
MATRIXx TM

SystemBuild™ BlockScript
User Guide

SystemBuild BlockScript User Guide

April 2004 Edition
Part Number 370862A-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada (Calgary) 403 274 9391, Canada (Ottawa) 613 233 5949, Canada (Québec) 450 510 3055,
Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530, China 86 21 6555 7838,
Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 0 9 725 725 11,
France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427, India 91 80 51190000,
Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400,
Malaysia 603 9131 0918, Mexico 001 800 010 0793, Netherlands 31 0 348 433 466,
New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,
Russia 7 095 783 68 51, Singapore 65 6226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227,
Thailand 662 992 7519, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on the documentation, send email to techpubs@ni.com.

© 2000–2004 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
AutoCode™, MATRIXx™, National Instruments™, NI™, ni.com™, SystemBuild™, and Xmath™ are trademarks of National Instruments
Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Conventions

The following conventions are used in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

© National Instruments Corporation v SystemBuild BlockScript User Guide

Contents

Chapter 1
Introduction

SystemBuild Block Paradigm..1-2

Chapter 2
Using BlockScript in SystemBuild

BlockScript Program Structure in a BlockScript Block ..2-1
General Program Structure ..2-1

Variable Name Definitions ...2-2
Data Type Definitions ...2-2
Update Equations ..2-2
Simple Example ..2-2

Using BlockScript with Simulator and AutoCode Code Phases2-2
BlockScript Variables ..2-4

Block Variable Declarations..2-5
Data Types and Dimensions..2-7

Wildcard Dimensions and Dialog Imported Information2-9
Method for Implicit Data Typing..2-10
BlockScript Data Types and Code Generation2-11

Environment Variables..2-11

Chapter 3
BlockScript Language

Operators and Precedence..3-1
Assignment Statements and Expressions...3-3

Arithmetic Expressions ...3-3
Relational Expressions ..3-3
Logical Expressions...3-4
Range Expressions...3-4
Set Expressions..3-4

Looping and Decision-Making Constructs ..3-5
For Loop ..3-5
While Loop..3-5
If Clause...3-5
Select Clause ...3-6
Exit Statement ...3-7
Iterate Statement..3-7

Contents

SystemBuild BlockScript User Guide vi ni.com

Functions ... 3-8
var.rows, var.columns, var.size... 3-8
integer(a), float(a), and var.type(a) ... 3-8
abort(n).. 3-8
abs(a) ... 3-8
acos(a) and asin(a) .. 3-8
atan(a) and atan2(y,x) ... 3-9
bSet(a,b), bClear(a,b), bTest(a,b) and bToggle(a,b) 3-9
bitLshift(a,b) and bitRshift(a,b) .. 3-9
bitNot(a), bitOr(a,b) and bitAnd(a,b).. 3-9
bound(a,b,c) .. 3-9
exp(a) .. 3-9
log(a) and log10(a).. 3-10
max(a,b) and min(a,b) ... 3-10
mod(a,b) .. 3-10
quad(a, w, x, y, z).. 3-10
round(a), truncate(a), floor(a) and ceiling(a) .. 3-11
sign(a).. 3-11
sin(a), cos(a), and tan(a).. 3-12
sinh(a), cosh(a) and tanh(a)... 3-12
sqrt(a) .. 3-12
swap(a,b) ... 3-12
trg(a, x, y, z) .. 3-13
uRand(s,v), nRand(s,v), ouRand(s, ouLast, timeInterval, timeConst,v)......... 3-14

Chapter 4
BlockScript Examples

SystemBuild Model Usage .. 4-1
SystemBuild Examples ... 4-1
Bessel Equation BlockScript Block .. 4-1
Discrete PID Controller BlockScript Block.. 4-2
Three-Cycle Delay BlockScript Block ... 4-5
Linear Interpolation Algorithm BlockScript Block .. 4-6
Hysteresis BlockScript Block ... 4-7
Generating a Series of Pulses.. 4-8
Implementing a Pulse Width, Pulse Frequency Modulator 4-11
Debugging Tip .. 4-17
Converting BlockScript Blocks to UCBs for Faster Simulations 4-17

Contents

© National Instruments Corporation vii SystemBuild BlockScript User Guide

Appendix A
Technical Support and Professional Services

Index

© National Instruments Corporation 1-1 SystemBuild BlockScript User Guide

1
Introduction

BlockScript is a proprietary programming language owned by National
Instruments. You can use BlockScript in SystemBuild.

BlockScript provides a generalized programming capability for:

• Defining SystemBuild BlockScript blocks

A BlockScript program defines block inputs, outputs, and parameters,
specifies their data types and dimensions, and provides the update
equations that process the inputs and parameters to produce the
outputs. The BlockScript block extends the concepts used in the
AlgebraicExpression and LogicalExpression blocks provided by
SystemBuild.

• Conditions and actions in a BetterState chart

When you specify BlockScript for user code, BetterState can generate
either C or Ada code. Thus, you can change the output language
without having to change your statechart.

This document contains the following additional chapters:

• Chapter 2, Using BlockScript in SystemBuild, discusses the use of
BlockScript in SystemBuild.

• Chapter 3, BlockScript Language, provides the details of the language
that are independent of the application.

• Chapter 4, BlockScript Examples, provides a number of examples
using BlockScript.

Chapter 1 Introduction

SystemBuild BlockScript User Guide 1-2 ni.com

SystemBuild Block Paradigm
This section explains the SystemBuild BlockScript block paradigm, shown
in Figure 1-1, and shows how the structure of the BlockScript program
supports it.

Figure 1-1. BlockScript Block Paradigm

The block update equations are programmed to accept:

• Block inputs

• States (information from the previous cycle)

• Parameters (information from the block dialog)

• Environment information, such as time and certain universal and
platform-dependent constants

The block update equations produce two types of outputs:

• Block outputs

• State derivatives (continuous SuperBlock) or Next_States (discrete
SuperBlock)

© National Instruments Corporation 2-1 SystemBuild BlockScript User Guide

2
Using BlockScript in
SystemBuild

You can provide user code in the BlockScript language in the BlockScript
block, which is located on the User Programmed palette of the Palette
Browser. This chapter focuses on the following topics:

• BlockScript Program Structure in a BlockScript Block

• BlockScript Variables

Refer to Chapter 4, BlockScript Examples, for the language specification.

BlockScript Program Structure in a BlockScript Block
This section presents the general structure of a BlockScript program and
discusses the phases of the SystemBuild simulator and AutoCode generator
with respect to how you structure your BlockScript code.

General Program Structure
The general structure of a BlockScript program in a BlockScript block is as
follows:

Block variable names

Data type and dimensions definitions

Block output update equations

The three sections must be presented in the order shown. The sections are
defined by the formats of the statements in context, such that the first data
type and dimension definition marks the end of the block variable names,
and the first statement with the format of a block output update equation
marks the end of the data type and dimension definitions.

Chapter 2 Using BlockScript in SystemBuild

SystemBuild BlockScript User Guide 2-2 ni.com

Variable Name Definitions
The structure of a block variable name definition is:

Category: (Var1, Var2, …);

Categories are reserved words in BlockScript. A complete list of the
supported categories is shown in the Block Variable Declarations section.

Data Type Definitions
BlockScript supports three data types: Integer, Float, and Logical.
The format of a data type and dimension definition is:

Type Var (Dimension)

Block variables must receive a definition in this section. You also may
assign a data type and dimension definition to any local variables.

Update Equations
The format of block output update equation statements might be simple
code, or it might make use of pre-defined environment variables that define
program phases. Refer to the Using BlockScript with Simulator and
AutoCode Code Phases section.

Simple Example
In the following example, a simple addition block is programmed with two
input variables, A and B, and one output variable, C. Notice that the order of
the input list corresponds to the block input pin assignments for the block
defined with this code: A is the first input, and B is the second input.

Inputs: (A, B);

Outputs: C;

C = A + B;

Using BlockScript with Simulator and AutoCode Code Phases
The SystemBuild simulator, as well as the AutoCode generator, executes
the blocks in a subsystem in dataflow order for an output phase and then a
state phase. The output phase creates the block and subsystem outputs.
After this phase is complete, the blocks are again exercised in a state phase.
In this phase, all of the dynamic blocks or blocks with states are executed.
The blocks in the state phase do not have to be executed in any particular
order.

Chapter 2 Using BlockScript in SystemBuild

© National Instruments Corporation 2-3 SystemBuild BlockScript User Guide

This section shows you how to structure the phases of your program using
the environment variables. The specific language constructs appear later in
this document.

