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About This Manual

Conventions

The LabVIEW System Identification Toolkit provides a library of VIs and
an assistant for developing models of a system based on a large set of raw
data. Both tools enable you to complete the entire system identification
process from analyzing the raw data to validating the identified model.

This manual discusses the main steps in the system identification process
and how to use the System Identification VIs to create applications that can
accomplish the various tasks in the process. Refer to the LabVIEW Help,
available in LabVIEW by selecting Help»Search the LabVIEW Help, for
more information about the steps in the assistant and a tutorial about how
to use the assistant.

The System Identification Assistant uses the same system identification
concepts described in this manual. However, this manual does not include
information about how to use the assistant. Refer to the NI Express
Workbench Help, available in the NI Express Workbench environment by
selecting Help»Express Workbench Help, for more information about
the steps in the assistant and a tutorial about how to use the assistant.

»

5

bold

italic

The following conventions are used in this manual:

The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

Italic text denotes variables, emphasis, a cross-reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.
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monospace

monospace italic

Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

Related Documentation

The following documents contain information that you might find helpful
as you read this manual:

e LabVIEW Help

e LabVIEW Fundamentals

e Getting Started with LabVIEW

* NI Express Workbench Help

e LabVIEW System Identification Toolkit Algorithm References

e LabVIEW Control Design Toolkit User Manual

e Signal Processing Toolset User Manual

e Time Series Analysis Tools User Manual

Refer to Appendix A, References, for a list of textbooks and technical

papers that National Instruments used to develop the System Identification
Toolkit.
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Introduction to System
Identification

System identification involves building mathematical models of a dynamic
system based on a set of measured stimulus and response data samples.
You can use system identification in a wide range of applications, including
mechanical engineering, biology, physiology, meteorology, economics,
and model-based control design. For example, engineers use a system
model of the relationship between the fuel flow and the shaft speed of a
turbojet engine to optimize the efficiency and operational stability of the
engine. Biologists and physiologists use system identification techniques in
areas such as eye pupil response and heart rate control. Meteorologists and
economists build mathematical models based on historical data for use in
forecasting.

This manual focuses on how to use system identification in the
model-based control design process, which involves identifying a model of
aplant, analyzing and synthesizing a controller for the plant, simulating the
plant and controller, and deploying the controller. A plant is the real-world,
physical system that you want to control.

System identification is the initial step—identifying a model of a plant—in
the model-based control design process. System identification is an
iterative process. You first acquire raw data from a real-world system, then
format and process the data as necessary, and finally select a mathematical
algorithm that you can use to identify a mathematical model of the system.
You then can use the resulting mathematical model to analyze the dynamic
characteristics and simulate the time response of the system. You also can
use the mathematical model to design a model-based controller.

The LabVIEW System Identification Toolkit assists you in identifying
large, multivariable models of high-order systems from large amounts of
data. The System Identification Toolkit provides two tools, an assistant and
a library of Vs, for identifying these linear systems. Both tools enable you
to complete the entire system identification process, from analyzing raw
data to validating the identified model.
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Chapter 1 Introduction to System Identification

This chapter provides an overview of the model-based control design
process and the steps in the process where you can use National
Instruments software and hardware. This chapter also describes various
representations of physical models that you can use to identify the plant
model of a system. Finally, this chapter provides information about the
two tools in the System Identification Toolkit that enable you to identify
system models.

Model-Based Control Design Process

The model-based control design process involves modeling a plant,
analyzing and synthesizing a controller for the plant, simulating the

plant and controller, and deploying the controller. While the System
Identification Toolkit provides solutions for analyzing raw data and
creating plant models, National Instruments also provides solutions for the
other three components in the process, as shown in Figure 1-1.

Plant Modeling Control Design Simulation Deployment
and Analysis
LabVIEW System |q—p LabVIEW < LabVIEW LabVIEW
Identification Control Design Simulation Real-Time
Toolkit Toolkit Module Module
LabVIEW

Figure 1-1. National Instruments Tools for the Model-Based Control Design Process

Analyzing Data and Creating a Dynamic System Model

In the initial phase of the design process, you must obtain a mathematical
model of the plant you want to control. One way to obtain a model is by
using a numerical process known as system identification. This process
involves acquiring data from a plant and then numerically analyzing
stimulus and response data to estimate the parameters of the plant.

National Instruments provides data acquisition (DAQ) and modular
instrumentation software and hardware that you can use to stimulate and
measure the response of the plant. You then can use the System
Identification Toolkit to estimate and create accurate mathematical models
of the plant.
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Chapter 1 Introduction to System Identification

System identification is a process that includes acquiring, preprocessing,
and identifying mathematical models based on raw data from a real-world
system. You then validate that the resulting model fits the observed system
behavior. If the results are unsatisfactory, you revise the parameters and
iterate through the process. Figure 1-2 shows a typical system identification
flowchart.

Data

Modeling

Verification/ L
Select Model Validation |:'> Applications

Characterization

Figure 1-2. System Identification Application Flowchart

A real-world system seldom has one model that perfectly describes all the
observed behaviors of the system. Because system identification involves
many variables—such as sampling frequency, type of mathematical model,
model order, and so on—you usually have a number of models you can use.
Each model describes the behavior of the system to some extent or in a
particular mode of operation.

Furthermore, multiple applicable algorithms might be available for the
same model. The algorithms you select depend on the model structure,
stochastic assumptions, and numerical properties of the algorithm. The
System Identification Toolkit includes different adaptive techniques for
recursive system identification and different algorithms for model
estimation. Refer to Chapter 3, Nonparametric Model Estimation Methods,
Chapter 4, Parametric Model Estimation Methods, Chapter 5, Partially
Known Model Estimation Methods, Chapter 6, Model Estimation Methods
in Closed-Loop Systems, and Chapter 7, Recursive Model Estimation
Methods, for more information about the various estimation methods that
the System Identification Toolkit supports.
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Chapter 1

Introduction to System Identification

Designing a Controller

In the second phase of the design process, you synthesize and analyze a
controller. The LabVIEW Control Design Toolkit provides a set of VIs for
classical and modern linear control analysis and design techniques. With
these VIs you can create and analyze linear time-invariant (LTI) system
models and design automatic control systems.

You can use the Control Design Toolkit to analyze the plant model you
identified with the System Identification Toolkit. The Control Design VIs
help you determine an appropriate controller structure. You then can
synthesize a controller to achieve the desired performance criteria of the
system based on the dynamic behavior of the plant and/or control system.
Finally, you can analyze the overall system by combining the controller
with the identified plant model.

Simulating the Dynamic System

In the third phase of the design process, you simulate the dynamic system.
The LabVIEW Simulation Module allows you to simulate dynamic
systems in LabVIEW. You can investigate the time response of the
dynamic system to complex, time-varying inputs before deploying a
controller. For this process, you can use a simple LTI model, a higher order
model, or a nonlinear model of the plant.

Deploying the Controller

The last stage of the design process is to deploy the controller to a real-time
target. LabVIEW and the LabVIEW Real-Time Module provide a common
platform that you can use to implement or prototype the embedded control
system. You also can use the Simulation Module and the Real-Time
Module as the platform for implementing the control system.

National Instruments also provides products for I/O and signal
conditioning that you can use to gather and process data. Using these tools,
which are built on the LabVIEW platform, you can experiment with
different approaches at each stage in the design process and quickly
identify the optimal design solution for an embedded control system.

Refer to the National Instruments Web site at ni . com for more information
about these National Instruments products.
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Chapter 1 Introduction to System Identification

Model Types and Model Representations

Model Types

You can represent a dynamic system using several types of dynamic system
models. The following sections provide information about the different
types and representations of dynamic system models that you can use with
the System Identification Toolkit.

You base the type of a dynamic system model on the properties of the
dynamic system that the model represents. The following sections provide
information about the different types of models you can create with the
System Identification Toolkit.

Linear versus Nonlinear Models

Dynamic system models are either linear or nonlinear. A linear model
obeys the principles of superposition and homogeneity, as shown by
Equations 1-1 and 1-2, respectively.

yi=f(u)

y2 =f (uz)
fup+u)=fup+fu)=y,+y; (1-1
flaup) =af (up) =apy, (1-2)

where u; and u, are the system inputs and y; and y, are the system outputs.

Conversely, nonlinear models do not obey the principles of superposition
or homogeneity. Nonlinear effects in real-world systems include
saturation, dead-zone, friction, backlash, and quantization effects; relays;
switches; and rate limiters. Many real-world systems are nonlinear, but you
can simulate most real-world systems with linear models to simplify a
design or analysis procedure.

Time-Variant versus Time-Invariant Models

Dynamic system models are either time-variant or time-invariant. The
parameters of a time-variant model change with time. For example, you can
use a time-variant model to describe an automobile. As fuel burns, the mass
of the vehicle changes with time.
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Chapter 1 Introduction to System Identification

Conversely, the parameters of a time-invariant model do not change with
time. For an example of a time-invariant model, consider a simple robot.
Generally, the dynamic characteristics of robots do not change over short
periods of time.

Continuous versus Discrete Models

Dynamic system models are either continuous or discrete. Both continuous
and discrete system models can be linear or nonlinear and time-invariant or
time-variant. Continuous models describe how the behavior of a system
varies continuously with time, which means you can obtain the properties
of a system at any certain moment from the continuous model. Discrete
models describe the behavior of a system at separate time instants, which
means you cannot obtain the behavior of the system between every

two sampling points.

Continuous system models are analog. You derive continuous models of a
physical system from differential equations of the system. The coefficients
of continuous models have clear physical meanings. For example, you can
derive the continuous transfer function of an RC circuit if you know the
details of the circuit. The coefficients of the continuous transfer function
are the functions of R and C in the circuit. You use continuous models if
you need to match the coefficients of a model to some physical components
in the system.

Discrete system models are digital. You derive discrete models of a
physical system from difference equations or by converting continuous
models to discrete models. In computer-based applications, signals and
operations are digital. Thus, you can use discrete models to implement a
digital controller or to simulate the behavior of a physical system at discrete
instants. You also can use discrete models in the accurate model-based
design of a discrete controller for a plant.

Model Representations

You can use the System Identification Toolkit to represent dynamic system
models in the following four categories—general-linear polynomial,
transfer function, zero-pole-gain, and state-space. Refer to Chapter 4,
Parametric Model Estimation Methods, for more information about these
models.
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Developing Models with the System Identification
Toolkit

The System Identification Toolkit provides a library of VIs and an
assistant. You can apply these VIs or the assistant to develop and validate
the plant model of a system that uses a large set of raw data.

System ldentification Vls

The System Identification Toolkit provides VIs that you can use to
preprocess raw data from a dynamic system and develop a model that
reflects the behavior of that system. The Data Preprocessing VIs enable you
to analyze the response of a plant or dynamic system to a certain stimulus.
After analyzing the data, you can use the Parametric Model Estimation,
Nonparametric Model Estimation, Partially Known Model Estimation, or
Recursive Model Estimation VIs to estimate a model for the plant or
dynamic system. Finally, you can use the Model Validation or Model
Analysis VIs to determine whether the model accurately describes the
dynamics of the identified system.

The System Identification VIs enable you to customize a LabVIEW block
diagram to achieve specific goals. You also can use other LabVIEW VIs
and functions to enhance the functionality of the application. Creating a
LabVIEW application using the System Identification VIs requires basic
knowledge about programming in LabVIEW. Refer to the LabVIEW
Fundamentals and Getting Started with LabVIEW manuals for more
information about the LabVIEW programming environment.

System Identification Assistant

If you do not have prior knowledge about programming in LabVIEW, you
can use the System Identification Assistant to develop a model that reflects
the behavior of a certain dynamic system. You access the System
Identification Assistant through the NI Express Workbench. The Express
Workbench is a framework that can host multiple interactive National
Instruments tools and assistants.

Using the System Identification Assistant, you can create a project that
encompasses the whole system identification process. In a single project,
you can load or acquire raw data into the System Identification Assistant,
preprocess the data, estimate a model that describes the system, and then
validate the accuracy of the model. The Express Workbench provides
windows in which you can see the raw data, the response data, the
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estimated model, the validation results, and the mathematical equations
that describe the model.

After creating a project in the Express Workbench, you can convert the
project to a LabVIEW block diagram and customize the block diagram in
LabVIEW. This conversion enables you to enhance the capabilities of the
application. Refer to the NI Express Workbench Help, available in the

NI Express Workbench environment by selecting Help»Express
Workbench Help, for more information about using the assistant to
develop models.

System Identification Procedure

You first must acquire data before estimating a model for the plant in a
system. Then you can preprocess raw data by using a number of data
preprocessing techniques the System Identification Toolkit provides to get
high-quality data.

When data is collected, you can use nonparametric model estimation
methods to estimate the impulse response and the frequency response of a
system. Nonparametric model estimation is often less accurate. However,
you can use a nonparametric model estimation method to obtain useful
information about a system before applying parametric model estimation,
which provides more insight into a system. Also, if you have some
information about the system, you can set constraints on parameters by
using partially known model estimation methods the System Identification
Toolkit provides. When you have a plant in a closed-loop system, you can
use the VIs this toolkit provides to identify the plant. You also can use
recursive model estimation methods with the System Identification Toolkit
to update a system model while the system is running.

After you estimate a model, you can analyze the model to obtain some
information, such as frequency response, about the model and investigate
model estimation results. You also can validate an estimated model to
determine how accurately the model describes the real-world plant of a
system.

With the System Identification Toolkit, you can convert system models
from one representation to another and convert between continuous and
discrete models. You have the flexibility to obtain best-fit models in
different applications.

The following chapters describe data acquisition and preprocessing
techniques, model estimation methods, model analysis and validation
techniques, and model conversion tools.
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Data

The first step in identifying an unknown system is data acquisition. You
can acquire data from NI data acquisition hardware and software or you can
use data from a pre-stored file. For verification and validation reasons, you
need to acquire two sets of input-output data samples or split the data into
two sets. You use one set of samples to estimate the mathematical model of
the system. You use the second set of samples to validate the resulting
model. If the resulting model does not meet the predefined specifications,
such as the mean square error (MSE), modify the settings and re-verify the
resulting model with the data sets.

After acquiring the data, you need to preprocess the raw data samples.
Preprocessing involves steps such as removing trends, filtering noise, and
so on. The LabVIEW System Identification Toolkit provides Data
Preprocessing VIs that enable you to analyze the raw data and determine
whether the data accurately reflects the response of the system you want to
identify.

This chapter briefly describes the data acquisition process and the
assumptions the System Identification Toolkit makes. This chapter also
describes how to preprocess raw data using the Data Preprocessing VIs.
Refer to the LabVIEW Help, available by selecting Help»Search the
LabVIEW Help, for more information about the Data Preprocessing VIs.

Acquiring Data from a System

One of the biggest advantages of using the System Identification Toolkit is
the integration with LabVIEW, NI data acquisition hardware, and
NI-DAQ. Refer to the LabVIEW Help, available in LabVIEW by selecting
Help»Search the LabVIEW Help, for more information about setting up
and configuring a data acquisition system, and how to use LabVIEW to
acquire data samples.
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Identifying a system involves a number of choices with regard to the system
output signals you want to measure and the input signals you want to
manipulate. The choices you make about how to manipulate system inputs,
types of signal conditioning, signal ranges, and sampling behavior affect
the validity of the model you obtain. You can use different modeling
techniques on the same experimental data set, but if the data set does not
reflect the behavior of interest then you need to acquire a more descriptive
data set.

Because the system identification process is often an experimental process,
it is often time consuming and possibly costly. Therefore, you must think
about the design of process prior to experimenting with various
identification techniques. The following sections describe the various data
acquisition and system stimulation assumptions you must consider before
identifying a system model. These sections also provide information about
the trade-offs associated with each choice.

Accounting for Factors that Influence a System

The key to the system identification process is having some knowledge of
the system for which you want to identify a model. This knowledge
provides the basis for determining which signals are outputs, which in turn
determines sensor placement, and which signals are inputs that you can use
to excite the system. Simple tests might be necessary to determine
influences, coupling, time delays, and time constants to aid in the modeling
effort.

Also you need to consider signals that are not directly capable of being
manipulated but still affect the system. You need to include those signals as
inputs to the system model. For example, consider the effect of wind gusts
on the pitch dynamics of an airplane. The airplane responds in pitch to the
elevator angle as a direct input. A wind gust affects the pitch of an airplane,
which in turn influences the dynamics of the airplane, but the wind gust is
not directly adjustable. To create an accurate model of the airplane, you
might want to include wind gusts as an input variable.

Choosing a Stimulus Signal

The choice of stimulus signals has an important role in the observed system
behavior and the accuracy of the estimated model. These signals determine
the operating points of the system. While the system under test often limits
the choice of signals, you want an input signal to exhibit certain

characteristics to produce a response that provides the information needed
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for developing an accurate model. The following sections summarize these
characteristics.

