
FlexRIO
TM

Adapter Module Development Kit User Manual

NI FlexRIO Adapter Module Development Kit User Manual

August 2020
372544L-01

Support

Worldwide Technical Support and Product Information
ni.com

Worldwide Offices

Visit ni.com/niglobal to access the branch office websites, which provide up-to-date
contact information, support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the NI Services appendix. To comment on National
Instruments documentation, refer to the National Instruments website at ni.com/info and
enter the Info Code feedback.

© 2008–2020 National Instruments Corporation. All rights reserved.

http://ni.com
http://ni.com/niglobal
http://ni.com/info

Legal Information

Limited Warranty
This document is provided ‘as is’ and is subject to being changed, without notice, in future editions. For the latest version,
refer to ni.com/manuals. NI reviews this document carefully for technical accuracy; however, NI MAKES NO EXPRESS
OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND
SHALL NOT BE LIABLE FOR ANY ERRORS.
NI warrants that its hardware products will be free of defects in materials and workmanship that cause the product to fail to
substantially conform to the applicable NI published specifications for one (1) year from the date of invoice.
For a period of ninety (90) days from the date of invoice, NI warrants that (i) its software products will perform substantially
in accordance with the applicable documentation provided with the software and (ii) the software media will be free from
defects in materials and workmanship.
If NI receives notice of a defect or non-conformance during the applicable warranty period, NI will, in its discretion: (i) repair
or replace the affected product, or (ii) refund the fees paid for the affected product. Repaired or replaced Hardware will be
warranted for the remainder of the original warranty period or ninety (90) days, whichever is longer. If NI elects to repair or
replace the product, NI may use new or refurbished parts or products that are equivalent to new in performance and reliability
and are at least functionally equivalent to the original part or product.
You must obtain an RMA number from NI before returning any product to NI. NI reserves the right to charge a fee for
examining and testing Hardware not covered by the Limited Warranty.
This Limited Warranty does not apply if the defect of the product resulted from improper or inadequate maintenance,
installation, repair, or calibration (performed by a party other than NI); unauthorized modification; improper environment;
use of an improper hardware or software key; improper use or operation outside of the specification for the product; improper
voltages; accident, abuse, or neglect; or a hazard such as lightning, flood, or other act of nature.
THE REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND THE CUSTOMER’S SOLE REMEDIES, AND SHALL
APPLY EVEN IF SUCH REMEDIES FAIL OF THEIR ESSENTIAL PURPOSE.
EXCEPT AS EXPRESSLY SET FORTH HEREIN, PRODUCTS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND AND NI DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO THE
PRODUCTS, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, AND ANY WARRANTIES THAT MAY ARISE FROM
USAGE OF TRADE OR COURSE OF DEALING. NI DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OF OR THE RESULTS OF THE USE OF THE PRODUCTS IN TERMS
OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NI DOES NOT WARRANT THAT THE
OPERATION OF THE PRODUCTS WILL BE UNINTERRUPTED OR ERROR FREE.
In the event that you and NI have a separate signed written agreement with warranty terms covering the products, then the
warranty terms in the separate agreement shall control.
Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the
prior written consent of National Instruments Corporation.
National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected
by copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials
belonging to others, you may use NI software only to reproduce materials that you may reproduce in accordance with the
terms of any applicable license or other legal restriction.
End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:
• Notices are located in the <National Instruments>_Legal Information and <National Instruments>

directories.
• EULAs are located in the <National Instruments>\Shared\MDF\Legal\license directory.
• Review <National Instruments>_Legal Information.txt for information on including legal information in

installers built with NI products.
U.S. Government Restricted Rights
If you are an agency, department, or other entity of the United States Government (“Government”), the use, duplication,
reproduction, release, modification, disclosure or transfer of the technical data included in this manual is governed by the
Restricted Rights provisions under Federal Acquisition Regulation 52.227-14 for civilian agencies and Defense Federal
Acquisition Regulation Supplement Section 252.227-7014 and 252.227-7015 for military agencies.
Trademarks
Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for more information on National Instruments
trademarks.
ARM, Keil, and µVision are trademarks or registered of ARM Ltd or its subsidiaries.
LEGO, the LEGO logo, WEDO, and MINDSTORMS are trademarks of the LEGO Group.
TETRIX by Pitsco is a trademark of Pitsco, Inc.
FIELDBUS FOUNDATION™ and FOUNDATION™ are trademarks of the Fieldbus Foundation.

EtherCAT® is a registered trademark of and licensed by Beckhoff Automation GmbH.
CANopen® is a registered Community Trademark of CAN in Automation e.V.
DeviceNet™ and EtherNet/IP™ are trademarks of ODVA.
Go!, SensorDAQ, and Vernier are registered trademarks of Vernier Software & Technology. Vernier Software & Technology
and vernier.com are trademarks or trade dress.
Xilinx is the registered trademark of Xilinx, Inc.
Taptite and Trilobular are registered trademarks of Research Engineering & Manufacturing Inc.
FireWire® is the registered trademark of Apple Inc.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Handle Graphics®, MATLAB®, Real-Time Workshop®, Simulink®, Stateflow®, and xPC TargetBox® are registered
trademarks, and TargetBox™ and Target Language Compiler™ are trademarks of The MathWorks, Inc.
Tektronix®, Tek, and Tektronix, Enabling Technology are registered trademarks of Tektronix, Inc.
The Bluetooth® word mark is a registered trademark owned by the Bluetooth SIG, Inc.
The ExpressCard™ word mark and logos are owned by PCMCIA and any use of such marks by National Instruments is under
license.
The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft
Corporation in the United States and other countries.
Other product and company names mentioned herein are trademarks or trade names of their respective companies.
Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments
and have no agency, partnership, or joint-venture relationship with National Instruments.
Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your
software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.
Export Compliance Information
Refer to the Export Compliance Information at ni.com/legal/export-compliance for the National Instruments global
trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.
WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
YOU ARE ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY AND
RELIABILITY OF THE PRODUCTS WHENEVER THE PRODUCTS ARE INCORPORATED IN YOUR SYSTEM OR
APPLICATION, INCLUDING THE APPROPRIATE DESIGN, PROCESS, AND SAFETY LEVEL OF SUCH SYSTEM
OR APPLICATION.
PRODUCTS ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE
PERFORMANCE, INCLUDING IN THE OPERATION OF NUCLEAR FACILITIES; AIRCRAFT NAVIGATION; AIR
TRAFFIC CONTROL SYSTEMS; LIFE SAVING OR LIFE SUSTAINING SYSTEMS OR SUCH OTHER MEDICAL
DEVICES; OR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD
LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM
(COLLECTIVELY, “HIGH-RISK USES”). FURTHER, PRUDENT STEPS MUST BE TAKEN TO PROTECT AGAINST
FAILURES, INCLUDING PROVIDING BACK-UP AND SHUT-DOWN MECHANISMS. NI EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK
USES.

Compliance

Electromagnetic Compatibility Information
This hardware has been tested and found to comply with the applicable regulatory requirements and limits
for electromagnetic compatibility (EMC) as indicated in the hardware’s Declaration of Conformity (DoC)1.
These requirements and limits are designed to provide reasonable protection against harmful interference
when the hardware is operated in the intended electromagnetic environment. In special cases, for example
when either highly sensitive or noisy hardware is being used in close proximity, additional mitigation
measures may have to be employed to minimize the potential for electromagnetic interference.
While this hardware is compliant with the applicable regulatory EMC requirements, there is no guarantee
that interference will not occur in a particular installation. To minimize the potential for the hardware to
cause interference to radio and television reception or to experience unacceptable performance degradation,
install and use this hardware in strict accordance with the instructions in the hardware documentation and
the DoC1.
If this hardware does cause interference with licensed radio communications services or other nearby
electronics, which can be determined by turning the hardware off and on, you are encouraged to try to correct
the interference by one or more of the following measures:
• Reorient the antenna of the receiver (the device suffering interference).
• Relocate the transmitter (the device generating interference) with respect to the receiver.
• Plug the transmitter into a different outlet so that the transmitter and the receiver are on different branch

circuits.
Some hardware may require the use of a metal, shielded enclosure (windowless version) to meet the EMC
requirements for special EMC environments such as, for marine use or in heavy industrial areas. Refer to
the hardware’s user documentation and the DoC1 for product installation requirements.
When the hardware is connected to a test object or to test leads, the system may become more sensitive to
disturbances or may cause interference in the local electromagnetic environment.
Operation of this hardware in a residential area is likely to cause harmful interference. Users are required to
correct the interference at their own expense or cease operation of the hardware.
Changes or modifications not expressly approved by NI could void the user’s right to operate the hardware
under the local regulatory rules.

