

Avionics Databus Solutions

ACE429-3U

32 Channels ARINC429 Test & Simulation Module for PXI-Express / cPCI-Express (3U)

> ACEA29 ACEA29 ACEA29 A common

> > Hardware Manual

V01.01 Rev. A April 2022

ACE429-3U

32 Channel s ARINC429 Test & Simulation Module for PXI-Express/cPCI-Express(3U)

Hardware Manual

V01.01 Rev. A April 2022

AIM No. 60-127C6-16-0101-A

AIM – Gesellschaft für angewandte Informatik und Mikroelektronik mbH

AIM GmbH

Sasbacher Str. 2 D-79111 Freiburg / Germany Phone +49 (0)761 4 52 29-0 Fax +49 (0)761 4 52 29-33 sales@aim-online.com

AIM GmbH – Munich Sales Office

Terofalstr. 23a D-80689 München / Germany Phone +49 (0)89 70 92 92-92 Fax +49 (0)89 70 92 92-94 salesgermany@aim-online.com

AIM UK Office

Cressex Enterprise Centre, Lincoln Rd. High Wycombe, Bucks. HP12 3RB / UK Phone +44 (0)1494-446844 Fax +44 (0)1494-449324 salesuk@aim-online.com

AIM USA LLC

Seven Neshaminy Interplex Suite 211 Trevose, PA 19053 Phone 267-982-2600 Fax 215-645-1580 salesusa@aim-online.com

© AIM GmbH 2022

Notice: The information that is provided in this document is believed to be accurate. No responsibility is assumed by AIM GmbH for its use. No license or rights are granted by implication in connection therewith. Specifications are subject to change without notice.

DOCUMENT HISTORY

The following table defines the history of this document.

Version	Cover Date	Created by	Description
V01.00 Rev A	09.11.2016	S.Thota	First Released Version
V01.00 Rev B	06.07.2020	M.Schüssele	Formation, New title page picture
V01.01 Rev A	14.04.2022	M.Masood	Added more description into "Front Panel LEDs" chapter

TABLE OF CONTENTS

S	ection	Title	Page
1	Intro	oduction	1
	1.1	General	1
	1.2	How This Manual is organized	2
	1.3 1.3.1 1.3.2		2 2 2
2	Inst	allation	3
	2.1	Preparation and Precaution for Installation	3
	2.2	Installation Instructions	3
	2.3 2.3.1	Connecting to other Devices ACE429-32 Front panel Connector Pinout	4 5
	2.4	Front Panel LEDs	6
3	Stru	cture of the ACE429-3U-32	7
	3.1 3.1.1 3.1.2	PCI-Express bus and BIU-I/O FPGA Global RAM Interface and Arbitration Boot up	8 8 8
	3.2	Global RAM	8
	3.3	BIU-Processors (BIP)	8
	3.4	ARINC-429 Encoder	9
	3.5	ARINC-429 Decoder	9
	3.6	External Trigger Output	9
	3.7 3.7.1 3.7.2		9 10 10
	3.8	PXIe / cPCIe - Connector Pin Assignment	10
	3.9	General Purpose Discrete Inputs/Outputs (GPIO)	11
	3.10	IRIG-B	11
4	PXI-	EXPRESS Instrumentation Bus	13
	4.1 4.1.1 4.1.2 4.1.3		13 14 14 15
5	Tec	hnical data	17
6	Note	9S	21
	6.1	Acronyms	21
7	Cert	ificate of Volatility	23

13

LIST OF FIGURES

Figure Title	Page
Figure 2-1: Front Panel view	4
Figure 2-2: Status LED view	6
Figure 3-1: Block Diagram of ACE429-3U-32	7

Figure 4-1: PXI architecture

LIST OF TABLES

Figure Title	Page
Table 2-1 : Pin assignment ACE429-32	5
Table 2-2: Front Panel LED description	6
Table 3-1: IRIG-B: Binary Coded Time Tag	10
Table 3-2: PXIe XJ4 connector's pin-out	11
Table 3-3: PXIe XJ3 connector's pin-out	11

THIS PAGE INTENTIONALLY LEFT BLANK

1 INTRODUCTION

1.1 General

This document comprises the Hardware User's Manual for the PXI-Express ACE429-3U-32, which implements 32 transmit and receive ARINC-429 channels, based on the PCI-Express communication standard. The document covers the hardware installation, board connections, technical data and a general description of the hardware architecture. For programming information please refer to the documents listed in the 'Applicable Documents' section.

The ACE429-3U-32 is a member of AIM's new family of Compact PCI-Express/PXI-Express (3U) modules for analysis, simulation, monitoring and testing of ARINC429 channels providing up to 32 channels on a 3U module form factor. Each channel is software configurable in runtime as a fixed amplitude Transmitter or Receiver.

