
Arinc 429

C/C++ based Application
Programming Interface

Programmer’s
Guide

Version 9.8.0
June, 2022

www.aim-online.com

www.aim-online.com

Arinc 429

C/C++ based Application
Programming Interface

Programmer’s
Guide

Version 9.8.0
June, 2022

AIM NO. 60-12900-37-9.8.0

Arinc 429 - V9.8.0 I

AIM – Gesellschaft für angewandte Informatik und Mikroelektronik mbH

AIM GmbH
Sasbacher Str. 2
D-79111 Freiburg / Germany
Phone +49 (0)761 4 52 29-0
Fax +49 (0)761 4 52 29-33
sales@aim-online.com

AIM GmbH – Munich Sales Office
Terofalstr. 23a
D-80689 München / Germany
Phone +49 (0)89 70 92 92-92
Fax +49 (0)89 70 92 92-94
salesgermany@aim-online.com

AIM UK Office
Cressex Enterprise Centre, Lincoln Rd.
High Wycombe, Bucks. HP12 3RB / UK
Phone +44 (0)1494-446844
Fax +44 (0)1494-449324
salesuk@aim-online.com

AIM USA LLC
Seven Neshaminy Interplex
Suite 211 Trevose, PA 19053
Phone 267-982-2600
Fax 215-645-1580
salesusa@aim-online.com

© AIM GmbH 2022

Notice: The information that is provided in this document is believed to be accurate. No responsibility
is assumed by AIM GmbH for its use. No license or rights are granted by implication in connection
therewith. Specifications are subject to change without notice.

II Arinc 429 - V9.8.0

mailto:sales@aim-online.com
mailto:salesgermany@aim-online.com
mailto:salesuk@aim-online.com
mailto:salesusa@aim-online.com

TABLE OF CONTENTS

TABLE OF CONTENTS

1 Arinc 429 Specification Overview... 1
1.1 Arinc429 Wiring Topology ... 1
1.2 Arinc429 Transmission Characteristics ... 2
1.3 Arinc429 Protocol and Word Formats ... 3

2 General Programming.. 6
2.1 Initialization ... 6
2.2 Termination ... 7
2.3 Getting Information ... 8
2.4 Board Time ... 8
2.5 Event Handling.. 8

3 Transmitter Channel... 10
3.1 TX FIFO .. 10
3.2 Rate Oriented.. 11
3.3 Framing ... 12
3.4 Framing with Dyntag ... 17
3.5 Replay ... 17

4 Receiver Channel ... 20
4.1 Selective Receiving... 20
4.2 Receiver Monitor ... 21

5 Automatic data processing ... 23
5.1 Loop/Pollution ... 23
5.2 Frame Response... 23

6 Troubleshooting ... 25
6.1 Checking Return Values.. 25
6.2 Checking the Channel... 25
6.3 Checking the Transmitter .. 25
6.4 Checking the Receiver .. 25
6.5 Checking the Cabling .. 25
6.6 Monitoring the Bus Traffic ... 25
6.7 Contacting Support ... 26

7 Frequently Asked Questions... 27
7.1 How to find a Transfer ID, Minor Frame ID or Function Block ID....................................... 27
7.2 How to clean up .. 27
7.3 Why is only a part of my transfer buffer sent?... 27

Arinc 429 - V9.8.0 III

TABLE OF CONTENTS

IV Arinc 429 - V9.8.0

ARINC 429 SPECIFICATION OVERVIEW

1 Arinc 429 Specification Overview

The ARINC429 Specification defines the standard requirements for the transfer of digital data between
avionics systems on commercial aircraft. ARINC429 is also known as the Mark 33 Digital Information
Transfer System (DITS) Specification. Signal levels, timing and protocol characteristics are defined for
ease of design implementation and data communications on the Mark 33 DITS bus.

ARINC429 is a privately copywritten specification developed to provide interchangeability and interoper-
ability of line replaceable units (LRUs) in commercial aircraft. Manufacturers of avionics equipment are
under no requirement to comply to the ARINC429 Specification, but designing avionics systems to meet
the design guidelines provides cross-manufacturer interoperability between functional units.

Detailed information regarding the ARINC429 Specification can be obtained by visiting the ARINC web-
site at www.arinc.com.

1.1 Arinc429 Wiring Topology

ARINC429 is implemented as a simplex, broadcast bus. Each bus consists of a single transmitter – or
source – connected to from 1-20 receivers – or sinks – on one twisted wire pair. Data can be transmitted
in one direction only – simplex communication – with bi-directional transmission requiring two channels
or buses. The devices, line replaceable units or LRUs, are most commonly configured in a star or
bus-drop topology as shown in Figure 1 Wiring Topology. Each LRU may contain multiple transmitters
and receivers communicating on different buses. This simple architecture, almost point-to-point wiring,
provides a highly reliable transfer of data.

Figure 1: Wiring Topology

Arinc 429 - V9.8.0 1

ARINC 429 SPECIFICATION OVERVIEW

1.2 Arinc429 Transmission Characteristics

ARINC429 specifies two speeds for data transmission. Low speed operation is stated at 12.5 kHz, with
an actual allowable range of 12 to 14.5 kHz. High speed operation is 100 kHz +/- 1% allowed. These
two data rates can not be used on the same transmission bus.

Data is transmitted in a bipolar, Return-to-Zero format. This is a tri-state modulation consisting of HIGH,
NULL and LOW states.

Transmission voltages are measured across the output terminals of the source. Voltages presented
across the receiver input will be dependent on line length, stub configuration and the number of receivers
connected. The following voltage levels indicate the three allowable states:

• TRANSMIT

HIGH +10.0 V +/- 1.0 V

NULL 0 V +/- 0.5V

LOW -10.0 V +/- 1.0 V

• RECEIVE

HIGH +6.5 to 13 V

NULL +2.5 to -2.5 V

LOW -6.5 to -13 V

In bipolar, Return-to-Zero (RZ) format, a HIGH (or 1) is achieved with the transmission signal going from
NULL to +10 V for the first half of the bit cycle, then returning to zero or NULL.

A LOW (or 0) is produced by the signal dropping from NULL to –10 V for the first half bit cycle, then
returning to zero.

With a Return-to-Zero modulation format, each bit cycle time ends with the signal level at 0 Volts, elimi-
nating the need for an external clock, creating a self-clocking signal.

An example of the bipolar, tri-state RZ signal is shown in Figure 2 Bipolar return to zero.

Figure 2: Bipolar return to zero

2 Arinc 429 - V9.8.0

ARINC 429 SPECIFICATION OVERVIEW

1.3 Arinc429 Protocol and Word Formats

A transmitter may ‘talk only’ to a number of receivers on the bus, up to 20 on one wire pair, with each
receiver continually monitoring for its applicable data, but does not acknowledge receipt of the data.
A transmitter may require acknowledgement from a receiver when large amounts of data have been
transferred. This handshaking is performed using a particular word style, as opposed to a hard wired
handshake. When this two way communication format is required, two twisted pairs constituting two
channels are necessary to carry information back and forth, one for each direction.