*  To obtain meaningful dynamic behavior, you must test the system
under conditions similar to the actual operating conditions. When you
complete experiments in these conditions, you identify the system in
the same conditions under which you will implement the resulting
model. This criterion is extremely important for nonlinear systems.

*  You want the inputs to the system under test to excite the system.
Exciting the system is dependent on the spectrum of the input signal.
Specifically, you must excite the system with an input frequency
similar to the frequency at which such inputs change during normal
operations.

*  You want the amplitude of the step input to cover a wide range of
variations. Therefore, in the data you use for model estimation, you
need to cover the normal operation range of system inputs, especially
when you use the calculated model for model-based control. To cover
the normal operation range, you can combine the positive and negative
step changes of different magnitudes in the system inputs.

*  You want the input signal to deliver as much input power to the system
as possible. However, in the real-world, you must ensure that this input
power stays within the limits of the physical system. The crest factor
C;, defined by the following equation, describes this property.

2 max tuz (1)
A

N
. 1 2
llmN_mNE u (1)
(=1

The smaller the crest factor the better the signal excitation resulting in
larger total energy delivery and enhanced signal-to-noise ratio. The
theoretical lower bound for crest factor is 1.

Common Stimulus Signals

The system response data is dependent on the physics of the system you
want to study. Some systems tend to respond faster than others, and never
reach steady state. Other systems have large time constants and delays. For
these reasons, defining a stimulus signal that provides enough excitation to
the system is important, so that the response captures the important features
of the system dynamics. The following sections describe common stimulus
signals you can use in different process applications.
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Filtered Gaussian White Noise

Filtered Gaussian white noise is a simple signal that can generate virtually
any signal spectra in conjunction with the proper linear filtering. The
theoretical crest factor Cyfor a Gaussian is infinite, but clipping the
Gaussian amplitude to the input signal limits results in a corresponding
reduction in crest factor while minimally affecting the generated spectrum.

Figure 2-1 shows an example of a Filtered Gaussian white noise.

Filtered Gaussian White Maise
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Figure 2-1. Filtered Gaussian White Noise

Random Binary Signal

A random binary signal is a random process that can assume one of

two possible values at any time. A simple method of generating a random
binary signal is to take Gaussian white noise, filter it for the desired spectra
and then convert it to a binary signal by taking the sign of the filtered signal.
The desired spectra is a function of the system time constraints. The
appropriate scaling must provide a meaningful response to the system, well
above the noise level.

You can scale the signal to any desired amplitude. The resulting signal has
a minimum crest factor Cyof 1. Some differences in the resulting spectra
are expected so you must perform off-line analysis of the signal.

Binary signals are useful for identifying linear systems. However, the
dual-level signal does not allow for validation against nonlinearities. If a
system is nonlinear, you can use an input interval corresponding to the
desired operating point. You might need to work with more than two input
levels in these cases. You can combine multiple binary signals of different
levels to form the stimulus signal.
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Figure 2-2 shows an example of a random binary signal.
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Figure 2-2. Random Binary Sequence

Pseudo-Random Binary Sequence

A Pseudo-Random Binary Sequence, also known as Maximal Length
Sequence (MLS), is a periodic, deterministic signal with properties similar
to white noise. You often generate a pseudo-random binary sequence using
an n-bit shift register with feedback through an exclusive-OR function.
While appearing random, the sequence actually repeats every 2n — 1
values.

When using a whole period, the pseudo-random binary sequence has
special mathematical advantages that make it attractive as a stimulus signal.
In particular, you can attribute variations in response signals between two
periods of the stimulus to noise due to the periodic nature of the signal.
Also, like the white random binary noise, the pseudo-random binary
sequence has a low crest factor C. You can use the SI Generate
Pseudo-Random Binary Sequence VI to generate a Pseudo-Random Binary
Sequence.
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Figure 2-3 shows an example of a pseudo-random binary sequence.

Psuedo-R.andom Binary Sequence
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Figure 2-3. Pseudo-random Binary Sequence

Chirp Waveform

The chirp waveform, also known as a swept sine wave, is a sinusoid
waveform with a frequency that varies continuously over a certain range of
values ®; < m < , for a specific period of time 0 < ¢ < T. The resulting
signal has a crest factor Cyof V2. You can modify the signal to excite
specific signal spectra.

In comparison to other signals, like the white noise stimulus, a chirp
waveform is easier to generate and control. Figure 2-4 shows an example
of a chirp waveform.
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Figure 2-4. Chirp, or Swept Sine Wave
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Selecting a Sampling Rate

The time constants of a system influence the selection of a sampling rate.
Sampling at rates substantially greater than the system bandwidth leads to
data redundancy, numerical issues, and modeling of high frequency
artifacts likely due to noise. Sampling at rates slower than system dynamics
leads to difficulties determining an accurate system model and problems
introduced by aliasing. You can use an anti-aliasing filter to counter the
effects of aliasing. Refer to the Applying an Anti-Aliasing Filter section for
more information about anti-aliasing filters.

A common rule of thumb is to sample signals at 10 times the bandwidth of
the system or the bandwidth of interest for the model. If uncertainty exists
in the system bandwidth and a fast data acquisition environment is
available, you can sample as fast as possible, then use a digital filter and
decimation to reduce the sampling rate to the desired value. Decimation is
a form of downsampling the data set. Refer to the Filtering and
Downsampling section for more information about filtering and
downsampling a data set.

Applying an Anti-Aliasing Filter

According to the Nyquist sampling theorem, the sampling rate must be
greater than twice the maximum frequency component of the signal of
interest. In other words, the maximum frequency of the input signal must
be greater than half the sampling rate.

This criterion, in practice, is often difficult to ensure. Even if you are sure
that the measured signal has an upper limit on its frequency, external factors
such as signals from the powerline interference or radio stations, can
contain frequencies higher than the Nyquist frequency. These frequencies
might then alias into the frequency range of interest and give you inaccurate
results.

To ensure that you limit the frequency content of the input signal, add a
lowpass filter before the sampler and the analog to discrete converter. A
lowpass filter passes low frequencies and attenuates high frequencies. This
filter is an anti-aliasing filter because by attenuating the frequencies greater
than the Nyquist frequency, the filter prevents the sampling of aliased
components. When you use a filter before the sampler and analog to
discrete converter, the anti-aliasing filter is an analog filter. Using an analog
filter satisfies the Nyquist sampling theorem.
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Similarly, you can use a digital filter to remove frequency content above the
system bandwidth and then decimate or downsample the data to the desired
sampling rate.

Preprocessing Data from a System

A number of preprocessing techniques ensure that the incoming data
samples are free from external noise, scaling problems, outliers, and other
corruptions. These preprocessing techniques include the following
methods:

e  Visually inspecting data
* Removing offsets and trends
*  Removing outliers

*  Filtering and downsampling

Validating the quality of the data at each step in the preprocessing
procedure is important in ensuring that you accurately identify a model in
later steps of the system identification process.

The following sections describe these preprocessing techniques and how
you can use the System Identification Toolkit to apply these techniques.

Visually Inspecting the Data

Visual inspection of the data is the best way to detect major signal
corruptions or errors—such as outliers, clipped saturation, or quantization
effects—that occur during acquisition or preprocessing. You also can plot
the data waveform and the spectral density function of the data to discover
periodic disturbances.

Traditionally, you examine data samples either in the time domain or the
frequency domain. An effective approach is to display the data in the joint
time-frequency domain, which provides a better understanding about the
measured signals. Refer to the Signal Processing Toolset User Manual,
available at ni . com/manuals, for more information about joint
time-frequency domain techniques for data processing.

Removing Offsets and Trends

The ST Remove Trend VI enables you to remove offsets and trends from
the raw data set. You can specify which you want to remove using the input
trend type. The following sections describe the difference between
removing offsets and removing trends.
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Removing Offsets

The estimated system model is a linearized version of the true system
around the operating point. You must subtract the operating points from the
raw data samples because linearization is done with respect to the signal
values relative to the operating point, which is the offset level of the signal.

Figure 2-5 shows an example of removing the offset level of a signal. The
goal of the water tank is to keep the water level at six meters. The Water
level record graph shows that the water level changes in the vicinity of the
operating point of six meters. If you use the water level record for system
identification, you must remove the six meter operating point value.

Water kank Whater level record
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Figure 2-5. Operating Point of Water Tank

The SI Remove Trend VI enables you to remove the offset from the raw
data set. You must set the trend type to mean to use this preprocessing
technique.

Removing Trends

External influences might add some low frequency or periodic
components, which are not relevant to the specific modeling problem, to
the data. Examples of external influences include variations due to the
24-hour day cycle in power plants, seasonal influences in biological and
economical systems, thermal expansion in rolling mills, 50 Hz and 60 Hz
powerline interferences, and so on. The amplitude of these trends can be
large and can corrupt the results of signal analysis and parametric
identification algorithms.

The SI Remove Trend VI provides a way for you to remove these external
influences, or trends, from the raw data set. You must set the trend type to
linear to use this preprocessing technique.

© National Instruments Corporation 2-9 System Identification Toolkit User Manual



Chapter 2

Outliers

Acquiring and Preprocessing Data

Various unexpected events, such as an abnormal pulse, a temporary sensor
failure, or transmitter failure, can corrupt the raw data samples. These
disturbances, or outliers, can severely distort the resulting model
estimation. However, you often can recognize outliers by visually
inspecting the data, as shown in Figure 2-6.
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Figure 2-6. Data with Outliers

Visually inspecting the graph tells you that the data acquired between
85-100 seconds is abnormal. When preprocessing data, you want to
remove all outliers in the data set. You must remove the outliers manually.

Filtering and Downsampling

You might be interested in only a specific frequency range of the frequency
response for a model. You can filter and enhance the data in the frequency
range to improve the fit in the regions of interest. If the sampling
frequency is much higher than the bandwidth of the system, the sampling
frequency might substantially increase the computation burden for
complicated identification algorithms. You can decrease the sampling
frequency by taking every n'h sample to construct a new downsampled data
set. Applying an anti-alias filter on the data before downsampling prevents
corruption of the downsampled data set.

You can use the SI Lowpass Filter VI or the SI Bandpass Filter VI to apply
a lowpass or bandpass filter, respectively, to the data from the system. You
then can use the SI Downsampling VI to reduce the number of samples in
the data set.

After preprocessing the data you acquired from a dynamic system, the
result is a data set that you can use to estimate a model that reflects the
system dynamics. Refer to Chapter 3, Nonparametric Model Estimation
Methods, for more information about the nonparametric model estimation
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methods that use the impulse response and frequency response. Refer to
Chapter 4, Parametric Model Estimation Methods, for more information
about the parametric model structures and the parametric model estimation
methods. Refer to Chapter 7, Recursive Model Estimation Methods, for
more information about recursive model estimation methods.

Data Scaling

In multiple-input multiple-output (MIMO) systems, to have inputs and
outputs of different amplitude ranges is common. Such a diversity in
amplitudes can make the model estimation calculation ill-conditioned,
which deteriorates the precision of the dynamic response. For example,
consider the values A and B in Figure 2-7. Valves A and B operate between
0-100% and 50—60% opening range, respectively.

Level

Figure 2-7. Tanks

The pressure in their respective stream lines are P, and Pg. Assume that Py
can be much larger than P,, you might need to normalize the range of
operation of valve B for numerical robustness. You can use the following
relationship to normalize the range of operation.

ALevel _ ALevel
A%A  (A%B-50)10

The SI Normalize VI ensures that all stimulus and response signals have a
zero mean and unit variance over the sample data range used for model
estimation. This process standardizes the range of the equation for all
signals considered for model estimation. This data preprocessing step
considers all inputs and outputs equally important from the numerical
calculation viewpoint.
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Estimation Methods

After acquiring and preprocessing the data from a linear time-invariant

system, the next step in the system identification process is to estimate the
model. The two most common techniques to estimate models that represent
linear time-invariant systems are nonparametric estimation and parametric
estimation. This chapter describes the nonparametric estimation methods.

You can describe linear time-invariant models with transfer functions or by
using the impulse responses or frequency response of the system. The
impulse response and frequency response are two ways of estimating a
nonparametric model. The impulse response reveals the time-domain
properties of the system, such as time delay and damping, whereas the
frequency response reveals the frequency-domain properties, such as the
natural frequency of a dynamic system.

Nonparametric model estimation is simple and more efficient, but often
less accurate, than parametric estimation. However, you can use a
nonparametric model estimation method to obtain useful information about
a system before applying parametric model estimation. For example, you
can use nonparametric model estimation to determine whether the system
requires preconditioning, what the time delay of the system is, what model
order to select, and so on. You also can use nonparametric model
estimation to verify parametric models. For example, you can compare the
Bode plot of a parametric model with the frequency response of the
nonparametric model. Refer to Chapter 4, Parametric Model Estimation
Methods, for more information about parametric model estimation
methods.

The LabVIEW System Identification Toolkit uses least squares method and
correlation analysis method to estimate the impulse response and spectral
analysis method to estimate the frequency response. The following sections
describe the impulse response and frequency response methods.
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Impulse Response

An impulse input, as shown in Figure 3-1, to a dynamic system is defined
differently depending on whether the system is discrete or continuous. For
a continuous dynamic system, an impulse input is a unit-area signal with an
infinite amplitude and infinitely small duration occurring at a specified
time. At all other times, the input signal value is zero. For a discrete system,
an impulse is a physical pulse that has unit amplitude at the first sample
period and zero amplitude for all other times.

u(t)

Area =1

~V

0
At— 0

<

Figure 3-1. Impulse Response

Because the impulse signal excites all frequencies and the duration of this
signal is infinitely small, you can see the natural response of the system.

Figure 3-2 shows that the impulse response of a linear time-invariant
system is equal to the output y(k) of the system when you apply an impulse
signal to the input u(k) of the system. The impulse response provides the
complete characteristic information of a system.

h(n)

) System N | ‘ ‘ ‘
T

u(k) y(k)

Figure 3-2. Impulse Response Definition
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If you know the impulse response /(n) and the input signal u(k) of a system,
then you can compute the output y(k) of the system by using the following
equation.

oo

y(k) = z u(k—n)h(n) + e(k) (3-1)

k= —oo
where e(k) is the disturbance of the system.

According to impulse response theory, when you apply a Dirac delta
function to the input of a system, the output of the system is the impulse
response. You can think of the Dirac delta function d(x) as a function that
has the value of infinity for x = 0, the value zero elsewhere, and a total
integral of one. However, generating an ideal Dirac delta function is
unrealistic.

If you apply an approximate impulse with a small duration to the input of a
system, the output of the system is the approximation of the impulse
response of the system. The smaller the duration of the impulse, the closer
the output of the system is to the true impulse response. However, an
impulse carries little energy and might not excite the system, and noise
might corrupt the output of the system. An impulse with a large amplitude
and duration can improve the signal-to-noise ratio of the output signal.
However, the large amplitude impulse can damage the hardware of the
system, and a long-duration impulse leads to inaccuracy. For these reasons,
the System Identification Toolkit uses the least squares method and the
correlation analysis method to estimate the impulse response.

Least Squares

If both the input signal u(k) and output signal y(k) of a system are available,
you can obtain the value of h(k), as shown in Equation 3-1. This method
does not require a Dirac delta function as the input signal of the system.
Instead, you can use common stimulus signal and the corresponding
response signal from the system to compute the impulse response
mathematically. You can obtain the impulse response for both positive and
negative lags.

The Least Squares instances of the SI Estimate Impulse Response VI
implements the least squares method to solve the equation. Refer to the
LabVIEW System Identification Toolkit Algorithm References manual
(SIreference.pdf), available in the labview\manuals directory, for
more information about the least squares method.

© National Instruments Corporation 3-3 System Identification Toolkit User Manual



Chapter 3 Nonparametric Model Estimation Methods

Correlation Analysis

The correlation analysis method uses the cross correlation between the
input and output signals as an estimation of the impulse response, as shown
by the following equation:

oo

y(k) = Z u(k—n)h(n) + e(k)

k=0

The input signal must be zero-mean white noise with a spectral density that
is equally distributed across the whole frequency range. The SI Estimate
Impulse Response VI can prewhiten input signals that are not white noise.

Assuming the input u(k) of the system is a stationary, stochastic process
and statistically independent of the disturbance e(k), the following equation
is true.

Ry(¥) = 3" Ry (k=0)h(k)

k=0

R, represents the cross correlation function between the stimulus signal
u(k) and the response signal y(k), as defined by the following equation.

1 N-max(t,0)—1
Ry =5 3 yk+vulh)
k=min(t,0)

R, represents the autocorrelation of the stimulus signal u(k), as defined by
the following equation.

N-1-1
R,.(1) = Z%] > uk+ D)

k=0

N is the number of data points. If the stimulus signal is a zero-mean white
noise signal, the autocorrelation function reduces to the following equation.