On the transmit channels, the ACE429-32 acts as an autonomously operating bus traffic simulator, supporting multiple modes of transmission sequencing. Full error injection capabilities are available, whereby the error injection is programmable individually for each channel and label. For special transmission operating modes the parity bit can be used alternatively as an additional data bit. The rise and fall time of the bus signals are individually programmable by software for each transmit channel.

For the receive channels, the ACE429-32 provides an advanced monitor and analyser function with unique on-board error detection, triggering and filtering capabilities. Monitor and analyser functions are available concurrently and independent from each other. The hardware architecture provides resources to guarantee that the performance of one function is not affected by the current load of the other function. The rise and fall times of the bus signals are individually programmable for each receive channel. To adapt to different transmit speeds, the transmission rate can be varied in discrete steps between approximately 90 and 120Kbits on the high speed bus and between 11.5 and 16.0Kbits on the low speed lines.

The hardware architecture provides ample resources (i.e. processing capability and memory) to guarantee, that all specified interface functions are available concurrently and to full performance specifications.

The advanced architecture uses a special processor for the ARINC-429 stream. A powerful PCI-Express Controller (1-lane up to 2.5 Gbit/s) and Memory Arbiter are implemented in a Field Programmable Gate Array (FPGA). This FPGA supports both, the interface to the application and driver software tasks running on the host computer and assists the communication for data transfer. This feature expands the capability of the ACE429-32 module to that of a high level instrument. To fulfil the real-time requirements of a typical avionic type data bus system, a high performance 32bit RISC processor (BIP) is implemented.

1. Introduction

A free-wheeling IRIG-B Time code Encoder/Decoder is implemented on the ACE429-32 to satisfy the requirements of 'multi-channel time tag synchronization' on the system level. The IRIG-B compatible amplitude modulated sine wave output allows the synchronization of any external module implementing IRIG-B time stamping.

The module can be installed in standard cPCIe (3U) peripheral/hybrid slots and PXIe (3U) Peripheral/hybrid slots. If installed in a PXIe slot, 8 PXI Trigger I/O and a PXI System Reference Clock (10MHz) based time tag mode are supported.

1.2 How This Manual is organized

This ACE429-32 Hardware Manual is comprised of the following sections.

- Section 1 Introduction Contains an overview of this manual.
- Section 2 Installation Describes the steps required to install the ACE429-3U-32 device and connect the device to other external 429 interfaces, IRIG-B, and trigger out.
- Section 3 Structure of the ACE429-32 Describes the physical hardware Interfaces on the ACE429-32 using a block diagram and a description of each main component
- Section 4 PXI-Express Instrumentation Bus describes the PXI-Express Instrumentation Bus
- Section 5 Technical Data describes the technical specification of the ACE429-32.

1.3 Applicable Documents

The following documents shall be considered to be a part of this document to the extent that they are referenced herein. In the event of conflict between the documents referenced and the contents of this document, the contents of this document shall have precedence.

1.3.1 Industry Documents

- [1] PXI Express Hardware Specification Rev. 1.0 Aug. 22, 2005
- [2] PXI Hardware Specification Rev. 2.2 September 22, 2004

1.3.2 Product Specific Documents

[3] AIM - Reference Manual ACE429-32 Application Interface Library: Detailed description of the programming interface between the Host Carrier board and the onboard driver software.

2 INSTALLATION

2.1 Preparation and Precaution for Installation

The ACE429-32 features full PCI Plug and Play capability; therefore, there are no jumpers or switches on the board that require modification by the user in order to interface to the PCIe bus.

It is recommended to use a wrist strap for any installations. If there is no wrist wrap available, then touch a metal plate on your system to ground yourself and discharge any static electricity during the installation work.

2.2 Installation Instructions

The following instructions describe how to install the ACE429-32 module in your cPCIe/PXIe slots system. Please follow the instructions carefully, to avoid any damage on the device.

To Install the ACE429-32

- 1. Shutdown your system and all peripheral devices.
- 2. Unplug the power cord from the wall outlet. (Inserting or removing modules with power applied may result in damage to module devices).
- 3. Find a free peripheral/hybrid expansion slot in your system.
- 4. Remove the slot bracket from the slot you have chosen and put it aside.
- 5. Make sure the injector/ejector handle is in its downward position.
- 6. Align the ACE429 with the card guides on the top and bottom of the peripheral/hybrid expansion slot. Do not raise the injector/ejector handle as you insert.
- 7. Hold the handle as you slowly slide the module into the chassis until the handle catches on the injector/ejector rail.
- 8. Raise the injector/ejector handle until the module firmly seats into the backplane receptacle connectors. The front panel of the ACE429 should be even with the front of the chassis.
- 9. Secure the card to the cPCle/PXle chassis tightening the two bracketretaining screws on the top and bottom of the front panel
- 10. Connect the system to the power source. Turn on the power of your system.