1 The Declaration of Conformity (DoC) contains important EMC compliance information and instructions
for the user or installer. To obtain the DoC for this product, visit ni.com/certification, search by
model number or product line, and click the appropriate link in the Certification column.

© National Instruments Corporation | vii

Contents

About This Manual
Related Documentation .. xviii
FlexRIO Adapter Module Development Kit Features and Changes xxi

Chapter 1
Before You Begin
Development Requirements ... 1-1
Registration... 1-1
Adapter Module Review... 1-2
FlexRIO Module Development Kit Installed Files... 1-3

Design Files .. 1-3
Documentation.. 1-3
Example Files ... 1-3

Chapter 2
FlexRIO Solution Architecture Overview
FlexRIO FPGA Module Device Overview .. 2-2
Adapter Module Printed Circuit Board (PCB) ... 2-3
LabVIEW Host VI and LabVIEW FPGA VI... 2-3
Adapter Module Component-Level IP (CLIP) ... 2-4
Controller for FlexRIO Device Overview .. 2-6
Adapter Module Printed Circuit Board (PCB) ... 2-7
LabVIEW Host VI and LabVIEW FPGA VI... 2-8

Chapter 3
Interfacing Adapter Modules with NI 795xR and NI 796xR
Modules
Adapter Module Electrical Interface .. 3-1

Power Guidelines.. 3-1
Adapter Module Connector Signals ... 3-4

Signal Descriptions... 3-4
General-Purpose Input/Output (GPIO)... 3-8
GPIO Bank Details (NI 795xR and NI 796xR) .. 3-9

Adapter Module Interface Protocol .. 3-10
Adapter Module Insertion Protocol .. 3-11
Adapter Module Removal Protocol .. 3-12

EEPROM Overview ... 3-12
EEPROM Recommendations ... 3-13
EEPROM Schematic and Wiring ... 3-13

Contents

viii | ni.com

Electrical Design Considerations..3-14
Power up and Sequencing with External Hardware ...3-14
FPGA I/O and Protection..3-14

Grounding ...3-14
NI 795xR/796xR FPGA I/O Bank Voltages ...3-15
Simultaneous Switching Output (SSO) Noise ..3-15
Clocks and Timing..3-16

Clock-Capable I/O Signals ...3-16
IoModSyncClk (NI 796xR Only) ...3-17

GPIO Termination and Impedance ...3-18
Minimizing Crosstalk ...3-18
Sharing the I2C Bus...3-18
Choosing Circuitry Components ..3-19
Unused Pin Recommendations ...3-19

Chapter 4
Interfacing Adapter Modules with NI-793xR and NI 797xR
Devices
Adapter Module Electrical Interface...4-1

Power Guidelines ..4-1
Adapter Module Connector Signals..4-3

NI-793xR and NI 797xR Signal Descriptions...4-4
General-Purpose Input/Output (GPIO)...4-7
GPIO Bank x Details...4-7

Adapter Module Interface Protocol ..4-8
Adapter Module Insertion Protocol ..4-9
Adapter Module Removal Protocol ..4-10

EEPROM Overview ...4-10
EEPROM Recommendations ...4-11
EEPROM Schematic and Wiring ...4-11

Electrical Design Considerations..4-12
Power up and Sequencing with External Hardware ...4-12
FPGA I/O and Protection..4-12

Grounding ...4-12
NI-793xR and NI 797xR FPGA I/O Bank Voltages...4-13
Simultaneous Switching Output (SSO) Noise ..4-13
Clocks and Timing..4-14

Clock-Capable I/O Signals ...4-14
IoModSyncClk..4-15

GPIO Termination and Impedance ...4-16
Minimizing Crosstalk ...4-16
Sharing the I2C Bus...4-16
Choosing Circuitry Components ..4-17
Unused Pin Recommendations ...4-17

FlexRIO Adapter Module Development Kit

© National Instruments Corporation | ix

Chapter 5
Printed Circuit Board (PCB) Design Considerations
PCB Orientation ... 5-1
PCB Design Concepts .. 5-1
PCB Dimensions... 5-6

Side Notches ... 5-6
GPIO Trace Routing... 5-9
Grounding Considerations.. 5-9
Mylar Insulators.. 5-11
Pin Locations .. 5-12

PCB Finishing... 5-13

Chapter 6
Card Edge Connector
Connector Description.. 6-1
Card Edge Connector Finishing ... 6-3

Chapter 7
Module Enclosure

EMI Gaskets ... 7-2
Enclosure Dimensions .. 7-4
Suggested Labeling... 7-6

Chapter 8
Installing the Adapter Module
Installing the Adapter Module with the FlexRIO FPGA Module 8-1

Removing the Custom Adapter Module... 8-2
Connectivity Options.. 8-2

Installing the Adapter Module with the Controller for FlexRIO...................................... 8-3
Removing the Custom Adapter Module... 8-4

Connectivity Options.. 8-4

Chapter 9
Configuring Your Adapter Module for Use with NI 795xR/796xR
Modules and LabVIEW FPGA
Programming the EEPROM ... 9-2

Programming the EEPROM in LabVIEW ... 9-3
EEPROM Map.. 9-5

Creating the Adapter Module Configuration (.tbc) File ... 9-6
Adapter Module Configuration (.tbc) Values... 9-7

General .tbc Values... 9-7
IoModSyncClk.tbc Values (NI 796xR Only)... 9-11
Constraints .tbc Values ... 9-13

Contents

x | ni.com

Example ..9-16
Creating the Adapter Module Configuration (.fam) File ..9-16

Adapter Module Configuration (.fam) Values..9-18
Common .fam Values ...9-18
Socket-specific .fam Values ...9-20
Adapter Module IOModuleID ..9-21
IoModSyncClk.fam Values (NI 796xR Only)..9-22
FlexRIO-IOModule Constraints .fam Values ...9-24

Example .fam File...9-27

Chapter 10
Configuring Your Adapter Module for Use with NI-793xR/797xR
Modules and LabVIEW FPGA
Programming the EEPROM ...10-2

Programming the EEPROM in LabVIEW..10-3
EEPROM Map..10-5

Creating the Adapter Module Configuration (.fam) File ..10-6
Adapter Module Configuration (.fam) Values..10-7

Common .fam Values ...10-8
Socket-specific .fam Values ...10-9
Adapter Module IOModuleID ..10-12
IoModSyncClk.fam Values ..10-13
FlexRIO-K7IOModule Constraints .fam Values ..10-15

Example .fam File for LabVIEW 2013 ..10-19
Example .fam (NI-793xR/NI 797xR) for LabVIEW 2014 and later10-20
Configuring .fam files for Compatibility with both LabVIEW 2013

and LabVIEW 2014...10-21

Chapter 11
Creating Socketed Component-Level IP for Your Adapter Module
and NI 795xR/796xR Modules
Using the CLIP Wizard...11-1
Creating or Acquiring the IP for the FlexRIO Adapter Module.......................................11-2

ExampleIOModuleCLIPV5.vhd ...11-3
Using External Clocks ..11-7

ExampleIOModuleCLIPV5.ucf ..11-8
ExampleIOModuleCLIPV5.xml...11-8

Configuring the FlexRIO Adapter Module in LabVIEW...11-12
Adding Your Adapter Module and Module I/O in LabVIEW..................................11-12
Manually Adding CLIP to Your LabVIEW Project ...11-14

FlexRIO Adapter Module Development Kit

© National Instruments Corporation | xi

Chapter 12
Creating Socketed Component-Level IP for Your Adapter Module
and NI-793xR/NI 797xR Modules
Using the CLIP Wizard .. 12-1
Creating or Acquiring the IP for the FlexRIO Adapter Module....................................... 12-2

ExampleIOModuleCLIPK7.vhd... 12-3
Using External Clocks .. 12-6

ExampleIOModuleCLIPK7.xml... 12-9
Configuring the FlexRIO Adapter Module in LabVIEW... 12-12

Adding Your Adapter Module and Module I/O in LabVIEW 12-13
Manually Adding CLIP to Your LabVIEW Project ... 12-15

Chapter 13
Designing and Debugging Component-Level IP
Synchronous vs Asynchronous Interfaces .. 13-1
Defining Synchronous CLIP Interfaces.. 13-3