R, (1) = 0.5(1)

where o, is the standard deviation of the stimulus white noise and &(t) is
the Dirac function. Substituting R,,,(T) into the cross correlation function

System Identification Toolkit User Manual 3-4 ni.com



Chapter 3 Nonparametric Model Estimation Methods

between the stimulus signal (k) and the response signal y(k) yields the
following equation.

Ry(¥) = 0, 8(k=1)h(k) = 0,h(1)
k=0

You can rearrange the terms of this equation to obtain the following
equation defining the impulse response h(k).

(¢

u

Prewhitening

The correlation analysis method that estimates the impulse response is
useful only when the input signal u(k) is a zero-mean white noise signal.
However, the input signal is not white noise in most real-world
applications. The input u(k) and output y(k) signals therefore must be
preconditioned before you apply the correlation analysis method.

Prewhitening is a preconditioning technique for the correlation analysis
method. Prewhitening involves applying a filter to the input signal u(k) and
the output signal y(k) to obtain a prewhitened input signal u'(k) and a
prewhitened output signal y'(k). If the filter is well designed such that u'(k)
is white noise, you can perform a correlation analysis on u'(k) and y'(k) to
estimate the impulse response. The impulse response that you estimate with
u'(k) and y'(k) is equivalent to the impulse response that you estimate with
u(k) and y(k) because the following equation remains true.

o

y'(k) = Z u'(k—n)h(n) +e(k)

n=0

You now must design the prewhitening filter so that u'(k) is white noise.
The SI Estimate Impulse Response VI uses an AR model for this purpose.
Refer to Chapter 4, Parametric Model Estimation Methods, for more
information about AR model estimation.
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Accuracy of the Impulse Response

The accuracy of the impulse response estimation using the correlation
analysis method depends on the performance of the prewhitening filter,
specifically whether the filter produces a white noise result u'(k) for u(k).
The performance of the filter depends on the signal and the AR order of the
filter. The rule of thumb for selecting the AR order is trial-and-error. If u'(k)
is not white enough, the result from the correlation method is not reliable.
You can increase the AR order to improve the accuracy of the impulse
response.

The SI Estimate Impulse Response VI provides the outputs whiteness test
and rejected? to indicate whether you have properly set the AR order and
consequently whether the impulse response estimation is reliable. The
following example shows how the whiteness property of the input signal
affects the correlation analysis method and how to use the outputs
whiteness test and rejected? to justify the impulse response estimation.

Figure 3-3 shows the front panel of a VI that simulates a system defined by
the following equation.

y(k) = 0.2u(k) + 0.8u(k—1)+0.3u(k-2)
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Figure 3-3. Front Panel of Prewhitening Example VI

Figure 3-4 shows the block diagram of this VI. This example VI
demonstrates the accuracy of the impulse response estimation in the
following circumstances:

e Zero-mean, pseudo-white noise input signal without prewhitening
*  Zero-mean, pseudo-white noise input signal with prewhitening
*  Non-zero-mean, white noise input signal without prewhitening

*  Non-zero-mean white noise input signal with prewhitening
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Figure 3-4. Block Diagram of Prewhitening Example VI

In this example VI, the is white noise? checkbox determines whether the
SI Estimate Impulse Response VI generates zero-mean white noise as an
input to the system. When you place a checkmark in the is white noise?
checkbox and run the VI, the generated input signal is zero-mean white
noise, and the estimated impulse response closely approximates the true
impulse response. When you do not place a checkmark in the is white
noise? checkbox, the generated input signal is not zero-mean white noise.
As a result, the estimated impulse response is different from the true
impulse response. These results indicate that the correlation analysis
method is accurate and reliable when the input signal is zero-mean white
noise.

The AR order box determines the level of prewhitening. When AR order
equals O, the SI Estimate Impulse Response VI does not apply prewhitening
to the system. When AR order is small and you do not place a checkmark
in the is white noise? checkbox, the variance of the impulse response is
large because the input signal is not always white noise. The greater the
value of AR order, the better the VI whitens the signal, but the more
computation time and memory the VI requires.

The whiteness test indicator of this VI shows whether the input is
zero-mean white noise. This indicator displays the autocorrelation of the
stimulus signal after whitening. If most of the autocorrelation is within the
confidence region, the input signal is well prewhitened, and the estimation
of the impulse response is reliable. If the autocorrelation is outside of the
confidence region, the estimation is unreliable. When the estimation is
unreliable, rejected? is TRUE and indicates a 5% risk of rejecting an
impulse response estimation that might be reliable.
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If you apply proper prewhitening, the correlation analysis method is
accurate and reliable for any input signal. To obtain the best prewhitening
settings, start with a small AR order value like 2 and observe the
whiteness test and rejected? outputs of the SI Estimate Impulse Response
VL. If necessary, increase the value of AR order. Generally, the smaller the
bandwidth of the input signal, the larger the AR order you need. However,
avoid setting the value of AR order greater than 500.

Selecting Impulse Response Length

Theoretically, the length of the impulse response might be infinite. For
some systems, the impulse response quickly reaches zero, and the number
of nonzero points is finite. For other systems, the impulse response never
reaches zero. Realistically, you only can obtain the first N points of the
impulse response due to limited signal length and limited memory size.
Therefore, the SI Estimate Impulse Response VI has inputs to specify how
many points of the impulse response to observe. With the least squares
method, you must ensure the sum of num of points (t<0) and num of
points (t>=0) is no larger than the signal length. With the correlation
analysis method, you can set num of points to be as large as the signal
length.

Applications of the Impulse Response

The impulse response not only indicates the stability and causality of the
system if feedback exists in the system, but also provides information on
properties such as the damping, dominating time constant, and time delay.
Some of this information, such as the time delay, is useful for parametric
model estimation. Therefore, you can use nonparametric impulse response
estimation before parametric model estimation to help estimate the
parameters. The following example demonstrates how to use the

SI Estimate Impulse Response VI to estimate the impulse response and
determine the time delay of a system by using the correlation analysis
method.
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Figure 3-5 shows the front panel of a VI that simulates a system defined by

the following equation.

y(k) = 02u(k—2)+0.8u(k—3)+03u(k-4)

— System Simulation
input signal uk)
5=
2.5
D —|
_2.5 -
=l I
1] S00

\

[ [
1000 1279

syskem

WA =0.200-2) + 0.84-F) + 03044

h(nj: [0, 0, 0.2, 0.8, 0.3]

'

output signal wik)
4 -

1 1
1000 1279

\

— Prewhitening
whiteness test
AR order
“:} 2
- \
=
1 1 1
] S00 1000 1279
Lag
auko correlation after whiten m
35%. confidence region -
— Estimation Results
estimated inmpulse response
¥ W
0 oot Jooi jozo Joso o0
significant?
f i
I = | | I R E—
rejected 7 confidence lewvel
0.0569604

Figure 3-5. Front Panel of Time Delay Example VI
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Figure 3-6 shows the block diagram of this VI.
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] 0 ¥
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Figure 3-6. Block Diagram of Time Delay Example VI

In Figure 3-5, the two initial values of the estimated impulse response are
smaller than the confidence level. You can have 99.0% confidence that
values less than the confidence level are insignificant, and you can
consider those values to be equal to 0. Therefore, you can conclude that the
time delay of the system is 2 because the beginning of the first two values
of the impulse response are zero.

Another common application of the impulse response is to detect feedback
in systems using the least squares method. If feedback exists in a system,
the impulse response of the system becomes significantly large at negative
lags and the correlation between the input signal and disturbance e(k) is
nonzero. The correlation analysis method assumes the input signal and the
disturbance e(k) are independent from each other. Thus, this method cannot
estimate accurately the impulse response of the system that contains
feedback. Only the least squares method can provide reliable results. Refer
to Chapter 6, Model Estimation Methods in Closed-Loop Systems, for more
information about feedback, closed-loop systems and feedback detection.
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Frequency Response

In theory, the results from impulse response estimation and the results from
frequency response estimation are equivalent. For example, the Fourier
transform of the impulse response A(n), which you can compute using
impulse response estimation, equals the frequency response G(e/®).
However, this equivalence does not hold in most real-world applications
because of different preprocessing schemes in impulse response estimation
and frequency response estimation.

The frequency response provides the complete frequency-domain
characteristics of the system, including the passband and the natural frequency
of the system. A sinusoidal input signal has the following general form:

u(t) = sin(wgyt)

For a linear time-invariant system, the response of a linear time-invariant
system to a sinusoidal input also is a sinusoidal signal but potentially with
a different magnitude and phase, as shown in the following equation.

y(t) = bsin(wyt + 0)

where b and 0 are the magnitude and phase, respectively, of the frequency
response of the system to an input sinusoidal frequency ,. If you apply input
signals with a number of sinusoids at different frequencies, then you can
obtain an estimate of the frequency response G(®) of the system at those
frequencies. The frequency response is a complex-valued sequence. The
magnitude of G(®) is the magnitude response of the system and the phase of
G(m) is the phase response of the system. This method of obtaining the
frequency response is straightforward but takes a long time to complete and
is sensitive to noise. For these reasons, the System Identification Toolkit uses
the spectral analysis method to estimate the frequency response function.

Spectral Analysis Method

You can use the spectral analysis method with any input signal. However,
the frequency bandwidth of the input signal must cover the range of
interest.

Because the frequency response is the Fourier transform of the impulse
response, applying the Fourier transform to both sides of the cross
correlation function yields the following equation.

@, ") = @,,("")G(E")

System Identification Toolkit User Manual 3-12 ni.com



Chapter 3 Nonparametric Model Estimation Methods

G(e/®) is the frequency response of the system. @, (e/®) is the auto-spectral
density of the stimulus signal u(k). ®,,(e/®) is the cross-spectral density
between the stimulus signal u(k) and the response signal y(k).

You then can use the following equation to compute the frequency
response G(e/®).

. JO
G(e]m) _ (Du!(e_ )
D, (")

You can compute ®,,(e/®) and @, (e/?) by applying a fast Fourier
transform (FFT) to the autocorrelation R, and the cross correlation R,,,,
respectively. As shown in the autocorrelation function R, and the cross
correlation function R,, described in the Correlation Analysis section, the
number of data points you need to compute R,,, and R, decreases as the lag
T increases. Therefore, R, and R, become inaccurate for a large lag 7.

When computing @, (e/®) and ®,,(e/?), you can apply a lag window w(T)
to R,,, and R, before conducting the FFT operation to improve the accuracy
of the frequency response estimation, as shown in the following equations.

®,,(") = D, R (Ow, (e
T=-N
®,, %) = D Ry (Dw, (1)

T=-N

The lag window approaches zero when the lag T is large. The window
weighs out the points of R, and R, with large lag 7, thereby improving the
accuracy of the frequency response estimation. The SI Estimate Frequency
Response VI uses a Hanning window as the lag window.

Refer to the book System Identification Theory for the User! for more
information about using a Hanning window.

' Ljung, L. 1999. System Identification Theory for the User. 2nd ed. Prentice Hall.
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Accuracy of the Lag Window

The frequency response with the lag window, G'(e/?), is equivalent to the
moving average version of the frequency response without the lag window,
G(e/®). The average smooths the frequency response, but the smooth
frequency response also can deviate more from the true frequency
response. Adjusting the length of the lag window can balance the trade-off
between variance and bias of the frequency response estimation. The larger
the length of the lag window, the fewer points of G(e/®) the SI Estimate
Frequency Response VI averages to compute G'(e/?), and hence the larger
the variance and the smaller the bias of the frequency estimation.

The following example demonstrates how the length of the lag window
affects the frequency response estimation. Figure 3-7 shows the front panel
of a VI that simulates a system defined by the following equation.

y(k)—1.46y(k—1)+2.5y(k-2)-1.46y(k-3)+yk—4 = u(k) +0.45u(k— 1)+ u(k-2)

Estimated FRF

Magnitude response Ideal FRF

Magnitude

-100-} !
0,000488281 0.2 0.4 0.5

Frequency

window length

’:) 2048

Figure 3-7. Front Panel of Lag Window Example VI
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Figure 3-8 shows the block diagram of this VI.

Simulate the syskem
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Figure 3-8. Block Diagram of Lag Window Example VI

In this example VI, the input signal u(k) is a swept sine wave whose
normalized frequency is from O to 0.5. The number of data points in the
input signal is 4096. The length of the lag window therefore must be less
than or equal to 4096. Figure 3-9 and Figure 3-10 show the resulting
frequency responses when the window length is 4096 and 64 respectively.
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Figure 3-9. Frequency Response with Large Window Length
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Figure 3-10. Frequency Response with Small Window Length

The frequency response curve is smoother and the variance is smaller when
the length of the lag window is small. However, when the length of the lag
window is too small, you cannot distinguish between the two close peaks
in the frequency response, as shown in Figure 3-10. When the length of the
lag window is large, the SI Estimate Frequency Response VI accurately

estimates the peaks, as shown in Figure 3-9. The bias is small with a large
lag window, but the variance of the estimated frequency response is large
with a large lag window.

3-16
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Setting the length of the lag window to 5—10% of the number of data points
when estimating the frequency response often results in a good trade-off
between the bias and variance. However, the selection of the length of the
lag window is not trivial. The length also depends on the signals, the
properties of the system, and the purpose of application. For example, if
you want to know the passband of a system, use a smaller lag window. If
you want to identify the dynamic properties of a system, such as its natural
frequency, use a larger lag window.

Applications of the Frequency Response

The frequency response gives the characteristics of the system in the
frequency domain. You can use the frequency response to obtain useful
information before applying parametric estimation. For example, you can
use the frequency response to determine whether you need to pre-filter the
signals or what the model order of the system is. You also can use
nonparametric frequency response to verify parametric model estimation
results by comparing the frequency response of the parametric model with
the nonparametric frequency response.
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One example of a real-world application of the frequency response is with
the flexible arm, as shown in Figure 3-11. The input of this system is the
reaction torque of the structure on the ground. This input is a multi-sine
wave with 200 frequency points equally spaced over the frequency band
from 0.122 Hz to 24.4 Hz. The output of this system is the acceleration of
the flexible arm. The frequency response of this system is not significant
outside of the range of interest, which is the frequency band of the input
signal, or 0.122 Hz to 24.4 Hz. However, notice that the magnitude
response has a peak around 42 Hz. The peak around 42 Hz may be the
result of noise, or nonlinearity, or another input source. You can use
lowpass filtering to remove the 42 Hz peak before applying parametric
estimation.

magnitude response

AR Y il
N T
ey

[ 1 1 1
0.795775 10 100 248,60
Frequency (Hz)

amplitude

phase response

Phase

1 1
0.795775 100 248.6
Frequency (Hz)

Figure 3-11. Frequency Response of a Flexible Arm
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Parametric Model Estimation
Methods

Parametric models describe systems in terms of difference or differential
equations depending on whether a system is represented by a discrete or
continuous model. Compared to nonparametric models, parametric models
might provide more accurate estimation if users have prior knowledge about
the system dynamics to determine model orders, time delays, and so on.

This chapter describes parametric model representations, the assumptions
about each estimation method, and reasons for choosing one representation
over another.

Parametric Model Representations

The LabVIEW System Identification Toolkit provides four categories of
parametric models—general-linear polynomial, transfer function,
zero-pole-gain, and state-space. General-linear polynomial, transfer
function, and zero-pole-gain models are all polynomial models.

General-Linear Polynomial Model

General-linear polynomial models apply only for discrete systems.
Generally, you can describe a discrete system using the following equation,
which is known as the general-linear polynomial model.

y(k) = 2"G(z, O)u(k) + H(z"", 0)e(k)
where  u(k) and y(k) are the input and output of the system, respectively

e(k) is the disturbance of the system which usually is zero-mean
white noise

G(z71, 0) is the transfer function of the deterministic part of the
system

H(z™1, 0) is the transfer function of the stochastic part of the
system
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The deterministic transfer function specifies the relationship between the
output and the input signal. The stochastic transfer function specifies how
the random disturbance affects the output signal. Often the deterministic
and stochastic parts of a system are referred to as system dynamics and
stochastic dynamics, respectively.

The term z~! is the backward shift operator, which is defined by the
following equations:

(k) = x(k-1)

272x(k) = x(k - 2)

77™x(k) = x(k —n)
z7" defines the number of delay samples between the input and the output.

G(z71,0) and H(z"', 0) are rational polynomials as defined by the following

equations:
Gz o) = B8
A(z,0)F(z,0)
H(zfl, 0) = C(z, 0)

A(z,0)D(z, 0)

The vector 0 is the set of model parameters. Equations in the following
sections of this manual do not display 6 to make the equations easier to
read.

The following equations define A(z), B(z), C(z), D(z), and F(z).

-1 -2
A(z) = l+a;z +ayz +...+a,z °

- - ~(ky— 1
B(z) = by+ b,z 1+b222+...+bkb_lz(b )

k

c

-1 -2 -
Ciz)=l+ciz +cyz +...+¢z

D(z) = 1+ dle + d2272 + ...+ dkdzikd
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_ _ —k,
F(z) = 1+fz 1+f222+...+fk/z !

where k,, k;, k., kg, and kf are the model orders.