Transmission from the source LRU is comprised of 32 bit words containing a 24 bit data portion contain-
ing the actual information, and an 8 bit label describing the data itself as shown in Figure 3 Arinc 429
Data Word Format.

Figure 3: Arinc 429 Data Word Format

The transmitter is always transmitting, either data words or the NULL state. Most ARINC messages
contain only one data word consisting of either Binary (BNR), Binary Coded Decimal (BCD) or alphanu-
meric data encoded using ISO Alphabet No. 5. File data transfers that send more than one word are
also allowed.

Sequential words are separated by at least 4 bit times of null or zero voltage. By utilizing this null gap
between words, a separate clock signal is unnecessary.

The only two fields definitively required are the Label and the Parity bit, leaving up to 23 bits available for
higher resolution data representation. Many non-standard word formats have been adopted by various
manufacturers of avionics equipment. Even with the variations included, all ARINC data is transmitted
in 32 bit words. Any unused bits are padded with zeros.

Parity

ARINC429 defines the Most Significant Bit (MSB) of the data word as the Parity bit. ARINC uses odd
parity as an error check to ensure accurate data reception. The number of Logic 1s transmitted in each
word is an odd number, with bit 32 being set or cleared to obtain the odd count. ARINC429 specifies no
means of error correction, only error detection.

Arinc 429 - V9.8.0 3

ARINC 429 SPECIFICATION OVERVIEW

Label

Bits 1-8 contain the ARINC Label known as the Information Identifier. The Label is expressed as a 3
digit octal number with receivers programmed to accept up to 255 Labels. The Label’s Most Significant
Bit resides in the ARINC word’s Least Significant Bit location.

The Label is used to identify the word’s data type (Binary (BNR), Binary Coded Decimal (BCD), Discrete,
etc) and can contain instructions or data reporting information. Labels may be further refined by utilizing
the first 3 bits of the data field, Bits 11-13, as an Equipment Identifier to identify the bus transmission
source. Equipment IDs are expressed in hexadecimal values.

LRUs have no address assigned through ARINC429, but rather have Equipment ID numbers which allow
grouping equipment into systems, which facilitates system management and file transfers.

For example, BNR Label 102 is Selected Altitude. This data can be received from the Flight Management
Computer (Equipment ID 002Hex), the DFS System (Equipment ID 020Hex) or the FCC Controller
(Equipment ID 0A1Hex).

The Label is always sent first in an ARINC transmission and is a required field, as is the Parity bit. Labels
are transmitted MSB first, followed by the rest of the ARINC word, transmitted LSB first.

Source/Destination Identifier (SDI)

The Source/Destination Identifier (SDI) utilizes bits 9-10 and is optional under the ARINC429 Specifica-
tion. The SDI can be used to identify which source is transmitting the data or by multiple receivers to
identify which receiver the data is meant for.

For higher resolution data, bits 9-10 may be used instead of using them as an SDI field. When used as
an Identifier, the SDI is interpreted as an extension to the word Label.

Sign/Status Matrix (SSM)

Depending on the Label, which indicates the type of data is being transmitted, the SSM field can provide
different information. In BCD data words the bits 30 and 31 are assigned to the SSM, in BNR data words
the bits 29, 30 and 31. Each Label has its own unique implementation of the SSM Sign function.

Data

ARINC429 defines bits 11-29 as those containing the word’s Data information. Formatting of the Data
bits, as well as the entire ARINC429 word, is very flexible.

When transmitting words on the ARINC bus, the Label is transmitted first, MSB first, followed by the rest
of the bit field, LSB first as shown in Figure 4 Arinc 429 Data Word Transfer Format.

The Label is always transmitted first, in reverse order to rest of the ARINC word – a compensation for
compatibility with legacy systems. The receiving LRU is responsible for data translation and regrouping

4 Arinc 429 - V9.8.0

ARINC 429 SPECIFICATION OVERVIEW

Figure 4: Arinc 429 Data Word Transfer Format

of bits into proper order.

The Data types available in ARINC429 are:

• Binary (BNR) – Transmitted in fractional two’s complement notation

• Binary Coded Decimal (BCD) – Numerical subset of ISO Alphabet No. 5

• Discrete Data – Combination of BNR, BCD or individual bit representation

• Maintenance Data and Acknowledgement – Requires two-way communication

• Williamsburg/Buckhorn Protocol – A bit-oriented protocol for file transfers

Arinc 429 - V9.8.0 5

GENERAL PROGRAMMING

2 General Programming

An AIM Arinc 429 board has some features that affect the whole board. For example the IRIG-B time
encoder/decoder, the trigger lines or the discrete channels. But depending on its assembly the board
has also up to 32 channels that may either be configured as arinc 429 transmitter or receiver, but not
both. Some functions to show more information about a specific board and its channels are listed in
Section 2.3 "Getting Information"

2.1 Initialization and Board Setup

The API S/W Library is capable of controlling AIM boards which are located on your computer or re-
motely on a network server that has the AIM Network Server (ANS) software installed. Initialization and
shutdown commands required for your application depend on this configuration. This section will discuss
both configurations and the function calls required to support each configuration.

Note:
The ANET429 device works like an ANS Server with a single board inserted. Please refer to the
ANET429 User’s Manual for details

The basic Library Administrative and System functions supporting initialization and shutdown include
the following functions which should be issued in the order shown:

• Api429LibInit - first initialize the API S/W Library interface and find out how many AIM boards/-
modules are on the local PC

• Api429LibServerConnect - returns the count of Arinc 429 boards (boardCount) on the remote
computer and status for success/failure of the execution of the function.

Note: do not call Api429LibInit after Api429LibServerConnect

• board mapping functions (only VxWorks) - the commands AiPciScan, AiVmeExamineSlot and/or
AiVme429MapModule are used to map a board to the PCI or VME bus. The output of the com-
mand AiVme429MapModule is the board ID assigned to this board and shall be used as input
parameter of Api429BoardOpen. If interrupts are used, the function AiVmeInitGenericInterrupt
also has to be called at this point.

• Api429BoardOpen - the application interface to the target module must then be opened to estab-
lish connectivity between the application interface and the AIM board.

Api429BoardOpen returns a handle which will be used to reference this AIM board for the rest of
the program. If the AIM boards are located on a remote computer, the parameter ac_SrvName
has to be set to the ServerName or Internet Protocol (IP) address. If addressing boards on the
local machine, the parameter shall be set to "local".

In VxWorks the input parameter board_id of Api429BoardOpen shall be set to the value returned
by function AiVme429MapModule.

Upon successful execution of these functions, the AIM boards are ready to be commanded with all other
API S/W Library function calls.

6 Arinc 429 - V9.8.0

GENERAL PROGRAMMING

wBoardCountLocal = Api429LibIni t () ; / * Local board access * /

i f (useServer)
{

/ * Remote board access * /
r e t V a l = Api429LibServerConnect (strServerName , &wBoardCountRemote) ;

}

r e t V a l = Api429BoardOpen (API429_BOARD_1 , strServerName , &boardHandle) ;

/ * a t t h i s po in t one or more channels o f the f i r s t board can be

* i n i t i a l i z e d to e i t h e r t r ansm i t or rece ive * /

2.2 Board cleanup and program termination

• Api429ChannelClear - The Api429ChannelClear command cleans up the settings made for each
channel.