Configuring the Top-Level CLIP HDL File... 13-3
Creating the CLIP XML... 13-4
Integrating the CLIP into LabVIEW .. 13-6

Considerations for Asynchronous Data Interfaces ... 13-7
Best Practices for Designing Constraints ... 13-8

Constraint File Organization .. 13-8
Documenting Constraints ... 13-9
Clocks ... 13-9
Resets.. 13-9
Max Delay and False Path .. 13-9
Clock Groups.. 13-10
Creating .xdc Constraints ... 13-10
Design Analysis and Closure Techniques .. 13-12

Common Issues and Troubleshooting .. 13-12
Port vs Pin... 13-12
Syntax Issues .. 13-13

How to Constrain Timing Failures in ISE .. 13-15
How to Constrain Timing Failures in Vivado .. 13-15

Digital Input Case... 13-16
Digital Output Case .. 13-16

Updating the LabVIEW Project to Reflect Changes in the CLIP XML 13-17

Appendix A
Signal Suggestions

Appendix B
Troubleshooting

Contents

xii | ni.com

Appendix C
Xilinx Documentation References

Appendix D
NI Services

Index

Figures
Figure 2-1. FlexRIO System Architecture Elements..2-1
Figure 2-2. FlexRIO FPGA Module Architecture..2-3
Figure 2-3. FlexRIO FPGA Module and Adapter Module2-3
Figure 2-4. LabVIEW FPGA, CLIP, and Hardware Integration

Diagram (Virtex-5) ..2-4
Figure 2-5. LabVIEW FPGA, CLIP, and Hardware Integration

Diagram (Kintex-7) ...2-5
Figure 2-6. Controller for FlexRIO Architecture ...2-6
Figure 2-7. Controller for FlexRIO and Adapter Module ..2-7
Figure 2-8. LabVIEW FPGA, CLIP, and Hardware Integration

Diagram (NI-7931R) ...2-8
Figure 2-9. LabVIEW FPGA, CLIP, and Hardware Integration

Diagram (NI-7932R and NI-7935R) ...2-9

Figure 3-1. Adapter Module Soft Start Circuits ...3-3
Figure 3-2. NI 795xR and NI 796xR Front Panel Connector Pin

Assignments and Locations ...3-5
Figure 3-3. Adapter Module Insertion Protocol ...3-11
Figure 3-4. EEPROM Wiring...3-13
Figure 3-5. IoModSyncClk Source Block Diagram...3-17
Figure 3-6. IoModSyncClk Termination..3-17

Figure 4-1. NI-793xR and NI 797xR Front Panel Connector Pin
Assignments and Locations ...4-4

Figure 4-2. Adapter Module Insertion Protocol ...4-9
Figure 4-3. EEPROM Wiring...4-11
Figure 4-4. IoModSyncClk Source Block Diagram...4-15
Figure 4-5. IoModSyncClk Termination..4-15

Figure 5-1. FlexRIO FPGA Device Assembled Front Panel and
Example Adapter Module..5-1

Figure 5-2. Adapter Module Cross Section Showing Component Clearance
Dimensions ..5-4

Figure 5-3. I/O Connector Area Clearance Dimensions ..5-5
Figure 5-4. Example Adapter Module PCB and Design Element Locations...........5-5

FlexRIO Adapter Module Development Kit

© National Instruments Corporation | xiii

Figure 5-5. PCB Notches Required for 1.0 Enclosures ... 5-6
Figure 5-6. Adapter Module PCB Primary Side Dimensions 5-7
Figure 5-7. Adapter Module PCB Secondary Side Dimensions 5-8
Figure 5-8. Adapter Module Enclosure with Mounted PCB.................................... 5-10
Figure 5-9. Mylar Insulator .. 5-11
Figure 5-10. Physical Pin Locations .. 5-12

Figure 6-1. Card Edge Connector Keying Dimensions ... 6-2
Figure 6-2. Adapter Module PCB Chamfer at Gold Finger Edge............................ 6-3
Figure 6-3. Gold Finger Electrical Connections .. 6-3
Figure 6-4. X-trace Between Isolated Gold Finger Pairs ... 6-4

Figure 7-1. Adapter Module Enclosure.. 7-1
Figure 7-2. EMI Gasket Locations on Module Primary Side 7-2
Figure 7-3. EMI Gasket Locations on Module Secondary Side 7-2
Figure 7-4. Improved Module Connections ... 7-3
Figure 7-5. FlexRIO Adapter Module Enclosure Dimensions................................. 7-4
Figure 7-6. Front Panel Dimensions and PCB Placement (Front View) 7-5
Figure 7-7. Front Panel Dimensions and PCB Placement (Top View).................... 7-6
Figure 7-8. Front Panel Dimensions and Labeling .. 7-7
Figure 7-9. Primary Side Suggested Labeling and Dimensions 7-7

Figure 8-1. Installing the Adapter Module... 8-2
Figure 8-2. Controller for FlexRIO with FlexRIO Adapter Module 8-3

Figure 9-1. FlexRIO_Host_ProgramIOModID.vi Front Panel 9-4
Figure 9-2. FlexRIO_Host_QueryIOMod.vi Front Panel .. 9-5
Figure 9-3. IoModSyncClk Source Block Diagram... 9-11
Figure 9-4. IO Module Properties Sync Clock Enabled .. 9-13
Figure 9-5. IoModSyncClk Source Block Diagram... 9-22
Figure 9-6. IO Module Properties Sync Clock Enabled .. 9-24

Figure 10-1. FlexRIO_Host_ProgramIOModID.vi Front Panel 10-4
Figure 10-2. FlexRIO_Host_QueryIOMod.vi Front Panel .. 10-5
Figure 10-3. IoModSyncClk Source Block Diagram... 10-13
Figure 10-4. IO Module Properties Sync Clock Enabled .. 10-15

Figure 11-1. FPGA Target ... 11-12

Figure 12-1. FPGA Target ... 12-13

Figure 13-1. Asynchronous Interfaces Between LabVIEW FPGA and CLIP........... 13-2
Figure 13-2. Interfaces Synchronous to CLIP Clock ... 13-2
Figure 13-3. Interfaces Synchronous to LabVIEW FPGA Clock.............................. 13-2
Figure 13-4. Signal Definition in the XML Wizard... 13-4

Contents

xiv | ni.com

Figure 13-5. Clock Constraints in the XML Wizard..13-5
Figure 13-6. Signal Clock Domain Constraints in the XML Wizard.........................13-6
Figure 13-7. LabVIEW FPGA VI Implementing Synchronous and

Asynchronous Interfaces ...13-7
Figure 13-8. Timing Violation Analysis Window..13-14
Figure 13-9. Example CLIP I/O ...13-17

Tables
Table 1. FlexRIO Documentation Locations and Descriptions...........................xviii
Table 2. Fixed Issues with the FlexRIO Adapter Module Development Kit,

Version 3.0...xxii
Table 3. Fixed Issues with the FlexRIO Adapter Module Development Kit,

Version 2.0...xxiii
Table 4. Fixed Issues with the FlexRIO Adapter Module Development Kit,

Version 1.2...xxiii
Table 5. Fixed Issues with the FlexRIO Adapter Module Development Kit,

Version 1.1...xxiv

Table 2-1. FPGA Features ..2-2

Table 3-1. DC Power Rails ...3-2
Table 3-2. Control Pin Assignments and Signal Descriptions................................3-6
Table 3-3. Global Clock Input Connections and Pin Assignments.........................3-8
Table 3-4. Power Connections Pin Assignments ..3-8
Table 3-5. Bank Reference (NI 795xR and NI 796xR) ..3-9
Table 3-6. Unassigned Pin Recommendations ...3-19

Table 4-1. DC Power Rails ...4-2
Table 4-2. Control Pin Assignments and Signal Descriptions................................4-5
Table 4-3. Power Connections Pin Assignments ..4-7
Table 4-4. Bank Reference..4-8
Table 4-5. NI-793xR/NI 797xR Unassigned Pin Recommendations4-17

Table 5-1. FlexRIO Custom Adapter Module Design Files5-2

Table 9-1. Recommended Files for Developing Adapter Modules9-1
Table 9-2. EEPROM Map ..9-5
Table 9-3. Supported General Configuration Values..9-8
Table 9-4. Optional Keys for Enabling IoModSyncClock9-12
Table 9-5. FlexRIO Supported Xilinx I/O Standards ..9-14
Table 9-6. Supported Common Configuration Values ...9-18
Table 9-7. Supported Socket-specific Configuration Values..................................9-20
Table 9-8. Optional Keys for Enabling IoModSyncClock9-23
Table 9-9. FlexRIO Supported Xilinx I/O Standards ...9-25

