s Guide

interpmap option A-3
interrupt handler 1-7, 3-2
interrupts 3-2

ipath option A-3

1/0 routines 1-7

K
krstyle option A-3

L

language option A-3

latched outputs 3-11, 3-35

least common multiple rate = 3-32
linesz option A-3

linking 2-10

locvarblkopt option A-4

loopmin option A-4

M

Macro Procedure Block 6-4
Macro Procedure block 6-4
major cycle 3-11
manager/scheduler 1-5, 3-4
mapfile option A-4
mapping
subsystems to processors A-13
command line A-13
pmap option A-13
MATRIXx
AutoCode 1-2
product family 1-1
minimum scheduler cycle 3-5
minor cycle 3-5, 3-9, 3-11, 3-31
minsf option A-4

AutoCode User's Guide

model
simulation
running applications 2-14
time vectors 2-13
testing 1-5
model simulation
running applications 2-12
time vectors 2-12

N

namelen option A-4
negative-going edge (trigger) 3-14
nobusmap_b token A-4
nodiscon option A-4
noerr option A-4
nogscope option A-4
noinfo option A-4
nomap option A-4
norestart option A-4
nosmooth option A-4
nouy option A-5
numproc option A-5

0
offset
(see skew)
online help 1-8
optimized code
types of optimization 4-2
options file A-9
options option A-5
organization
manual ix
OS command-line options
-csi 5-6
-minsf 5-6

output posting
ANT 3-14, 3-16
ASYNC 3-14
ATR 3-14, 3-16
SAF 3-16

overflow (scheduler) 3-35

overflow (subsystem) 3-35

overflow (timing) 3-21

P

parameterization 1-3, 6-3

variables 6-1
parname option A-5
periodic task subsystems

repetition rate 3-1
periodicity 3-33
pmap option

example A-13

3-1

positive-going edge (trigger) 3-14

pre-emption 3-21
prio option

example A-11
priomap option A-5
priorities, task A-10
procs_only option A-5
propconst option A-5
pseudo-rate scheduler

R

Index

3-31, 3-32, 3-34

rapid prototyping 1-1, 1-3, 1-5, 2-15

rate-monotonic
algorithm 3-1
scheduling 3-1

ready queue 3-7, 3-8, 3-22

real-time
application 1-7
application program

3-1

index-5

Index

code 1-1
file 2-1,2-3
generating code 1-3, 2-1
simulation 2-15
re-entrant dispatcher 3-10
related publications xiii
repetition rate = 3-31
reusable procedures
AutoCode-generated 1-8
reuse option A-5
roundfloat option A-5
rtf option 2-1, 2-3, A-6
rtos option A-6
rtosfile option A-6
running 2-10
state 3-10

S
SAF (as-soon-as-finished) trigger 3-16
sample and hold 3-1, 3-7, 3-10, 3-22
sample rate 3-1, 3-2
sampling rate 3-5, 3-8, 3-31
scheduler 1-5, 1-7, 3-1, 3-4, 3-5
critical section 3-2, 3-10
dispatch list 3-8
dispatcher 3-10, 3-21, 3-22
re-entrant 3-10
elapsed time counter 3-10
errors 3-35
example timing diagram 3-31
examples 3-22
major cycle 3-11
minimum cycle 3-5
minor cycle 3-5, 3-9, 3-11, 3-31
periodicity 3-33
pre-emption 3-21
pseudo-rate 3-31, 3-32, 3-34

index-6

AutoCode User’s Guide

rate-monotonic 3-1

ready queue 3-7, 3-8, 3-22

repetition rate = 3-31

sampling rate 3-31

scheduler overflow 3-35

skew 3-33

subsystem overflow 3-35
causes 3-37

timing overflow 3-7

timing overflow (subsystem) 3-21

timing requirement 3-31

scheduler operation 3-6
scheduler option A-6

sd option A-6

sequencing block 7-3
setsbdefault command 2-14
simulation

options 2-14
real-time 2-15

sim...{initmode} command 3-10
skew 3-2, 3-33

example 3-33
setting
skew option A-12

skew option

example A-12

skewmap option A-6
smcallout option A-6
software constructs 7-1

example model 7-3
generated code 7-4

standalone simulation 2-9, 2-11, 2-12

set up environment variables 2-12

standalone utility file 1-3, 1-7, 2-9

compiling 2-11
sa_utils.<hll> 2-9

Standard Procedure SuperBlocks 7-1

AutoCode User's Guide

startpmap option A-6
state machine 3-5
state transition diagram (STD) 3-10, 3-11
subsysmap option A-7
subsystem
processor subsystem map
command line A-13
subsystems 1-7, 3-2
ATR 3-8
constraints 3-21
continuous 3-7, 3-8
controlling execution A-10
dispatch list 3-8
dispatching 3-22