2.3 Connecting to other Devices

The connection to other devices is done via a SCSI-3 female connector.

The Front panel has 32 ARINC429 channels, IRIG IN/OUT and Trigger OUT.

The ACE429-3U-32 implementation has the capability to share the I/O- pins. This means each ARINC429 channel can be used as Transmit or Receive channel, but only one operation mode is possible at one time. The pinout is listed below.

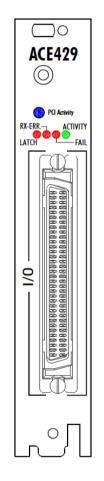


Figure 2-1: Front Panel view

2.3.1 ACE429-32 Front panel Connector Pinout

Pin	SCSI-3 female connector,	Direction	Pin	Signal	Direction
No.	Description	Туре	No.	Description	Туре
1	TxRx_True_1	Bidir.	35	TxRx_Comp_1	Bidir.
2	TxRx_True_2	Bidir.	36	TxRx_Comp_2	Bidir.
3	TxRx_True_3	Bidir.	37	TxRx_Comp_3	Bidir.
4	TxRx_True_4	Bidir.	38	TxRx_Comp_4	Bidir.
5	TxRx_True_5	Bidir.	39	TxRx_Comp_5	Bidir.
6	TxRx_True_6	Bidir.	40	TxRx_Comp_6	Bidir.
7	TxRx_True_7	Bidir.	41	TxRx_Comp_7	Bidir.
8	TxRx_True_8	Bidir.	42	TxRx_Comp_8	Bidir.
9	TxRx_True_9	Bidir.	43	TxRx_Comp_9	Bidir.
10	TxRx_True_10	Bidir.	44	TxRx_Comp_10	Bidir.
11	TxRx_True_11	Bidir.	45	TxRx_Comp_11	Bidir.
12	TxRx_True_12	Bidir.	46	TxRx_Comp_12	Bidir.
13	TxRx_True_13	Bidir.	47	TxRx_Comp_13	Bidir.
14	TxRx_True_14	Bidir.	48	TxRx_Comp_14	Bidir.
15	TxRx_True_15	Bidir.	49	TxRx_Comp_15	Bidir.
16	TxRx_True_16	Bidir.	50	TxRx_Comp_16	Bidir.
17	TxRx_True_30	Bidir.	51	TxRx_Comp_30	Bidir.
18	TxRx_True_31	Bidir.	52	TxRx_Comp_31	Bidir.
19	TxRx_True_17	Bidir.	53	TxRx_Comp_17	Bidir.
20	TxRx_True_18	Bidir.	54	TxRx_Comp_18	Bidir.
21	TxRx_True_19	Bidir.	55	TxRx_Comp_19	Bidir.
22	TxRx_True_20	Bidir.	56	TxRx_Comp_20	Bidir.
23	TxRx_True_21	Bidir.	57	TxRx_Comp_21	Bidir.
24	TxRx_True_22	Bidir.	58	TxRx_Comp_22	Bidir.
25	TxRx_True_23	Bidir.	59	TxRx_Comp_23	Bidir.
26	TxRx_True_24	Bidir.	60	TxRx_Comp_24	Bidir.
27	TxRx_True_29	Bidir.	61	TxRx_Comp_29	Bidir.
28	GND	Pow.	62	TRIGGER_OUT	OUT
29	IRIG_IN	IN	63	IRIG_OUT	OUT
30	TxRx_True_25	Bidir.	64	TxRx_Comp_25	Bidir.
31	TxRx_True_26	Bidir.	65	TxRx_Comp_26	Bidir.
32	TxRx_True_27	Bidir.	66	TxRx_Comp_27	Bidir.
33	TxRx_True_28	Bidir.	67	TxRx_Comp_28	Bidir.
34	TxRx_True_32	Bidir.	68	TxRx_Comp_32	Bidir.

2.4 Front Panel LEDs

Five subminiature LED's, as listed in Table 2-2, indicate the various conditions of the module at the front panel. The LED's are located in a quadruple LED-Array on the physical interface daughterboard. The first LED is used for indication of ARINC429 data streams of one or more channels. If data are transmitted, the green LED will be flashed. The second LED is used for board fail indication. If the board or any of the self-test routines have failed, the red LED will still be illuminated after power-up. After power-up, this LED is illuminated for app. 5 seconds. The third and fourth LED is used for error indication in a received data stream on any of the channels. If any error occurs, the third red LED will be flashed. The error event is stored and leads to an illumination of the fourth LED. During power-up or reset all LEDs are illuminated for self-test purposes.