FlexRIO Adapter Module Development Kit

© National Instruments Corporation | xv

Table 10-1. Recommended Files for Developing Adapter Modules 10-1
Table 10-2. EEPROM Map .. 10-5
Table 10-3. Supported Common Configuration Values ... 10-8
Table 10-4. Supported Socket-specific Configuration Values 10-10
Table 10-5. Power Rail Sequence Default Values.. 10-11
Table 10-6. NI 795xR and NI 796xR Representative Power Rail

Sequence Values.. 10-12
Table 10-7. Optional Keys for Enabling IoModSyncClock 10-14
Table 10-8. FlexRIO Supported Xilinx I/O Standards ... 10-16
Table 10-9. FlexRIO Supported Xilinx I/O Standards ... 10-18

Table 11-1. GPIO and CLK Signals from Adapter Module 11-3
Table 11-2. CLK Signals to LabVIEW FPGA ... 11-4
Table 11-3. I2C Core Interface Signals* .. 11-5
Table 11-4. Socketed CLIP XML Tags .. 11-10

Table 12-1. GPIO and CLK Signals from Adapter Module 12-4
Table 12-2. I2C Core Interface Signals*... 12-4
Table 12-3. TDC Circuitry.. 12-6
Table 12-4. Socketed CLIP XML Tags ... 12-10

Table A-1. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Locations A-1
Table A-2. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout

Capabilities .. A-7

Table B-1. Device Manager Options... B-4

Table C-1. Xilinx 7-Series FPGA Documentation.. C-1

© National Instruments Corporation | xvii

About This Manual

The FlexRIO Adapter Module Development Kit enables third parties, such as system
integrators, alliance members, and individual users, to create custom adapter modules for use
with the following FlexRIO modules:

PXI modules:
• NI PXI-7951R (NI 7951R)
• NI PXI-7952R (NI 7952R)
• NI PXI-7953R (NI 7953R)
• NI PXI-7954R (NI 7954R)

PXI Express modules:
• NI PXIe-7961R (NI 7961R)
• NI PXIe-7962R (NI 7962R)
• NI PXIe-7965R (NI 7965R)
• NI PXIe-7966R (NI 7966R)
• NI PXIe-7971R (NI 7971R)
• NI PXIe-7972R (NI 7972R)
• NI PXIe-7975R (NI 7975R)
• NI PXIe-7976R (NI 7976R)

Controllers for FlexRIO:
• NI-7931R
• NI-7932R
• NI-7935R

The adapter module is necessary to customize the measurement I/O of the FlexRIO FPGA
module or Controller for FlexRIO for a complete FlexRIO system.

The FlexRIO FPGA module and Controller for FlexRIO offer direct access to the pins of the
FPGA, which allows for maximum speed and performance. This level of access to the FPGA
requires careful attention to design detail when developing an adapter module to mate with the
FlexRIO device. You can design custom adapter modules for the following development
applications:
• Analog-to-digital converters (ADCs) and digital-to-analog converters (DACs)
• Low-voltage differential signal (LVDS) or low-voltage transistor-to-transistor logic

(LVTTL) buffers to the device under test (DUT) connector
• Serial/custom protocol physical layers (PHYs), such as RS-485 and IEEE-1394

About This Manual

xviii | ni.com

A complete adapter module consists of an enclosure containing a printed circuit board (PCB)
with application-specific circuitry. This manual provides detailed information about the
electrical and mechanical requirements of FlexRIO adapter module design.

Related Documentation
The following documents contain information that you may find helpful as you read this manual.

Table 1. FlexRIO Documentation Locations and Descriptions

Document Location Description

Getting started guide for your
FPGA module

Available from the Start
menu and at ni.com/
manuals.

Contains installation
instructions for your
FlexRIO system.

Specifications document for your
FPGA module

Available from the Start
menu and at ni.com/
manuals.

Contains specifications
for your FPGA module.

Getting started guide for your
Controller for FlexRIO

Available from the Start
menu and at ni.com/
manuals.

Contains installation
instructions for your
FlexRIO system.

Specifications document for your
Controller for FlexRIO

Available from the Start
menu and at ni.com/
manuals.

Contains specifications
for your Controller for
FlexRIO.

NI-7931R/7932R/7935R User
Manual

Available from the Start
menu and at ni.com/
manuals.

Contains instructions for
creating applications for
your NI-793xR Controller
for FlexRIO.

Getting started guide for your
adapter module

Available from the Start
menu and at ni.com/
manuals.

Contains installation
instructions and signal
information for your
adapter module.

Specifications document for your
adapter module

Available from the Start
menu and at ni.com/
manuals.

Contains specifications
for your adapter module.

FlexRIO Adapter Module Development Kit

© National Instruments Corporation | xix

FlexRIO Help Available from the Start
menu and at ni.com/
manuals.

Contains information
about the FlexRIO FPGA
module, Controller for
FlexRIO, FlexRIO
adapter module, and CLIP
configuration.

LabVIEW
FPGA
documentation

FPGA Module
book

LabVIEW Help Select Help»Search the
LabVIEW Help in
LabVIEW to view the
LabVIEW Help. Browse to
the FPGA Module book
in the Contents tab for
information about using
the LabVIEW FPGA
Module to create VIs that
run on the FlexRIO FPGA
module.

Getting
Started with
the LabVIEW
FPGA book

FPGA Module book in
the LabVIEW Help

Provides links to the top
resources that you can use
to get started with
LabVIEW FPGA.

Integrating
Third-Party IP
(FPGA
Module) book

Integrating
Third-Party IP (FPGA
Module) book in the
LabVIEW Help

In the LabVIEW Help,
select FPGA Module»
Integrating Third-Party
IP to access information
about adding custom HDL
code to your LabVIEW
project.

LabVIEW
FPGA Module
Release and
Upgrade
Notes

Available at ni.com/
manuals. In
LabVIEW you can also
view this document by
selecting Start»All
Programs»National
Instruments»
LabVIEW»
LabVIEW Manuals.

Contains information
about installing the
LabVIEW FPGA Module,
describes new features,
and provides upgrade
information.

Table 1. FlexRIO Documentation Locations and Descriptions (Continued)

Document Location Description

About This Manual

xx | ni.com

LabVIEW
Real-Time
documentation

Getting
Started with
the LabVIEW
Real-Time
Module

Available at ni.com/
manuals. You can also
view this document by
selecting Start»All
Programs»National
Instruments»
LabVIEW»
LabVIEW Manuals.

Provides exercises to
teach you how to develop
a real-time project and
VIs, from setting up RT
targets to building,
debugging, and deploying
real-time applications.
This document provides
references to the
LabVIEW Help and other
Real-Time Module as you
create the real-time
application.

Real-Time
Module book
in the
LabVIEW
Help

Select Help»Search
the LabVIEW Help in
LabVIEW to view the
LabVIEW Help.
Browse the Real-Time
Module book in the
Contents tab.

Contains information
about how to build
deterministic applications
using the LabVIEW
Real-Time Module.

LabVIEW
Real-Time
Module
Release and
Upgrade
Notes

This document is
available at ni.com/
manuals. In
LabVIEW, you can also
view the LabVIEW
Manuals directory that
contains this document
by selecting Start»All
Programs»National
Instruments»
LabVIEW»
LabVIEW Manuals.

Includes information
about system
requirements, installation,
configuration, new
features and changes, and
compatibility issues for
the LabVIEW Real-Time
Module.

Table 1. FlexRIO Documentation Locations and Descriptions (Continued)

Document Location Description

FlexRIO Adapter Module Development Kit

© National Instruments Corporation | xxi

Additional Resources
The following resources contain information you might find helpful:
• National Instruments Example Finder—LabVIEW contains an extensive library of VIs and

example programs for use with FlexRIO devices. To access the NI Example Finder, open
LabVIEW and select Help»Find Examples, then select Hardware Input and Output»
FlexRIO.

• ni.com/flexrio—Contains product information, and helpful links to the FlexRIO
forum and the NI community for FlexRIO devices.

• LabVIEW FPGA IPNet—Offers resources for browsing, understanding, and downloading
LabVIEW FPGA functions or Intellectual Property (IP). Use this resource to acquire IP that
you need for your application, download examples to help learn programming techniques,
and explore the depth of IP offered by the LabVIEW FPGA platform. To access the
LabVIEW FPGA IPNet, visit ni.com/ipnet.