Use the environment variables OUTPUT and STATE in BlockScript to
identify the code for these two phases. They are defined in BlockScript as
Logical data type variables and are read-only user variables. For example:

inputs: U;

outputs: Y;

states: X;

derivatives: XDOT;

parameters: (A, B, C, D);

environment: (INIT, STATE, OUTPUT);

if OUTPUT then

Y = C*X + D*U;

endif;

if STATE then

XDOT = A*X + B*U;

endif;

Both the simulator and the code generator execute this code with either the
OUTPUT variable equal to TRUE or the STATE variable equal to TRUE; they
are never both TRUE at the same time. Therefore, you should not nest the
output and state clauses as shown.

if STATE then # Code that will NOT work

if OUTPUT then

…

endif;

endif;

If you have code to be executed for both the output and state phases, place
this code outside the if statements as shown:

PHI = U**2; # Common code segment

if OUTPUT then

Y = C*X + D*PHI;

endif;

if STATE then

XDOT = A*X + B*PHI

endif;

The statements are executed in the order that you provide in your
BlockScript code. In the output phase, the assignment statement for PHI

Chapter 2 Using BlockScript in SystemBuild

SystemBuild BlockScript User Guide 2-4 ni.com

is executed first, followed by the assignment to Y. In the state phase, the
assignment statement for PHI is executed, followed by the assignment
to XDOT.

INIT is another environment variable. It is a Logical data type variable
that is set to TRUE on the first execution of the block code and set to
FALSE on all subsequent executions. It is used to initialize variables that
cannot be initialized in the catalog data structures. The INIT variable does
not represent a separate phase as do the OUTPUT and STATE variables.
Instead, it is a Logical variable that is TRUE only on the first execution
of the block; it can be nested in if statements that use the OUTPUT and
STATE variables. For example:

parameters: (ALPHA, BETA);

if INIT then # Common INIT code section which gets

ALPHA = 2*U; # exercised in both OUTPUT and STATE phases

endif;

if OUTPUT then

if INIT then # INIT used to modify the initial state, X,

X = BETA*X + U; # with parameter BETA and the initial input, U.

endif;

Y = C*X + D*ALPHA;

endif;

if STATE then # INIT used in decision making logic in the

if INIT then # STATE phase. This X gets its value from

XDOT = A*X; # the ‘if INIT’ clause in the OUTPUT phase.

else

XDOT = A*X + B*ALPHA;

endif;

endif;

BlockScript Variables
BlockScript programs employ two kinds of variables:

• Block variables correspond to data flow and parameters in the block
dialog for the block being defined. These are the inputs and outputs of
the block update equations illustrated in Figure 1-1, BlockScript Block
Paradigm.

• Local variables take their data typing and meaning from the program
context in which they are defined.

Chapter 2 Using BlockScript in SystemBuild

© National Instruments Corporation 2-5 SystemBuild BlockScript User Guide

Note Local variables cannot be used to pass data between output and state program
phases. You have several choices: recompute the data, use a parameter to store the data,
use a state variable, or use a block output.

All the inputs and outputs in Figure 1-1, BlockScript Block Paradigm,
are defined using lists of block variables. Updating of the outputs and
derivatives is performed using the equations in the BlockScript program.
The design of the BlockScript program lets you choose variable names that
are descriptive in the context of the block equations.

Notice the following:

• Language operators, function names, and keywords are
case insensitive.

• Variable names are case sensitive.

• Environment variables must be fully capitalized.

Block Variable Declarations
Block variables are declared with the following list construct:

Category: (Var1, Var2, …);

• Category can be one of the predefined list category names in
Table 2-1.

• If there is only one variable in the list, parentheses are not required.
If there are no variables in the list, then the parentheses are required but
contain nothing.

• For all lists, order is significant. The first variable maps to the first
input/output/state, and the last variable maps to the last element.
Notice that SystemBuild redefines the number of Inputs, Outputs,
and States based on the number of these elements that you define in
the code.

You can dispense with the name list mechanism altogether if you are
willing to accept the default names for each category, as listed in Table 2-1.

Table 2-1. Default Variable Names

List Category Name
Default

Variable Name Definition

Inputs u A list of input variable names.

Outputs y A list of output variable names.

Chapter 2 Using BlockScript in SystemBuild

SystemBuild BlockScript User Guide 2-6 ni.com

For example, a simple signal generator might be coded as follows:

Inputs: ();

Outputs: y;

Parameters (Phi, Theta, Psi);

Environment: TIME;

y= Sin(TIME);

Note TIME is an environment variable defined in the Environment Variables section.

States (none) A list of state names.

Derivatives (none) A list of state derivatives.

This declaration is only valid for continuous
dynamic blocks. The dimension of this list must
agree with the dimension of the States list.

Next_States (none) A list of next-state variable names.

This declaration is only valid for discrete dynamic
blocks. The dimension of this list must agree with
the dimension of the States list.

Parameters (none) A list of parameter names.

This list implies order. If AutoCode maps the
variables into Rpar and Ipar vectors, mapping
duplicates the order in the Parameters list.

If a list of parameters is supplied, additional fields
are added to the block dialog in the order specified
in the Parameters list.

Environment Refer to the
Environment
Variables section.

The SystemBuild and AutoCode environment
provides predefined variables that can be imported
into the BlockScript code through this
Environment list. The variables in the
Environment Variables section are available
regardless of the environment (simulation or
generated code).

Table 2-1. Default Variable Names (Continued)

List Category Name
Default

Variable Name Definition

Chapter 2 Using BlockScript in SystemBuild

© National Instruments Corporation 2-7 SystemBuild BlockScript User Guide

You can enter hard default values for these parameters in the dialog. Also,
you can provide a %variable name for each parameter. The maximum
number of parameterized variables for a BlockScript block is 10.

Data Types and Dimensions
BlockScript supports three data types: Float, Integer, and Logical.
Data typing is performed according to the rules in Table 2-2.

If you do not explicitly assign a data type to a local variable, then it is
defined as a scalar variable whose data type agrees in context with the first
statement that defines it in the BlockScript code.

Parameters and local variables can be scalars, vectors, or matrices. Inputs,
Outputs, and States can use names that are scalars or vectors. For vector
variables, you can use var.size to obtain its current dimension. For
matrix variables, you can use the variables var.rows and var.columns
to obtain a dimension.

var.size has special meanings for different variable shapes. For scalars,
it is 1; for vectors, it is the dimension specified (wildcarded or not); and for
matrices, it is the product of the two specified dimensions.

Consider Example 2-1, which defines a nonlinear Breakpoints block.

Table 2-2. Data Typing Rules

Category Default Type
OK to assign data type

to variable?

Inputs Float Yes

Outputs Float Yes

States Float Yes

Derivatives Float Yes; type must agree with States

Next_States Float Yes; type must agree with States

Parameters user-defined Yes, required

Environment predefined No

Chapter 2 Using BlockScript in SystemBuild

SystemBuild BlockScript User Guide 2-8 ni.com

Example 2-1 BlockScript for Nonlinear Breakpoints Block

Inputs: U;

Outputs: Y;

Parameters: (UBrk, YBrk);

Float U, Y(:);

Float UBrk(:), YBrk(Y.size,:);

J = 1;

K = UBrk.size;

Uval = U;

While J < K-1 Do

 M = (J + K)/2;

 If Uval < UBrk(M) Then

 K = M;

 Else

 J = M;

 EndIf;

EndWhile;

Alpha = (Uval - UBrk(J)) / (UBrk(K)- UBrk(J));

For I = 1:Y.size Do

 Y(I) = (1.0-Alpha)*YBrk(I,J) + Alpha*YBrk(I,K);

EndFor;

• The input, U, is a scalar.

• The output, Y, is a vector that has a wildcard dimension (the colon
operator); refer to the Wildcard Dimensions and Dialog Imported
Information section. Its dimension is imported from the Outputs field
in the block dialog. The breakpoints are specified as parameters with
two variables, UBrk and YBrk. Parameters also can be given wildcard
characters for their dimensions, so that they can be determined from
user inputs in the block dialog.

• Variable size can be used as a dimension in any other variable
dimension except Environment, because environment variables have
predefined sizes. Notice the use of the compile time variable Y.size
to obtain the current dimension of a vector variable in Example 2-1.

Chapter 2 Using BlockScript in SystemBuild

© National Instruments Corporation 2-9 SystemBuild BlockScript User Guide

Wildcard Dimensions and Dialog Imported
Information
The colon (:) wildcard character can be used for any parameter dimension.
This is possible because the dimensions are not constrained in the block
dialog. For example:

Parameters: (F,G,H);

Float F(:), G(:,:), H(:,:);

You also can use the colon wildcard character for dimensioning Inputs,
Outputs, States, Derivatives, and Next_States.