The following equation describes a general-linear polynomial model.

A(2)y(k) = @u(kn CE) iy = BEy =y + £

F(z) D(2) F(z) p)H®

Figure 4-1 depicts the signal flow of a general-linear polynomial model.

f(k)
C(2)
D(z)
u(k) B(z) é) 1 y(k)
F(z) A(z)

Figure 4-1. Signal Flow of a General-Linear Polynomial Model

A general-linear polynomial model provides flexibility for both system
dynamics and stochastic dynamics. You can use the SI Estimate General
Linear Model VI to estimate general-linear polynomial models.

Setting one or more of A(z), C(z), D(z), and F(z) equal to 1 can create
simpler models such as autoregressive with exogenous terms (ARX),
autoregressive-moving average with exogenous terms (ARMAX),
output-error, and Box-Jenkins models, which you commonly use in
real-world applications.

ARX Model

When C(z), D(z), and F(z) equal 1, the general-linear polynomial model
reduces to an ARX model. The following equation describes an ARX
model.

A(2)y(k) = z7"B(Q)u(k) + e(k) = B(z)u(k — n) + e(k)

@ Note The backward shift operator makes z"u(k) = u(k — n).
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Figure 4-2 depicts the signal flow of an ARX model.

e(k)

u(k) 1 y(k)
—~—>(B(z) ——> i) .

Figure 4-2. Signal Flow of an ARX Model

The ARX model is the simplest model incorporating the stimulus signal.
However, the ARX model captures some of the stochastic dynamics as part
of the system dynamics. In this model, the transfer function of the
deterministic part G(z~!, 0) of the system and the transfer function of the
stochastic part H(z™!, 0) of the system have the same set of poles. This
coupling can be unrealistic. The system dynamics and stochastic dynamics
of a system do not share the same set of poles all the time. You can reduce
this disadvantage if the signal-to-noise ratio is high.

When the disturbance e(k) of a system is not white noise, the coupling
between the deterministic and stochastic dynamics can bias the estimation
of the ARX model. You can set the model order higher than the actual
model order to minimize the estimation error, especially when the
signal-to-noise ratio is low. However, increasing the model order can
change some dynamic characteristics of the model, such as the stability of
the model.

The identification method for the ARX model is the least squares method,
which is a special case of the prediction error method. The least squares
method is the most efficient polynomial estimation method because this
method solves linear regression equations in analytic form. Moreover, the
solution is unique. Refer to the LabVIEW System Identification Toolkit
Algorithm References manual (SIreference.pdf), available in the
labview\manuals directory, for more information about the least squares
and prediction error methods.

You can use the SI Estimate ARX Model VI to estimate ARX models.

ARMAX Model

When D(z) and F(z) equal 1, the general-linear polynomial model reduces
to the ARMAX model. The following equation describes an ARMAX
model.

A@)y(k) = 77'B(2)u(k) + C(z)e(k) = B(z)u(k — n) + C(z)e(k)
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Figure 4-3 depicts the signal flow of an ARMAX model.

f(k)
C(z)

k) ¢ K,

u(k) B(z) @ /%Z) y(k)

Figure 4-3. Signal Flow of an ARMAX Model

Unlike the ARX model, the system structure of an ARMAX model includes
the stochastic dynamics. ARMAX models are useful when you have
dominating disturbances that enter early in the process, such as at the input.
For example, a wind gust affecting an aircraft is a dominating disturbance
early in the process. The ARMAX model has more flexibility than the ARX
model in handling models that contain disturbances.

The identification method of the ARMAX model is the prediction error
method. The SI Estimate ARMAX Model VI uses the Gauss-Newton
method to optimize the mean square value of the prediction error when
searching for the optimal ARMAX model. This searching process is
iterative and might converge to a local minimum. Therefore, you must
validate the estimated model. If the estimated model passes the validation
test, you can use this model even if the SI Estimate ARMAX Model VI
might locate only a local minimum. Refer to Chapter 5, Partially Known
Model Estimation Methods, for more information about optimization and
local minima.

Output-Error Model

When A(z), C(z), and D(z) equal 1, the general-linear polynomial model
reduces to the output-error model. The following equation describes an
output-error model.

p(k) = %u(k)+e(k) - f%u(k—n)+e(k)
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Figure 4-4 depicts the signal flow of an output-error model.

e(k)

u |BE@) y(K)
" F

Figure 4-4. Signal Flow of an Qutput-Error Model

The output-error model describes the system dynamics separately from the
stochastic dynamics. The output-error model does not use any parameters
for simulating the disturbance characteristics.

The identification method of the output-error model is the prediction error
method, which is the same as that of the ARMAX model. If the disturbance
e(k) is white noise, all minima are global. However, a local minimum can
exist if the disturbance is not white noise. You can use the SI Estimate OE
Model VI to estimate output-error models.

Box-Jenkins Model

When A(z) equals 1, the general-linear polynomial model reduces to the
Box-Jenkins model. The following equation describes a Box-Jenkins
model.

_BE) g, €O BE) L C)
YR =y MR 5o = For e mr piye®

Figure 4-5 depicts the signal flow of a Box-Jenkins model.

| e(k)
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u(k) B(z) é} y(k)
Fz)

Figure 4-5. Signal Flow of a Box-Jenkins Model
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The Box-Jenkins model provides a complete model of a system. The
Box-Jenkins model represents disturbance properties separately from
system dynamics. This model is useful when you have disturbances that
enter late in the process, such as measurement noise on the output.

The identification method of the Box-Jenkins model is the prediction error
method, which is the same as that of the ARMAX model. You can use the
SI Estimate BJ Model VI to estimate Box-Jenkins models.

AR Model

When C(z), D(z), and F(z) equal 1 and B(z) equals 0, the general-linear
polynomial model reduces to the AR model. The following equation
describes an AR model.

A2)y(k) = e(k)

Figure 4-6 depicts the signal flow of an AR model.

l

1 y(k)
A(z)

e(k)

Figure 4-6. Signal Flow of an AR Model

The AR model does not include the dynamics between the input and output.
Therefore, the AR model is more suitable for representing signals rather
than a system because a system generally has an input and an output.

Time series analysis methods, such as power spectrum envelope
estimation, prewhitening, and linear prediction coding, commonly use the
AR model. Refer to the Time Series Analysis Tools User Manual at
ni.com/manuals for more information about time series analysis
methods.

If you consider A(z) to be a filter, A(z)y(k) is the filtering of A(z) on the
signal y(k). The result of the filtering is white noise e(k), as shown in the
AR model equation. Hence, the filter A(z) also is known as the
prewhitening filter. From the frequency-domain standpoint, the
prewhitening filter A(z) suppresses the spectrum at frequencies where the
magnitude of the spectrum is large. Suppressing the high-magnitude
frequencies results in a flat spectrum. Refer to Chapter 3, Nonparametric
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Model Estimation Methods, for examples of using the AR model for
prewhitening.

As shown in the AR model equation, if you know the AR coefficients A(z)
and the noise e(k), you can reconstruct the signal y(k). A(z) and e(k)
completely characterize a signal. A(z) normally has a small number of
coefficients. e(k) has a small dynamic range and requires a smaller number
of bits for encoding. Therefore, you can use the AR model for compression
purposes in a process known as linear prediction coding (LPC). Speech and
vibration signal processing methods, such as compression and pattern
recognition, commonly use LPC. You also can use A(z) and e(k) to estimate
the power spectrum of the signal y(k). Use the SI Estimate AR Model VI to
estimate AR models.

Transfer Function Model

You can use a transfer function to define either a continuous system or a
discrete system using the following equations, respectively.

y(6) = G(s)u(r) +e(?)

G(2)u(k) + e(k)

y(k)

Let the parameters of the model be the numerator and denominator
coefficients of the transfer function. The transfer function provides a
mathematical representation of the relationship between one input and
one output. The following equations define the continuous and discrete
transfer functions where the numerator and denominator are polynomials.

Continuous Transfer Function Model

-1
bo+bys+...+b, " +b,s"

G(s) =

n-1 n
agta;s+...+a, s +a,s
Discrete Transfer Function Model

m—1 m
G(z) = by+biz+...+b, 1z +b,z

n—1 n
ag+az+...+a, Z  +a,z
You can use the SI Estimate Transfer Function Model VI to estimate both

continuous and discrete models. For discrete models, this VI implements
the prediction error method. For continuous models, this VI internally
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performs the following three consecutive steps to estimate the model. The
SI Estimate Transfer Function Model VI first calculates a discrete model
with the prediction error method. This VI then applies the Zero-Order-Hold
method to convert the discrete model to a continuous model. Finally, this
VI uses the Gauss-Newton method to optimize the continuous model this
VI converted in the second step. Refer to the LabVIEW Control Design
Toolkit User Manual, available atni . com/manuals, for more information
about the Zero-Order-Hold method.

Transfer function models describe only the deterministic part of the system.
For stochastic control, general-linear polynomial models commonly are
used because these models separately describe the deterministic and
stochastic parts of a system. However, in classical control engineering, the
deterministic part of the system is more important than the stochastic part.
Therefore, you can take advantage of the relationship between input and
output signals of the transfer function model to describe the deterministic
part of the system.

Zero-Pole-Gain Model

If you rewrite the equations for the transfer function model to show the
locations of the zeroes and poles of the dynamic system, you obtain the
zero-pole-gain model. The following equations represent the continuous
and discrete zero-pole-gain models, respectively.

G(S) = K(S_Zl)(s_zz)...(s—zm)
(s=p)(s=py)...(s—p,)

Gz) = K(z-z))(z-2,)...(z—z,,)
(z-p))(z=-p,)...(s=p,)

where K is the gain, z; are the zeroes, and p; are the poles.

The System Identification Toolkit does not provide a VI to estimate
zero-pole-gain models directly because you can use the SI Model
Conversion VI to convert another model representation to a zero-pole-gain
model. Refer to Chapter 8, Analyzing, Validating, and Converting Models,
for more information about converting other model representations to
zero-pole-gain models. Refer to the LabVIEW Help, available by selecting
Help»Search the LabVIEW Help, for more information about the

SI Model Conversion VI.
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State-Space Model

In addition to polynomial models, you also can estimate state-space models
with the System Identification Toolkit. The state-space model describes a
system using difference or differential equations with an auxiliary state
vector. The following equations describe a discrete state-space model.

x(k +1) = Ax(k) + Bu(k) + Ke(k)
(k) = Cx(k) + Du(k) + e(k)
The following equations describe a continuous state-space model.
X = Ax(t) + Bu(t) + Ke(t)

y = Cx(t) + Du(t) + e(t)
where x is the state vector

k is the model sampling time multiplied by the discrete time step,
where the discrete time step equals 0, 1, 2, ...

t is the time for the continuous model

A is the system matrix that describes the dynamics of the states of
the system

B is the input matrix that relates the inputs to the states
C is the output matrix that relates the outputs to the states
D is the transmission matrix that relates the inputs to the outputs

K is the Kalman gain

The dimension of the state vector x is the only setting you need to provide
for the state-space model. The state-space transfer matrices, A, B, C, and D,
often reflect physical characteristics of a system.

The state-space model is the most convenient model in describing
multivariable systems. State-space models often are preferable to
polynomial models, especially in modern control applications that focus on
multivariable systems.

The System Identification Toolkit provides the SI Estimate State-Space
Model VI to estimate discrete state-space models using two methods—the
deterministic-stochastic subspace and the realization methods. The
deterministic-stochastic subspace method uses principal component
analysis to estimate parameters. This method uses both stimulus and
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response signals to estimate state-space models. The realization method
uses the impulse response to estimate only the deterministic state-space
model. This method does not include stochastic parts of the system in the
model structure. Therefore, the difference between these two methods is
that the deterministic-stochastic subspace method includes noise in the
model structure, whereas the realization method does not. Refer to the
LabVIEW System Identification Toolkit Algorithm References manual
(SIreference.pdf), available in the labview\manuals directory, for
more information about the deterministic-stochastic subspace method and
the realization method.

For continuous state-space models, the System Identification Toolkit
supports partially known model estimation methods. You must provide an
initial guess for each parameter before conducting estimation. Refer to
Chapter 5, Partially Known Model Estimation Methods, for more
information about partially known, continuous, state-space model
estimation methods.

User-Defined Model

When the model you want to estimate does not fall into the above four
categories, you can define your own model by revising a template VI. You
can find template VIs in the labview\vi.lib\addons\System
Identification\User-Defined Model Templates.1lb directory.
Then you can estimate the model you define using the SI Estimate
User-Defined Model VI. The SI Estimate User-Defined Model VI enables
you to estimate some other model representations in addition to the
general-linear polynomial, transfer function, zero-pole-gain, and
state-space models that the System Identification Toolkit directly supports.
For example, you can use this VI to estimate nonlinear models. With this
VI, you also can estimate your own linear models that you define early.

Refer to the Estimate Hammerstein Model example VI, the Estimate
Hammerstein-Wiener Model example VI, the Estimate Wiener Model
example VI, and the Parameterize Nonlinear Differential Equation example
VI for more information about using the SI Estimate User-Defined Model
VI to estimate nonlinear models. You can access these example VIs by
selecting Help»Find Examples to display the NI Example Finder and then
navigating to the Toolkits and Modules»System Identification folder.
Refer to the LabVIEW Help for more information about the SI Estimate
User-Defined Model VI.
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Polynomial Models versus State-Space Models

Selecting the correct model type and model order is crucial for successfully
estimating a parametric model. In general, state-space models provide a
more complete representation of the system, especially for multiple-input
multiple-output (MIMO) systems, than polynomial models because
state-space models are similar to first principle models that can provide
more degree of freedom in describing MIMO systems.

The identification procedure for state-space models does not involve
nonlinear optimization so the estimation reaches a solution regardless of
the initial guess. Moreover, the parameter settings for the state-space model
are simpler. You need to select only the order, or the number of states, of
the model. The order can come from prior knowledge of the system. You
also can determine the order by analyzing the singular values of the
information matrix. However, the states that the state-space identification
procedure identifies might not reflect the physical characteristics of a
system accurately. Using a similarity transformation, you can identify
equivalent models with states that better represent the system. Similarity
transformations enable you to transform the states without misrepresenting
the input-output behavior of the system. Refer to the book Linear systems!
for more information about similarity transforms. Refer to Chapter 9,
System Identification Case Study, for an example of how to estimate the
order of the state-space model of a system.

When model order is high, state-space models are preferable to polynomial
models. Polynomial models with high order might encounter numerical
problems in computation.

Determining Parameters for the Prediction Error

Method

The identification method for most of the polynomial models is the
prediction error method. Determining the delay and model order for the
prediction error method is typically a trial-and-error process. The following
steps can help you obtain a suitable model. These steps are not the only
methods you can use, nor are these steps a comprehensive procedure.

1. Obtain useful information about the model order by observing the
number of resonance peaks in the nonparametric frequency response
function. Normally, the number of peaks in the magnitude response
equals half the order of A(z)F(2).

! Kailath, T. 1980. Linear systems. Prentice Hall.
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2. Obtain a reasonable estimate of the delay by observing the impulse
response or by testing reasonable values in a medium-sized ARX
model. Choose the delay that provides the best model fit based on
prediction errors or another criterion.

3. Test various ARX model orders with this delay, choosing those orders
that provide the best fit.

4. Reduce the model order by plotting the poles and zeros with
confidence intervals and looking for potential cancellations of
pole-zero pairs. The resulting model might be unnecessarily high in
order because the ARX model describes both the system dynamics and
noise properties using the same set of poles. The ARMAX,
output-error, and Box-Jenkins models use the resulting orders of the
poles and zeros as the B and F' model parameters and the first- or
second-order models for the noise characteristics. Refer to Chapter 8,
Analyzing, Validating, and Converting Models, for more information
about pole-zero plot and confidence intervals.

5. Determine if additional signals influence the output if you cannot
obtain a suitable model at this point. You can incorporate
measurements of these signals as extra input signals.

If you still cannot obtain a suitable model, additional physical insight into
the problem might be necessary. Compensating for nonlinear sensors or
actuators and handling important physical nonlinearities often are
necessary in addition to using a ready-made model.