• Documentation available from Xilinx—Xilinx FPGA documentation provides information
necessary for custom adapter module development, such as FPGA voltage limits and I/O
standard specifications. Refer to Appendix C, Xilinx Documentation References, for
specific Xilinx documentation recommendations.

• ni.com/ask—Allows you to create a new technical support request and access direct
support from NI engineers. You may create a request to register your FlexRIO Adapter
Module Development Kit, receive feedback on your custom module, or to obtain your
unique Vendor ID. Refer to the Registration section of Chapter 1, Before You Begin, for
more information about registering your adapter module.

• ni.com/ipnet—Contains LabVIEW FPGA functions and intellectual property to share.

FlexRIO Adapter Module Development Kit
Features and Changes

Version 4.1

New Features
This release adds the following features to the FlexRIO Adapter Module Development Kit:
• Added support for the NI-7931R, NI-7932R, and NI-7935R devices.
• Added CLIP design best practices

Version 4.0

New Features
This release adds the following features to the FlexRIO Adapter Module Development Kit:
• Added support for the NI 7971R, NI 7972R, and NI 7976R devices.

About This Manual

xxii | ni.com

Version 3.0

New Features
This release adds the following features to the FlexRIO Adapter Module Development Kit:
• Added support for the NI PXIe-7975R device.
• Added support for the .fam adapter module configuration file, as described in Chapter 9,

Configuring Your Adapter Module for Use with NI 795xR/796xR Modules and
LabVIEW FPGA.

Note The NI PXIe-797xR devices are only supported in FlexRIO Support 13.1 and
later.

Fixed Issues
This release of the FlexRIO Adapter Module Development Kit User Manual fixes the following
issues.

Version 2.0

New Features
This release adds the following features to the FlexRIO Adapter Module Development Kit:
• Updated PCB, gold finger, and enclosure design files.
• Updated information about the new FlexRIO adapter module enclosure, as described in

Chapter 5, Printed Circuit Board (PCB) Design Considerations.
• Updated information about gold finger connections and the use of X-traces, as described in

the Card Edge Connector Finishing section of Chapter 6, Card Edge Connector.
• Updated information concerning appropriate PCB thickness, as described in Chapter 7,

Module Enclosure.

Table 2. Fixed Issues with the FlexRIO Adapter Module Development Kit, Version 3.0

CAR ID Summary

344908 Added a note about using wildcards in .ucf files, and added information about
using the CLIP Wizard to create custom adapter module CLIP or to edit existing
adapter module CLIP.

FlexRIO Adapter Module Development Kit

© National Instruments Corporation | xxiii

Fixed Issues
This release of the FlexRIO Adapter Module Development Kit User Manual fixes the following
issues.

Version 1.2

New Features
This release adds the following features to the FlexRIO Adapter Module Development Kit:
• Added information about FlexRIO PXIe-796xR devices.
• Added registration instructions for your FlexRIO Adapter Module Development Kit.
• Updated adapter module removal protocol.
• Added information about grounding considerations in adapter module designs.
• Updated PCB, card edge connector, and adapter module enclosure dimensions, as described

in Chapter 5, Printed Circuit Board (PCB) Design Considerations.
• Added PXI Express-based synchronization clock (IoModSyncClk) information.

Fixed Issues
This release of the FlexRIO Adapter Module Development Kit User Manual fixes the following
issues.

Table 3. Fixed Issues with the FlexRIO Adapter Module Development Kit, Version 2.0

CAR ID Summary

319666 Clarified the functionality of a LabVIEW FPGA Global Reset and clocking.

302743 Added inrush current limits to the DC Power Connector Pins table.

302746 Added information and an image detailing how to create X-traces between
isolated gold finger pairs.

302742 Increased PCB thickness for improved connectivity.

215287 Clarified the I2C address for reading and writing to the EEPROM.

209674 Updated the regulations on the power rails.

Table 4. Fixed Issues with the FlexRIO Adapter Module Development Kit,
Version 1.2

CAR ID Summary

172060 Corrected bank grouping in Figure 3-2, NI 795xR and NI 796xR Front Panel
Connector Pin Assignments and Locations.

184265 Updated FPGA I/O pin allocation tables to confirm the correct listing of
clock-capable signals.

About This Manual

xxiv | ni.com

Version 1.1

New Features
This release adds the following features to the FlexRIO Adapter Module Development Kit:
• Updated PCB, gold finger, and enclosure design files.
• Added STEP, IGES, and Pro/E design file types.

Fixed Issues
This release of the FlexRIO Adapter Module Development Kit User Manual fixes the following
issues.

186055 Specified the voltage regulation of the FlexRIO FPGA module power supply
to the adapter module.

209674 Updated power supply voltage regulation values.

214282 Updated dimensional drawings to confirm correct values. Added table listing
available design files and file types.

217291 Corrected the FPGA module pinout orientation.

Table 5. Fixed Issues with the FlexRIO Adapter Module Development Kit,
Version 1.1

CAR ID Summary

134060 Figure 2-4, LabVIEW FPGA, CLIP, and Hardware Integration Diagram
(Virtex-5), depicts the DRAM as being included in the FlexRIO FPGA module
design, but the FPGA module box should be reduced to show that the DRAM
is external to the FlexRIO FPGA module.

134541 Corrected documented PCB thickness. Specified primary and secondary side
clearances.

134541 Added information that all adapter module CLIPs should utilize BUFGCE
components to gate clock inputs to LabVIEW FPGA logic. Clock inputs may
be unstable during/before IO Module power-up. By connecting IO Module
Enabled to the enable pin of the BUFG, you can keep the clock disabled until
it is stable.

Table 4. Fixed Issues with the FlexRIO Adapter Module Development Kit,
Version 1.2 (Continued)

CAR ID Summary

FlexRIO Adapter Module Development Kit

© National Instruments Corporation | xxv

136184 Added a list showing the FPGA I/O that is used for each GPIO line. For
example, a UserGpio(32) should be listed noted as G26 on Bank 13.

145838 Added section about simultaneously switching outputs (SSO) noise and
another section showing trace/via clearance on the backside of the PCB near
the fingers to show that the edge of the enclosure can contact the PCB.

Table 5. Fixed Issues with the FlexRIO Adapter Module Development Kit,
Version 1.1 (Continued)

CAR ID Summary

© National Instruments Corporation | 1-1

1
Before You Begin

The following sections contain information you need before developing your FlexRIO adapter
module.

Development Requirements
Successful system design with the FlexRIO Adapter Module Development Kit requires
knowledge in the following areas:
• Schematic circuit design
• PCB layout and fabrication
• Circuit card assembly
• VHDL code design

Note Knowledge of LabVIEW and LabVIEW FPGA is required for FlexRIO
application development.

Registration
You must register your FlexRIO Adapter Module Development Kit. During the registration
process, NI sends an invite to the private MDK Community Page. This page contains
information about MDK updates and can be configured to send email notifications when new
versions are posted. To register, visit ni.com/ask, and create a new technical support request.

Include the following information in the request:
• Your company name
• Contact name and email address—FlexRIO Adapter Module Development Kit updates are

distributed quickly through the MDK Community Page on ni.com. This email address is
used to invite you to the FlexRIO Adapter Module Development Kit community.

• A brief description of the adapter module project—If you require support from NI during
development, this information helps the FlexRIO support team determine faster and more
specific suggestions for your success.

• IO Module Vendor ID request—The FlexRIO IO Module Vendor ID is similar to a
PCI vendor ID, and is a crucial element needed to configure your adapter module. Each
adapter module manufacturer should use their allotted IO Module Vendor ID for all adapter
modules that they produce. NI recommends using a single IO Module Vendor ID for your
company, for ease of tracking and support.

1-2 | ni.com

Chapter 1 Before You Begin

If you want to use your existing PCI vendor ID as an IO Module Vendor ID, include this
information as well. If you do not have a PCI vendor ID or do not want to use it as your
NI FlexRIO IO Module Vendor ID, NI can assign an ID that is unique among FlexRIO vendor
ID developments.

Note For more information about the IO Module Vendor ID and its use with your
adapter module and your NI 795xR/796xR module, refer to Chapter 9, Configuring
Your Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA.

Note For more information about the IO Module Vendor ID and its use with your
adapter module and your NI-793xR/NI 797xR module, refer to Chapter 10,
Configuring Your Adapter Module for Use with NI-793xR/797xR Modules and
LabVIEW FPGA.