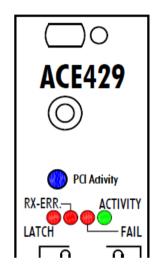
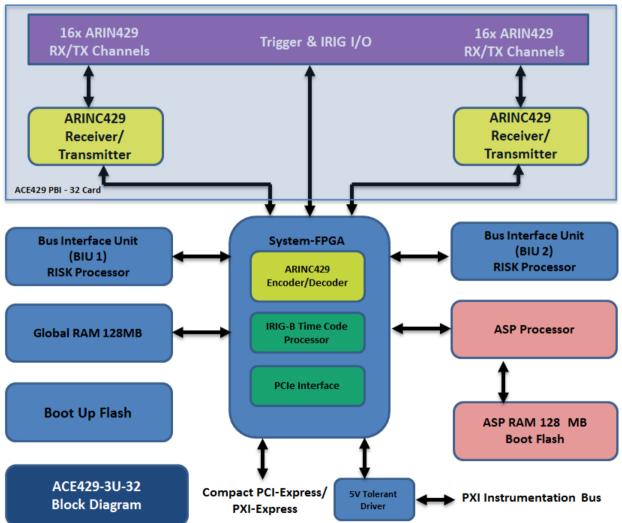


Figure 2-2: Status LED view

LED Name	Colour	Description
ACTIVITY	Green	LED flashes If data is transmitted on any channel.
FAIL	Red	LED illuminates if an error during the BIU self-test occurs.
RX-ERR	Red	LED flashes if an error on any channel is detected.
RX-ERR- LATCH	Red	LED illuminates if an error on any channel is detected (stored error).
PCI Activity	Blue	LED flashes if there is local (on board PCIe/PCI bus) activity


Table 2-2	Front	Panel	LED	description
-----------	-------	-------	-----	-------------

3 STRUCTURE OF THE ACE429-3U-32

The structure of the ACE429-3U-32 is shown in Figure 3-1. This card comprises the following main sections:

- PCI-Express bus and BIU-IO FPGA
- Global RAM
- BIU Processors Section (2-BIU's)
- Physical I/O Interface with 32 ARINC-429 channels and Trigger out
- IRIG- Time Code Proc. with free-wheeling function and Sine Wave Output
- Boot-Up Flash
- PXI Instrumentation Bus

Physical I/O Interface

Figure 3-1: Block Diagram of ACE429-3U-32

3. Structure of the ACE429-3U-32

3.1 PCI-Express bus and BIU-I/O FPGA

The new common FPGA architecture of AIM's PCI-Express family includes a complete PCI-Express bus logic (which is translated to a legacy PCI interface using an external bridge component) and the 2-BIU processors logic. This programmable device implements the following features:

- PCI Express 1.1 compliant bus interface
- Global RAM interface and arbitration
- Boot function
- SPI controller for update programming
- ARINC-429 Encoder
- ARINC-429 Decoder
- IRIG Encoder and decoder support
- External Trigger Output
- PXI Instrumentation Bus Capabilities

3.1.1 Global RAM Interface and Arbitration

The common FPGA implements a Global RAM arbiter, which controls the Global RAM access between both participants, the Host through the PCI-Express bus and the BIU processor.

3.1.2 Boot up

To provide maximum flexibility and upgradeability, the FPGA device and the processors are booted automatically from dedicated SPI-Flashes after power up.

3.2 Global RAM

The Global RAM is shared between both BIU processors (BIP) and the Host-Card Bus. The arbitration is handled by the common FPGA. It has access to the common Global RAM via a 32 bit wide data port.

3.3 BIU-Processors (BIP)

There are two physical BIU processors. Each BIP consists of an ultra-low power, high performance 32bit RISC processor.

3.4 ARINC-429 Encoder

The encoder converts the parallel data into a serial ARINC429 encoded data stream and appends the parity and the gap bits. The programmable frame-time between two labels can be set in the range from 0 up to 255 ARINC429 bits.

The encoder provides the following error injection capabilities:

- Gap Error (-1 bit)
- Bit count Error (+/- 1 bit)
- Coding Error (fixed at bit position 12)
- Parity Error (if no special transmission mode is chosen)

3.5 ARINC-429 Decoder

The decoder converts the serial received data stream into a parallel data double word and generates an additional 16 bit report for each received label. The decoder measures the gap time between two labels for gap error detection and bus load traffic detection.

The decoder provides the following error detection capabilities:

- Gap Error Detection
- Bit count Error Detection
- Coding Error Detection
- Parity Error Detection (if no special transmission mode is chosen)

3.6 External Trigger Output

One Trigger output is provided on ACE429-32 variant.

The Trigger output is TTL level compatible. Filter circuitry is provided at the trigger output to cover Electromagnetic Compatibility (EMC) aspects.