You can use a colon wildcard with a signal name only if there is just one
name in the list because the block dialog provides only the total number of
signal values and does not accommodate a list of names.

Inputs: U;

Float U(:);

Any variable’s total size, (var.size), number of rows, (var.rows), or
number of columns, (var.columns), can be used as a dimension for any
other variable, excluding itself. The size of a variable can be used before
the size and data type are defined. For example,

Inputs: U;

Float WorkSpace(U.size, Pivot.size);

Float U(:), Pivot(5);

This constrains the specified dimension to follow the dimension of var.
Any constrained dimension, either hardcoded or described by var.size,
is not free—that is, it cannot be changed in the block dialog.

You can change dimensions that are specified with the wildcard character
later from the BlockScript block dialog. If you decrease the dimension,
information referenced outside that dimension is discarded. If you increase
the dimension, the last value of the vector is repeated to extend the vector.
If you extend a matrix, the extended area is filled with zeros.

You can use the variables, var.size, var.rows, var.columns, as well
as a generic casting function, var.type(), in the code.

For I = 1:A.rows Do

 For J = 1:A.columns Do

 Y(I) = Y.type(A(I,J)*U(J));

 EndFor;

EndFor;

Chapter 2 Using BlockScript in SystemBuild

SystemBuild BlockScript User Guide 2-10 ni.com

Method for Implicit Data Typing
Not all data types must be explicitly specified. In Example 2-1, the variable
J is an Integer because it is assigned the integer literal 1. The decimal
point and/or E in scientific notation are used to specify float literals. K is
also an Integer because UBrk.size returns an integer value. M is an
Integer because (J + K)/2 evaluates to an integer. Uval and Alpha are
float variables because they are evaluated with float expressions. I is an
Integer because 1:Y.size is an integer range expression. It is possible
to code floating point For loop ranges such as
For Angle = –Pi : Pi/10.0 : Pi Do.

Mixing data types within an expression results in a promotion of the
intermediate computation. The promotion consists of converting the integer
computation to a float computation, which results in a Float data type.
The Float data type is then propagated through the outer expressions.
Consider the following equation:

Integer I, J, K;

I = (J + K)*3.14 + 255 / (L + M);

Both (J + K) and 255/(L + M) are evaluated as integer expressions.
Furthermore since integer division causes truncation towards zero,
255/(L + M) contains that truncated value. Next, multiplication by
3.14 makes (J + K) * 3.14 a float. When added to the integer expression
255/(L + M), the resulting right-hand side (RHS) of the equation becomes
a float expression. Since I is an integer, the RHS float expression is again
truncated towards zero before storing the result in variable I. The only
difference between integer and float expressions is the implied truncation
towards zero when dividing two integers or when assigning a float
expression to an Integer variable. Mixing arithmetic with the explicit
casting functions Integer() and Float() is preferred.

Although Logical is a special form of the Integer data type, and the
C language treats them the same in its syntax, other languages, such as Ada
and Java, do not. In this regard, BlockScript was designed to deal with
Logical variables the way Boolean variables are treated in Ada and Java.
Therefore, you must declare and use Logical variables when they are
intended to hold logical results. Refer to Example 2-2.

Chapter 2 Using BlockScript in SystemBuild

© National Instruments Corporation 2-11 SystemBuild BlockScript User Guide

Example 2-2 Declaring Logical Variables

Logical Negative, InRange, OK;

Negative = A < 0.0;

InRange= A > B & A < C;

OK = InRange & ! Negative;

If OK Then

…

EndIf;

BlockScript Data Types and Code Generation
In most situations, if the Typecheck checkbox (SystemBuild Simulation
Parameters dialog) is disabled, all signals are forced to be Float. The
BlockScript block is an exception. The Typecheck option does not affect
how the BlockScript block is simulated or how code is generated for it.
Therefore, if you plan to use a BlockScript block in a model in which you
are not enabling the Typecheck checkbox, make your inputs and outputs
Float to be compatible with other signals in your model.

Environment Variables
Environment variable names must be all upper case. They are read-only
values. In particular, two of these values—OUTPUT and STATE—are
controlled by SystemBuild to identify program phases. Refer to the Using
BlockScript with Simulator and AutoCode Code Phases section. INIT is set
to TRUE by SystemBuild the first time BlockScript is called during
simulation or code generation.

ABSTOL
ABSTOL is the absolute tolerance specified in the sim({abstol=value})
function call. It is a floating point value.

EPSILON
EPSILON is the smallest floating point value that can be added to unity and
change its value. This value is machine dependent.

INIT
INIT, a Logical variable, is set to TRUE the first time the BlockScript
program is called during simulation or code generation. It is set to FALSE
at all other times. Refer to the Using BlockScript with Simulator and
AutoCode Code Phases section.

Chapter 2 Using BlockScript in SystemBuild

SystemBuild BlockScript User Guide 2-12 ni.com

OUTPUT
OUTPUT, a Logical variable, is set to TRUE to request the BlockScript
program to perform output update computations.

PI
PI (3.14159…) is the circumference of a circle divided by its diameter.

RELTOL
RELTOL, a Float variable, is the relative tolerance specified in the
sim(…,{reltol=value}) function call.

STATE
STATE, a Logical variable, is set to TRUE to request the BlockScript
program to perform state update computations.

TIME
TIME is the current value for time. It is a floating point scalar.

TSAMP
TSAMP is a floating point value that is the sample period of the parent
discrete SuperBlock. If the parent is a triggered SuperBlock, TSAMP is
defined to be 1.0.

TSTART
TSTART is set to zero for the initial sim() call. It is set to the final time
from the previous sim() call when you resume a simulation.

© National Instruments Corporation 3-1 SystemBuild BlockScript User Guide

3
BlockScript Language

This chapter describes the BlockScript language. You can use the
information found in this chapter for a SystemBuild BlockScript block.

The major topics in the chapter are as follows:

• Operators and Precedence

• Assignment Statements and Expressions

• Looping and Decision-Making Constructs

• Functions

Operators and Precedence
BlockScript’s precedence of operators is similar to those in the C language
with the following differences:

• In C, the Logical data type is an integer, and therefore logical
operators combine integer values. In BlockScript, logical and integer
data are different.

• BlockScript makes a distinction between numeric equivalence, ==, and
logical equivalence, ~, but places them next to each other in the table
to provide the same precedence as in C.

• C puts the precedence for bitwise XOR, ^, between AND and OR. XOR
also is NEQV, !~; BlockScript places it with EQV, ~.

Table 3-1 illustrates the BlockScript operators and precedence.

Chapter 3 BlockScript Language

SystemBuild BlockScript User Guide 3-2 ni.com

Note BlockScript has a set of standard operators, such as +, *, <, and also a set of alias
operator names that you can use if you prefer or if your keyboard does not contain all the
standard symbols.

Table 3-1. Operator Precedence

Operator
Type Operators

Operator Names
and Meanings

Alias
Operator Associativity Precedence

Primary (), Subexpressions, functions, arrays — Left to right Highest

Lowest

Power ^ or ** Power — Right to left

Multiplicative *
/

Multiply
Divide

— Left to right

Unary +
-
!

Unary plus
Unary minus
Not, Complement

— Right to left

Additive +
-

Plus
Minus

— Left to right

Shift <<
>>

Shift left
Shift right

LSHIFT
RSHIFT

Left to right

Range : Define range — Right to left

Relational <
<=
>
>=
<>
==

Less than
Less than or equal
Greater than
Greater than or equal
Not equal
Equal

LT
LE
GT
GE
NE
EQ

Left to right

Logical
equivalence

~
!~

Equivalence, Eqv, nXOR
Not Equiv, Neqv, XOR

EQV,
NXOR
NEQV,
XOR

Left to right

Logical AND &
!&

AND, Intersection
NAND

AND
NAND

Left to right

Logical OR |
!|

OR, Union
NOR

OR
NOR

Left to right

Assignment = Variable assignment — Right to left

Chapter 3 BlockScript Language

© National Instruments Corporation 3-3 SystemBuild BlockScript User Guide

Assignment Statements and Expressions
You can assign a value to a variable using an expression to the right of the
assignment operator. By default, all block variables are floating point scalar
data. If you do not explicitly assign a data type to a local variable, then the
local variable is automatically assigned the data type of the right-side
expression that first defines it within its function body. After the data type
is assigned, you can assign integer variables to floating point expressions
and vice versa. You can only assign relational or logical expressions to
logical variables. There are five kinds of expressions: arithmetic, relational,
logical, range, and set.

Arithmetic Expressions
Arithmetic expressions typically use only arithmetic operators (**, *, /,
+, –). The bitwise operators, which only take integer expressions for their
operands, use the same symbols and their precedence as the logical
operators. The results are arithmetic.