Adapter Module Review
Throughout the adapter module design process, you can contact NI for an adapter module design
review. NI engineers will review your FPGA-to-adapter module interface schematic to ensure
that it meets the specifications required of the interface. To request an adapter module review,
visit ni.com/ask, and create a new technical support request with the following information:
• A searchable PDF of your adapter module’s schematic, preferably using the FlexRIO GPIO

signal naming conventions mentioned in the MDK Manual (e.g., S142 = GPIO_0). The
signal naming conventions can be found in Appendix A, Signal Suggestions.

• A concise description of your adapter module and the signals in your design
• Data rates/clock speeds of the FPGA-to-adapter module signals in your design
• Current draw on power supply rails
• Logic levels within the design, including Vcco settings
• Block diagram of the module's functionality
• A functional description of the circuitry (1 paragraph)
• Data type (signal or clock) of the FPGA-to-adapter module signals in your design

The review process takes approximately one week from the date that you contact NI.

Prior to contacting NI for an adapter module review, refer to Appendix B, Troubleshooting, of
this document for a list of common issues.

© National Instruments Corporation | 1-3

FlexRIO Adapter Module Development Kit

FlexRIO Module Development Kit Installed Files
The FlexRIO Module Development Kit includes design files, example adapter module
development kit development files, and documentation to assist with the design of your adapter
module. The files are located in the following directories:

Design Files
Navigate to the design files by selecting Start»All Programs»National Instruments»
NI FlexRIO»NI FlexRIO Adapter Module Development Kit»Design Files.

Documentation
The FlexRIO Adapter Module Development Kit documentation is located at Start»All
Programs»National Instruments»NI FlexRIO»NI FlexRIO Adapter Module Development
Kit»Documentation. For the locations of other FlexRIO documentation, such as device
specifications and programming help, refer to the Related Documentation section of this manual.

Example Files
The FlexRIO example files are located at Start»All Programs»National Instruments»
NI FlexRIO»NI FlexRIO Adapter Module Development Kit»Examples.

© National Instruments Corporation | 2-1

2
FlexRIO Solution Architecture
Overview

The FlexRIO architecture allows you to fully customize your application. FlexRIO-based
projects consist of the following elements:
• FlexRIO FPGA module or Controller for FlexRIO
• Adapter module PCB and module enclosure
• LabVIEW host VI
• LabVIEW FPGA VI
• Adapter module component-level intellectual property (CLIP)

Figure 2-1 illustrates the FlexRIO system architecture.
Figure 2-1. FlexRIO System Architecture Elements

The LabVIEW host VI and LabVIEW FPGA VI require you to write your own host and FPGA
VIs based on the requirements of your application. The adapter module socketed CLIP and
adapter module PCB are unique to adapter module development for the FlexRIO architecture.
The proceeding sections describe all these elements in more detail.

Refer to the FlexRIO FPGA Module Device Overview (NI 795xR/796xR/797xR) or the
Controller for FlexRIO Device Overview (NI-793xR) sections for more information about your
module.

 FlexRIO FPGA Module/
 Controller for FlexRIO

LabVIEW FPGA VI

S
oc

ke
te

d
C

LI
P

LabVIEW Host VI

U
se

r-
de

fin
ed

 C
LI

P

E
xt

er
na

l I
/O

 C
on

ne
ct

or
s

C
ar

d
E

dg
e

C
on

ne
ct

or

PCB

Adapter ModuleHost Computer

2-2 | ni.com

Chapter 2 FlexRIO Solution Architecture Overview

FlexRIO FPGA Module Device Overview
The FlexRIO FPGA module is a PXI/PXI Express device with the following features.

Note The NI 7951R, NI 7961R, and NI 7971R devices do not have
onboard DRAM.

Table 2-1. FPGA Features

NI PXI-795xR/PXIe-796xR NI PXIe-797xR

66 general-purpose I/O (GPIO) differential
pairs, which can be configured as
132 single-ended signals

68 general-purpose I/O (GPIO) differential
pairs, which can be configured as
136 single-ended signals

I/O data rates of up to 1 Gb/s running
LVDS configuration, and 400 Mb/s
single-ended

I/O data rates of up to 1 Gb/s running LVDS
configuration, and 400 Mb/s single-ended

Virtex-5 FPGA
• NI 7951R—Virtex-5 LX30
• NI 7952R—Virtex-5 LX50
• NI 7953R—Virtex-5 LX85
• NI 7954R—Virtex-5 LX110
• NI 7961R- Virtex-5 SX50T
• NI 7962R—Virtex-5 SX50T
• NI 7965R—Virtex-5 SX95T
• NI 7966R—Virtex-5 SX95T

Kintex-7 FPGA
• NI 7971R—Kintex-7 XC7K325T
• NI 7972R—Kintex-7 XC7K325T
• NI 7975R—Kintex-7 XC7K410T
• NI 7976R—Kintex-7 XC7K410T

Onboard DRAM
• (NI 7952R/7953R/7954R only)

Two independently accessible 64 MB
banks

• (NI 7962R/7965/7966R only)
Two independently accessible
256 MB banks

Onboard DRAM
• (7972R/7975R/7976R only)

Single 2 GB bank

© National Instruments Corporation | 2-3

FlexRIO Adapter Module Development Kit

Figure 2-2. FlexRIO FPGA Module Architecture

Adapter Module Printed Circuit Board (PCB)
Mount the adapter module PCB in a standard FlexRIO enclosure and insert it into the front panel
connector of your FlexRIO FPGA module. This module assembly allows you to fully customize
the interface to your FlexRIO device. Chapters 2 through 7 detail the steps and guidelines
necessary for developing a FlexRIO custom adapter module. Figure 2-3 depicts a FlexRIO
device, which consists of the adapter module and the FlexRIO FPGA module.

Figure 2-3. FlexRIO FPGA Module and Adapter Module

LabVIEW Host VI and LabVIEW FPGA VI
The FlexRIO device requires both a LabVIEW host VI and a LabVIEW FPGA VI to operate.
The host VI runs on the host PC, while the FPGA VI is compiled to and runs on the FPGA. For
more details about the methods for communication between the host PC and
LabVIEW FPGA VIs, refer to the FPGA Module book in the LabVIEW Help.

1 FlexRIO Adapter Module 2 FlexRIO FPGA Module

DRAM

Adapter
Module
Front

Connector

PXI/PXI Express
Interface

Virtex-5 FPGA
(795x and 796x)

or Kintex-7 FPGA
(797x)

2

1

2-4 | ni.com

Chapter 2 FlexRIO Solution Architecture Overview

Adapter Module Component-Level IP (CLIP)
LabVIEW FPGA includes a feature for HDL IP integration called component-level IP (CLIP),
which allows you to insert your own HDL IP into a LabVIEW FPGA target. FlexRIO devices
support the following types of CLIP:
• User-defined CLIP—Allows you to insert HDL IP into an FPGA target, enabling VHDL

code to communicate directly with an FPGA VI.
• Socketed CLIP—Provides the same IP integration functionality of the user-defined CLIP,

but also allows the CLIP to communicate directly with circuitry external to the FPGA.
Adapter module socketed CLIP allows your IP to communicate directly with both the
FPGA VI and the external adapter module connector interface.

The following figure shows the relationship between an FPGA VI configured for use with an
NI 795xR or NI 796xR, the two types of CLIP, and a FlexRIO adapter module.

Figure 2-4. LabVIEW FPGA, CLIP, and Hardware Integration Diagram (Virtex-5)

Adapter Module
CLIP Socket

LabVIEW
FPGA VI

User-defined
CLIP

FlexRIO FPGA

E
xt

er
na

l
I/O

 C
on

ne
ct

or

Adapter
Module

Socketed
CLIP

Host
Interface

DRAM 0
CLIP Socket

Socketed
CLIP

DRAM 1
CLIP Socket

Socketed
CLIP

DRAM0 DRAM1

P
X

I/P
X

I E
xp

re
ss

 B
us

F
ix

ed
 I/

O

F
ix

ed
 I/

O

Fixed I/O

© National Instruments Corporation | 2-5

FlexRIO Adapter Module Development Kit

The following figure shows the relationship between an FPGA VI configured for use with n
NI 797xR, the two types of CLIP, and a FlexRIO adapter module.

Figure 2-5. LabVIEW FPGA, CLIP, and Hardware Integration Diagram (Kintex-7)

For information about creating CLIP for your adapter module and NI 795xR/796xR module,
refer to Chapter 11, Creating Socketed Component-Level IP for Your Adapter Module and
NI 795xR/796xR Modules.