dispatching and pre-emption example
3-23

dispatching operation with a pseudo-
rate scheduler 3-32

enabled periodic 3-2, 3-7, 3-8, 3-11
as state machine 3-12
execution queue 3-19
free-running periodic 3-2, 3-7, 3-8,
3-10
as state machine 3-11
least common multiple 3-32
mapping options A-10
minor cycle 3-9
overflow 3-35
overflow causes 3-37
periodicity 3-33
pre-emptible 3-3
processor subsystem map A-13
pseudo-rate 3-32, 3-34
ready queue 3-7, 3-8, 3-22
running under simulation 3-11
sampling rate 3-8, 3-31
scheduler examples 3-22
scheduling 3-11

setting priorities

automatic

A-10

using the prio option A-11

skew 3-33
example 3-33
setting A-12
state 3-5
blocked 3-5, 3-8, 3-11
idle 3-5, 3-7, 3-10
running 3-10
task ID
NTASKS 3-9
timing diagram 3-13
timing overflow 3-7, 3-21

timing requirement 3-8, 3-31
3-2, 3-5

triggered

as state machines

output posting (SAF) 3-14

(ASAF or SAF)
triggered ANT

triggered ASAF
triggered asynchronous 3-14

SuperBlock

top-level 2-15

support

3-14

3-9

3-8

contacting by email xiv

contacting by phone xiv

filing a problem report xiv

sending files via FTP xv

system 2-2
SystemBuild
T

target processor

target-specific utilities

task 3-2
task priorities

1-3

1-5, 2-12, 2-14

A-10

2-9

3-15, 3-

Index

16

index-7

Index

Technical Support (see support) xiv
template 6-2
command parameters 2-7
programming language (see tpl) 6-2
2-7, 6-1
template files, how to access xii
1-5, 1-7
template programming language

tpl program

template program

(see tpl)
testing a model 1-5
te,ye extended time 2-12, 2-14
2-12, 2-13
timer interrupt handler 1-7

time vectors

timing
overflow 3-7, 3-21
requirement 3-8, 3-31

timing diagram 3-13
timing window 3-12
top-level SuperBlock 2-15
tpl 6-2
files
ada_intgr.tpl 5-3
ada_rt.tpl 5-3
c_intgr.tpl 5-3
c_sim.tpl 5-3
program 6-1
tpl programming language 2-7
tpldac option A-7
tplsrc option A-7
trigger 3-2
triggered as-soon-as-finished subsystems
3-8
triggered asynchronous 3-8
triggered asynchronous subsystems 3-14
triggered at-next-trigger subsystems 3-9
triggered at-timing-requirement
subsystems 3-8

triggered subsystems 3-2, 3-5

index-8

AutoCode User’s Guide

triggered subsystems as state machines
3-15, 3-16

triggered task subsystems 3-1
timing requirement 3-1
typecheck option A-7

U
ucB 1-7,6-4
ucbparams option A-7

user code

compiling 2-11, 2-13
UserCode Block 6-4

(see UCB)
utilities

target-specific 2-9

Vv

variable blocks 7-2
global 7-2
local 7-2

vars option A-7
vbcallout option A-8
vectorized code
variations 4-2
vectormode option A-8

X

Xmath
generating code from 2-2
variables 6-3

Symbols
Senv_var xiii, 2-5

%env_var% xiii, 2-5

Technical Support and Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

* Support—Online technical support resources include the following:

Self-Help Resources—For immediate answers and solutions,
visit our extensive library of technical support resources available
in English, Japanese, and Spanish at ni . com/support. These
resources are available for most products at no cost to registered
users and include software drivers and updates, a KnowledgeBase,
product manuals, step-by-step troubleshooting wizards,
conformity documentation, example code, tutorials and
application notes, instrument drivers, discussion forums,

a measurement glossary, and so on.

Assisted Support Options—Contact NI engineers and other
measurement and automation professionals by visiting
ni.com/support. Our online system helps you define your
question and connects you to the experts by phone, discussion
forum, or email.

* Training—Visit ni .com/training for self-paced tutorials, videos,
and interactive CDs. You also can register for instructor-led, hands-on
courses at locations around the world.