• Api429BoardReset - The Api429BoardReset command resets the board to its initial state.

• Api429BoardClose - The Api429BoardClose function terminates the communication to the AIM
board(s). Subsequent calls of driver-related functions after issuing an Api429BoardClose function
call will result in an error code and should be avoided. To re-establish connection to the AIM board,
the Api429BoardOpen function must be called.

• Api429LibServerDisconnect - If a connection to a remote PC has been established, the com-
mand Api429LibServerDisconnect function should be issued to disconnect the network connection
to the remote PC.

• Api429LibExit - The Api429LibExit command terminates the communication to all local boards.

/ * Clear the used channel .

* I t w i l l be stopped and a l l used resources are f reed

* /
r e t V a l = Api429ChannelClear (boardHandle , channel Id) ;

r e t V a l = Api429BoardClose (boardHandle) ;

i f (useServer)
Api429LibServerDisconnect (strServerName) ;

Api429LibExit () ;

Arinc 429 - V9.8.0 7

GENERAL PROGRAMMING

2.3 Getting Information about the AIM Board and the Configuration

Once you have initialized and opened the connection to the AIM board as described in the previous
section, you can obtain the status of the configuration of the board and the software versions contained
on your AIM board. The functions that provide this status are as follows:

• Api429BoardNameGet - Shows the name of the board.

• Api429VersionGetAll - Reads the version of all onboard components

• Api429BoardInfoGet - Retrieves basic information about the board

• Api429ChannelInfoGet - Returns basic information about the specified ARINC 429 channel

• Api429BoardServerInfoGet - Shows information abut a given ANS server

2.4 Board Time

The Arinc 429 boards internally track the time to be able to add time tags for example to the data in the
receiver monitor buffer. By default the board uses its onboard time generator, but an external IRIG-B
signal may also be used as time source.

• Api429BoardTimeGet - The Api429BoardTimeGet command shows the current time.

• Api429BoardTimeSet - This command sets the onboard time generator

• Api429BoardTimeSourceGet - This commands shows the the time source. It may be from the
board internal time generator or from an external IRIG-B time source.

• Api429BoardTimeSourceSet - This commands sets the time source.

2.5 Event Handling

The board can be setup to raise interrupts on certain occassions. Based on these the device driver will
throw events. A callback function can be registered to be able to react to these events. On VxWorks
systems AiVmeInitGenericInterrupt has also to be called to provide the driver library with additional
information required to handle the interrupt.

It is also possible to register a function for PnP events, like plugging in or removing an USB device.

Please note that the overall event latency and the jitter thereof are strongly dependent on the environ-
ment (like the host PC). If the event latency is important, a long time analysis of the complete system
is strongly recommended. Please note that events via the USB bus and via ANS (network) have a
significantly high event latency.

The following functions may be used:

• Api429ChannelCallbackRegister - registers a function to handle the events of a channel.

8 Arinc 429 - V9.8.0

GENERAL PROGRAMMING

• Api429ChannelCallbackUnregister - unregisters an event handling function.

• Api429LibPnpCallbackSet - registers a callback function for PnP. To remove a registered callback
function, call this function with parameter null.

/ * user def ined ca l l back f u n c t i o n t h a t may used as inpu t to

* Api429ChannelCal lbackRegister * /
s t a t i c void AI_CALL_CONV userCal lbackFunct ion (AiUInt8 boardHandle ,

AiUInt8 channelId ,
enum api429_event_type type ,
struct api429_ int r_ logl is t_entry * x_ In fo)

{
/ * the code to reac t on an event may be placed here .

* parameter type should be used to i d e n t i f y the source o f the event * /
}

uw_RetVal = Api429ChannelCallbackRegister (boardHandle , channelId , 0 ,
userCal lbackFunct ion) ;

The following list shows some channel based events and the function by which they can be enabled.

• API429_EVENT_TX_HALT, always enabled (provoked with Api429TxRepetitionCountSet)

• API429_EVENT_TX_SKIP, enabled with Api429TxXferCreate

• API429_EVENT_TX_LABEL, enabled with Api429TxXferCreate

• API429_EVENT_TX_INDEX, enabled with Api429TxXferCreate

• API429_EVENT_RX_ANY_LABEL, enabled with Api429RxLabelConfigure

• API429_EVENT_RX_INDEX, enabled with Api429RxLabelConfigure

• API429_EVENT_RX_ERROR, enabled with Api429RxLabelConfigure

• API429_EVENT_FUNC_BLOCK, enabled with Api429RmCreate

• API429_EVENT_RM_TRIGGER, enabled with Api429RmCreate

• API429_EVENT_RM_BUFFER_FULL, enabled with Api429RmCreate

• API429_EVENT_RM_BUFFER_HALF_FULL, enabled with Api429RmCreate

• API429_EVENT_REPLAY_HALF_BUFFER, enabled with Api429ReplayInit

• API429_EVENT_REPLAY_STOP, enabled with Api429ReplayInit

• API429_EVENT_TX_FIFO, always enabled (provoked with Api429TxFifoInterruptCreate)

Arinc 429 - V9.8.0 9

TRANSMITTER CHANNEL

3 Transmitter Channel

There are several methods to send data on a transmitter channel to the ARINC 429 bus. Each one
designed for a different scenario. After a reset all channels are disabled and may be set to a transmission
mode with the command Api429TxInit. Don’t forget to start the channel with Api429ChannelStart after
having set it up. The following command can be used for all transmitter channels

• Api429TxInit - initializes the channel in a given transmission mode.

• Api429TxAmplitudeSet - sets the amplitude of a given channel. (Not available on all boards)

• Api429TxStatusGet - gets some status information, like how many transfer were sent

• Api429ChannelSpeedSet - allows to change from high speed to low speed and back

• Api429ChannelInfoGet - gets some overall information about this channel

• Api429ChannelStart - starts the channel. Without it the channel stays inactive and will do nothing

• Api429ChannelHalt - renders the channel inactive

3.1 TX FIFO

This is the most simple method to send data. Initialize the channel in FIFO mode by using parame-
ter API429_TX_MODE_FIFO for Api429TxInit, start it and write data to the ARINC 429 bus with little
overhead in a fire and forget manner.

• Api429TxFifoDataWordsWrite - write instructions to the FIFO, so that some Arinc 429 data words
will be sent to the bus.

• Api429TxFifoWrite - write some instructions into the FIFO that will be handled by the board.
These entries may be created by functions like Api429TxFifoDataWordCreate, Api429TxFifoDelayCreate
or Api429TxFifoInterruptCreate

• Api429TxFifoStatusGet - provides information about the current status of the FIFO.

• Api429TxFifoSetup - allows to change basic parameters of the FIFO, like the size.