For example,

a = 5;

b = 6;

x = a & b;

y = a + b;

The value of x is 4. The value of y is 11.

Relational Expressions
Relational expressions compare two arithmetic expressions to form a
logical result. Relational expressions use the following operators:

< <= > >= <> ==

Chapter 3 BlockScript Language

SystemBuild BlockScript User Guide 3-4 ni.com

Logical Expressions
Logical expressions combine logical expressions and/or relational
expressions with logical operators to produce logical results. Logical
operators are as follows:

Range Expressions
Range expressions combine arithmetic values or expressions with the
define range operator (:) to specify a set of values. A range expression is
defined as follows:

Range := Start : Increment : End

If the increment is omitted, then its value is 1. Ranges may be either integer
or floating point.

Set Expressions
Set expressions combine range expressions with the union operator (|) to
define sets of values. If ranges are used with the Float data type, sets are
composed with a discrete number of continuous regions of values.

The syntax for a Set expression is shown below:

Set := Region | Region | Region | …

Region := { Range | Value }

The vertical bar enclosed in braces in the syntax represents a choice
between the enclosed identifiers. The vertical bar used in the set expression
is the union operator (|) and is required in the syntax. The intersection
operator (&) and parentheses () are not used in set expressions. All
identifiers in a set expression must be the same data type. The set
expressions are used in the Select clause.

primary: ()

unary: !

logical EQV: ~ !~

logical AND: & !&

logical OR: | !|

Chapter 3 BlockScript Language

© National Instruments Corporation 3-5 SystemBuild BlockScript User Guide

Looping and Decision-Making Constructs
BlockScript provides four constructs for looping and decision making:
For, While, If, and Select. The Iterate and Exit statements, which
are described at the end of this section, support these constructs.

For Loop
You can use the For loop when the body of the loop should be executed a
known number of times. The loop counter is a range expression. Its values
can be either integer or floating point but should be consistent. The
following is the syntax of the For loop.

For LoopVar = LoopRange Do

 LoopBody;

EndFor;

The LoopBody is any number of BlockScript statements. The LoopRange
is in either of the following two formats:

Start : End

Start : Increment : End

The default Increment is 1.

While Loop
The While loop is used when the loop body should be executed until some
condition is met. The following is the syntax of the While loop.

While LogicCondition Do

 LoopBody;

EndWhile;

LoopBody is any number of BlockScript statements. The
LogicCondition is any valid scalar logical expression.

Note The LogicCondition may use any number of previously defined variables.
However, in BlockScript, all input variables used in the loop body must be scalars or
subscripted with literals.

If Clause
The If clause is used to conditionally execute one of several bodies of code
depending on a TRUE evaluation of its condition. The following is the
syntax of the If clause.

Chapter 3 BlockScript Language

SystemBuild BlockScript User Guide 3-6 ni.com

If LogicCondition Then

 ConditionBody;

ElseIf LogicCondition Then

 ConditionBody;

Else

 ConditionBody;

EndIf;

There may be any number of ElseIf clauses. ConditionBody can
consist of any number of BlockScript statements. LogicCondition is any
valid scalar logical expression. It may use any number of previously
defined variables. You can omit both the ElseIf and Else clauses.

Select Clause
The Select clause is used to conditionally execute one or more bodies
of code depending on a variable whose value matches the values in the
corresponding sets specified with Case statements.

Note The Select clause must contain at least one Case statement. The optional
Otherwise case is executed only if no cases match. The Otherwise case can be omitted.

Following is the syntax for the Select clause.

Select ChoiceVar ClauseForm

Case ConstSet

 CaseBody;

Case ConstSet

 CaseBody;

Otherwise

 CaseBody;

EndSelect;

where:

ChoiceVar is any integer or floating point variable previously defined.

ClauseForm is either OneOf or AllOf.

• The OneOf keyword instructs BlockScript to execute only the first
Case that matches.

• The AllOf keyword allows BlockScript to execute all cases that
match.

CaseBody is any number of BlockScript statements to be executed for this
case.

Chapter 3 BlockScript Language

© National Instruments Corporation 3-7 SystemBuild BlockScript User Guide

Note At the end of each CaseBody, there is an automatic break to the next Case that
matches (if ClauseForm is AllOf) or EndSelect (if ClauseForm is OneOf or
Otherwise is being executed).

ConstSet is a set of values specified by scalar constant values and constant
ranges.

A vertical bar (|) represents a choice between one or more identifiers. In
the case of ConstSet, it functions as the union operator.

• The data types for all ConstSets must agree within the set and must
be the same type as ChoiceVar.

• If the ChoiceVar is type float, you cannot use a range. For example
1.0:3.0 is not accepted. To achieve the same thing, specify 1.0|2.0|3.0.

The ConstSet syntax that follows is recursive such that subsets within
ConstSet can be ranges or values specified as floating points or integers,
if appropriate.

ConstSet Subset | Subset | Subset …

Subset Range | Value

Range StartValue : EndValue

Value IntegerValue | FloatValue

Exit Statement
The Exit statement is used to break out of loops. Execution resumes just
after the matching End keyword.

Note Unlike the C language’s break statement, Exit cannot be used to break out of Case
statements.

Iterate Statement
Use the Iterate statement to invoke the next iteration of the
corresponding current For or While loop. Execution resumes where the
loop variable is incremented in For loops or where the logical condition is
tested in While loops.

Chapter 3 BlockScript Language

SystemBuild BlockScript User Guide 3-8 ni.com

Functions
This section describes all intrinsic BlockScript functions.

var.rows, var.columns, var.size
These functions return the size of a variable. Use var.rows and
var.columns for matrix variables and var.size() for vectors. In the
matrix case, var.size returns the product of row and column size. These
functions return integer values.

integer(a), float(a), and var.type(a)
These functions provide explicit casting operations for converting Float
to Integer and vice versa. The integer() casting function truncates
the value towards zero as is the case for Fortran, C, and Ada.
var.type() is a general casting function that produces a resulting data
type that agrees with var. If the var data type is Integer, then integer
truncation occurs.

abort(n)
abort() is a void function. Its output cannot be assigned to a variable,
but it can be used as a procedure call. It must be passed an integer literal
value that encodes a severity level and a message index. Its purpose is to
stop or raise an exception during the simulation or running of generated
code. The values for the integer are the same error message variables as
those defined for UserCode blocks. These are negative values. Refer to the
SystemBuild User Guide for details.

abs(a)
This function takes the absolute value of its argument. The resultant data
type is the same as that of the argument.

acos(a) and asin(a)
acos() and asin() return the arc cosine and arc sine, respectively,
of the argument. The argument must be floating point. If the argument is
larger than 1 or less than –1, a run-time error occurs. acos() returns a
floating point value in the range 0 to π. asin() returns a floating point
value in the range –π/2 to π/2.

Chapter 3 BlockScript Language

© National Instruments Corporation 3-9 SystemBuild BlockScript User Guide

atan(a) and atan2(y,x)
Both of these functions return the arc tangent of their input argument(s).
atan() returns a floating point value in the range –π/2 to π/2.
atan2(y,x) returns the arc tangent of (y/x), which is a floating point value
in the range of –π to π depending upon which quadrant (x,y) maps in the
Cartesian coordinate frame. If atan2() is passed two zero values,
a run-time error occurs.

bSet(a,b), bClear(a,b), bTest(a,b) and bToggle(a,b)
These functions set, clear, test, or toggle bit b in integer word a. The bit
position, b, is 0 for the low-order bit. bTest() returns a Logical result.

bitLshift(a,b) and bitRshift(a,b)
bitLshift(a,b) shifts integer word a left b bits whereas
bitRshift(a,b) shifts integer word a right b bits. The output type
is Integer.

bitNot(a), bitOr(a,b) and bitAnd(a,b)
bitNot() performs a bitwise complement of integer word a. bitOr()
and bitAnd() perform bitwise AND and OR operations, respectively,
for their input arguments. The output type is Integer.

bound(a,b,c)
bound() returns:

b, if a is less than b
c, if a is greater than c
a, otherwise

The arguments must be all floating point or all integer. The returned value
is the same data type as the arguments to bound().

exp(a)
exp() returns the value e raised to the power a, where e is the natural
number (2.7183…). a must be floating point, and the returned value is
floating point.

Chapter 3 BlockScript Language

SystemBuild BlockScript User Guide 3-10 ni.com

log(a) and log10(a)
log() returns the base e logarithm of its input argument whereas
log10() returns the base 10 logarithm. Both functions require a floating
point input argument and produce a floating point result. If the input is
negative, a run-time error occurs.

max(a,b) and min(a,b)
max() returns the larger of the two arguments whereas min() returns
the smaller of the two. Both arguments must agree in data type. The
returned value has the same data type.

mod(a,b)
This function takes two arguments. It performs the operation:

a – b*integer(a/b)

Both a and b must be the same data type. The resultant data type is the same
as that of its arguments.

quad(a, w, x, y, z)
quad() accepts floating point arguments and returns a floating point
result. The function is evaluated as follows.