From the prediction error standpoint, the higher the order of the model is,
the better the model fits the data because the model has more degrees of
freedom. However, you need more computation time and memory for
higher orders. The parsimony principle says to choose the model with the
smallest degree of freedom, or number of parameters, if all the models fit
the data well and pass the verification test. The criteria to assess the model
order therefore not only must rely on the prediction error but also must
incorporate a penalty when the order increases. Akaike’s Information
Criterion (AIC), Akaike’s Final Prediction Error Criterion (FPE), and the
Minimum Description Length Criterion (MDL) are criteria you can use to
estimate the model order. The SI Estimate Orders of System Model VI
implements the AIC, FPE, and MDL methods to search for the optimal
model order in the range of interest. You also can plot the prediction error
as a function of the model dimension and then visually find the minimum
in the curve or apply an F-test to obtain an appropriate estimation of the
model order.
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Akaike’s Information Criterion

The Akaike’s Information Criterion (AIC) is a weighted estimation error
based on the unexplained variation of a given time series with a penalty
term when exceeding the optimal number of parameters to represent the
system. For the AIC, an optimal model is the one that minimizes the
following equation:

AIC = Vn(l +2—1’)
N

N is the number of data points, V,, is an index related to the prediction error,
or the residual sum of squares, and p defines the number of parameters in
the model.

Final Prediction Error Criterion

The Final Prediction Error Criterion (FPE) estimates the model-fitting error
when you use the model to predict new outputs. For the FPE, an optimal
model is the one that minimizes the following equation:

FPE = Vn(l + 2—1’)
N-p

You want to choose a model that minimizes the FPE, which represents a
balance between the number of parameters and the explained variation.

Minimum Description Length Criterion

The Minimal Description Length Criterion (MDL) is based on V,, plus a
penalty for the number of terms used. For the MDL, an optimal model is
the one that minimizes the following equation:

MDL = Vn(l +M)
N

You want to choose a model that minimizes the MDL, which allows the
shortest description of data you measure.
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Partially Known Model
Estimation Methods

The model estimation methods introduced in previous chapters assume that
all model parameters are adjustable. However, in many real-world
applications, you cannot adjust all the parameters arbitrarily, because the
parameters might have constraints. For example, in some chemical
processes, water must flow only in one direction. When estimating the flow
rate of water, you know that the flow rate cannot be negative. Thus, the
constraint is that the flow rate must be a positive value. You must consider
this constraint and any other constraints when you estimate the flow rate of
water in this process. Models for which you can set constraints on the
parameters are called partially known models.

This chapter compares unknown and partially known model estimation
methods, describes the methods you can use to define partially known
models, and explains how user-defined initial values affect estimation
results. This chapter also provides a case study to estimate a partially
known model.

Comparing Unknown and Partially Known Model
Estimation Methods

When you use the model estimation methods described in previous
chapters, you assume systems are unknown. However, in practice, many
systems are partially known because you have information about the
underlying dynamics or some of the physical parameters. Unknown and
partially known models also are known as black-box and grey-box models,
respectively.

Conventional black-box model estimation methods do not use the prior
knowledge you have about a model. When estimating a black-box model,
you cannot set constraints on parameters. You can set only the model order
that specifies the number of parameters to calculate. With black-box
estimation methods, you use either an algorithm or a trial-and-error method
to vary model parameters until the behavior of the model matches the
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measured input-output data. You can use the estimated parameters to
reproduce the response of the system accurately. However, the parameters
might not have any physical meanings.

With grey-box model estimation methods, you can incorporate prior
knowledge of a system by setting constraints on certain parameters. These
constraints reflect the knowledge you have of the physical system. You
therefore can obtain a more realistic parameter estimation. Such constraints
usually follow one of the following guidelines:

e A parameter must be as close to a value as possible.
* A parameter must be between two values.

*  Two or more parameters must correlate to each other.

With these constraints, you can specify the system model more accurately.
Parameter constraints increase the possibility of the System Identification
VIs locating the optimal parameters that describe the real-world model.
Parameter constraints also improve the accuracy of locating these optimal
parameters.

Defining and Estimating Partially Known Models

Before estimating partially known models, you first must define those
models. Using prior knowledge, you choose a model for the plant in a
system and set parameter constraints for the model. You then can estimate
the model to represent the real-world plant. The LabVIEW System
Identification Toolkit provides two VIs with which you can define partially
known models—the SI Create Partially Known State-Space Model VI and
the SI Create Partially Known Continuous Transfer Function Model VI.

The SI Create Partially Known State-Space Model VI enables you to define
partially known continuous or discrete state-space models. Refer to the
State-Space Model section of Chapter 4, Parametric Model Estimation
Methods, for more information about state-space model definitions.
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You can use the SI Create Partially Known State-Space Model VI, for
example, to define a state-space model that represents an RLC circuit
consisting of a resistor R, an inductor L, and a capacitor C. Using prior
knowledge, you describe the relationship of R, L, and C with the following
equations:

Y { 0 1 }
_1/(LxC) —R/L
B=[o01/(Lx0)

¢ =110

You also can use prior knowledge to define the initial guesses and upper
and lower limits of R, L, and C. The SI Create Partially Known State-Space
Model VI uses variables rather than numerical values to construct a
symbolic model. As Figure 5-1 shows, you use variable names, such as R,
L, and C, in the symbolic A, symbolic B, symbolic C, and symbolic D
inputs to define the RLC circuit. Then you specify values for R, L, and C in
the variables input.

Figure 5-1. Using Variables to Create a Symbolic State-Space Model
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The SI Create Partially Known Continuous Transfer Function Model VI
enables you to define partially known continuous transfer function models.
The following equation represents a continuous transfer function model.

2
K,(1+as+ays™...) -sT,

e
[T+ Tt +2 Fs/w'+ (s/w))
i J

where K, is the transfer function gain
T, is the delay
T, is the first-order time constant
w is the natural frequency
r is the damping ratio

s represents the time

You can apply the prior knowledge you have about the parameters K, 7,
T, w, and r to the static gain, delay(s), Tp(s), natural freq (rad/s), and
damping ratio inputs, respectively, of the SI Create Partially Known
Continuous Transfer Function Model VI by defining the initial guesses and
upper and lower limits.

Refer to the Transfer Function Model section of Chapter 4, Parametric
Model Estimation Methods, for more information about continuous transfer
function models.

With the System Identification Toolkit and a partially known model, you
can set constraints on each parameter of a state-space or continuous transfer
function model in two ways—with an upper and lower limit or with an
initial guess.

Setting Parameter Constraints with a Range

If you have prior knowledge of a parameter, you can set constraints by
providing upper and lower limits for the parameter. With the limit range,
the ST Estimate Partially Known State-Space Model VI randomly selects a
value within the range as an initial guess of the parameter. From this initial
value, the VI then performs optimization to minimize the difference
between the estimated output and the measured real output. The goal of
constraint optimization is to find a global optimum, or the smallest
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difference between the estimated output and the real output, with
parameters of physical meaning. Successfully finding the global optimum
depends on the limit range you set and the random initial value the

SI Estimate Partially Known State-Space Model VI selects.

To increase the possibility of finding the global optimum, complete the
following steps:

1. Use prior knowledge to set the range as narrow as possible.

2. Perform multiple estimates with the range you set. You might get
different optimization results because the SI Estimate Partially Known
State-Space Model VI randomly selects an initial value within the
range each time you run the VI. If you repeatedly obtain the same
result, this result might be the optimum you want to find. If you obtain
inconsistent results, either choose the result that best meets the system
requirements, or continue with step 3 to adjust the limit range.

3. Select one of the previous results you got in step 2 according to the
prior knowledge you have of the system. Narrow the range in which the
result falls. Run the SI Estimate Partially Known State-Space Model
VI multiple times. A consistent result you get might be the optimum
you want to find. Otherwise, repeat this step until you find a consistent
result.

You set limits in the SI Estimate Partially Known Continuous Transfer
Function Model VI the same way you do in the SI Estimate Partially
Known State-Space Model VI.

Setting Parameter Constraints with an Initial Guess

If you have information about a certain parameter and can estimate a value
for that parameter, you can refine estimation by using that value as an initial
guess.

The SI Estimate Partially Known State-Space Model VI and the SI
Estimate Partially Known Continuous Transfer Function Model VI
perform optimization using the initial guess you provide. These two VIs
then use the upper and lower limit settings you specify as boundary
constraints during the optimization process.

The initial guess you provide greatly affects the performance of any
optimization technique. Whether an optimization process reaches a global
optimum depends on the initial guess. With some initial guesses,
optimization processes might locate only a local optimum, which is the
smallest difference between the estimated output and the real output within
a certain smaller range rather than in the whole range of interest. Therefore,
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to decrease the risk of locating a local optimum instead of the global
optimum, try different initial guesses. Figure 5-2 shows an example of
different estimations resulting from different initial guesses and illustrates
the importance of setting different initial guesses to find the global
optimum.
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Figure 5-2. Estimating a Local Optimum and a Global Optimum from Different Initial
Guesses

As Figure 5-2 shows, if you set C to an initial guess of 0.1, you obtain an
optimized value of 0.02. You can see the Estimated response (global) plot
and the Measured response plot match in the Response graph. This
response from the estimated model is close to the real-world model
response. However, if you set the initial guess of C to 1.5, you get an
optimized value of 1.41. The Estimated response (local) plot does not
match the Measured response plot in the Response graph. Thus, with this
initial guess, the estimated model response does not represent the
real-world model response accurately.

Partially Known Model Estimation Case Study

This section contains an example that uses the prior knowledge you have
about a system to define and estimate state-space models. You use the same
procedure when estimating continuous transfer function models. However,
you apply different methods to define continuous transfer function models.
Refer to the Defining and Estimating Partially Known Models section of
this chapter for more information about defining transfer function models.
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Figure 5-3 shows an RLC circuit, where u is the input voltage, y is the
output voltage, i; is the current, and u is the capacitor voltage. In this
example, y equals the capacitor voltage uc.

R
—
L
o}
u C U=y
0
i
/YY)
L

Figure 5-3. An RLC Circuit Representing a State-Space Model

Suppose R is 1.5 Q and L and C are unknown. You can complete the
following steps to identify the values of L and C.

1. Apply a wide-band voltage to u and measure the output y
simultaneously. The Continuous State-Space Model of an RLC Circuit
example VI uses a chirp signal from 0.5 Hz to 6 Hz as the stimulus
signal. The response to the chirp signal is the response signal. This
example VI then preprocesses the stimulus and response signals to
remove the offset level in these signals.

2. Define a model for this circuit. Because you have information about
the approximate values of L and C, you can build a partially known
state-space model or a partially known transfer function model.

3. Estimate the model you defined in step 2 and then estimate L and C.

The Continuous State-Space Model of an RLC Circuit example VI guides
you through defining and estimating a state-space model for the RLC
circuit. You can access this example VI by selecting Help»Find Examples
to display the NI Example Finder and then navigating to the Toolkits and
Modules»System Identification folder. Refer to the NI Developer Zone at
ni.com/zone for an example of using a partially known transfer function
model to estimate the RLC circuit.
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You can use the following first-order differential equation to represent the
relationship between the capacitor voltage and the current of this RLC
circuit.

- 1.
uc = i (5-1)

You can use the following first-order differential equation to represent the
voltage relationship in this RLC circuit.

Rl'L+uC+Li.L = u (5-2)

By manipulating Equations 5-1 and 5-2, you can deduce the continuous
state-space model for this RLC circuit using the following two equations:

ucl _ | o 1/cluc, | o],
il s -r/L|i| l1/L
L

y=”c:[10] L;C
L

The System Identification Toolkit provides the SI Create Partially Known
State-Space Model VI with which you can build the symbolic state-space
model for this circuit, as shown in Figure 5-4.
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Figure 5-4. Defining a Partially Known State-Space Model

You specify the symbolic state-space model using formula strings, such as
1/¢,-1/L,and -1.5/L, with L and C as variables. Then you define L and
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C with the variables input, as shown in Figure 5-5. Using prior knowledge,
you know that L is a positive value around the initial value of 0.1 H, and
Cis a value between O F and 0.3 F.

Wou already know the walue of the resiskance, R=1.5
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Figure 5-5. Setting Model Parameters of the RLC circuit

Next, you can estimate the state-space model with the SI Estimate Partially
Known State-Space Model VI, as shown in Figure 5-6.
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Figure 5-6. Estimating a Partially Known State-Space Model
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The SI Estimate Partially Known State-Space Model VI estimates each
parameter of the model. You obtain the estimated model and optimized
variables of the model after this VI performs an optimization. In this
example, you obtain the values 0.20 H for L and 0.02 F for C, as shown in
Figure 5-7.
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Figure 5-7. Optimized Variables of the RLC Circuit

The Continuous State-Space Model of an RLC Circuit example VI uses the
SI Draw Model VI and the values of L and C you obtain to display the
estimated model in a picture indicator, as shown in Figure 5-8.
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Figure 5-8. The Estimated Model of the RLC Circuit

You then can determine how accurately this model simulates the real-world
plant by validating the model. Refer to Chapter 4, Parametric Model
Estimation Methods, for more information about validating models. Refer
to Chapter 9, System Identification Case Study, for an example of
validating a model.

You can select Help»Find Examples to display the NI Example Finder and
then navigate to the Toolkits and Modules»System Identification book to
view more examples of using the System Identification Toolkit to estimate
the partially known model of a plant.
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Model Estimation Methods in
Closed-Loop Systems

Unlike the systems discussed in the previous chapters, systems in many
real-world applications contain feedback. Feedback is a process in which
the output signal of a plant is passed, or fed back, to the input to regulate
the next output. Systems without feedback are open-loop systems. Systems
with feedback are closed-loop systems.

In an open-loop system, the stimulus signal and the output noise do not
correlate with each other. In a closed-loop system, the stimulus signal
correlates to the output noise. Though you can apply many open-loop
model estimation methods to closed-loop data, not all open-loop model
estimation methods handle the correlation between the stimulus signal and
output noise well. This chapter describes closed-loop model estimation
methods, the corresponding assumptions, and the advantages and
disadvantages of these methods.

Feedback in a Closed-Loop System

Feedback is common in control systems. With feedback, the system output
corresponds to a reference input. Feedback also reduces the effect of input
disturbances. One example of a closed-loop system is a system that
regulates room temperature, as shown in Figure 6-1. In this example, the
reference input is the temperature T,, at which you want the room to stay.
The thermostat senses the actual temperature, T,,,,.;> of the room. Based on
the difference between 7, and T,,,, the thermostat activates the heater or
the air conditioner. The thermostat returns 7, as the feedback to
compare again with T,,. Then the thermostat uses the difference between
T seruar @and T, to regulate the temperature at the next moment.
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Figure 6-1. A Closed-Loop System Regulating Room Temperature

You must verify if feedback exists before choosing a model estimation
method because not all open-loop model estimation methods work
correctly with closed-loop data.

Note You need to have knowledge about whether the data you collect is from an
open-loop system or a closed-loop system according to the real-world system
configuration. If you do not have such information, you can determine if feedback exists
by obtaining the impulse response of a plant. You can use the Least Squares instances of
the SI Estimate Impulse Response VI to estimate the impulse response of a plant.

Figure 6-2 shows a comparison of the impulse responses of the plant in a

closed-loop system and an open-loop system. The values outside the upper
limit and lower limit range at the negative lag, which appears between —10

and O on the x-axis, are considered significant values. Significant values in
the impulse response at negative lags imply feedback in data. As shown in
Figure 6-2, significant values exist in the Closed-loop data plot. Therefore,
feedback exists in the closed-loop system. No significant impulse response
values exist in the Open-loop data plot. Thus, feedback does not exist in

the open-loop system.

Amplitude

Impulse Response

Closed-loop data -
Open-loop data m
Uppet limnit
Lower limit

confidence level (%)

Figure 6-2. Impulse Responses of Open-Loop and Closed-Loop Data
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Chapter 6 Model Estimation Methods in Closed-Loop Systems

You can use the SI Detect Feedback VI to detect feedback in a system. This
VI calculates the impulse response of a plant using the stimulus and
response signals of the plant and then calculates upper and lower limits
according to the confidence level you set. The SI Detect Feedback VI
displays the result of feedback detection in an impulse response graph.

If significant values exist in the impulse response at negative lags, the
system has feedback. This VI also uses a Boolean indicator to show the
result of detection.

Refer to the Impulse Response section of Chapter 3, Nonparametric Model
Estimation Methods, for more information about impulse responses. Refer
to the LabVIEW Help, available by selecting Help»Search the LabVIEW
Help, for more information about the SI Estimate Impulse Response VI and
the SI Detect Feedback VI.

Understanding Closed-Loop Model Estimation Methods

Closed-loop model estimation methods use data from a closed-loop system
to build a model for a plant that a controller regulates. Figure 6-3 shows a
system that consists of a plant and a controller. In this system, G, is the
plant, F, is the controller, H is the stochastic part of the plant, u is the
stimulus signal, y is the response signal, 7 is the reference signal that is an
external signal, and e is the output noise. In control engineering, this system
is known as a feedback-path closed-loop system, which is a typical
closed-loop system.