3.7 IRIG- and Time Code Section

The main functions of the Time Code Processor (TCP) are:

- IRIG-B compatible Time Code Decoder function
- Time code Encoder IRIG-B compatible Time Encoder function

3.7.1 Time Code Encoder/Decoder

The generated time code signal is an IRIG-B compatible sinusoidal waveform. The time code information can be used for time-tagging and multi-channel synchronization. On the ACE429-32 a new generation IRIG-B section is implemented with a free-wheeling IRIG functionality. If no external IRIG signal is detected, the TCP switches automatically to the free-wheeling mode. Also, if an external IRIG-B signal is detected in free-wheeling mode, the Time tag is automatically synchronized to this external IRIG-B signal.

The time tag on the board is generated in the format explained in the following table:

Time Element	Number of bits
DAYS of Year	9
HOURS of Day	5
MINUTES of Hour	6
SECONDS of Minute	6
MICROSECONDS of Second	20
Summary	46 (6 Bytes, stored in two 32bit words)

Table 3-1: IRIG-B: Binary Coded Time Tag

3.7.2 Time Tag Methods

Besides the ARINC429 receive and transmit signals, the 68 pin SCSI-3 connector comprises one Trigger output signal as well as the IRIG-B- input and output as listed at all previous described Connector Pinout tables.

The IRIG-IN and IRIG-OUT signals shall be connected depending on the Time synchronisation method used as shown below.

- 1. Single AIM-Module No External IRIG-B Source No connection required
- 2. Multiple AIM-Modules with No Common Synchronization Requirement No connection required
- 3. Single or Multiple AIM-Module(s) with External IRIG-B Source Connect external IRIG-B source to IRIG-IN and GND of all modules
- 4. Multiple AIM-Modules with No External IRIG-B Source Internally Synchronized.

Connect the IRIG-OUT signal and the GND of the module you have chosen as the time master to all IRIG-IN signals (including the time master).

3.8 PXIe / cPCIe - Connector Pin Assignment

PXIe introduces the usage of the I/O pins on XJ4 as legacy PXI triggers, Clock, Star and Local Bus signals. XJ3 carries the cPCIe reserved pins locations for the PCI-Express serial communication bus.

	XJ4 Connector									
pin	Z	А	В	С	D	E	F			
1	GND	GA4	GA3	GA2	GA1	GA0	GND			
2	GND	5VAUX	GND	RSV	RSV	RSV	GND			
3	GND	12V	12V	GND	GND	GND	GND			
4	GND	GND	GND	3.3V	3.3V	3.3V	GND			
5	GND	PXI_TRIG_3	PXI_TRIG_4	PXI_TRIG_5	GND	PXI_TRIG_6	GND			
6	GND	PXI_TRIG_2	GND	RSV	PXI_STAR	PXI_CLK10	GND			
7	GND	PXI_TRIG_1	PXI_TRIG_0	RSV	GND	PXI_TRIG_7	GND			
8	GND	RSV	GND	RSV	PXI_LBL6	PXI_LBR6	GND			

Table 3-2: PXIe XJ4 connector's pin-out

	XJ3 Connector									
pin	pin A B ab C D cd E F ef								ef	
1	RSV	RSV	GND	RSV	RSV	GND	RSV	RSV	GND	
2	RSV	RSV	GND	RSV	RSV	GND	RSV	RSV	GND	
3	RSV	RSV	GND	RSV	RSV	GND	RSV	RSV	GND	
4	RSV	PERST#	GND	RSV	RSV	GND	1refCLK+	1refCLK-	GND	
5	1PETp0	1PETn0	GND	1PERp0	1PERn0	GND	RSV	RSV	GND	
6	RSV	RSV	GND	RSV	RSV	GND	RSV	RSV	GND	
7	RSV	RSV	GND	RSV	RSV	GND	RSV	RSV	GND	
8	RSV	RSV	GND	RSV	RSV	GND	RSV	RSV	GND	
9	RSV	RSV	GND	RSV	RSV	GND	RSV	RSV	GND	
10	RSV	RSV	GND	RSV	RSV	GND	RSV	RSV	GND	

Table 3-3: PXIe XJ3 connector's pin-out

RSV: Reserved Pin

3.9 General Purpose Discrete Inputs/Outputs (GPIO)

The ACE429-32 does not provide any General Purpose Discrete I/O's (GPIO's).

3.10 IRIG-B

See Chapter [3.7] for details.

THIS PAGE INTENTIONALLY LEFT BLANK

4. PXI-EXPRESS Instrumentation Bus

4 PXI-EXPRESS INSTRUMENTATION BUS

4.1 About the PXIe Standard

PCI Express was introduced to improve upon the PCI bus platform. The most notable PCIe advancement over PCI is its point-to-point bus topology. The shared bus used for PCI is replaced with a shared switch, which provides each device its own direct access to the bus. Unlike PCI, which divides bandwidth between all devices on the bus, PCIe provides each device with its own dedicated data pipeline. Because the cPCIe/PXIe backplane integrates PCI Express while still preserving compatibility with current PXI modules, users benefit from increasing bandwidth while maintaining backward compatibility with existing systems. PXIe specifies PXIe hybrid slots to deliver signals for both PCI and PCIe.