If a is Then the function evaluates to

In the interval [x,y] 1.0

Less than or equal to w OR
greater than or equal to z

0.0

In the interval (w,x) An interpolated value between
0.0 and 1.0

In the interval (y,z) An interpolated value between
1.0 and 0.0

Chapter 3 BlockScript Language

© National Instruments Corporation 3-11 SystemBuild BlockScript User Guide

The values w, x, y, and z must be increasing. Notice that w may be equal to
x and/or y may be equal to z. Figure 3-1 shows these results graphically.

Figure 3-1. Graphical Evaluation of quad()

round(a), truncate(a), floor(a) and ceiling(a)
These functions accept a floating point input and produce a floating point
output whose value is equal to an integer:

round() Nearest integer

truncate() Nearest integer in a direction towards zero

floor() Nearest integer whose value is less than or equal to a

ceiling() Nearest integer whose value is greater than or equal to a

sign(a)
sign() computes the signum function of its input. It is defined as
follows and shown graphically in Figure 3-2.

If a is Then the function evaluates to

< 0 –1

== 0 0

> 0 +1

Chapter 3 BlockScript Language

SystemBuild BlockScript User Guide 3-12 ni.com

The resulting data type is the same as that of its argument.

Figure 3-2. Graphical Evaluation of sign()

sin(a), cos(a), and tan(a)
sin() computes the sine of its input whereas cos() computes the
cosine of its input. Both functions require a floating point input and return
a floating point result in the range of –1 to 1. tan(a) computes the tangent
of a. If a is a multiple of π, tan() overflows; SystemBuild does not trap
IEEE floating point NaN (not a number) or Inf (infinity). The output of
tan() is floating point.

sinh(a), cosh(a) and tanh(a)
These functions compute the respective hyperbolic functions. sinh()
returns a floating point value. cosh() returns a value that is greater than
or equal to unity. tanh() returns a value greater than –1 and less than +1.

sqrt(a)
This function returns the square root of its input argument. A run-time error
occurs if the input argument is negative. Both the argument and the
returned value are floating point.

swap(a,b)
This function swaps the values referenced by a and b. a and b must be
simple variable name references and can both be either floating point or
integer.

Chapter 3 BlockScript Language

© National Instruments Corporation 3-13 SystemBuild BlockScript User Guide

trg(a, x, y, z)
trg accepts floating point arguments and returns a floating point result.
The function is evaluated as follows:

The values x, y, and z, must be increasing. Notice that x may be equal to y
and/or y may be equal to z. Figure 3-3 shows a graphical representation.

Figure 3-3. Graphical Evaluation of trg()

If a is Then the function evaluates to

== y 1.0

Less than or equal to x OR
greater than or equal to z

0.0

In the interval (x,y) An interpolated value between 0.0
and 1.0

In the interval (y,z) An interpolated value between 1.0
and 0.0

Chapter 3 BlockScript Language

SystemBuild BlockScript User Guide 3-14 ni.com

uRand(s,v), nRand(s,v), ouRand(s, ouLast, timeInterval, timeConst,v)
These functions generate random numbers. The first argument, s, is an
integer seed. The seed must be declared as a parameter (not a literal), so it
can be changed by the function.

• uRand() is a uniform random number generator that returns a
floating point value in the range of 0.0 to 1.0 in the v argument.

• nRand() is a normal random number generator that returns a floating
point value in the v argument. v is a Gaussian value that has zero mean
and unit variance.

• ouRand() implements the Ornstein-Uhlenbeck process for
generating band-limited white noise. It is correlated with past history
given the floating point values ouLast, timeInterval, and
timeConst. The timeInterval should be the delta time between
the current and previous function call. ouLast is the last value
returned from the previous function call. The random value is returned
in the v argument.

© National Instruments Corporation 4-1 SystemBuild BlockScript User Guide

4
BlockScript Examples

This chapter includes examples using BlockScript in both SystemBuild and
BetterState. The SystemBuild Model Usage section provides models for
SystemBuild alone. The Generating a Series of Pulses section provides a
model that includes BlockScript usage in both SystemBuild and
BetterState.

SystemBuild Model Usage
This section provides examples and usability tips. The major topics are:

• SystemBuild Examples

• Debugging Tip

• Converting BlockScript Blocks to UCBs for Faster Simulations

SystemBuild Examples
The following sections contain examples that demonstrate BlockScript
capabilities. The first two examples show how an equation can be
expressed as BlockScript and included in a model. The remaining examples
are scripts that demonstrate BlockScript solutions for a variety of problems.

Bessel Equation BlockScript Block
This example uses a BlockScript block to model and solve a nonlinear
differential equation, also known as a Bessel equation of order zero:

y″ 1
u
---+ y′ y+ 0=

Chapter 4 BlockScript Examples

SystemBuild BlockScript User Guide 4-2 ni.com

To use the equation in BlockScript, it must be transformed to state-space
representation:

(4-1)

To simulate and plot the Bessel equation BlockScript block example,
complete the following steps:

1. Load the catalog file from the Xmath command area:

load file="$SYSBLD/examples/blockscript_example/blkscript_ex1.cat"

2. From the Catalog Browser, double-click BlockScript_Example1.

The BlockScript block Bessel_eq_BScript displays the script used to
implement the Bessel equation.

3. In Xmath, enter the time and input vectors:

t = [0:.1:10]'; u = ones(t);

4. Open the Bessel_eq_BScript BlockScript Block dialog box. Click the
Code tab, and examine the source code for the block. Notice the
parameters, x1_init and x2_init.

5. Click the Parameters tab, and scroll through the parameters. Notice
the parameters, x1_init and x2_init, on this tab. Also notice the
%variable names assigned to them.

You can assign different values to these parameters using the
%variable names in Xmath.

6. From the Xmath command area, simulate the model and plot the
results:

[,y] = sim("BlockScript_Example1", t, u, {vars});

plot(t, y, {title = "Solution of Bessel eq. order = 0",

x_lab = "time [s]"})?

Discrete PID Controller BlockScript Block
This example illustrates the BlockScript implementation of a discrete
PID controller. This controller is available as a standard block; however,
it also can be modeled successfully using the BlockScript block. In some
instances, you may want a PID controller with dynamically scheduled
gains that can be adjusted during actual simulation. The BlockScript
implementation is a good solution in this case.

x·1 x2=

x·2 x1–
1
u
---x2–=

y x1=

Chapter 4 BlockScript Examples

© National Instruments Corporation 4-3 SystemBuild BlockScript User Guide

To keep the example simple, you do not modify the gains; however, the
BlockScript implementation of the PID controller presented is ready to be
used with dynamically adjusted gains.

This example uses the following equations for the proportional, integral,
and derivative components. The equations are represented in the z domain:

proportional component

integral component (Forward Euler
Integrator)

derivative component

The output is:

The state-space representation of the above dynamic system is:

the integral state

the derivative state

where:

TS is the sample period for the discrete PID controller

Kp is the proportional component gain

Ki is the integral component gain

Kd is the derivative component gain

yp Kp u=

yi
KiTs

z 1–
----------- 
  u=

yd
Kd z 1–()

Ts z
---------------------- 
  u=

y yp yi yd+ +=

x1 k 1+[] x1 k[] Tsu+=

x2 k 1+[] u k[]=

y k[] Kpu k[] Kix1 k[]
Kd u k[] x2 k[]–()

Ts
---+ +=

Chapter 4 BlockScript Examples

SystemBuild BlockScript User Guide 4-4 ni.com

To simulate and plot the discrete PID controller BlockScript block
example, complete the following steps:

1. Load the Catalog file from the Xmath command area:

load file = "$SYSBLD/examples/blockscript_example/blkscript_ex1.cat"

2. From the Catalog Browser, double-click BlockScript_Example2.

The BlockScript block PID_Ctrl_BScript contains the script for the
PID controller.

3. In Xmath, enter the time and input vectors:

t = [0:.001:.04]'; u = ones(t);

4. In the diagram, notice that the outputs of the PID_params
AlgebraicExpression block are the inputs for the PID_Ctrl_BScript
block. On the Parameters tab of the PID_params
AlgebraicExpression block, notice that these parameters have the
%variable name pid_gains.

You can input the values that are in the dialog box through Xmath by
typing the following statements:

kp = 2; #-- Proportional component gain

ki = 100; #-- Integral component gain

kd = 0.002; #-- Derivative component gain

pid_gains = [kp, ki, kd];

You can change these values the same way.