For information about creating CLIP for your adapter module and NI 797xR module, refer to
Chapter 12, Creating Socketed Component-Level IP for Your Adapter Module and
NI-793xR/NI 797xR Modules.

Adapter Module
CLIP Socket

LabVIEW
FPGA VI

User-defined
CLIP

FlexRIO FPGA

E
xt

er
na

l
I/O

 C
on

ne
ct

or

Adapter
Module

Socketed
CLIP

Host
Interface

DRAM
Memory
Interface

DRAM

P
X

I/P
X

I E
xp

re
ss

 B
us

F
ix

ed
 I/

O

Fixed I/O

2-6 | ni.com

Chapter 2 FlexRIO Solution Architecture Overview

Controller for FlexRIO Device Overview
The Controllers for FlexRIO have the following features.
• 68 general-purpose I/O (GPIO) differential pairs, which can be configured as

136 single-ended signals
• I/O data rates of up to 1 Gb/s running LVDS configuration, and 400 Mb/s single-ended
• Kintex-7 FPGA

– NI-7931R—Kintex-7 XC7K325T
– NI-7932R—Kintex-7 XC7K325T
– NI-7935R—Kintex-7 XC7K410T

• Single 2 GB bank onboard DRAM
Figure 2-6. Controller for FlexRIO Architecture

DRAM

Adapter
Module
Front

Connector

RT Controller Kintex-7 FPGA

© National Instruments Corporation | 2-7

FlexRIO Adapter Module Development Kit

Adapter Module Printed Circuit Board (PCB)
Mount the adapter module PCB in a standard FlexRIO enclosure and insert it into the front panel
connector of your Controller for FlexRIO. This module assembly allows you to fully customize
the interface to your FlexRIO device. Chapters 2 through 7 detail the steps and guidelines
necessary for developing a FlexRIO custom adapter module. Figure 2-7 depicts an adapter
module connected to a Controller for FlexRIO.

Figure 2-7. Controller for FlexRIO and Adapter Module

When designing a custom PCB, consider the following elements:
• PCB design
• Mechanical design
• Electrical design

– Adapter module interface and protocol
– Circuitry design used to create the interface to your application by utilizing user

signals and the Controller for FlexRIO I/O

The following chapters go into greater detail about the requirements for adapter module
development.

2-8 | ni.com

Chapter 2 FlexRIO Solution Architecture Overview

LabVIEW Host VI and LabVIEW FPGA VI
The FlexRIO device requires both a LabVIEW host VI and a LabVIEW FPGA VI to operate.
The host VI runs on the host PC, while the FPGA VI is compiled to and runs on the FPGA. For
more details about the methods for communication between the host PC and
LabVIEW FPGA VIs, refer to the FPGA Module book in the LabVIEW Help.

The following figure shows the relationship between an FPGA VI configured for use with an
NI-7931R, user-defined CLIP, and a FlexRIO adapter module.

Figure 2-8. LabVIEW FPGA, CLIP, and Hardware Integration Diagram (NI-7931R)

RT Host
RT

Controller

RAM

NV Storage

RT Clock

Watch Dog

LabVIEW

Host VI

Interrupts
DMA
Controls/ Indicators

NI-Defined Bus
Interfaces/ Streaming IP

Memory
Controller

DRAM

REF IN

Adapter
Module

User Selected
Adapter Module

CLIP

SD

1 Gig E

USB

TRIG

LV FPGA VI

Clocking
Architecture

© National Instruments Corporation | 2-9

FlexRIO Adapter Module Development Kit

The following figure shows the relationship between an FPGA VI configured for use with an
NI-7932R or NI-7935R, user-defined CLIP, and a FlexRIO adapter module.

Figure 2-9. LabVIEW FPGA, CLIP, and Hardware Integration Diagram (NI-7932R and
NI-7935R)

For information about creating CLIP for your adapter module and NI 793xR module, refer to
Chapter 12, Creating Socketed Component-Level IP for Your Adapter Module and
NI-793xR/NI 797xR Modules.

RT Host
RT

Controller

RAM

NV Storage

RT Clock

Watch Dog

LabVIEW

Host VI

Interrupts
DMA
Controls/ Indicators

NI-Defined Bus
Interfaces/ Streaming IP

Memory
Controller

DRAM

REF IN

Adapter
Module

SFP+

User Selected
Adapter Module

CLIP

SD

1 Gig E

USB

TRIG

User Defined
Socketed

CLIP

LV FPGA VI

Clocking
Architecture

© National Instruments Corporation | 3-1

3
Interfacing Adapter Modules
with NI 795xR and NI 796xR
Modules

This chapter explains how to interface adapter modules with NI 795xR/796xR modules,
including electrical design considerations. For information about interfacing adapter modules
with NI-793xR/NI 797xR modules, refer to Chapter 4, Interfacing Adapter Modules with
NI-793xR and NI 797xR Devices. For additional specifications information, refer to the
specifications document for your FPGA module, available from the Start menu and at
ni.com/manuals.

Caution To ensure proper and reliable operation of the adapter module, do not
exceed the specifications in this chapter.

Adapter Module Electrical Interface
The FlexRIO FPGA module front panel connector provides power, clocking, and I/O
connections between the FlexRIO FPGA module and the adapter module. This interface also
includes dedicated pins for adapter module detection, identification, and power status. The
proceeding sections describe front panel details and pin locations.

Power Guidelines
Five DC power rails are available for the adapter module connector. Table 3-1 lists these rails,
their purpose, and the power available to each rail at the adapter module connector.
NI recommends that the maximum power dissipated in the adapter module does not exceed 6 W
total for all components included in your design. If power for adapter module operation is
provided externally, due to cooling requirements, the total dissipation within the adapter module
should still remain below 6 W. Power dissipated outside of the adapter module—for example,
power in external terminations—can be excluded from the 6 W maximum power number.

Caution NI recommends powering the adapter module from the power rails
provided from the FlexRIO FPGA module. If you use external power rails instead or
in addition to the provided rails, the adapter module must not drive the GPIO lines at
a voltage different than VccoA or VccoB. The adapter module should never power any
pin on the FlexRIO FPGA module connector if the PXI/PXI Express chassis is
powered off.

www.ni.com/manuals

3-2 | ni.com

Chapter 3 Interfacing Adapter Modules with NI 795xR and NI 796xR Modules

Like any electronic circuit, the adapter module power rails require bulk and bypass capacitance.
The effect of the total capacitance on the inrush current is represented by the following equation.

I = C * (ΔV/Δt)

where C is the total capacitance on the rail charging at a rate of ΔV/Δt.

Table 3-1. DC Power Rails

Power
Rail Name Value

Maximum
Inrush
Current

Maximum
Steady State

Current Description

+3.3V 3.3 V +5%/-7.5% 1.3 A 1.0 A General-purpose
rail that can power
3.3 V logic or act as
a source to generate
other required
power rails.

+12V 12 V +5%/-6.5% 350 mA* 250 mA* General-purpose
rail that can act as
an input to DC-DC
converters or to
power analog
circuitry.

VccoA/VccoB Selectable (1.2 V,
1.5 V, 1.8 V,
2.5 V, and 3.3 V)‡

500 mA
each*

250 mA each* † I/O rails that are
shared with the
FPGA for digital
interface circuitry.

Veeprom +3.3 V N/A 10 mA Powers the I2C
EEPROM on the
adapter module that
stores adapter
module
configuration
information.

* The aggregate power level of VccoA, VccoB, and +12V must never exceed 4.13 W, including
inrush periods. Violating this rule may cause the PXI chassis to reset.
† The FlexRIO FPGA Module can provide up to 500 mA of steady state current on
VccoA/VccoB as long as you observe the power limit in the previous note. NI does not
recommend exceeding 250 mA of steady state current.
‡ Although VccoA/VccoB supports 3.3 V, NI does not recommend using that voltage level for
VccoA/VccoB. Future FPGA generations may not support 3.3 V power rails.

© National Instruments Corporation | 3-3

FlexRIO Adapter Module Development Kit

Although some circuitry on the FlexRIO FPGA module limits the turn time (Δt) of each power
rail, you should measure the actual inrush currents throughout the development of your adapter
module. If any inrush current exceeds the limits listed in Table 3-1, you should make design
changes, such as reducing the total capacitance or adding soft start circuits on the adapter
module, to reduce the inrush current. Failure to observe these guidelines cause the device to pull
excessive current from the backplane, which may cause a system reset. For more information
about power rails, refer to the specifications document for your FPGA module.