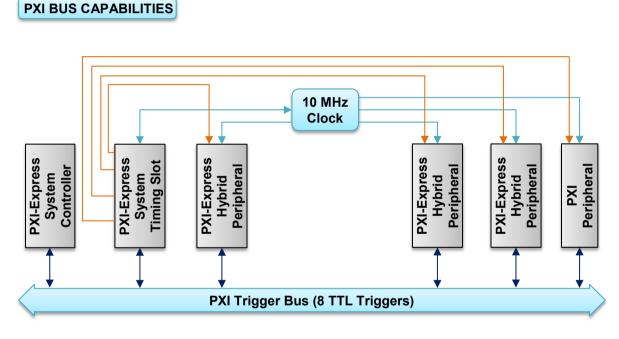


Figure 4-1: PXI architecture

PXIe combines industry-standard PC components, such as the PCI-Express bus, with advanced triggering and synchronization extensions on the backplane, backward compatible with the PXI triggering and synchronization bus.

The PXI-functions can be controlled via the API interface.

4.1.1 Backplane Trigger Lines

If the user requires a trigger bus, PXI triggers can be routed over the backplane instead of having to cable the cards together as one must do in a PC. The PXI backplane has eight dedicated trigger lines that are routed on the backplane to every slot, including the system controller slot. With these triggers, the user can achieve more sophisticated module synchronization, with features such as one module triggering another and asynchronous triggers. With asynchronous triggering, a module can be triggered by events occurring elsewhere. Finally, trigger signals can be routed into and out of the chassis with many of the newer controllers.

The ACE429-3U-32 card can route its Trigger INPUT and/or Trigger OUTPUT to the PXI backplane trigger lines, letting the user to deliver /receive trigger signals to/from other PXI cards present in the system (a Trigger Controller, another AIM PXI-capable product).

Please NOTE: The PXI triggers on the backplane are ACTIVE LOW. For electrical specification please refer to reference [1] and [2].

4.1.2 System Reference Clock (10MHz)

The PXI backplane has a built-in, dedicated 10 MHz system clock.

This very high quality clock, with low skew signals between each slot, is used for synchronizing modules. When boards are synchronized in an industrial PC, or any other system for that matter, they must be cabled together with a proprietary trigger bus and timing sources on the boards are used to time and trigger the boards. Because the quality and precision of the clock depends on the individual device, some are more or less precise than the industrial PC chassis clock. However, because the clock signals are routed among boards, they have a higher skew – typically nanoseconds versus picoseconds – than the chassis clock and the signals are not shielded. The PXI system clock is able to maintain its quality by using a low-skew, fan-out buffer chip that essentially provides a unique clock for every slot. Furthermore, because the clock lines are built into the backplane, the lines are better shielded than external lines.

The ACE429-3U-32 card can be set to deliver the PXI 10 MHz System Clock to its internal TIME TAG generation circuitry. The IRIG decoder will then work in Free-Wheeling mode but synchronous to the PXI 10 MHz clock. It is possible to maintain the synchronization among more AIM PXI-capable cards on the same backplane using the TIME TAG reset feature (see next paragraph).

Please NOTE: For electrical specification please refer to reference [1] and [2].

4.1.3 Star Trigger

The PXI backplane defines specific layout requirements so that the star trigger lines provide matched propagation time from the star trigger slot to each module for very precise trigger relationships between each module. The star trigger is a high-performance trigger signal, which can synchronize all of the modules in a chassis. You can also synchronize the modules using the normal PXI trigger bus, but the star trigger offers increased performance. Specifically, the star trigger provides a skew of less than 1 ns and a delay between the star trigger slot and each peripheral slot of no more than 5 ns.

To use the star trigger, a module with the ability to generate the star trigger must be placed in Slot 2 of the chassis. Slot 2 is dedicated for the star trigger controller (although any standard module placed in Slot 2 will function normally in an application where star triggering is not required). Receiving modules must also be designed to be able to accept the star trigger.

The standard PXI trigger bus can perform the same functionality with a trigger signal from any chassis slot, but with less precise timing.

The ACE429-3U-32 card can use the PXI STAR input signal to perform a TTAG reset (clear) to DAY 1. This TTAG reset to DAY 1 will work if the IRIG circuitry is running in Free-Wheeling mode:

- External IRIG signal selected, but no signal connected
- PXI 10MHz System Clock connected to the IRIG decoder

The TTAG clear to DAY 1 can be either triggered via PXI Star signal or via PXI Trigger Input 0.