Listing 1: Simple Tx Fifo

r e t V a l = Api429TxInit (boardHandle , channelId , API429_TX_MODE_FIFO , 0) ;

r e t V a l = Api429ChannelStart (boardHandle , channel Id) ;

labels_to_send [0] = 0xF001 ;
labels_to_send [1] = 0xF002 ;
labels_to_send [2] = 0xF003 ;
labels_to_send [3] = 0xF004 ;
r e t V a l = Api429TxFifoDataWordsWrite (boardHandle , channelId , 4 , labels_to_send ,

AiTrue , &u l E n t r i e s W r i t t e n) ;

10 Arinc 429 - V9.8.0

TRANSMITTER CHANNEL

Listing 2: More complex Tx Fifo

r e t V a l = Api429TxInit (boardHandle , channelId , API429_TX_MODE_FIFO , 0) ;

r e t V a l = Api429ChannelStart (boardHandle , channel Id) ;

/ * send fou r data words and a f t e r t h a t t r i g g e r an i n t e r r u p t event * /
r e t V a l = Api429TxFifoDataWordCreate (& f i f o _ i n p u t [0] , 0xF001 , 4 , 0) ;
r e t V a l = Api429TxFifoDataWordCreate (& f i f o _ i n p u t [1] , 0xF002 , 4 , 0) ;
r e t V a l = Api429TxFifoDataWordCreate (& f i f o _ i n p u t [2] , 0xF003 , 4 , 0) ;
r e t V a l = Api429TxFifoDataWordCreate (& f i f o _ i n p u t [3] , 0xF004 , 4 , 0) ;
r e t V a l = Api429TxFifoInterruptCreate (& f i f o _ i n p u t [4] , 0) ;

r e t V a l = Api429TxFifoWrite (boardHandle , channelId , 5 , f i f o _ i n p u t , AiTrue ,
&u l E n t r i e s W r i t t e n) ;

3.2 Rate Oriented

This method is designed that individual transfers are setup once and repeatedly be sent by the board.
There are also limited methods available to send some data in between the transfers with a repetition
rate. For this mode the channel shall be initialized with parameter API429_TX_MODE_RATE_CONTROLLED
for Api429TxInit. The following commands shall be used to set up the channel:

• Api429TxXferCreate - creates a transfer

• Api429TxXferBufferWrite - writes data to the transmit buffer of a transfer. Can be updated while
the channel is active

• Api429TxXferRateAdd - sets the repetition rate of the transfer

• Api429TxXferRateShow - shows the real repetition rate of a transfer (may differ from what has
been set, due to rounding)

• Api429TxXferRateRemove - clears the repetition rate, so that the transfer will not be sent

• Api429TxPrepareFraming - calculate the framing from all the repetition rates set. Is also auto-
matically done within Api429ChannelStart

• Api429TxStartOnTrigger - instead of starting the channel immediately, a transmitter channel can
also be started when an external trigger was received.

• Api429TxAcycFrameCreate - creates a frame that is to be sent on demand within an existing
cyclic frame

• Api429TxAcycFrameSend - sends a previously created acyclic frame

r e t V a l = Api429TxInit (boardHandle , channelId , API429_TX_MODE_RATE_CONTROLLED, 0) ;

Arinc 429 - V9.8.0 11

TRANSMITTER CHANNEL

memset(& x_Xfer , 0 , sizeof (x_Xfer)) ;
x_Xfer . x f e r _ i d = FRM_1_ID ; / * any unused Id i s poss ib le * /
x_Xfer . x fe r_ type = API429_TX_LAB_XFER ;
x_Xfer . bu f_s ize = 1;
x_Xfer . xfer_gap = 4;
r e t V a l = Api429TxXferCreate (boardHandle , channelId , &x_Xfer , &x_Xfe r In fo) ;

aul_XferLWord [0] = 0x0000F000 + FRM_1_ID ;
r e t V a l = Api429TxXferBufferWrite (boardHandle , channelId , FRM_1_ID , 1 ,

x_Xfer . buf_s ize , aul_XferLWord) ;

r e t V a l = Api429TxXferRateAdd (boardHandle , channelId , FRM_1_ID , FRM_1_RATE) ;

r e t V a l = Api429ChannelStart (boardHandle , channel Id) ;

/ * we assume t h a t the f raming was created and i s a l ready s t a r t e d

* and we want to send an a c y c l i c frame i n between * /

memset (&x_Xfer , 0 , sizeof (x_Xfer)) ;
x_Xfer . x f e r _ i d = 5; / * any other unused ID i s a lso poss ib le * /
x_Xfer . x fe r_ type = API429_TX_LAB_XFER ;
x_Xfer . bu f_s ize = 1;
x_Xfer . xfer_gap = 4;
r e t V a l = Api429TxXferCreate (boardHandle , channelId , &x_Xfer , &x_Xfe r In fo) ;

aul_XferLWord [0] = 0x0000F001 ;
r e t V a l = Api429TxXferBufferWrite (boardHandle , channelId , x_Xfer . x fe r_ id , 1 ,
x_Xfer . buf_s ize , aul_XferLWord) ;

au l_Xfers [0] = x_Xfer . x f e r _ i d ;
r e t V a l = Api429TxAcycFrameCreate (boardHandle , channelId , 1 , &au l_Xfers [0] ,
&AcycFrameID / * rece ive the frame i d here * /) ;

/ * now the a c y c l i c frame can be sent on demand * /
r e t V a l = Api429TxAcycFrameSend (boardHandle , channelId , AcycFrameID) ;

3.3 Framing

This method is like the rate oriented mode, but allows more control on the frames being set up. In the
rate oriented mode a major frame and several minor frames are automatically set up to achieve the
wanted repetition rates. By doing so you don’t have direct control on the frames. With the framing mode
(with parameter API429_TX_MODE_FRAMING in Api429TxInit) you can create a framing that more

12 Arinc 429 - V9.8.0

TRANSMITTER CHANNEL

suits your needs. Again some transfers may be sent in between with acyclic transmissions like discribed
for the rate oriented mode. In this case the following commands shall be used:

• Api429TxXferCreate - creates a transfer

• Api429TxXferBufferWrite - writes data to the transmit buffer. Can be updated while the channel
is active

• Api429TxFrameTimeSet - sets the time difference of the start of two consecutive minor frames

• Api429TxMinorFrameCreate - creates a minor frame, which may contain one or more transfers.
You may include the same transfer several times if required.

• Api429TxMajorFrameCreate - creates the major frame, which may contain one or more minor
frames. You may include the same minor frame several times if required.

• Api429TxRepetitionCountSet - In this mode you can tell the board to send the major frame only
for a certain amount of times.