Reference Signal

Stimulus Signal

e

Controller <

Fy

Figure 6-3. A Feedback-Path Closed-Loop System
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In some cases, the controller comes before the plant in a closed-loop
system. This system is known as a feedforward-path closed-loop system,
as shown in Figure 6-4.

ro+ u
Reference SignaIAPQ—V Controller ————9 Response Signal

Stimulus
Signal

Fy

Figure 6-4. A Feedforward-Path Closed-Loop System

Depending on the amount of prior knowledge you have about the feedback,
the controller, and the reference signal of a system, you can categorize
closed-loop model estimation approaches into the following three groups:

Direct identification—Uses the stimulus signal and the response
signal to identify the plant model as if the plant is in an open-loop
system. You can apply the direct identification approach to compute
many models, such as the general-linear polynomial, state-space,
transfer function, and zero-pole-gain models.

Indirect identification—Identifies a closed-loop system using the
reference signal and the response signal, and then determines the plant
model based on the known controller of the closed-loop system. You
can apply the indirect identification approach to compute transfer
function models.

Joint input-output identification—Considers the stimulus signal and
the response signal as outputs of a cascaded system. The reference
signal and the noise jointly perturb the system, and the plant model is
identified from this joint input-output system. You can apply the joint
input-output identification approach to compute transfer function
models.

You can choose a suitable model identification approach according to the
information you have about the closed-loop system. Table 6-1 summarizes
the information you must have to use each identification approach.
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Input-Output

v

v

v

Stimulus Signal | Response Signal Rest;egl:;ce Igif:) I;:;(;ltlie;.n
Direct ve v — —
Indirect — v v v
Joint

With the LabVIEW System Identification Toolkit, you can choose to use
the direct, indirect, or joint input-output identification approaches for
different types of closed-loop systems. The direct identification approach
supports single-input single-output (SISO), multiple-input single-output
(MISO), and multiple-input multiple-output (MIMO) systems. The indirect
and joint input-output identification approaches support SISO systems
only.

The following sections discuss the algorithms and assumptions of each
closed-loop identification approach in detail.

Direct Identification

© National Instruments Corporation 6-5

If the stimulus and response signals of a closed-loop system are available
but you do not have any other information about the system, you can use
only the techniques developed for open-loop models to estimate the
closed-loop system. However, you cannot apply all open-loop
identification methods to estimate the model of a plant in a closed-loop
system. Some open-loop model identification methods assume zero
correlation between the stimulus signal and output noise. In closed-loop
systems, this correlation is nonzero. Thus, if you use certain open-loop
model estimation methods, such as the instrument variable (IV) method
and the correlation analysis methods, with closed-loop data, you might
estimate a model incorrectly. You can use the prediction error method to
identify the plant in a closed-loop system.

The direct identification approach is used commonly in real-world
applications. This approach is convenient because you do not need to have
additional information about a closed-loop system, such as the reference
signal or the controller. However, the estimation might not be accurate if
the model type you select for a plant does not describe the output noise of
the system accurately. For example, if the output noise of a plant is color
noise and you select an OE model, which assumes the output noise is white
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noise, the estimation for the OE model might be biased when you use direct
identification. The bias might be small, though, if the signal-to-noise ratio
(SNR) of the system is high.

Indirect Identification

The indirect identification approach, which estimates the transfer function
model of a plant in a closed-loop system, first identifies the transfer
function model of the closed-loop system based on the reference signal and
the response signal. This approach then retrieves the transfer function
model of the plant from the identified closed-loop system. The indirect
identification approach can identify the transfer function of the plant
accurately even when the SNR of the system is low and no matter whether
the output noise is white noise or color noise. However, this approach
requires prior knowledge about the controller of the system and the
reference signal also must be available. In addition, any inaccuracy or
nonlinearity of the controller in the system might affect estimating the
model of the plant.

With indirect identification, you can use the following two equations to
describe the feedback-path closed-loop system shown in Figure 6-3.

(k) = Go(z)u(k) +e(k) (6-1)

u(k) = r(k)-F,(z2)y(k) (6-2)
where  Gy(z) is the open-loop transfer function of the plant

F(z) is the transfer function of a linear, time-invariant (LTI)
controller

u(k) is the stimulus signal of the system
y(k) is the response signal of the system
r(k) is the reference signal of the system

e(k) is the output noise of the system

By combining Equations 6-1 and 6-2, you can represent the closed-loop
relationship with the following equation:

Gy(2) -
1+ Go(z)Fy(z)

y(k) = (k) + (k)

1
[+ Go(2)F,(2)°
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If you define G, as the closed-loop transfer function between the reference
signal and the response signal, and let G satisfy the following equation:

G = Go(Z)
T 1+ Gy(2)F,(2)

you can estimate G.; with (k) as the input and y(k) as the output using an
open loop method, because r (k) and e(k) are uncorrelated. You then can
calculate Gy after you calculate G, as the following equation shows:

G
Gy = —<— (6-3)
1-G,F,
For feedforward-path closed-loop systems, as shown in Figure 6-4, you use

the following two equations to describe the systems.
(6-4)

y(k) = Go(2)u(k) + e(k)

[r(k) = y(K)1F,(2) (6-5)

u(k)

By combining Equations 6-4 and 6-5, you can represent the
feedforward-path closed-loop relationship with the following equation:

F (2)Gy(2) 1
_ Yy 0
Yk =13 GO(z)Fy(z)r(k) A Go(z)Fy(z)e(k)

If you define G, as the feedforward-path closed-loop transfer function and
let G, satisfy the following equation:
_ FG)
T 1+ Gy(2)F(2)

you can estimate G, with r(k) as the input and y(k) as the output using an
open loop method, because r(k) and e(k) are uncorrelated. You then can
calculate Gy after you calculate G, as the following equation shows:

Gy = — et (6-6)
(1-G.)F,

With indirect identification, you calculate G, by performing polynomial

operations on G, and F). Because of the limitations of polynomial
operations, the orders of the numerator and denominator might change after
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manipulation. Thus, the SI Estimate Transfer Function Model VI or the
SI Transfer Function Estimation Express VI, which you can use with the
indirect identification approach, might return an error regarding the
mismatch between the order you set and the order of the estimated model.
In this case, you must adjust the tolerance setting of these two VIs so that
the numerator and denominator orders match the orders you set. A larger
tolerance facilitates zero-pole cancellations, which reduce the numerator
and denominator polynomial orders.

Joint Input-Output Identification

If you do not have any knowledge about the controller structure but the
stimulus, response, and reference signals are all available, you can use the
joint input-output identification approach to estimate the transfer function
model of a plant in a closed-loop system. This approach uses the transfer
functions from different input-output signal pairs to estimate a closed-loop
system. The System Identification Toolkit implements the following
two-stage method for the joint input-output approach.

1. Let Ty(z) satisfy the following equation:

1

Tolz) = [+ Go(2)F,(2)

By manipulating Equations 6-1 and 6-2, you can rewrite u(k) as follows:
u(k) = Ty(2)r(k) = F(2)To(z)e(k)

Any open-loop model estimation method then can estimate 7(z) because
r(k) and e(k) are uncorrelated signals. After you obtain the value of T (z),
you can compute # (k) = T,(z)r(k). You then can represent u(k) as
follows:

u(k) = 4 (k) - F,(2) Ty(2)e(k) 6-7)

Using Equation 6-7, you obtain an input signal #(k), which is constructed
from r(k) and is uncorrelated with the measurement noise.

2. By manipulating Equation 6-1, you can rewrite y(k) as follows:
y(k) = Go(z)i (k) + Ty(2)e(k)
Because (k) is uncorrelated with e(k), the original closed-loop model

estimation problem between u(k) and y(k) becomes an open-loop problem
between #i(k) and y(k).
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You use the same methodology to compute y(k) for a feedforward-path
closed-loop system, where

r - PG

1+ GO(Z)F},(Z)
You rewrite y(k) as follows:
y(k) = u(k)Gy(z) +[1 - Ty(2)Gy(z)]e(k)

The two-stage method does not require you to know anything about the
feedback or the controller structure and controller parameters. Also, you
treat the closed-loop model estimation as an open-loop model estimation
within each of the two steps. Therefore, you can use any method that works
with open-loop models. Whether the real-world output noise is white noise
or color noise, the two-stage method provides reliable estimations.

Using System ldentification Vis for Model Estimation

If you want to use the direct identification approach, the System
Identification Toolkit enables you to estimate the plant in a closed-loop
system with general-linear polynomial, state-space, transfer function, and
zero-pole-gain models. If you want to apply the indirect or joint
input-output approach to identify the plant, this toolkit provides you with
transfer function models. Select the System Identification VIs using the
following guidelines:

*  Use the Polynomial Model Estimation VIs or the ST Model Estimation
Express VIto estimate ARX, ARMAX, output-error, Box-Jenkins, and
general-linear models. For ARX models, the System Identification
Toolkit uses the least squares method, which is a special case of the
prediction error method. For all other models, this toolkit uses the
prediction error method. This method can accurately identify a plant
model in a closed-loop system. Hence, you can use the Polynomial
Model Estimation VIs to estimate the model of a plant in a closed-loop
system.

*  Use the SI Estimate State-Space Model VI or the SI Model Estimation
Express VI to estimate a state-space model of the plant in a closed-loop
system. You can choose the deterministic-stochastic subspace method
that the SI Estimate State-Space Model VI implements. The
deterministic-stochastic subspace method uses principal component
analysis to estimate parameters. This method does not assume a
zero correlation between the input signal and the output noise.
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Therefore, the deterministic-stochastic subspace method works with
data from a closed-loop system.

*  Use the SI Estimate Transfer Function VI or the SI Transfer Function
Estimation Express VI to estimate a transfer function model of the
plant in a closed-loop system. You can apply direct, indirect, and joint
input-output identification to compute transfer function models.

e To identify zero-pole-gain models for a plant, you first must identify
the plant using other model representations. You then can convert other
model representations to zero-pole-gain models using the Model
Conversion VIs. Refer to Chapter 8, Analyzing, Validating, and
Converting Models, for more information about converting models.

Refer to Chapter 4, Parametric Model Estimation Methods, for more
information about the models and model algorithms described in this
section. Refer to the LabVIEW System Identification Toolkit Algorithm
References manual (SIreference.pdf), available in the labview\
manuals directory, for more information about the prediction error
method, the deterministic-stochastic subspace method, and the realization
method. Refer to the LabVIEW Help for more information about the VIs
described in this section.
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Recursive Model Estimation
Methods

The model estimation methods in Chapter 3, Nonparametric Model
Estimation Methods, Chapter 4, Parametric Model Estimation Methods,
Chapter 5, Partially Known Model Estimation Methods, and Chapter 6,
Model Estimation Methods in Closed-Loop Systems, use nonrecursive
methods to estimate a model of the plant in a system. Nonrecursive model
estimation identifies a model for a plant based on input-output data
gathered at a time prior to the current time. However, many real-world
applications such as adaptive control and adaptive prediction, having a
model of the system update while the system is running is necessary or
helpful. In this type of application, you obtain the mathematical model of
the system in real time.

Recursive model estimation is a common system identification technique
that enables you to develop a model that adjusts based on real-time data
coming from the system. Recursive model estimation processes the
measured input-output data recursively as the data becomes available. This
chapter discusses recursive model estimation techniques and various
adaptive algorithms associated with each method.

Defining Recursive Model Estimation

Figure 7-1 represents a general recursive system identification application.
A system identification application consists of an unknown system that has
an input signal, or stimulus signal u(k) and an output signal, or response
signal y(k).
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u(k) »| Unknown System ﬂ»@—ﬂﬂb

Wl

> Adaptive Model

y(k)

Figure 7-1. Recursive System Identification Diagram

The stimulus signal u(k) is the input to both the unknown system and the
recursive model. The response of the system y(k) and the predicted
response of the adaptive model y(k) are combined to determine the error
of the system. The error of the system is defined by the following equation.

e(k) = y(k)-y(k) (7-1)

The adaptive model generates the predicted response V(k + 1) based on
u(k + 1) after adjusting the parametric vector w(k) based on the error e(k).
Refer to the Adaptive Algorithms section of this chapter for more
information about the definition of w(k) in different algorithms.

Figure 7-1 shows how the error information e(k) is sent back to the adaptive
model, which adjusts the parametric vector w(k) to account for the error.
You iterate on this process until you minimize the magnitude of the least
mean square error e(k).

Before you apply the recursive model estimation, you must first select the
parametric model structure that determines the parametric vector w (k).
Then, you must select the method that automatically adjusts the parametric
vector such that the error e(k) goes to the minimum.

The LabVIEW System Identification Toolkit provides Recursive Model
Estimation VIs that support the following model structures:

¢ ARX

«  ARMAX

e Output-Error

¢ Box-Jenkins

e General-Linear
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The Recursive Model Estimation VIs have a recursive method parameter
that enables you to specify which recursive estimation method to use.

Refer to the Parametric Model Representations section of Chapter 4,
Parametric Model Estimation Methods, for information about each of these
models. Refer to the LabVIEW Help, available by selecting Help»Search
the LabVIEW Help, for more information about the Recursive Model
Estimation VIs and mathematical definitions of each of these models.

You can compute each model recursively using the following four types of
adaptive algorithms:

e Least mean square (LMS)

*  Normalized least mean squares (NLMS)
*  Recursive least squares (RLS)

e Kalman filter (KF)

The following sections provide more information about each of these
adaptive algorithms.

Adaptive Algorithms

Adaptive algorithms are fundamental in recursive system identification.
The adaptive method you use affects the performance of recursive system
identification application.

The goal of all recursive algorithms is to adjust the parametric vector w(k)
until you minimize the cost function J(k). The following equation defines
the cost function J(k).

J(k) = E[e*(k)]
where E is the expectation.

Again, e(k) represents the difference between the predicted response y(k)
and the response y(k) of the unknown system, as shown in Figure 7-1.

When the cost function J(k) is sufficiently small, the parametric vector
w(k) is considered optimal for the estimation of the actual system.
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Least Mean Squares

The least mean squares (LMS) method uses the following equations to
define the cost function J(k) = E [e K].

The parametric vector w(k) updates according to the following equation.

Blk+1) = Bk +pe(h)9(k)

k is the number of iterations, L is step-size, which is a positive constant, and
(k) is the data vector from the past input data u(k) and output data y(k).
¢ (k) is defined by the following equation.

T
OR) = [y(t= 1) =yt = k) u(t=1)...u(t—m)]

The following procedure describes how to implement the LMS algorithm.
1. Initialize the step-size LL.

2. Initialize the parametric vector 7v(k) using a small positive number €.

?V(O) = [g,¢, ..., €]

3. Initialize the data vector (_[))(k) = [u( k) y( k):l'

> T
©(0) = [0,0,...,0]

> >
4. For k =1, update the data vector ¢(k) based on @(k— 1) and the
current input data u(k) and output data y(k).

5. Compute the predicted response y(k) using the following equation.

P = TRk
6. Compute the error e(k) by solving the following equation.
e(k) = y(k)-y(k)
7. Update the parameter vector v?/(k) .
Blk+1) = Bk +pe(k)9(k)

8. Stop if the error is small enough, else set k = k + 1 and repeat
steps 4-8.
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The LMS algorithm is one of the most widely used and understood adaptive
algorithms. Selecting the step-size Ll is important with the LMS algorithm,
because the selection of the step-size W directly affects the rate of
convergence and the stability of the algorithm. The convergence rate of the
LMS algorithm is usually proportional to the step-size |. The larger the
step-size L, the faster the convergence rate. However, a large step-size L can
cause the LMS algorithm to become unstable. The following equation
describes the range of the step-size L.

0 <M < Mgy

Wnar 18 the maximum step-size that maintains stability in the LMS
algorithm. ,,,, is related to the statistical property of the stimulus signal.
A uniformly optimized step-size [ that achieves a fast convergence speed
while maintaining the stability in the system does not exist, regardless of
the statistical property of the stimulus signal. For better performance, use a
self-adjustable step-size | and the normalized least mean squares (NLMS)
algorithm.

Normalized Least Mean Squares

The following equation defines a popular self-adjustable step-size (k) that
you use in the normalized least mean squares algorithm.

k) = —E—
€+ H(p(k)H

9
Again, @(k) represents the data vector. € is a very small positive number
that prevents the denominator from equaling zero when H(T)( k)H2
approaches zero.

The step-size (k) is time-varying because the step-size changes with the
time index k.

Substituting (k) into the parametric vector W (k) equation yields the
following equation.

> > >
W(k+1) = w(k) +u(k)e(k)p(k)
Compared to the LMS algorithm, the NLMS algorithm is always stable if

the step-size LL(k) is between zero and two, regardless of the statistical
property of the stimulus signal u(k).
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The procedure of the NLMS algorithm is the same as the LMS algorithm
except for the estimation of the time-varying step-size (k).

Recursive Least Squares

The recursive least squares (RLS) algorithm and Kalman filter algorithm
use the following equations to modify the cost function J(k) defined in the
Adaptive Algorithms section. Refer to the Kalman Filter section for
information about the Kalman filter algorithm.