Please NOTE: The PXI Star signal on the backplane is ACTIVE LOW. For electrical specification please refer to reference [1] and [2]

THIS PAGE INTENTIONALLY LEFT BLANK

5 TECHNICAL DATA

PXI-Express / Compact PCI-Express bus:

Compatible with PCI-Express Standard (Release 1.1) 3.3V PCI-Express - 1xlane PCI-Express bus operation 2.5 Gbit/s PXI-Express / Compact PCI-Express Hybrid/Peripheral slot compatibility

Memory:

Fast Industrial DDR2-RAM 128 MByte memory size 16 bit wide organized Shared between BIU-processor and PCI Express bus

BIU-Section: (2 BIUs are Present)

Low power, high performance 32bit RISC Processor; Core voltage 1.0V, Core speed 400 MHz, External bus speed 100 MHz

Encoder:

Programmable Bitrate High / Low Speed (100 / 12.5 Kbit/sec) Programmable gap between two labels are in the range from 0 up to 255 ARINC 429 bits. ARINC429-Label Bit-32 programmable as Parity or additional Data Bit

Error injection capabilities:

Gap Error	(-1 bit)
Bit count Error	(+/- 1 bit)
Coding Error	(fixed at bit position 12)
Parity Error	(if no special transmission mode is chosen)

Decoder:

Valid Receive Range Transmission speed select +/- approx. 10% ARINC429-Label Bit-32 programmable as Parity or additional Data Bit Measurement of gap between two labels in the range from 0.0 to 58.75 bits with 0.25bit resolution.

Error detection capabilities: Gap Error Detection Bit count Error Detection Coding Error Detection Parity Error Detection (if no special transmission mode is chosen)

Time Tagging:

IRIG B Time Tag:

For absolute time tagging, a special time code processor implements an IRIG-B encoder/decoder. If no external IRIG-B source is available a time code in IRIG B format is generated and can be used to synchronize multiple boards or modules.

Decoder:

Format:	IRIG-B-122		
Resolution:	1 µs		
Width:	1 Year (46 Bit)		
Signal Waveform: wave	Amplitude modulated sine wave or square		
Modulation Ratio:	3:1 to 6:1		
Input Amplitude:	0.6Vp-p to 5Vp-p		
Input Impedance:	~ 10k ohm		
Coupling:	AC coupled		
Time Jitter:	+/- 5µs (depending on the input signal		
quality)			
Lock time:	< 5s		
Free-wheeling accuracy after 10 Minutes < 1ppm (assuming			
input signal accuracy better than 50ppm)			

Encoder:

Format:	IRIG-B-122
Absolute Accuracy:	+/-25ppm (standard Oscillator)
Signal Waveform:	Amplitude modulated sine wave
Output Amplitude:	~ 4.5 Vp-p, High voltage level
Output Impedance:	~ 51 ohm
Coupling:	AC coupled
Modulation Ratio:	~ 3:1
Carrier Frequency:	1 kHz +/-50ppm

Connectors:

Rear Connector XJ3: High-Speed Advanced Differential Fabric (ADF) connector (30 contact pairs, 30 ground contacts, female connector) for PCIe connection Rear Connector XJ4: shielded 5-row by 8-column (40 pins) Hard Metric (eHM) female connector for power supply rails (+3.3V, +12V) and for PXI bus capabilities Front Connector: 68 pol. standard female SCSI-3

Line Transmitter:

Transmitter channel Output Impedance 75 Ω Channel 1-32 are fixed output amplitude of typically ± 10 V High / Low Speed: Rise and fall time automatically switched via Analogue Switches to meet the requirement for High / Low

Line Receiver:	Speed op	Speed operation			
	• •	edance A to B: edance A/B to G	typ. 50 kΩ ND: typ. 25 kΩ		
Trigger Out:		Output with TTL Level; with high speed EMV varistor, High Pulse width strobe, 500ns duration.			
PXI Trigger Bus /	STAR / Clock:				
	All PXI Inputs are TTL Level compatible Active LOW (falling edge) Trigger Input (also Star) and Trigger Outputs Pulse-width multiple of 100ns				
Supply Voltage:					
	Standard	Standard PC – Supply +3.3V, +12.0V			
Dimensions:	100.00 x ⁻	100.00 x 160.00 mm			
Power Consumpt	ion:				
PCIe Voltages	ldle	Operating HS	Operating LS(1)	Operating LS(2)	
+3.3V +12V Overall Power	3.84 2.04 5.88	4.55 2.28 6.83	4.55 2.28 6.83	8.45 2.28 10.73	
 (1) High Speed (HS) 100 kHz; no load; 100 % Duty Cycle (2) Low Speed (LS1) 12, 5 kHz; no load; 100 % Duty Cycle (3) Low Speed (LS2) 12, 5 kHz; worst case load (400 Ohm 30 nF); 100 % Duty Cycle 					
Temperature:					
		Standard Operating0 to +50°CExtended Temperature (on request)-15 to +60°CStorage-40 to +85°C			
Humidity:	0% to 95%	0% to 95% non-condensing			
Weight:	~ 200g fo	~ 200g for the ACE429-32			