• Api429TxStartOnTrigger - instead of starting the channel immediately, a transmitter channel can
also be started when an external trigger was received.

r e t V a l = Api429TxInit (boardHandle , channelId , API429_TX_MODE_FRAMING , 0) ;

r e t V a l = Api429TxFrameTimeSet (boardHandle , channelId , 10) ; / * sets frame t ime to 10ms* /

memset (&x_Xfer , 0 , sizeof (x_Xfer)) ;
x_Xfer . x f e r _ i d = 1; / * any other unused ID i s a lso poss ib le * /
x_Xfer . x fe r_ type = API429_TX_LAB_XFER ;
x_Xfer . bu f_s ize = 4; / * o f ten a b u f f e r s ize 1 i s a lso a good choice * /
x_Xfer . xfer_gap = 4;
r e t V a l = Api429TxXferCreate (boardHandle , channelId , &x_Xfer , &x_Xfe r In fo) ;

for (u l_ Index =0; ul_Index <x_Xfer . bu f_s ize ; u l_ Index++)
aul_XferLWord [u l_ Index] = 0x0000F000 | (u l_ Index +1) ;

r e t V a l = Api429TxXferBufferWrite (boardHandle , channelId , x_Xfer . x fe r_ id , 1 ,
x_Xfer . buf_s ize , aul_XferLWord) ;

au l_Xfers [0] = 1 ;

memset(&x_MFrame , 0 , sizeof (x_MFrame)) ;
x_MFrame . ul_FrmId = 0;
x_MFrame . u l_XferCnt = 1 ;
x_MFrame . pu l_Xfers = &aul_Xfers [0] ; / * l i s t o f t r a n s f e r s w i t h i n t h i s minor frame * /
r e t V a l = Api429TxMinorFrameCreate (boardHandle , channelId , &x_MFrame , &x_MFrameInfo) ;

aul_Frames [0] = 0 ; / * l i s t o f minor frames w i t h i n the major frame * /
r e t V a l = Api429TxMajorFrameCreate (boardHandle , channelId , 1 , aul_Frames) ;

r e t V a l = Api429ChannelStart (boardHandle , channel Id) ;

Arinc 429 - V9.8.0 13

TRANSMITTER CHANNEL

Example for complex framing

If a framing is more complex it may be hard to find out which minor frames are to be set up. In this case
it can be helpful to draw the requirements into a figure.

Let us assume the following requirement:

• Transfer T1 has to be sent every 10ms

• Transfer T2 has to be sent 4 times with a time delta of 10ms, but have a pause of 40ms after that

• Transfer T3 has to be sent twice with a time delta of 10ms and have a pause of 20ms after that

• Transfer T4 has to be sent every 10ms

• Transfer T5 has to be sent every 20ms

• Transfer T6 has to be sent every 10ms

• Transfer T7 has to be sent every 80ms

This requirement allows us to divide it into chunks of 10ms each. Writing this down leads to the Figure
5 Complex Framing Sample

Figure 5: Complex Framing Sample

To finally set up this framing requires us to set the minor frame time to 10ms and to set up eight minor
frames.

r e t V a l = Api429TxInit (boardHandle , channelId , API429_TX_MODE_FRAMING , 0) ;

14 Arinc 429 - V9.8.0

TRANSMITTER CHANNEL

/ * se t up t r a n s f e r s here * /

r e t V a l = Api429TxFrameTimeSet (boardHandle , channelId , 10) ;

au l_Xfers [0] = T1 ;
au l_Xfers [1] = T2 ;
au l_Xfers [2] = T3 ;
au l_Xfers [3] = T4 ;
au l_Xfers [4] = T5 ;
au l_Xfers [5] = T6 ;
au l_Xfers [6] = T7 ;
x_MFrame . ul_FrmId = 1;
x_MFrame . u l_XferCnt = 7 ;
x_MFrame . pu l_Xfers = &aul_Xfers [0] ; / * l i s t o f t r a n s f e r s w i t h i n t h i s minor frame * /
r e t V a l = Api429TxMinorFrameCreate (boardHandle , channelId , &x_MFrame , &x_MFrameInfo) ;

au l_Xfers [0] = T1 ;
au l_Xfers [1] = T2 ;
au l_Xfers [2] = T3 ;
au l_Xfers [3] = T4 ;
au l_Xfers [4] = T6 ;
x_MFrame . ul_FrmId = 2;
x_MFrame . u l_XferCnt = 5 ;
x_MFrame . pu l_Xfers = &aul_Xfers [0] ; / * l i s t o f t r a n s f e r s w i t h i n t h i s minor frame * /
r e t V a l = Api429TxMinorFrameCreate (boardHandle , channelId , &x_MFrame , &x_MFrameInfo) ;

au l_Xfers [0] = T1 ;
au l_Xfers [1] = T2 ;
au l_Xfers [2] = T4 ;
au l_Xfers [3] = T5 ;
au l_Xfers [4] = T6 ;
x_MFrame . ul_FrmId = 4;
x_MFrame . u l_XferCnt = 5 ;
x_MFrame . pu l_Xfers = &aul_Xfers [0] ; / * l i s t o f t r a n s f e r s w i t h i n t h i s minor frame * /
r e t V a l = Api429TxMinorFrameCreate (boardHandle , channelId , &x_MFrame , &x_MFrameInfo) ;

au l_Xfers [0] = T1 ;
au l_Xfers [1] = T2 ;
au l_Xfers [2] = T4 ;
au l_Xfers [3] = T6 ;
x_MFrame . ul_FrmId = 4;
x_MFrame . u l_XferCnt = 4 ;

Arinc 429 - V9.8.0 15

TRANSMITTER CHANNEL

x_MFrame . pu l_Xfers = &aul_Xfers [0] ; / * l i s t o f t r a n s f e r s w i t h i n t h i s minor frame * /
r e t V a l = Api429TxMinorFrameCreate (boardHandle , channelId , &x_MFrame , &x_MFrameInfo) ;

au l_Xfers [0] = T1 ;
au l_Xfers [1] = T3 ;
au l_Xfers [2] = T4 ;
au l_Xfers [3] = T5 ;
au l_Xfers [4] = T6 ;
x_MFrame . ul_FrmId = 5;
x_MFrame . u l_XferCnt = 5 ;
x_MFrame . pu l_Xfers = &aul_Xfers [0] ; / * l i s t o f t r a n s f e r s w i t h i n t h i s minor frame * /
r e t V a l = Api429TxMinorFrameCreate (boardHandle , channelId , &x_MFrame , &x_MFrameInfo) ;

au l_Xfers [0] = T1 ;
au l_Xfers [1] = T3 ;
au l_Xfers [2] = T4 ;
au l_Xfers [3] = T6 ;
x_MFrame . ul_FrmId = 6;
x_MFrame . u l_XferCnt = 4 ;
x_MFrame . pu l_Xfers = &aul_Xfers [0] ; / * l i s t o f t r a n s f e r s w i t h i n t h i s minor frame * /
r e t V a l = Api429TxMinorFrameCreate (boardHandle , channelId , &x_MFrame , &x_MFrameInfo) ;

au l_Xfers [0] = T1 ;
au l_Xfers [1] = T4 ;
au l_Xfers [2] = T5 ;
au l_Xfers [3] = T6 ;
x_MFrame . ul_FrmId = 7;
x_MFrame . u l_XferCnt = 4 ;
x_MFrame . pu l_Xfers = &aul_Xfers [0] ; / * l i s t o f t r a n s f e r s w i t h i n t h i s minor frame * /
r e t V a l = Api429TxMinorFrameCreate (boardHandle , channelId , &x_MFrame , &x_MFrameInfo) ;

au l_Xfers [0] = T1 ;
au l_Xfers [1] = T4 ;
au l_Xfers [2] = T6 ;
x_MFrame . ul_FrmId = 8;
x_MFrame . u l_XferCnt = 3 ;
x_MFrame . pu l_Xfers = &aul_Xfers [0] ; / * l i s t o f t r a n s f e r s w i t h i n t h i s minor frame * /
r e t V a l = Api429TxMinorFrameCreate (boardHandle , channelId , &x_MFrame , &x_MFrameInfo) ;