* System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni . com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni . com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

	AutoCode User’s Guide
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	Using This Manual
	Organization
	Conventions
	How to Access Integrated Systems-Supplied Files
	Environment Variables
	Related Publications
	Support

	Chapter 1 Introduction
	1.1 Rapid Prototyping Concept
	1.2 Automatic Code Generation Process
	1.3 Profile of the Generated Program
	1.4 AutoCode-Generated Reusable Procedures
	1.5 Using MATRIXX Help

	Chapter 2 Using AutoCode
	2.1 How to Generate Real-Time Code
	2.1.1 Generating Code from Within SystemBuild
	2.1.2 Generating Code from Xmath
	2.1.3 Generating Code from the Operating System
	2.1.4 Limitations/Restrictions

	2.2 Generating Non-Customized Code
	2.3 Generating Customized Code
	2.4 Applications of AutoCode-Generated Code
	2.4.1 Standalone Simulation
	Standalone Simulation for UNIX
	Standalone Simulation for Windows

	2.4.2 Simulation Options
	2.4.3 Rapid Prototyping
	2.4.4 Real-Time Simulation
	2.4.5 Implement Embedded Real-Time Control

	Chapter 3 Managing and Scheduling Applications
	3.1 Real-Time Application Scheduler
	3.1.1 Subsystems
	3.1.2 Flow of Control in the Generated Program

	3.2 Sequence of Scheduler Operations
	3.3 Properties of Scheduled Subsystems
	3.3.1 Free-Running Periodic Subsystems
	3.3.2 Enabled Periodic Subsystems
	3.3.3 Triggered Subsystems

	3.4 Properties of Asynchronous Subsystems
	3.4.1 Start-up Procedure
	3.4.2 Asynchronous Trigger Subsystems
	3.4.3 Interrupt Procedure
	3.4.4 Background Procedure

	3.5 Reentrancy and Preemption: The Dispatcher
	3.6 Scheduler Examples
	3.6.1 Dispatching and Pre-emption Example
	3.6.2 Pseudo-Rate Scheduler
	3.6.3 Operating with Skew

	3.7 Scheduler Errors
	3.7.1 Scheduler or Subsystem Overflow
	3.7.2 Examples Where Overflow is Irrelevant or Cannot Happen

	Chapter 4 Code Generation for Discrete Systems
	4.1 Introduction
	4.2 How to Generate Code for Discrete Systems
	4.3 Introduction to Vectorized Code
	4.4 Introduction to Optimized Code
	4.5 Introduction to Procedural Code
	4.6 Sample Generated Code
	4.6.1 Sample C Code
	4.6.2 Sample Ada Code

	Chapter 5 Code Generation for Continuous Systems
	5.1 Introduction
	5.2 Integrators
	5.3 Limitations
	5.4 How to Generate Code for Continuous or Hybrid Systems
	5.4.1 Generating Code for Continuous Systems from SystemBuild
	5.4.2 Xmath Command-Line Options for Continuous Code Generation
	5.4.3 OS Command-Line Options for Continuous Code Generation

	5.5 Sample Generated C Code
	5.6 Sample Generated Ada Code
	5.7 Hints

	Chapter 6 Customizing AutoCode and Generated Code
	6.1 Introduction
	6.2 AutoCode Configuration Options
	6.3 Templates
	6.4 BlockScript Block
	6.5 Data Parameterization
	6.6 UserCode Block
	6.7 Macro Procedure Block
	6.8 User-Defined Code Comments
	6.8.1 Using a User-Defined Code Comment
	6.8.2 Limitations

	Chapter 7 Introduction to Software Constructs with AutoCode
	7.1 Introduction
	7.2 Standard Procedure SuperBlocks
	7.3 Variable Blocks
	7.3.1 Global
	7.3.2 Local

	7.4 IfThenElse Block
	7.5 Iterator Block
	7.6 Explicit Block Sequencing
	7.7 Example Model

	Appendix A AutoCode Options
	A.1 Options When Invoking AutoCode
	A.2 Using the autostar.opt File
	A.3 Mapping Options
	A.3.1 Setting Subsystem Priorities
	A.3.2 Setting Subsystem Skews
	A.3.3 Setting Processor Subsystem Map
	A.3.4 Processor Map Specification on Command Line

	Index
	A-B
	C
	D-G
	H-M
	N-R
	S
	T
	U-Symbols

	Technical Support and Professional Services