N-1
_ o2 _1 2., .
J(k) = E[e” (k)] =NZe (k=1)
i=0
Compare this modified cost function, which uses the previous N error
terms, to the cost function, J(k) = E[e2(k)], which uses only the current
error information e(k). The modified cost function J(k) is more robust. The

corresponding convergence rate in the RLS algorithm is faster, but the
implementation is more complex than that of LMS-based algorithms.

The following procedure describes how to implement the RLS algorithm.

1. Initialize the parametric vector w(k) using a small positive number €.

N

W) = [g¢,...,e]"

%
2. Initialize the data vector @(k) .

>
¢(0) =[0,0,...,0]

3. Initialize the k X k matrix P(0).

P(0) =

o ocom
oSO o m O
o
m o o o

0
> >
4. For k =1, update the data vector @(k) based on @(k— 1) and the
current input data u(k) and output data y(k).

5. Compute the predicted response y(k) by using the following equation.

B(k) = OT(k) - P(k)
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Kalman Filter
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Compute the error e(k) by solving the following equation.
e(k) = y(k) - y(k)
Update the gain vector ?( (k) defined by the following equation.

N
P(k) - 9(k)

]%(k) = > >
A+ QT(k) - P(k) - 9(k)

The properties of a system might vary with time, so you need to ensure
that the algorithm tracks the variations. You can use the forgetting
factor A, which is an adjustable parameter, to track these variations.
The smaller the forgetting factor A, the less previous information this
algorithm uses. When you use small forgetting factors, the adaptive
filter is able to track time-varying systems that vary rapidly. The range
of the forgetting factor A is between zero and one, typically
098<Ai<1.

P(k) is a k X k matrix whose initial value is defined by P(0) in step 3.

Update the parametric vector w(k + 1).
Wik +1) = wk) +e(k) - R(k)
Update the P(k) matrix.
P(k+1) = P~ R(k) - ¢7(k) - P(k)

Stop if the error is small enough, else set k = k + 1 and repeat
steps 4-10.

The Kalman filter is a linear optimum filter that minimizes the mean of the
squared error recursively. The convergence rate of the Kalman filter is
relatively fast, but the implementation is more complex than that of
LMS-based algorithms.

Recall that the equation J(k) = E[e?(k)] defines the cost function. The
following procedure lists the steps of the Kalman filter algorithm.

1.
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Initialize the parametric vector Ww(k) using a small positive number €.
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2. Initialize the data vector ?p(k) .
>
¢(0) = [0,0, ..., 0]

3. Initialize the k X k matrix P(0).

P(0) =

c oo m
oS o m O
i o
m o o o

0
> >
4. For k =1, update the data vector @(k) based on @(k— 1) and the
current input data u(k) and output data y(k).

5. Compute the predicted response y(k) by solving the following
equation.

N > N
y(k) = @T(k) - w(k)

6. Compute the error e(k) by solving the following equation.
e(k) = y(k)-y(k)

7. Update the Kalman gain vector I_% (k) defined by the following
equation.
9
P(k) - ¢(k)

I%(k) = > >
Qy+ Q" (k) - P(K) - p(k)

Q) is the measurement noise and P(k) is a k X k matrix whose initial
value is defined by P(0) in step 3.

8. Update the parametric vector W (k).
Wk+1) = wk) +e(k) - K(k)
9. Update the P(k) matrix.
Plk+1) = PO -R(K)- ¢ (K) - P(K) +Q,

Op is the correlation matrix of the process noise.

10. Stop if the error is small enough, else set k = k + 1 and repeat
steps 4-10.
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Analyzing, Validating, and
Converting Models

After estimating a model for the plant of a system, you can observe model
characteristics by analyzing the model. You also can verify that the model
simulates the real-world plant by validating the model. The LabVIEW
System Identification Toolkit provides tools that enable you to analyze and
validate models.

According to linear system theory, you can represent a linear system with
different models. Each model representation has benefits and drawbacks
for characterizing a dynamic system. Certain model representations are
more suitable for certain analysis techniques. With the System
Identification Toolkit, you have the flexibility to convert models from
one representation to another to identify the best-fit model for the system.

This chapter describes model analysis and validation methods. This chapter
also describes how to convert models with the Model Conversion Vls.

Analyzing Models

Model analysis allows you to observe some characteristics, like frequency
response, stability, and order, of the model you obtain. The System
Identification Toolkit enables you to investigate model estimation results
and present these results in graphs with the following three tools—the Bode
plot, the Nyquist plot, and the pole-zero plot.
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Bode Plot

The Bode plot contains a Bode magnitude plot and a Bode phase plot. The
Bode magnitude plot describes magnitude against frequency and the Bode
phase plot describes phase against frequency. These two plots together

describe the frequency response of the plant model you estimate, as shown

in Figure 8-1.
Bode Magnitude
Upper Limit
Lower Limit

Bode magnitude plok

magnitude

1
0.01
frequency (Hz)

confidence level (%)

frequency (Hz)

Figure 8-1. A Bode Plot with Sample Data

The ST Bode Plot VI also calculates the upper and lower limits according
to the confidence level you set. You can obtain information, such as the
gain of the system and the cutoff frequency, by evaluating the Bode plot.
You can use the SI Bode Plot VI to produce the Bode magnitude and Bode
phase plots. You then can display the Bode magnitude and phase using the
SI Bode Plot Indicator.
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Nyquist Plot
The Nyquist plot describes the gain and phase of a frequency response in
polar coordinates by plotting the imaginary part of the complex frequency
response against the real part. You can view the Nyquist plot as a
combination of the Bode magnitude plot and the Bode phase plot. In polar
coordinates, the Nyquist plot shows the phase as the angle and the
magnitude as the distance from the origin, as shown in Figure 8-2.

Myquisk
Upper Limit
Lowwer Limik

Myquist plok

imaginary

_confidence lenvel (%)

Figure 8-2. A Nyquist Plot with Sample Data

The SI Nyquist Plot VI also calculates the upper and lower limits according
to the confidence level you set. You can use the SI Nyquist Plot VI to
generate the Nyquist plot and display this plot using the SI Nyquist Plot
Indicator. The Nyquist plot is commonly used to predict the stability of a

system.
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Pole-Zero Plot

The pole-zero plot displays the poles and zeros of a system. By observing
the locations of the poles and zeros, you can conclude if the system is
stable. In a stable system, all the poles fall within the unit circle. Figure 8-3
shows an example of a stable model.

Pole-Zero Plok

imaginary

Pale

R
Pale Confidence m
L

Zero Confidence

Unit Circle | fAxis

Confidence Level (%)

Figure 8-3. A Pole-Zero Plot with Sample Data

You can use the SI Pole-Zero Plot VI to generate the pole-zero plot and
display this plot using the SI Pole-Zero Plot Indicator.

You also can use the pole-zero plot to determine if you can reduce model
orders. By observing the pole-zero placements, you can determine if any
pole-zero pairs have overlapping confidence intervals. A confidence
interval is a region the SI Pole-Zero Plot VI calculates from the confidence
level you set. The existence of overlapping confidence intervals implies
that pole-zero cancellations exist and that the model order might be
unnecessarily high. The pole-zero plot shown in Figure 8-3 is an optimal
model with the appropriate order because the pole-zero pairs do not have
overlapping confidence intervals.

If the model order is too high, you can try reducing the model order. You
then can use the F-test criterion to assess if the reduction in model order
leads to a significant increase in the prediction error. If the reduction in
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model order leads to a significant increase in the prediction error, do not
reduce the model order.

Validating Models

Model estimation determines the best model of the system within the
chosen model structure. Model estimation does not determine if the model
provides the most accurate description of the system. After you obtain a
model, you must validate the model to determine how well the behavior of
the model corresponds to the data you measured, to any prior knowledge of
the system, and to the purpose for which you use the model. Model
validation also determines if the model is flexible enough to describe the
system. If the model is inadequate, you must revise the system
identification process or consider using another method.

The best way to validate a model is to experiment with the model under
real-world conditions. If the model works as you expect, the model
estimation is successful. However, experimenting with the model under
real-world conditions might be dangerous. For example, introducing
arbitrary perturbations to the input of a chemical plant might lead to a
harmful explosion. Therefore, before you incorporate the model into
real-world applications, validate the model by using plots and common
sense or by using statistical tests on the prediction error.

The System Identification Toolkit provides three of the most common
validation methods—model simulation, model prediction, and model
residual analysis.

@ Note When validating the model you obtain, you must use a set of data that is different
from the data you used to estimate the model.

Validation Methods

After you build a model, you can use at least three different methods to
validate the model and evaluate its flexibility. You can use model
simulation to understand the underlying dynamic relationship between the
model inputs and outputs. You can use model prediction to test the ability
of the model to predict the response of the system using past input and
output data. You also can use model residual analysis to test, using
statistical techniques, the whiteness of the prediction error and the
independency between the prediction error and the input signal. The
methods you select to validate the model depend on the purpose for which
you created the model. You can use one or all of these methods to validate
the model.
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Model Simulation

The SI Model Simulation VI determines the outputs of a system for given
inputs. After you build a model for the system using the input and output
data you measured, you can use the model to simulate the response of the
system by using the model equations. You then can evaluate the behavior
of the system. You also can use simulation to validate the model by
comparing the simulated response with the measured response.

Model Prediction

The SI Model Prediction VI determines the response of a system at time ¢
based on the output information available at time # — k and all the inputs
applied from time 7 — k to time t. k represents the size of the prediction
window. Therefore, model prediction can determine how useful a model is
in estimating future responses of the system, given all information at time ¢
and an expected input profile in the future. Some control techniques take
advantage of model prediction to improve control performance. For
example, model predictive control uses some of the prediction properties of
a model to determine if a particular limitation or constraint is active in the
future. This method allows the controller to take preventive actions before
such constraints become active.

If you have the measured input and output of a system, you also can
validate the model of the system by comparing the predicted output and the
measured output. If the prediction error is small, the model is acceptable.

Residual Analysis

Residual analysis is the third validation method that the System
Identification Toolkit provides. The response that an estimated model
predicts and the actual response from the system are different. This
difference is called the prediction error or residual. The following equation
defines the residual e(k).

e(k) = y(k)—y"(k)

y(k) is the measured output and y'(k) is the output from the one-step-ahead
prediction. If the model is capable of describing the true system, the
residual is zero-mean white noise and independent of the input signal. You
can use autocorrelation analysis to test if the residual is zero-mean white
noise. You can use cross correlation analysis to test if the residual is
independent of the input signal. The SI Model Residual Analysis VI
calculates both the autocorrelation and the cross correlation values.

System Identification Toolkit User Manual 8-6 ni.com



Chapter 8 Analyzing, Validating, and Converting Models

Autocorrelation

The following equation defines the autocorrelation of the residuals.

N
R (1) = ]1\,2 e(k)e(k—1)
k=1

Ideally, the residual is white noise, and therefore the autocorrelation R,N(T)
is zero when T is nonzero. A large autocorrelation when 7 is nonzero
indicates that the residual is not zero-mean white noise and also implies that
the model structure is not relevant to the system or that you might need to
increase the model order.

In real-world applications, the autocorrelation R,¥(T) cannot be zero when
T is nonzero because of the limited length of data points. However, the

SI Model Residual Analysis VI assesses if the autocorrelation value is
sufficiently small to be ignored. If the value of autocorrelation falls within
the confidence range, the autocorrelation value is insignificant and you can
consider this value to be equal to zero.

Cross Correlation

The following equation defines the cross correlation between residuals and
past inputs.

N
R,N(1) = lez e(k)u(k-1)
k=1

If the residual is independent of the input, the cross correlation is zero for
all 7. If the residual correlates with the input, the cross correlation is
nonzero, suggesting that the model did not capture all deterministic
variations from the data. Therefore, you need to revise the model variation.

The ST Model Residual Analysis VI assesses if the value of cross
correlation is sufficiently small. If the value of cross correlation falls within
the confidence range, the value is insignificant and you can consider this
value to be equal to zero.
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Converting Models

With the System Identification Toolkit, you can apply the Model
Conversion VIs to convert system models from one representation to
another, from continuous to discrete models, and from discrete to
continuous models. You can convert models you created in this toolkit to
models you can use in another toolkit. You also can convert a model after
you estimate the model or after you analyze or validate the model.

You can use the Model Conversion VIs to switch between different model
representations or types. For example, when estimating a digital system,
you can convert an existing continuous model to a discrete model to
approximate the real-time behavior of the system. You do not need to create
a new discrete model for the digital system. Using the Model Conversion
VIs, you also can convert models you create in the System Identification
Toolkit into transfer function, zero-pole-gain, or state-space models that
you then can use with the LabVIEW Control Design Toolkit. This model
conversion process enables you to identify a model for an unknown system
with the System Identification Toolkit and then design a controller for this
system using the Control Design Toolkit.

Refer to the Model-Based Control Design Process section of Chapter 1,
Introduction to System Identification, for more information about the
integration of the System Identification Toolkit and the Control Design
Toolkit in the model-based control design process. Refer to the National
Instruments Web site at ni . com for more information about the Control
Design Toolkit. Refer to the LabVIEW Help, available by selecting Help»
Search the LabVIEW Help, for more information about the VIs described
in this chapter.
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System ldentification Case
Study

This chapter contains a case study that guides you through the system
identification process. The case study uses sample data that the LabVIEW
System Identification Toolkit provides in the SI Data Samples VI. The

SI Data Samples VI includes data sets for a DC motor, a flexible robot!
arm, a ball and beam apparatus, an RC circuit, and so on. The case study in
this chapter uses the flexible arm data to demonstrate the system
identification process and to compare different estimation methods.

The flexible arm is a nonlinear dynamic system. The System Identification
Toolkit enables you to build models for systems linearly. This chapter
guides you through obtaining a linear representation of a nonlinear system.

The VIs for this case study are located in the labview\examples\
system identification\SICaseStudyl.1l1lb. Refer tothe LabVIEW
Help, available by selecting Help»Search the LabVIEW Help, for more
information about specific System Identification VIs in this case study.

Data Preprocessing

After you gather data, the next step in the system identification process is
to preprocess the data. The input to the system in this case study is the
reaction torque of the structure on the ground. This input is a swept sine
wave with 200 frequency points equally spaced over the frequency band
from 0.122 Hz to 24.4 Hz.

The output of this system is the acceleration of the flexible arm. The
acceleration contains information about the flexible resonances and
anti-resonances.

I The flexible robotic arm data was adopted from a case study in the MATRIXx Interactive System Identification Module, Part 2
manual. Hendrik Van Brussel and Jan Swevers of the laboratory of Production Manufacturing and Automation of the
Katholieke Universiteit Leuven provided this data, which they obtained in the framework of the Belgian Programme on
Interuniversity Attracion Poles.

© National Instruments Corporation 9-1 System Identification Toolkit User Manual



Chapter 9 System lIdentification Case Study

The data set contains 4096 samples at a sampling rate of 500 Hz or
sampling time of 0.002 seconds. Thus the total time of the response is
8.192 seconds.

The following sections show you how to preprocess the raw data by
examining the time and frequency responses of the system. Based on those
analyses, you can filter and downsample the data set to reduce the amount
of data in the raw data set for simpler identification.

Examining the Time Response Data

Using the data in the SI Data Sample VI for the flexible robotic arm, you
can view the input and output data, as shown in Figure 9-1.

=1 Data Samples.vi etimulus signal - korque
I"Flexible A 'I 2|

B —— .
fesponse signal - acceleration]
SIS0, WOT ]|

Figure 9-1. Flexible Arm Data Set VI

@ Note The names of the block diagram figures in this chapter reflect the names of the
example VIs located in the labview\examples\system identification\
SICaseStudyl.1llb.

The stimulus signal — torque output corresponds to the input data, or the
torque, and the response signal — acceleration output corresponds to the
output data, or the acceleration.

Figure 9-2 shows the input and output data on graphs during the length of
the response. By looking at the graphs, you can inspect the data for outliers,
clipped saturation, or quantization effects that you can remove because
they are not representative of the system behavior.
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response signal - acceleration

Amplitude

Amplitude

Time

Figure 9-2. Flexible Arm Data Set Plotted in the Time Domain

Figure 9-2 shows no obvious nominal, trend, or outlier values in the input
or output time waveforms.

Examining the Frequency Response Data

In addition to examining the time response data, you also want to examine
the frequency response data. You can use the SI Estimate Frequency
Response VI to view the frequency response of the measured output signal,

as shown in Figure 9-3.

51 Data Samples. vi 51 Estimake Freguenc Respnnse.vi|
|Flexible arm ~j—=m
B AEn, -
FE ifa?mtude response
|SISO: DT '“ windo length S|
|4D%J
=l |

Figure 9-3. Non-Parametric FRF VI
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The input data is periodic over 4096 samples, which is the signal length.
Notice that in Figure 9-3 the window length, 4096, is the same as the signal
length so as to obtain a smaller bias in the frequency response estimation.