16 Arinc 429 - V9.8.0

TRANSMITTER CHANNEL

aul_Frames [0] = 1 ; / * l i s t o f minor frames w i t h i n the major frame * /
aul_Frames [1] = 2 ;
aul_Frames [2] = 3 ;
aul_Frames [3] = 4 ;
aul_Frames [4] = 5 ;
aul_Frames [5] = 6 ;
aul_Frames [6] = 7 ;
aul_Frames [7] = 8 ;
r e t V a l = Api429TxMajorFrameCreate (boardHandle , channelId , 1 , aul_Frames) ;

r e t V a l = Api429ChannelStart (boardHandle , channel Id) ;

3.4 Framing with Dyntag

This mode is nearly identical to the framing mode. The only difference is that the use of function
Api429TxXferDyntagAssign is allowed in this mode and the buffer size of transfers is limited to 1.

This mode is enabled by calling Api429TxInit with mode API429_TX_MODE_FRAMING_DYNTAG.

3.5 Replay

The physical replay mode allows to retransmit data that was previously recorded. It has to written in the
format as recorded during the Monitor Operation to the replay buffer and can be updated in a half buffer
mechanism.

In general, the order in which you will need to setup your Replay Configuration using the Replay functions
is as follows:

1. Replay Initialization – For a transmitter channel, Api429ReplayInit has to be called to set up the
replay buffer and for some additional options

2. Getting Status Information - Get the Replay Buffer start address and size of half the Replay
buffer using Api429ReplayStatusGet

3. Initial Data Write - Use Api429ReplayDataWrite to fill half of the Replay buffer with replay data
using the Replay Buffer start address and Replay Buffer half size (max). To fill the next half of the
Replay buffer before starting the transmitter, repeat the above to get the start address of the next
half of the Replay buffer and issue Api429CmdWriteRepData again.

4. Channel Start - Start transmitting the Replay data using Api429ChannelStart

5. Update Data - If your application requires the Replay buffer to be refilled, then be sure to program
a Half Buffer interrupt with function Api429ReplayInit. Once half of the replay buffer (128k entries)
has been transmitted, your interrupt handler can then refill the appropriate half of the Replay buffer

Arinc 429 - V9.8.0 17

TRANSMITTER CHANNEL

with new replay data using Api429ReplayDataWrite. To get the location and size of the half buffer
that should be refilled you can use the Replay Next Buffer Pointer provided in Log List Entry Word
LLB when you receive the interrupt. If you are polling to determine when to refill you can use
Api429ReplayStatusGet (ul_StartAddr and ul_Size in structure api429_replay_status) to obtain
the location and size of the half buffer that should be refilled.

For cyclic transmission of the Replay buffer (setup in Api429ReplayInit), transmission of the
Replay buffer will continue until an Api429ChannelHalt function call is issued.

For single transmission of the Replay buffer (setup in Api429ReplayInit), once the end of the
Replay data is reached, transmission is stopped and a stop interrupt will be issued (if enabled in
Api429ReplayInit).

r e t V a l = Api429TxInit (boardHandle , channelId , API429_TX_MODE_PHYS_REPLAY , 0) ;

r e t V a l = Api429ReplayInit (boardHandle ,
channelId ,
0 , / / uc_C l rEn t ryB i t ,
0 , / / uc_NoRepCnt ,
1 , / / uc_CycOpr , −−> c y c l i c a l l y rep lay
1 , / / uc_RepErrors , −−> also rep lay e r r o r s
0x01 , / / uc_RepIntMode , −−> ra i se i n t e r r u p t s on h a l f b u f f e r s
0 , / / uc_AbsLongTTag ,
0 , / / uw_DayOfYear ,
0 , / / ul_Min ,
0 , / / ul_MSec ,
u l _ F i l e S i z e) ;

/ / Status Read to get Size and load address
r e t V a l = Api429ReplayStatusGet (boardHandle , channelId , &x_RepStatus) ;
/ / w r i t e f i r s t Ha l f Bu f fe r
r e t V a l = Api429ReplayDataWrite (boardHandle , channelId , &x_RepStatus , p_DataBuffer ,

&u l_By tesWr i t ten) ;

read_new_data_into_p_DataBuffer (p_DataBuffer) ;

/ / Status Read to the next load address
r e t V a l = Api429ReplayStatusGet (boardHandle , channelId , &x_RepStatus) ;
/ / w r i t e second Ha l f Bu f fe r
r e t V a l = Api429ReplayDataWrite (boardHandle , channelId , &x_RepStatus , p_DataBuffer ,

&u l_By tesWr i t ten) ;

/ * S t a r t the rep lay * /
Api429ChannelStart (boardHandle , channel Id) ;

/ * Read i n i t i a l value f o r ul_OldRpiCnt * /

18 Arinc 429 - V9.8.0

TRANSMITTER CHANNEL

r e t V a l = Api429ReplayStatusGet (boardHandle , channelId , &x_RepStatus) ;

while ((API429_BUSY == x_RepStatus . uc_Status))
{

i f (ul_RpiCnt_was_incremented (x_RepStatus))
{

read_new_data_into_p_DataBuffer (p_DataBuffer) ;

/ * w r i t e next h a l f b u f f e r * /
r e t V a l = Api429ReplayDataWrite (boardHandle , channelId , &x_RepStatus ,

p_DataBuffer , &u l_By tesWr i t ten) ;
}

AiOsSleep (1 0 0) ;

r e t V a l = Api429ReplayStatusGet (boardHandle , channelId , &x_RepStatus) ;
} / / End While

Arinc 429 - V9.8.0 19

RECEIVER CHANNEL

4 Receiver Channel

To receive data, the channel has to be configured to be a receiver channel first. This is done with the
Api429RxInit command. You can configure the channel to write the received data to either a seperate
buffer for each label or into a shared monitor buffer. After that you have to activate the channel with
Api429ChannelStart.

• Api429RxInit - initializes the channel so that is able to receive data. Any previous configuration
for this channel is cleared.

• Api429RxStatusGet - gets some general status information about a receiver channel, like the
number of data received, or if the channel is started or not.

• Api429ChannelSpeedSet - allows to change from high speed to low speed and back

• Api429ChannelInfoGet - gets some overall information about this channel

• Api429ChannelStart - starts the channel. Without it the channel stays inactive and will do nothing

• Api429ChannelHalt - renders the channel inactive

4.1 Selective Receiving

For each label an individual receiver buffer can be created. Once created the data received for this label
can be read from this buffer. It is also possible to trigger an event on data reception.