5. Open the PID_Ctrl_BScript BlockScript block. On the Parameters
tab, notice the %variables by which you can enter initial values.

You can input the values that in the dialog box through Xmath by
typing the following statements:

ts = 0.001 #-- Sample period for the discrete PID controller[s]

x0_1 = 0; #-- Initial value for integral state #1

x0_2 = 0; #-- Initial value for derivative state #2

You can change these values the same way.

6. From the Xmath command area, simulate the model and plot the
results:

[, y] = sim("BlockScript_Example2", t, u, {vars});

plot(t, y, {marker, x_lab = "time [s]",

title = "Cl. Loop step resp. (PID controller -> Motor)" })?

Chapter 4 BlockScript Examples

© National Instruments Corporation 4-5 SystemBuild BlockScript User Guide

Three-Cycle Delay BlockScript Block
Example 4-1 implements a three-cycle delay block. The standard
delay block implementation in SystemBuild uses states and next
states/derivatives. Although the SystemBuild implementation is a complete
solution, it may be expensive for simple needs. Here you use a BlockScript
block to develop a custom algorithm that is highly efficient.

Example 4-1 Three-Cycle Delay

inputs: u;

outputs: y;

parameters: (DelayBuffer, Index);

float u(y.size), y(:);

y.type DelayBuffer(y.size, 3);

integer Index;

for i = 1:y.size do

 y(i) = DelayBuffer(i, Index);

 DelayBuffer(i, Index) = u(i);

endfor;

Index = 1 + Mod(Index, 3);

The parameter DelayBuffer is used for holding the input value and is
copied into the output variable when it is appropriate to do so. This buffer
is two-dimensional with the number of rows equal to the number of outputs
and number of columns equal to the number of delay stages, three in this
example. Actual delay is accomplished by treating this buffer as a circular
buffer and moving the read/write index in a circular fashion.

The parameter Index is used to record the circular indexing details. This
example also illustrates the use of parameters for remembering values from
one cycle to another. Using states for such a simple application would be a
burden because states are double-buffered.

DelayBuffer is initialized to an initial value specified on the BlockScript
block parameters tab. Similarly, the parameter Index also can be initialized
to an appropriate value.

Chapter 4 BlockScript Examples

SystemBuild BlockScript User Guide 4-6 ni.com

Linear Interpolation Algorithm BlockScript Block
Example 4-2 implements a simple linear interpolation algorithm. In the
SystemBuild implementation of linear interpolation, the interpolation
tables are parameters to the block. Circumstances can represent a need to
interpolate among input values—that is, the interpolation tables can be
dynamic. This can be efficiently implemented in BlockScript using the
input variable to represent both the actual input and the interpolation table.

Example 4-2 Interpolating Among Input Values

inputs: u;

outputs: y;

parameters: (Gain);

float u(:), ulocal(u.size-1), y;

integer index, length;

float slope;

for i = 1:u.size-1 do

 ulocal(i) = u(1+i);

endfor;

length = (u.size - 1) / 2;

found = false;

index = 0;

while (!found) do

 if (u(1) < ulocal(index+1)) then

 found = true;

 else

 index = index + 1;

 endif;

 if (index == length) then

 found = true;

 endif;

endwhile;

if (index == 0) then

 yout = ulocal(length+1);

elseif (index == length) then

 yout = ulocal(length*2);

else

 slope = (ulocal(index+length+1) -

ulocal(index+length)) /

 (ulocal(index+1) - ulocal(index));

Chapter 4 BlockScript Examples

© National Instruments Corporation 4-7 SystemBuild BlockScript User Guide

 y = ulocal(index+length) + slope * (u(1) -

ulocal(index));

endif;

The first occurrence of the input vector u represents the actual input,
whereas the remaining occurrences represent the interpolation input and
output tables. The input and output tables are the same size. The input
variable u is copied into a local variable ulocal because only local
variables can be indexed with a while loop. Based on these tables, slope
is calculated; slope is used along with the actual input value to determine
the output value.

Hysteresis BlockScript Block
Consider the following BlockScript script for the Hysteresis (Backlash)
block for continuous SuperBlocks in SystemBuild. To write this file to your
current working directory, enter the following in the Xmath command area:

copyfile "$SYSBLD/examples/blockscript_example/hysteresis.txt"

Notice that all vector sizes are inherited from the Outputs field in the
dialog box. This means that dimension changes in the Inputs and States
fields are ignored. Likewise, the sizes for the parameters are fixed to match
the Outputs dimension. In the script, omega is the cutoff frequency from the
block dialog box. Notice that this program uses estate and halfw, two
local variables that are defined when they are first used.

Example 4-3 Hysteresis Script

inputs: u;

outputs: y;

states: x;

Derivatives: xdot;

parameters: (omega, width, slope);

float y(:), u(y.size), x(y.size),

xdot(y.size);

float omega(y.size),

width(y.size), slope(y.size);

for i = 1:y.size do

 y(i)=slope(i)*x(i);

 halfw=width(i)/2.0;

 estate = u(i)-x(i);

 if estate>halfw then

 xdot(i) = omega(i)*(estate

 - halfw);

Chapter 4 BlockScript Examples

SystemBuild BlockScript User Guide 4-8 ni.com

 elseif estate < -halfw then

 xdot(i) = omega(i)*(estate

 + halfw);

 else

 xdot(i) = 0.0;

 endif;

endfor;

Generating a Series of Pulses
series_of_pulses is an example that uses a State Transition Diagram
that interfaces with a SystemBuild block diagram. The block diagram has
two BlockScript blocks whereas the statechart uses BlockScript for the
conditions and actions.

You can find the actual model in the SystemBuild examples directory.
To load and run the model, type the following command in the Xmath
command area:

exec file = "$SYSBLD/examples/BlockScriptPulses/series_of_pulses.ms"

The purpose of the model is to output a series of pulses when a single start
command is specified. The frequency of the pulses is 200 Hz with a
50% duty cycle. To obtain this frequency, you define a discrete periodic
SuperBlock with a sample period of 0.0025 seconds, the amount of time
that you want the pulses to be high in value. The Series of Pulses
SuperBlock is shown in Figure 4-1.

Chapter 4 BlockScript Examples

© National Instruments Corporation 4-9 SystemBuild BlockScript User Guide

Figure 4-1. Series of Pulses SuperBlock

The pulses values, high and low, are defined by alternation between two
states in a State Transition diagram, pulseHigh and pulseLow. You start
the series of pulses by a user command, which comes from an input to
the sim() command in Xmath. When the series of pulses is started,
a countdown timer is loaded with an initial value. When the timer
decrements to zero, the pulses stop. This occurs when the State Transition
diagram transitions from the pulseLow state to the idle state. The
PulseGenerator State Transition diagram is shown in Figure 4-2.

Chapter 4 BlockScript Examples

SystemBuild BlockScript User Guide 4-10 ni.com

Figure 4-2. PulseGenerator State Transition Diagram

The results of the simulation are shown in Figure 4-3.

Chapter 4 BlockScript Examples

© National Instruments Corporation 4-11 SystemBuild BlockScript User Guide

Figure 4-3. Plot Output from Series of Pulse Model

Implementing a Pulse Width, Pulse Frequency Modulator
In this example, you implement a Pulse Width, Pulse Frequency modulator
or PWPF. You can find the model in the SystemBuild examples directory.
To load and run the model, type the following command in the Xmath
command area:

exec file = "$SYSBLD/examples/BlockScriptPWPF/pwpf.ms"

A typical application is in thruster control of spacecraft. In this application,
it is difficult to open and close the thruster valves in a continuous fashion.
It is more convenient to open the valves all the way for a short moment,
followed by closing them completely. The translational position of a
spacecraft is controlled by having an array of thrusters, some in direct
opposition to the others. The control device sends a digital signal to open
the valve to a thruster on one side of the craft causing the spacecraft to move
in a direction opposite to that of the thrust. To compensate for overshoot,
a signal can be sent to open the valve to a thruster on the other side.

Chapter 4 BlockScript Examples

SystemBuild BlockScript User Guide 4-12 ni.com

In order to match the desired continuous control signal, you want the
energy supplied to the opposing thrusters to match the energy of the desired
input, which is defined by some control law. In this example, you choose an
arbitrary input signal constructed from sine waves:

theInput = sin(t) + 0.25 * sin(3*t)

The energy can be calculated as the area under the pulses or the integral of
the pulse train. In this application, it is best to vary both the pulse width and
the pulse frequency.