Figure 9-4 shows the magnitude and phase responses of the measured
output signal. The magnitude response graph shows three resonances and
two anti-resonances in the frequency domain. Resonances are vibrations of
large amplitude in a system caused by exciting the system at its natural
frequency.

magnitude response

50~
[Ik)

2 L L LT S, o™ N ]
= N T A

1 I I
10 100 248,68
Frequency (Hz)

Fhase

1 |
0.795775 248.6
Frequency (Hz)

Figure 9-4. Frequency Response of the Flexible Arm Data Set

Notice the resonance at approximately 42 Hz. You can deduce that this
resonance is caused by noise or nonlinear system behavior because the

42 Hz falls outside the frequency range of the input data, 0.122-24.4 Hz.
At 42 Hz, there is no input energy, thus implying that the response at 42 Hz
is not a result of the input.

By examining the frequency response data, you see that filtering is
necessary to remove this resonance peak at 42 Hz. The following section
describes how to use the System Identification Toolkit to apply a filter to
the flexible arm data.
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Applying a Filter to the Raw Data

To eliminate the resonance peak at 42 Hz, you can apply a filter to the raw
data. By first applying a lowpass filter with a cutoff frequency of 25 Hz,
you eliminate the high-frequency noise from the raw data set. Figure 9-5
shows how to use SI Lowpass Filter to apply a lowpass filter to the raw
data set.

51 Data Samples.«i] [SILowpass Filker.vi| [SI Estimate Frequency Response, vi

* i e
[ Flexible arm =] AP E
L =

B

5|
5150, WDT ¥

cukaff Frequency window length =
25 4096

Figure 9-5. Non-Parametric FRF with Prefiltering VI

You can see the effects of the lowpass filter by comparing the frequency
response of the filtered data set in Figure 9-6 to the frequency response of
the non-filtered data set in Figure 9-4. By using a lowpass filter, you can see
that the resonance at approximately 42 Hz is no longer part of the data set
you will use to estimate the model.
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Figure 9-6. Frequency Response of the Filtered Data Set
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Downsampling the Raw Data

Sampling theory, in conjunction with the Nyquist criterion, enables you to
reduce the sampling rate from 500 Hz to 50 Hz. Applying a filter and
downsampling the data set reduces the number of samples in and the
computational complexity of the data set. The goal is to use as few samples
as possible to evaluate the behavior of the system.

Sampling theory enables you to downsample, or decimate, the data set.
Downsampling reduces the sampling rate, 500 Hz, by a factor of 10. Thus
downsampling enables you to acquire the data at a sampling rate of 50 Hz.
The Nyquist criterion states that you need to sample the signal at a
minimum of twice the highest frequency in the system.

Recall that the input data is equally spaced over the frequency band
0.122-24.4 Hz. Therefore, according to the Nyquist criterion, you need to
sample at a minimum of 50 Hz to avoid any antialiasing. The benefit of
sampling at 50 Hz is that you still acquire all the data in the frequency band,
yet you eliminate the resonance peak at 42 Hz.

Therefore, in Figure 9-7, the SI Lowpass Filter VI sets the cutoff
frequency to 25. In addition to applying a lowpass filter to the data, you
must downsample the reduced data set. The SI Down Sample VI in
Figure 9-7 uses a decimation factor of 10.

51 Daka Samples.vi| [SILowpass Filker.vi] [SI Down Sampling.vi]  [SI Estimate Frequency Response.vi

|+ Flexible arm ~[1#=

B i, ;‘T"_\... E agnitude response
ol = =
SIS0, WhT *
cutoff frequency decimation Factor window length o
75 409

Figure 9-7. Non-Parametric FRF with Prefiltering and Down Sampling VI

The ST Lowpass Filter VI applies a lowpass filter before downsampling the
data set to avoid aliasing at the 42 Hz resonance. Together, the lowpass
filter and downsampling remove the high frequency disturbance and make
the process faster and more efficient.

Notice that the window length parameter of the SI Estimate Frequency
Response VI in Figure 9-7 is around 400 instead of 4096, as shown in
Figure 9-3. You can reduce the window length by a factor of 10 because the
number of samples in the reduced data set is one tenth of the number of
samples in the raw data set.
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Figure 9-8 shows the frequency response after applying a filter to and
downsampling the raw data set.
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Figure 9-8. Frequency Response of the Filtered Data Set after Downsampling

Filtering and downsampling are beneficial because they eliminate the
nonrealistic parts of the frequency response and reduce the amount of work
required in the model estimation process.

Refer to Chapter 2, Acquiring and Preprocessing Data, for more
information about filtering and downsampling data.

Estimating the Model

One of the biggest challenges in model estimation is selecting the correct
model and the order of the model. The System Identification Toolkit
supports three different criteria to aid in the estimation of the order of a
model.

*  FPE—Final Prediction Error Criterion

*  AIC—Akaike’s Information Criterion

*  MDL—Minimum Description Length criterion

Sometimes the results you obtain with these three criteria might be
inconsistent. You can use a pole-zero plot for further investigation and to

verify the results of the order estimation. Refer to the Akaike’s Information
Criterion section, the Final Prediction Error Criterion section, and the
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Minimum Description Length Criterion section of Chapter 4, Parametric
Model Estimation Methods, for more information about these criteria.

Figure 9-9 shows a prediction error plot generated by the SI Estimate
Orders of System Model VI for an ARX model. The y-axis is the prediction
error and the x-axis is the model dimension. The three different color bars
on the chart represent the FPE, AIC, and MDL criteria.

prediction error
100 FFE
iy AIC
£ 10~
’E- MDL
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Figure 9-9. Prediction Error Plot for an ARX Model

The following sections show you how to use the AIC, MDL, and a
user-defined criterion to determine the A and B orders of the ARX model.

Akaike’s Information Criterion

The block diagram in Figure 9-10 uses the SI Estimate Orders of System
Model VI for order estimation. To estimate the orders of a model, the

SI Estimate Orders of System Model VI requires two data sets—one for
estimation and one for validation. You do not need to acquire two data sets
from a system, rather, you can partition one data set into two using the

SI Split Signals VI. The SI Split Signals VI divides the preprocessed data

samples into a portion for model estimation and a portion for model
validation.
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In Figure 9-10, the 1st portion (%) is 66, which means the SI Estimate
Orders of System Model VI will use 66% of the data samples for estimation
and the remainder of the data samples for validation.

SI Cata Samples.vi] [SI Lowpass Filker.vi] [SI Dawn Sampling.wi| [SI S?Iit Signal.vi 51 Estimate Orders of System Madel.vi
i+ Flexible Arp = e+ ]} [ oot T E—
B 1l 5, E-—EI
A +H

= :
o]
SIS0, WDT = ARX (SISO ¥
cuboff Frequency decimation Fackar Lst porkion (%) Eras]

25 (&1}

Figure 9-10. Estimate Orders of ARX Model VI

The SI Estimate Orders of System Model VI generates the prediction
error plot for the ARX model and the optimal A order and B order based
on the AIC criterion. By using the AIC criterion, the lowest prediction error
corresponds to a model dimension of 19, as shown in Figure 9-9. For an
ARX model, the model dimension is equal to the sum of the A order,

B order, and delay values. The SI Estimate Orders of System Model VI
returns the following optimal orders:

e Aorder=9
e Border=10
* delay=0

Verifying the Results

After determining the orders of the model, you want to verify the results to
ensure the model accurately describes the system. One method is to plot a
pole-zero map and visually inspect the plot to determine whether there is
any redundancy in the data. If a pole and a zero overlap, the pole and
zero cancel out each other, which indicates the estimated optimal order is
too high.

The pole-zero plot graph in Figure 9-11 shows a pole-zero plot with
three overlapping pole-zero pairs. Due to numerical error, it is unlikely that
a zero and a pole perfectly overlap. You can use the confidence region to
justify whether the pole and the zero cancel out each other.
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Figure 9-11. Pole-Zero Plot for an ARX Model

Because there are three pole-zero pairs, you can conclude that the AIC
criterion does not produce the most optimal orders.

Because the AIC criterion produced a model with non-optimal orders, you
can try estimating the model orders with the MDL criterion. By using the
MDL criterion, the lowest prediction error corresponds to a model

dimension of 12, as shown in Figure 9-9. The SI Estimate Orders of System

Model VI returns the following optimal orders:

e Aorder=6
e Border=6
e delay=0
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Figure 9-12 shows a pole-zero plot of a model with a model dimension

of 12.
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Figure 9-12. Pole-Zero Plot for a MDL Model

Compare Figure 9-12, which uses the MDL criterion and Figure 9-11,
which uses the AIC criterion. Because there are no overlapping pole-zero
pairs in Figure 9-12, you can conclude that the MDL criterion fits better
than the AIC criterion in this particular example.

In addition to examining redundancy, you also can use the pole-zero plot
for other purposes. For example, both Figure 9-11 and Figure 9-12 show
poles outside the unit circle. Having poles outside the unit circle implies

that this model is not optimal because the ARX system based on the AIC
or MDL criteria is unstable. One way to stabilize the system is to change

the order.

In addition to the FPE, AIC, and MDL criteria, you can set user-defined
orders in the SI Estimate Orders of System Model VI.
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User-Defined Criterion

If you know nothing about the system, you might have to rely on trial and
error to determine the optimal orders of the model. However, if you have
some knowledge about a system, you can customize the estimation to find
a model that fits a certain model dimension. For this model, assume you
know that the system is stable; therefore, no poles exist outside the unit
circle. Because both the AIC and MDL criterion did not produce stable
models, the model orders do not describe the system accurately.

On the block diagram, as shown in Figure 9-13, you can customize the
method parameter. Instead of AIC or MDL, you can select <Other> and
enter the desired model dimension in the textbox. Assume you know that
the model dimension is nine.

(- =07

SI Data Samples.vi| |SI Lowpass Filker.vi| [SI Down Sampling.vi| [SI Sg\it Signal.vi 51 Estimate AR Model.vi] [5I Pole-Zero Plat.vi
[ Flewible A == o T L — x W e
B bt <, E-EI -ﬁ*
s ~H ARY :

‘g H  Pole-Zero Plok
| b pas]
SI Estimate Orders of System Model.vi
C=n

SIS0, WDT ~
cutaff frequency decimation Fackor 1sk partion (%)

25 66

Figure 9-13. Pole-Zero Cancellation VI

Figure 9-14 shows the corresponding pole-zero plot graph with a model
dimension of nine, which corresponds to the following optimal orders:

e Aorder=4
e Border=5
e delay=0
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Figure 9-14. Pole-Zero Plot with User-Defined Orders

Compare the pole-zero plot in Figure 9-14 with Figure 9-11 and

Figure 9-12. Figure 9-14 has no overlapping pole-zero pairs and all the
poles are within the unit circle. By visually inspecting the pole-zero plot,
you can see that this model is stable and not redundant. Using these model
orders, you now can estimate and verify the system model.

ARX Model Validation

The goal of model validation is to determine whether or not the estimated
model accurately reflects the actual system. Using the model orders found
in the User-Defined Criterion section, you can simulate and predict the
response of the system. You can compare these responses to the actual
response and determine the accuracy of the estimated model. You also can
analyze the residuals to determine the accuracy of the estimated model.
Refer to the Validating Models section of Chapter 8, Analyzing, Validating,
and Converting Models, for more information about validating a model.

The following sections describe how to apply these techniques to model
validation.
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Simulation and Prediction

You can use the SI Model Simulation VI and SI Model Prediction VI to
determine the accuracy of the estimated model. The SI Model Simulation
VI simulates the system model and the SI Model Prediction VI performs a
prediction of the system model. The results of the ST Model Prediction VI
might differ from the SI Model Simulation VI because the SI Model
Prediction VI periodically makes corrections to the estimated response
based on the actual response of the system.

Figure 9-15 shows how you use these VIs to verify the ARX model created
in the User-Defined Criterion section.

3]

51 Estimate AR Modelvi
=

2
[5I Estimate Owders of System Moded. i
T
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5150, WDT ~
cutoff Frequency

25

Figure 9-15. Simulation & Prediction with ARX Model VI

The simulation and 1-step ahead prediction graphs enable you to visually
determine how accurate the model is. Figure 9-16 shows the results of the
simulation and prediction as well as the actual response of the system.
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Figure 9-16. Simulation and Prediction Graphs for an ARX Model

Notice how the actual response, or the measured response, is different
from the simulated response in the simulation graph. The SI Model
Simulation VI simulates the response of the system without considering the
actual response of and the noise dynamics in the system.

Residual Analysis

In addition to simulation and prediction, you can perform a residual
analysis to validate the system model. Residual analysis tests whether the
prediction error correlates to the stimulus signal. Prediction errors are
usually uncorrelated with all stimulus signals in an open-loop system.

The block diagram in Figure 9-17 shows how you can use the SI Model
Residual Analysis VI with the ARX model identified in the User-Defined
Criterion section to analyze the residuals.
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Figure 9-17. Residual Analysis VI

Figure 9-18 shows an example of ideal results where both autocorrelation
and cross correlation are inside the confidence region except those in the
vicinity of T = 0. This result indicates that the estimated model accurately

describes the system.
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Figure 9-18. Residual Analysis for A Order = 4, B Order = 5, and Delay = 0

When you verify and validate the identified model, you must use multiple

analysis techniques to determine if the estimated model accurately

represents the system. Some analysis techniques can be misleading. For
example, if you performed a residual analysis on the model identified in the
Minimum Description Length Criterion section, you might conclude that
this model is an accurate representation of the system. Figure 9-19 shows
the autocorrelation and cross correlation residual analysis for the model in
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the Minimum Description Length Criterion section. Recall that this model

has the following orders:
e Aorder=6

e Border=6

e delay=0
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Figure 9-19. Residual Analysis of ARX Model
with A Order = 6, B Order = 6, and Delay = 0

Figure 9-19 shows that both the autocorrelation and cross correlation are
inside the confidence region. Therefore, without performing any other
analyses, you might conclude that this model is an accurate representation
of the system. However, the pole-zero analysis in the Minimum Description
Length Criterion section showed poles outside of the unit circle. So you
already determined that this model is unstable. Thus, despite acceptable
autocorrelation and cross correlation values, concluding that this model is
accurate is incorrect.

Thus, if you only performed a residual analysis, you might not discover that
this model is actually unstable. When validating a model, perform multiple
analyses to ensure the accuracy of the model.
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Estimating a State-Space Model

For a state-space model, order estimation is equivalent to estimating the
number of significant singular values, which correspond to the number of
states in the model. After identifying a state-space model that represents the
system, you can use the same validation and verification technique used in
the Simulation and Prediction section and the Residual Analysis section.

Refer to the State-Space Model section of Chapter 4, Parametric Model
Estimation Methods, for more information about estimating state-space
models.

The examples in this section use the same flexible robotic arm data and the
same preprocessing techniques.

Finding the Singular Values

The block diagram in Figure 9-20 shows how to use the SI Estimate Orders
of System Model VI to find the optimal order and the number of significant
singular values.

S Daka Samples.vi| [5ILowpass Fiter.vi] [5IDown Sampling.wi] [SI Estimate Crders of Syskem Model,vi]
|# Flexible Arm 'l_‘é = ey T ontimal ordar
b P
SIS0, WhT State-Space
(3150, Array) Eingular Values
cutoff frequency decimation Factor border] t

25 10} =

Figure 9-20. Estimate Orders of State-Space Model VI

The Singular Values graph in Figure 9-21 shows a singular value plot with
four leading singular values.
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Figure 9-21. Singular Value Plot for State-Space Model

By looking both at the Singular Values graph and the optimal order, you
can see that there are four states in this state-space model.

Validating the Estimated State-Space Model

You can validate the state-space model in the same way that you validated
the ARX model. You use the SI Model Simulation VI and the SI Model
Prediction VI to determine the accuracy of the state-space model.

Figure 9-22 shows the complete process, from estimating the state-space
model to simulating and predicting the response of the model.
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Figure 9-22. Simulation & Prediction with State-Space Model VI

The simulation and 1-step ahead prediction graphs in Figure 9-22 show
simulation and prediction plots for a state-space model.
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Figure 9-23. Simulation and Prediction Graphs for a State-Space Model

Refer to the Validating Models section of Chapter 8, Analyzing, Validating,
and Converting Models, for more information about validating a model.

Additional Examples

In this chapter, you learned how to start from raw data and find an accurate
model to represent the system from which you acquired the data. The
examples in this chapter are located in the labview\examples\system
identification\SICaseStudyl.llb.

The labview\examples\system identification\ directory also
contains other examples you can use to become familiar with the System
Identification VIs. You also can access the System Identification example
VIs by selecting Help»Find Examples to display the NI Example Finder and
then navigating to the Toolkits and Modules»System Identification folder.

Refer to the LabVIEW Help, available by selecting Help»Search the
LabVIEW Help, for more information about specific System
Identification VIs in this case study.
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