• Api429RxLabelConfigure - creates an individual label receive buffer. Receiver Interrupts may be
enabled/disabled here.

• Api429RxLabelBufferWrite - writes data to the label receive buffer. May be used to initialize or
clear the buffer.

• Api429RxLabelBufferRead - reads data from the label receive buffer

• Api429RxLabelStatusGet - provides some status information for this label

• Api429RxLabelBufferOffsetGet - shows the offset to the start of the global memory. This may be
used to read the buffer contents directly (for example with Api429BoardMemBlockRead)

r e t V a l = Api429RxInit (boardHandle , channelId , AiFalse , AiFalse) ;

/ * loop over a l l l a b e l s 0 . .255 −−> 256 poss ib le l a b l e s * /
for (ul_LabIndex = 0; ul_LabIndex < 256; ul_LabIndex ++)
{

memset(& labe l_setup , 0 , sizeof (labe l_se tup)) ;
labe l_se tup . l a b e l = ul_LabIndex ;
labe l_se tup . con = API429_ENA ;
l abe l_se tup . bufSize = 1;

20 Arinc 429 - V9.8.0

RECEIVER CHANNEL

r e t V a l = Api429RxLabelConfigure (boardHandle , channelId , &labe l_setup ,
&uc_Status , &ul_FreeMem) ;

}

r e t V a l = Api429ChannelStart (boardHandle , channel Id) ;

. . .

/ * l e t ’ s have a look a t a l l rece ived data * /
r e t V a l = Api429RxStatusGet (boardHandle , channelId , &b_RxStatus , &l_MsgCnt , &l_Er rCn t) ;

/ * l e t ’ s see , what happened on l a b e l 5 * /
r e t V a l = Api429RxLabelStatusGet (boardHandle , channelId , 5 , 0 , 0 ,

pw_LabIx , px_LabCnt , px_LabErr) ;

/ * and now l e t ’ s read the cu r ren t b u f f e r contents * /
r e t V a l = Api429RxLabelBufferRead (boardHandle , channelId , 5 , 0 / * no SDI * / , 1 ,

&x_Ct l , ax_LData) ;

4.2 Receiver Monitor

In addition to the individual receive label buffers, you can also enable receiver monitoring. All received
data will be written into a shared buffer, along with a time tag and some additional information. This
allows to read all data of a channel with a single command. Usefull functions for the receiver monitor
are:

• Api429RmCreate - enables receiver monitoring

• Api429RmLabelConfigure - allows to enable/disable monitoring for each label, allowing a basic
filter.

• Api429RmTriggerConfigSet - allows to start monitoring on a specific event

• Api429RmDataRead - reads data out of the receiver monitor buffer. This function should be
repeatedly called.

• Api429RmFuncBlockConfigure - a function block has several parameters that define the con-
ditions that have to be met for it to become active. Other parameters describe the actions that
are executed once the conditions are met. Actions include raising an event, generating an output
strobe and filtering the RM buffer.

r e t V a l = Api429RxInit (boardHandle , channelId , AiFalse , AiFalse) ;

setup . mode = API429_RM_MODE_LOC ;
setup . s i z e _ i n _ e n t r i e s = API429_RM_MON_DEFAULT_SIZE ;
setup . ta t_coun t = API429_RM_CONTINUOUS_CAPTURE ;

Arinc 429 - V9.8.0 21

RECEIVER CHANNEL

setup . in ter rupt_mode = API429_RM_IR_DIS ;
r e t V a l = Api429RmCreate (boardHandle , channelId , &setup) ;

/ * enable a l l l a b e l s . . .

* loop over a l l l a b e l s 0 . .255 = 256 poss ib le l a b e l s

* we assume sd i s o r t i n g i s d isab led * /
for (ul_LabIndex = 0; ul_LabIndex <= 255; ul_LabIndex ++)
{

l a b e l _ c o n f i g . l a b e l _ i d = ul_LabIndex ;
l a b e l _ c o n f i g . sd i = 0 ; / * note : sd i s o r t i n g i s not enabled here * /
l a b e l _ c o n f i g . enable = AiTrue ;
r e t V a l = Api429RmLabelConfigure (boardHandle , channelId , &l a b e l _ c o n f i g) ;

}

r e t V a l = Api429ChannelStart (boardHandle , channel Id) ;

. . .
/ * l e t ’ s have a look a t a l l rece ived data * /
r e t V a l = Api429RxStatusGet (boardHandle , channelId , &b_RxStatus , &l_MsgCnt , &l_Er rCn t) ;

/ * and read some data . This i s the o ldes t data a f t e r channel s t a r t

* i f 32 e n t r i e s were read (uw_Count == 32) , there i s probably newer

* data s t i l l a v a i l a b l e . * /
r e t V a l = Api429RmDataRead (boardHandle , channelId , 32 , &uw_Count , ax_SData) ;

for (i = 0 ; i < uw_Count ; i ++) {
p r i n t f (" %08X %02d:%02d:%02d.%06d %d %d \ r \ n " ,

ax_SData [i] . lda ta ,
ax_SData [i] . brw . b . hours , ax_SData [i] . tm_tag . b . minutes ,
ax_SData [i] . tm_tag . b . seconds , ax_SData [i] . tm_tag . b . microseconds ,
ax_SData [i] . brw . b . channel + 1 ,
ax_SData [i] . brw . b . e_type) ;

}

22 Arinc 429 - V9.8.0

AUTOMATIC DATA PROCESSING

5 Automatic data processing

5.1 Loop/Pollution

It is possible to link a receiver channel to a transmitter channel, so that all incomming data is forwarded.
If required the forwarded data can be modified ("polluted"). Api429CmdTxInit has to be called with
API429_TX_MODE_LOOP. All other set up has to be done at the receiver channel.

Note:
boards with 32 channels are internally handled as two boards, whith 16 channels each.

The incoming data is forwarded on low level. It may be modified (polluted) on a small scale, if wanted.
The following commands should be used in this case:

• Api429RxDataLoopAssign - After calling this function, all data received for enabled labels will be
forwarded to the specified transmitter channel and sent on this channel at once.

• Api429RxPollutionConfigure - Used to define data modifications in a receiver/transmitter data
loop

r e t V a l = Api429RxInit (boardHandle , rxChannelId , AiFalse , AiFalse) ;

r e t V a l = Api429TxInit (boardHandle , txChannelId , API429_TX_MODE_LOOP , AiFalse) ;

r e t V a l = Api429RxDataLoopAssign (boardHandle , rxChannelId , txChannel Id) ;

/ * se t up a p o l l u t i o n block t h a t adds 0x100 to each a r i nc 429 data word * /
memset(& po l l B l k , 0 , sizeof (p o l l B l k)) ;
p o l l B l k . pb_id = 1;
p o l l B l k . and_mask = 0xFFFFFFFF ; / * don ’ t modify the data w i th AND * /
p o l l B l k . addsub_val = 0x100 ; / * add 0x100 to the looped data * /

for (l a b e l I d =0; l a be l I d <256; l a b e l I d ++)
r e t V a l = Api429RxPollutionConfigure (boardHandle , rxChannelId , l a be l I d ,

0 / * sd i * / , AiTrue , &p o l l B l k) ;

r e t V a l = Api429ChannelStart (boardHandle , rxChannel Id) ;

r e t V a l = Api429ChannelStart (boardHandle , txChannel Id) ;

5.2 Frame Response

It is also possible to react on a normal receiver channel to a specific data word, where based on the
contents of the received data word a previously prepared acyclic frames will automatically be sent.