The example system is constructed by feeding back the thruster control in
a servomechanism loop. The on-off control signal is constructed from a
relay with hysteresis and dead zone. The effect of the feedback is to drive
the error signal to zero, which also drives the state in the relay into the dead
zone. This state is the integral of the difference between input and output:

where:

Kpf is the pulse frequency gain

Kmf is the modulation factor gain

The logic of the relay is shown in Figure 4-4.

theState Kpf theInput Kmf theOutput⋅–() td=

MF modulation factor TimeOn
TimeOn TimeOff+
---= =

PF pulse frequency 1
TimeOn TimeOff+
---= =

Chapter 4 BlockScript Examples

© National Instruments Corporation 4-13 SystemBuild BlockScript User Guide

Figure 4-4. Relay Logic

You want the hysteresis in the trigger to make it switch and lock in on
the new value so that small variations in the input about the switch point
prevent the trigger from chattering back and forth between two values.

The purpose for the dead zone is to conserve fuel. You only want to fire
the thrusters when there is enough difference between desired input and
delivered output.

Typically, the function is symmetric:

Dead Zone = Far Right – Near Left = Near Right – Far Left

Hysteresis = Far Right – Near Right = Near Left – Far Left

Chapter 4 BlockScript Examples

SystemBuild BlockScript User Guide 4-14 ni.com

The modulation factor, MF, is inversely proportional to Kmf. In this
example you choose Kmf to be unity (1) such that the area under the output
follows the area under the input. However, a slight decrease in Kmf
(for example, to 0.95) makes the pulses wider.

The pulse frequency, PF, is proportional to Kpf/Hysteresis. Either
increasing Kpf or decreasing Hysteresis results in more pulse switching by
the relay.

A top-level continuous SuperBlock, Comparison of PWPF Outputs, tests
the system. The Pulse FrequencyWidth Modulator is exercised and its
output, as well as the input to the system, are integrated for comparison.
Figure 4-5 shows this SuperBlock.

Figure 4-5. Comparison of PWPF Outputs SuperBlock

Chapter 4 BlockScript Examples

© National Instruments Corporation 4-15 SystemBuild BlockScript User Guide

The Pulse FrequencyWidth Modulator, shown in Figure 4-6, is a discrete
SuperBlock that contains a BlockScript block with a custom icon named
Relay BlockScript.

Figure 4-6. Pulse FrequencyWidth Modulator SuperBlock

Chapter 4 BlockScript Examples

SystemBuild BlockScript User Guide 4-16 ni.com

The first plot that you receive from this model is the input superimposed on
the pulse output from the model, as shown in Figure 4-7.

Figure 4-7. Pulse Output Compared with Input to Model

Chapter 4 BlockScript Examples

© National Instruments Corporation 4-17 SystemBuild BlockScript User Guide

The second plot is the output from the top-level SuperBlock, which
compares the integral of the input to the integral of the pulses, as shown
in Figure 4-8.

Figure 4-8. Integral of Pulse Output and the Integral of Input to Model

Both Kpf and Kmf are %variables in the Gain blocks. Therefore, you can
change these in the Xmath commands area and run the simulation again.

Debugging Tip
With minor modifications, you can include all or part of the body of your
BlockScript program in a MathScript function. You then can execute it
from Xmath and run it with the MathScript debugger.

Converting BlockScript Blocks to UCBs for Faster Simulations
During simulation, BlockScript statements are interpreted for execution.
Other types of blocks are not interpreted and are evaluated by built-in
functions. As a result, simulation speed is reduced when you use
BlockScript blocks.

A solution is available for AutoCode customers. This method involves
placing the BlockScript block or blocks inside a procedure SuperBlock,

Chapter 4 BlockScript Examples

SystemBuild BlockScript User Guide 4-18 ni.com

generating stand-alone procedure code from the SuperBlock, compiling
and linking the generated code, and finally invoking the stand-alone
procedure as a UserCode block (UCB).

Note This procedure gives enhanced performance at the expense of flexibility. You cannot
use %variables inside a stand-alone procedure.

To convert a BlockScript block to a UCB for simulation, complete the
following steps:

1. In the SuperBlock Editor, create a new SuperBlock. Name it MYPROC
and set the Type field to Procedure. Click OK.

2. Open the User Programmed palette of the Palette Browser and drag a
BlockScript block onto your new SuperBlock. Name the BlockScript
block MYBLOCK.

3. Write and debug your BlockScript block, or use a block from the
examples in this chapter. Upload the SuperBlock to the Catalog
Browser.

4. From the Catalog Browser, select File»New»SuperBlock to create a
new SuperBlock. Name it MYSUPER, make its type discrete, and
specify at least one output. Click OK.

5. Position the Catalog Browser and the SuperBlock Editor that contains
MYSUPER so that you can see both. In the Catalog Browser, click the
SuperBlock hierarchy heading (in the left pane) so that all
SuperBlocks are displayed in the Contents view (in the right pane).
Locate the SuperBlock MYPROC in the Contents view. Drag MYPROC
from the Catalog Browser into the Editor. Select File»Update to make
sure the new information appears in the Catalog Browser.

6. Select MYSUPER in the Catalog Browser SuperBlock hierarchy. Select
Tools»AutoCode. In the Generate Real-Time Code dialog box, select
Procedures in Code Style field. Click OK.

The file that is generated, MYSUPER.C, is the source code for your
stand-alone procedure.

7. Open MYPROC in an editor. To replace the BlockScript block, raise the
Palette Browser and drag a UCB icon from the User Programmed
palette so that it covers the BlockScript block.

When you release the mouse, the UCB will have replaced the
BlockScript block.

8. Open the UCB for editing. In the Name field, type MYPROC. In the
Function Name field, type MYSUPER.C. Make sure that the UCB

Chapter 4 BlockScript Examples

© National Instruments Corporation 4-19 SystemBuild BlockScript User Guide

Inputs, Outputs, and States are consistent with the original
BlockScript block settings. Click OK.

The first time the new SuperBlock is simulated, the procedure code is
compiled and linked into your simulator, creating a local version of the
simucb shared library file. Every subsequent time you run the simulator,
the local version is used.

Note Any time you simulate or generate code for a model that contains UCBs that model
should exist in a separate directory. Otherwise, you risk mixing objects between models
because there is only one simucb shared library per working directory.

© National Instruments Corporation A-1 SystemBuild BlockScript User Guide

A
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support
include the following:

– Self-Help Resources—For immediate answers and solutions,
visit the award-winning National Instruments Web site for
software drivers and updates, a searchable KnowledgeBase,
product manuals, step-by-step troubleshooting wizards, thousands
of example programs, tutorials, application notes, instrument
drivers, and so on.

– Free Technical Support—All registered users receive free Basic
Service, which includes access to hundreds of Application
Engineers worldwide in the NI Developer Exchange at
ni.com/exchange. National Instruments Application Engineers
make sure every question receives an answer.

• Training and Certification—Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation I-1 SystemBuild BlockScript User Guide

Index

Symbols
: wildcard, 2-9
|, 3-4

A
abort(), 3-8
abs(), 3-8
absolute value, computing, 3-8
ABSTOL environment variable, 2-11
acos(), 3-8
algorithm, linear interpolation, 4-6
arc cosine function, 3-8
arc sine function, 3-8
arc tangent functions, 3-9
arithmetic expressions, 3-3
assignment statements, 3-3
assignment statements and expressions, 3-3
atan(), 3-9
atan2(), 3-9
AutoCode

function to stop during execution, 3-8
program phases, 2-2

B
bClear(), 3-9
Bessel equation example, 4-1
bit

logical operation functions, 3-9
shifting functions, 3-9

bitAnd(), 3-9
bitLshift(), 3-9
bitNot(), 3-9
bitOr(), 3-9
bitRshift(), 3-9

BlockScript
assignment statements, 3-3
block, 2-1

Bessel equation, 4-1
converting to UCB, 4-17
hysteresis, 4-7
linear interpolation algorithm, 4-6
PID controller, 4-2
three-cycle delay, 4-5

data types, 2-2
debugging

in MathScript function, 4-17
tip, 4-17

decision-making constructs, 3-5
examples, 4-1
expressions, 3-3
functions provided, 3-8
language description, 3-1
looping constructs, 3-5
operators and precedence, 3-1
program structure, 2-1
usage, 1-1

in SystemBuild, 2-1
variables, categories, 2-5

bound(), 3-9
bSet(), 3-9
bTest(), 3-9
bToggle(), 3-9

C
case sensitivity rules, 2-5
Case statement, 3-6
casting function, 2-9
categories, BlockScript variables, 2-5
ceiling(), 3-11
code generation, data type, 2-11