THIS PAGE INTENTIONALLY LEFT BLANK

6 NOTES

6.1 Acronyms

· · · ,	
ADC	Analog to Digital Converter
ALBI	ASP Local Bus Interface
API	Application Programming Interface
ARM	Advanced RISC Machine
ARINC	AERONAUTICAL RADIO, INC
ASP	Application Support Processor
BIP	Bus Interface Processor
BIU	Bus Interface Unit
BSP	Board Software Package
CPCI	Compact PCI
cPCle	Compact PCI express
DAC	Digital to Analog Converter
DRAM	Dynamic Random Access Memory
EEPROM	Electrically Erasable and Programmable Read Only Memory
EMC	Electromagnetic Compatibility
FLASH	Page oriented electrical erasable and programmable memory
FPGA	Field Programmable Gate Array
GND	Ground
IRIG B	Inter Range Instrumentations Group Time code Format Type B
I/O	Input / Output
JTAG	Joint Test Action Group (IEEE 1149.1 Boundary Scan)
LCA	Logic Cell Array (Field Programmable Logic)
N/A	Not Applicable
NC	Not Connected
PC	Personal Computer
PCB	Printed Circuit Board
PROM	Programmable Read Only Memory
PCI	Peripheral component interconnect
PCle	Peripheral component interconnect Express
PBI	Physical Bus Interface (Daughterboard)
PXI	PCI eXtensions for Instrumentation
PXIe	PCI express eXtensions for Instrumentation
RISC	Reduced Instruction Set Computer
RAM	Random Access Memory
SIMM	Single Inline Memory Module
SRAM	Static Random Access Memory
SSRAM	Synchronous Static Random Access Memory
SDRAM	Synchronous Dynamic RAM
SW	Software
TAP	Test Access Port (for JTAG)
TCP	Time Code Processor
UART	Universal Asynchronous Receiver and Transmitter

THIS PAGE INTENTIONALLY LEFT BLANK

7 CERTIFICATE OF VOLATILITY

Model: ACE429-32-3U

Part-Number: 127C6-0101

Manufacturer: AIM GmbH Sasbacher Str. 2 D-79111 Freiburg Germany

Volatile Memory				
Does the item contair	n volatile memo	ry (i.e., memory who	ose contents are lost whe	en power is removed)?
🛛 Yes 🗌 Ne				
Description of used v	olatile memory:			
Туре:	Size:	User Modifiable:	Function:	Process to Sanitize:
DDR2-RAM	128 Mbyte	🛛 Yes	Buffers, Global RAM	Power off / on Cycle
DDR2-RAM	128 MByte	🛛 Yes	ASP Local RAM	Power off / on Cycle
Non-Volatile Memory				
	n non-volatile n	nemory (i.e., memo	ry whose contents are r	etained when power is
removed)?				
Yes 🗌 No				
Description of used n			Γ	
Туре:	Size:	User Modifiable:	Function:	Process to Sanitize:
Serial SPI-Flash	64 Mbit	🛛 No	FPGA Boot	Erase
Туре:	Size:	User Modifiable:	Function:	Process to Sanitize:
Serial SPI-Flash	8 Mbit	🖾 No	BIU1 CPU Boot	Erase
Serial SPI-Flash	8 Mbit	🛛 No	BIU2 CPU Boot	Erase
Serial SPI-Flash	8 Mbit	🛛 No	ASP CPU Boot	Erase
Туре:	Size:	User Modifiable:	Function:	Process to Sanitize:
NAND-Flash	256 MByte	Yes	ASP	Erase
		🛛 No	Personalization	
Media				
		ge capability (i.e., r	emovable or non-remov	/able disk drives, tape
drives, memory cards				
🗌 Yes 🛛 🕅 Ne				
Description of used m				
Туре:	Size:	User Modifiable:	Function:	Process to Sanitize:
-None-	-	🗌 Yes	-	-
		🗌 No		
Additional Information	ו:			
Test Engineer				
Name:	Title:			Date of
Saikanth Thota Hardware Engineer		Certification:		
				09.11.2016

All operating Data for handling the I/O Protocol will be stored in volatile memory only. No Transfer data is stored in Non-Volatile Memory. The Non-Volatile Memory only contains production relevant data for board personalization, FPGA Logic or Firmware Code for the on board Microcontroller.