Arinc 429 - V9.8.0 23

AUTOMATIC DATA PROCESSING

• Api429RxFrameResponseAssign - Attach an automatic response on a transmitter channel to a
receive label

• Api429RxFrameResponseRelease - Used to clear the automatic response

r e t V a l = Api429RxInit (boardHandle , rxChannelId , AiFalse , AiFalse) ;

r e t V a l = Api429TxInit (boardHandle , txChannelId , API429_TX_MODE_RATE_CONTROLLED,
AiFalse) ;

memset (&x_Xfer , 0 , sizeof (x_Xfer)) ;
x_Xfer . x f e r _ i d = 5; / * any other unused ID i s a lso poss ib le * /
x_Xfer . x fe r_ type = API429_TX_LAB_XFER ;
x_Xfer . bu f_s ize = 1;
x_Xfer . xfer_gap = 4;
r e t V a l = Api429TxXferCreate (boardHandle , txChannelId , &x_Xfer , &x_Xfe r In fo) ;

au l_Xfers [0] = x_Xfer . x f e r _ i d ;
r e t V a l = Api429TxAcycFrameCreate (boardHandle , txChannelId , 1 , &au l_Xfers [0] ,

&AcycFrameID / * rece ive the frame i d here * /) ;

/ * send an a c y c l i c t r a n s f e r , i f the lowest " data byte " i s 0x01 * /
memset(&p_Setup , 0 , sizeof (p_Setup)) ;
p_Setup . tx_channel = txChannel Id ;
p_Setup . tx_acyc_frame_id = AcycFrameID ;
p_Setup . compare_mask = 0x100 ;
p_Setup . compare_value = 0xFF00 ;

for (l a b e l I d =0; l a be l I d <256; l a b e l I d ++)
r e t V a l = Api429RxFrameResponseAssign (boardHandle , rxChannelId , l a be l I d , 0 ,

&p_Setup) ;

r e t V a l = Api429ChannelStart (boardHandle , rxChannel Id) ;

r e t V a l = Api429ChannelStart (boardHandle , txChannel Id) ;

24 Arinc 429 - V9.8.0

TROUBLESHOOTING

6 Troubleshooting

This section is designed to help in case problems appear. Some of these points may seem obvious, but
some can easily be overlooked and might be helpfull.

6.1 Checking Return Values

For every function call the return value should be checked. Most functions will return zero in case
of success. In case of a different return value it should be used as input parameter for function
Api429LibErrorDescGet to provide a human readable error description.

6.2 Checking the Channel

In case a channel is not doing what is expected, check the channel status with the command Api429ChannelInfoGet.
It will show the channel speed and whether the channel is active or not.

6.3 Checking the Transmitter

If you don’t receive the correct data, you should check the transmit counters. Is the content of output
parameter pl_GlbCnt of function Api429TxStatusGet sensible or not?

6.4 Checking the Receiver

If no data is received in a label buffer, it is helpfull to check if the data was received at all. Is the content
of the output parameters px_MsgCnt and px_ErrCnt sensible? Does it match what was sent by the
transmitter channel (using Api429TxStatusGet)

6.5 Checking the Cabling

Are TRUE and CMPL connected between the transmitter and the receiver? If only one connection is
drawn it may lead to undefined behaviour.

6.6 Monitoring the Bus Traffic

Either enable the monitoring of the receiver channel or attach a seperate board to the ARINC 429 bus.
This may be a different board, for example with the PBA.pro running on it. Understanding the traffic on
the ARINC 429 bus can help to understand the nature of the problem.

Arinc 429 - V9.8.0 25

TROUBLESHOOTING

6.7 Contacting Support

Collect data about the board. What is the correct name of the board, which are the versions on board?
The output of Api429BoardInfoGet and Api429VersionGetAll should always be provided in support re-
quests to speed up the problem determination.

Support either be addressed with the technical support form on www.aim-online.com or be sent via email
to support@aim-online.com

26 Arinc 429 - V9.8.0

FREQUENTLY ASKED QUESTIONS

7 Frequently Asked Questions

7.1 How to find a Transfer ID, Minor Frame ID or Function Block ID

These Ids can freely be choosen within the valid range, shown in the description of the function. Any of
them will do, as long as it was not used before.

If I choose an ID that is already in use for an item, its contents will be overwritten. This means that all
references to that item will use the last configuration.

7.2 How to clean up

For many items there is a deletion function (like Api429TxXferDelete). This will reset this item to its initial
state. A channel can be reverted with the command Api429ChannelClear and the whole board with the
command Api429BoardReset.

Resetting the board with Api429BoardReset implicitely resets all channels. Clearing a channel im-
plicitely resets all of its items (like minor frames, transfers and so on).

7.3 Why is only a part of my transfer buffer sent?

When setting up a transfer with Api429TxXferCreate you can refer to it - for example within a minor
frame using parameter px_MFrame->pul_Xfers of command Api429TxMinorFrameCreate. Each time
the transfer is handled by the framing one ARINC429 data word is being sent on the bus.

When creating a transfer with Api429TxXferCreate and parameter buf_size greater than one, a ring
buffer is set up. Each time that transfer is handled by the framing, one entry (== ARINC429 data word)
of this ring buffer is handled by the framing.

If you want to send the complete buffer contents within one minor frame, you have to refer the transfer
repeatedly within a minor frame - once for each entry of the ring buffer.

Arinc 429 - V9.8.0 27

FREQUENTLY ASKED QUESTIONS

28 Arinc 429 - V9.8.0

	Arinc 429 Specification Overview
	Arinc429 Wiring Topology
	Arinc429 Transmission Characteristics
	Arinc429 Protocol and Word Formats

	General Programming
	Initialization
	Termination
	Getting Information
	Board Time
	Event Handling

	Transmitter Channel
	TX FIFO
	Rate Oriented
	Framing
	Framing with Dyntag
	Replay

	Receiver Channel
	Selective Receiving
	Receiver Monitor

	Automatic data processing
	Loop/Pollution
	Frame Response

	Troubleshooting
	Checking Return Values
	Checking the Channel
	Checking the Transmitter
	Checking the Receiver
	Checking the Cabling
	Monitoring the Bus Traffic
	Contacting Support

	Frequently Asked Questions
	How to find a Transfer ID, Minor Frame ID or Function Block ID
	How to clean up
	Why is only a part of my transfer buffer sent?