Index

SystemBuild BlockScript User Guide I-2 ni.com

colon wildcard, 2-9
compiling blocks, 4-17
constructs

decision-making, 3-5
looping, 3-5

conventions used in the manual, iv
cos(), 3-12
cosh(), 3-12

D
data type(s), 2-2, 2-7

code generation, 2-11
implicit assignment, 2-7, 2-10
Logical, 2-11
rules, 2-7

debugging tip, BlockScript, 4-17
decision-making constructs, 3-5
Derivatives variable category, 2-6
diagnostic tools (NI resources), A-1
dimensioning with wildcard, 2-9
documentation

conventions used in the manual, iv
NI resources, A-1

drivers (NI resources), A-1

E
Environment variable category, 2-6
environment variable(s), 2-11

case sensitivity, 2-5
INIT, 2-4
OUTPUT, 2-3
STATE, 2-3

EPSILON environment variable, 2-11
example(s)

Bessel equation, 4-1
generating series of pulses, 4-8
hysteresis BlockScript block, 4-7
linear interpolation BlockScript

block, 4-6

nonlinear breakpoints block, 2-8
PID controller BlockScript block, 4-2
pulse width, pulse frequency

modulator, 4-11
simple BlockScript program, 2-2
SystemBuild, 4-1
three-cycle delay BlockScript block, 4-5

examples (NI resources), A-1
Exit statement, 3-7
exp(), 3-9
expressions

arithmetic, 3-3
logical, 3-4
range, 3-4
relational, 3-3
set, 3-4

F
float(), 3-8
floor(), 3-11
For loop, 3-5
functions, size of variable, 3-8

H
help, technical support, A-1
hyperbolic trig functions, 3-12
hysteresis example, 4-7

I
If clause, 3-5
INIT environment variable, 2-4, 2-11
Inputs variable category, 2-5
instrument drivers (NI resources), A-1
integer(), 3-8
intrinsic functions, 3-8
Iterate statement, 3-7

Index

© National Instruments Corporation I-3 SystemBuild BlockScript User Guide

K
KnowledgeBase, A-1

L
language, 3-1
linear interpolation algorithm, 4-6
log(), 3-10
log10(), 3-10
Logical data type, 2-11
logical expressions, 3-4
looping constructs, 3-5

M
max(), 3-10
maximum, function to compute, 3-10
min(), 3-10
minimum, function to compute, 3-10
mod(), 3-10
model(s), SystemBuild, 4-1
modulo function, 3-10

N
National Instruments support and

services, A-1
Next_States variable category, 2-6
NI support and services, A-1
nRand(), 3-14

O
operators, 3-1

precedence table, 3-2
ouRand(), 3-14
OUTPUT environment variable, 2-3, 2-12
output phase, 2-2
Outputs variable category, 2-5

P
Parameters variable category, 2-6
phases, program

output, 2-2
simulation and AutoCode, 2-2
state, 2-2

PI environment variable, 2-12
PID controller example, 4-2
precedence, BlockScript operators, 3-1
program

See also example(s)
phases

determining, 2-11
environment variables, 2-3
for simulation and AutoCode, 2-2

structure, 2-1
programming examples (NI resources), A-1
pulse width, pulse frequency modulator, 4-11
pulses, example generating a series, 4-8

Q
quad(), 3-10

graphical diagram of results, 3-11
quantizing floating point numbers,

functions, 3-11

R
random number generator functions, 3-14
range expressions, 3-4
relational expressions, 3-3
RELTOL environment variable, 2-12
round(), 3-11
rules

data typing, 2-7
dimensioning with wildcard, 2-9

Index

SystemBuild BlockScript User Guide I-4 ni.com

S
Select clause, 3-6
set expressions, 3-4
sign(), 3-11

graphical representation of function, 3-12
simulation

function to stop, 3-8
program phases, 2-2

sin(), 3-12
sinh(), 3-12
size of variable functions, 3-8
software (NI resources), A-1
sqrt(), 3-12
square root function, 3-12
STATE environment variable, 2-3, 2-12
state, phase, 2-2
States variable category, 2-6
support, technical, A-1
swap(), 3-12
SystemBuild

BlockScript block paradigm, 1-2
models, 4-1

T
tan(), 3-12
tanh(), 3-12
technical support, A-1
three-cycle delay BlockScript block, 4-5
TIME environment variable, 2-12
training and certification (NI resources), A-1
trg(), graphical representation, 3-13
trig functions, 3-8, 3-9, 3-12
troubleshooting (NI resources), A-1
truncate(), 3-11
TSAMP environment variable, 2-12
TSTART environment variable, 2-12
Typecheck with BlockScript block, 2-11

U
union operator |, 3-4
uRand(), 3-14

V
var.columns, 2-7, 3-8
var.rows, 2-7, 3-8
var.size, 2-7, 3-8
var.type(), 2-9, 3-8
variable(s)

BlockScript categories, 2-5
case sensitivity, 2-5
default names, 2-5
definition in BlockScript program, 2-2
determining dimension, 2-7
dimensioning with wildcard, 2-9
environment

case sensitivity, 2-5
delineating phases, 2-3

functions for size of, 3-8
list order, 2-5
Logical, 2-11
parameterized, limit, 2-7
passing data between phases, 2-5
restricted usage in While loops, 3-5
types for SystemBuild programs, 2-4

vertical bar usage, 3-4

W
Web resources, A-1
While loop, variable usage in, 3-5
wildcard, 2-9

	SystemBuild BlockScript User Guide
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Conventions
	Contents
	Chapter 1 Introduction
	SystemBuild Block Paradigm
	Figure 1-1. BlockScript Block Paradigm

	Chapter 2 Using BlockScript in SystemBuild
	BlockScript Program Structure in a BlockScript Block
	General Program Structure
	Variable Name Definitions
	Data Type Definitions
	Update Equations
	Simple Example

	Using BlockScript with Simulator and AutoCode Code Phases

	BlockScript Variables
	Block Variable Declarations
	Table 2-1. Default Variable Names

	Data Types and Dimensions
	Table 2-2. Data Typing Rules
	Wildcard Dimensions and Dialog Imported Information
	Method for Implicit Data Typing
	BlockScript Data Types and Code Generation

	Environment Variables

	Chapter 3 BlockScript Language
	Operators and Precedence
	Table 3-1. Operator Precedence

	Assignment Statements and Expressions
	Arithmetic Expressions
	Relational Expressions
	Logical Expressions
	Range Expressions
	Set Expressions

	Looping and Decision-Making Constructs
	For Loop
	While Loop
	If Clause
	Select Clause
	Exit Statement
	Iterate Statement

	Functions
	var.rows, var.columns, var.size
	integer(a), float(a), and var.type(a)
	abort(n)
	abs(a)
	acos(a) and asin(a)
	atan(a) and atan2(y,x)
	bSet(a,b), bClear(a,b), bTest(a,b) and bToggle(a,b)
	bitLshift(a,b) and bitRshift(a,b)
	bitNot(a), bitOr(a,b) and bitAnd(a,b)
	bound(a,b,c)
	exp(a)
	log(a) and log10(a)
	max(a,b) and min(a,b)
	mod(a,b)
	quad(a, w, x, y, z)
	Figure 3-1. Graphical Evaluation of quad()

	round(a), truncate(a), floor(a) and ceiling(a)
	sign(a)
	Figure 3-2. Graphical Evaluation of sign()

	sin(a), cos(a), and tan(a)
	sinh(a), cosh(a) and tanh(a)
	sqrt(a)
	swap(a,b)
	trg(a, x, y, z)
	Figure 3-3. Graphical Evaluation of trg()

	uRand(s,v), nRand(s,v), ouRand(s, ouLast, timeInterval, timeConst,v)

	Chapter 4 BlockScript Examples
	SystemBuild Model Usage
	SystemBuild Examples
	Bessel Equation BlockScript Block
	Discrete PID Controller BlockScript Block
	Three-Cycle Delay BlockScript Block
	Linear Interpolation Algorithm BlockScript Block
	Hysteresis BlockScript Block
	Generating a Series of Pulses
	Figure 4-1. Series of Pulses SuperBlock
	Figure 4-2. PulseGenerator State Transition Diagram
	Figure 4-3. Plot Output from Series of Pulse Model

	Implementing a Pulse Width, Pulse Frequency Modulator
	Figure 4-4. Relay Logic
	Figure 4-5. Comparison of PWPF Outputs SuperBlock
	Figure 4-6. Pulse FrequencyWidth Modulator SuperBlock
	Figure 4-7. Pulse Output Compared with Input to Model
	Figure 4-8. Integral of Pulse Output and the Integral of Input to Model

	Debugging Tip
	Converting BlockScript Blocks to UCBs for Faster Simulations

	Appendix A Technical Support and Professional Services
	Index
	Symbols
	A-C
	D-I
	K-R
	S-W