Examples of adapter module soft start circuits for +3.3 V and +12 V are shown in the following
figure 3-1.

Figure 3-1. Adapter Module Soft Start Circuits

The soft start circuits use positive channel field effect transistors (Q1 and U12) to allow
conduction between the FlexRIO FPGA module and the adapter module. The +3.3 V circuit is
also sequenced through Q2 so that it powers on after VccoB is powered. Diodes D16 and D18 add
reverse voltage protection to the internal adapter module power rail. Diodes D15 and D17 reset
the soft start function when power is removed at the connector.

+3.3 V

+12 V

3.3 V SoftStart for 110 μF load
Sequenced after VccoB.

12 V SoftStart for
40 μF load.

+VccoB

D16 C362
1 μF

C46
1 μF

C376
1 μF

C375
1 μF

C47
0.1 μF

C48
0.1 μF

G39
G38

+3.3 V
+12 V

Connector
R44
332 k

R320
165 k

R42
75 k

R43
332 k

BAT54
D15

D18
BAT54

D17
BAT54

Q1
SI3445ADV

Q2
UMD12N

U12
NTGS3455T1

3-4 | ni.com

Chapter 3 Interfacing Adapter Modules with NI 795xR and NI 796xR Modules

Adapter Module Connector Signals
The adapter module PCB outline includes a card edge connector. This card edge connector
inserts into the front panel connector of the FlexRIO FPGA module and provides access to the
available signals.

Signal Descriptions
The following figure shows the available signals on the NI 795xR and NI 796xR FPGA
modules. With the exception of the two footnotes, the NI 795xR and NI 796xR modules have
identical pinouts.

© National Instruments Corporation | 3-5

FlexRIO Adapter Module Development Kit

Figure 3-2. NI 795xR and NI 796xR Front Panel Connector Pin Assignments and Locations

1 RSVD_B2 on the NI PXI-795xR 2 RSVD_B1 on the NI PXI-795xR

B
an

k
1

PCB
Primary Side
+3.3V
SCL
TB_Present_n
+12V
VccoA
RSVD
GND
IoModSyncClk_n1

IoModSyncClk2

GND
GPIO_0
GPIO_0_n
GND
GPIO_1
GPIO_1_n
GND
GPIO_2
GPIO_2_n
GND
GPIO_3
GPIO_3_n
GND
GPIO_4_CC
GPIO_4_n_CC
GND
GPIO_5_CC
GPIO_5_n_CC
GND
GPIO_6_CC
GPIO_6_n_CC
GND
GPIO_7_CC
GPIO_7_n_CC
GND
GPIO_8
GPIO_8_n
GND
GPIO_9
GPIO_9_n
GND
GPIO_10
GPIO_10_n
GND
GPIO_11
GPIO_11_n
GND
GPIO_12
GPIO_12_n
GND

GND

GPIO_13
GPIO_13_n

P2

P1
S148
S147

S146
S145

S144
S143
G36
S142
S141
G35
S140
S139
G34
S138
S137
G33
S136
S135
G32
S134
S133
G31
S132
S131
G30
S130
S129
G29
S128
S127
G28
S126
S125
G27
S124
S123
G26
S122
S121
G25
S120
S119
G24
S118
S117
G23
S116
S115
G22

G37

P2

P1
S74
S73

S72
S71

S70
S69
G36
S68
S67
G35
S66
S65
G34
S64
S63
G33
S62
S61
G32
S60
S59
G31
S58
S57
G30
S56
S55
G29
S54
S53
G28
S52
S51
G27
S50
S49
G26
S48
S47
G25
S46
S45
G24
S44
S43
G23
S42
S41
G22

G37

+12V

+3.3V
SDA
TB_Power_Good

VccoB
Veeprom

RSVD_A2
RSVD_A1
GND
GPIO_16
GPIO_16_n
GND
GPIO_17
GPIO_17_n
GND
GPIO_18
GPIO_18_n
GND
GPIO_19
GPIO_19_n
GND
GPIO_20
GPIO_20_n
GND
GPIO_21
GPIO_21_n
GND
GPIO_22
GPIO_22_n
GND
GPIO_23_CC
GPIO_23_n_CC
GND
GPIO_24_CC
GPIO_24_n_CC
GND
GPIO_25_CC
GPIO_25_n_CC
GND
GPIO_26_CC
GPIO_26_n_CC
GND
GPIO_27
GPIO_27_n
GND
GPIO_28
GPIO_28_n
GND
GPIO_29
GPIO_29_n
GND

GND

PCB
Secondary Side

B
an

k
0

PCB
Primary Side
GND
GND
GClk_SE
GND
GPIO_14
GPIO_14_n
GND
GPIO_15
GPIO_15_n
GND
GPIO_49

GPIO_49_n
GND
GPIO_50
GPIO_50_n
GND
GPIO_51
GPIO_51_n
GND
GPIO_52
GPIO_52_n
GND
GPIO_53
GPIO_53_n
GND
GPIO_54
GPIO_54_n
GND
GPIO_55
GPIO_55_n
GND
GPIO_56_CC
GPIO_56_n_CC
GND
GPIO_57_CC
GPIO_57_n_CC
GND
GPIO_58_CC
GPIO_58_n_CC
GND
GPIO_59_CC
GPIO_59_n_CC
GND
GPIO_60
GPIO_60_n
GND
GPIO_61
GPIO_61_n
GND

GND

GPIO_62
GPIO_62_n

GPIO_63
GPIO_63_n
GND
GPIO_64

GPIO_65

GPIO_64_n
GND

GND
GPIO_65_n

G20

G21
S114
S113

S112
S111

S110
S109
G18
S108
S107
G17
S106
S105
G16
S104
S103
G15
S102
S101
G14
S100
S99
G13
S98
S97
G12
S96
S95
G11
S94
S93
G10
S92
S91
G9
S90
S89
G8
S88
S87
G7
S86
S85
G6
S84
S83
G5
S82
S81
G4

G19

S80
S79
G3
S78
S77
G2
S76
S75
G1

G20

G21
S40
S39

S38
S37

S36
S35
G18
S34
S33
G17
S32
S31
G16
S30
S29
G15
S28
S27
G14
S26
S25
G13
S24
S23
G12
S22
S21
G11
S20
S19
G10
S18
S17
G9
S16
S15
G8
S14
S13
G7
S12
S11
G6
S10
S9
G5
S8
S7
G4

G19

S6
S5
G3
S4
S3
G2
S2
S1
G1

GND

GND
GClk_LVDS_n
GClk_LVDS

GPIO_30
GPIO_30_n

GPIO_31
GPIO_31_n
GND
GPIO_32
GPIO_32_n
GND
GPIO_33
GPIO_33_n
GND
GPIO_34
GPIO_34_n
GND
GPIO_35
GPIO_35_n
GND
GPIO_36
GPIO_36_n
GND
GPIO_37_CC
GPIO_37_n_CC
GND
GPIO_38_CC
GPIO_38_n_CC
GND
GPIO_39_CC
GPIO_39_n_CC
GND
GPIO_40_CC
GPIO_40_n_CC
GND
GPIO_41
GPIO_41_n
GND
GPIO_42
GPIO_42_n
GND
GPIO_43
GPIO_43_n
GND
GPIO_44
GPIO_44_n
GND
GPIO_45
GPIO_45_n
GND
GPIO_46
GPIO_46_n
GND
GPIO_47
GPIO_47_n
GND
GPIO_48
GPIO_48_n
GND

GND

PCB
Secondary Side

B
a
n

k
2

B
an

k
1

B
an

k
3

B
an

k
0

3-6 | ni.com

Chapter 3 Interfacing Adapter Modules with NI 795xR and NI 796xR Modules

Tables 3-2, 3-3, and 3-4 describe the control signals and other signals available from the
NI 795xR and NI 796xR. These signals include the adapter module control signals, global clock,
and power rails. These areas, along with suggested circuits and component selection, are covered
in the proceeding chapters.

Table 3-2. Control Pin Assignments and Signal Descriptions

Pin Signal Direction Description

S71 Veeprom To adapter
module

Use the 3.3V power supply only to power
the adapter module identification
EEPROM.

S73 TB_Power_Good From adapter
module

3.3V TTL input to the FPGA. The timeout
for this signal is 815 ms. The adapter
module asserts this signal to the FlexRIO
FPGA module at startup to indicate that the
adapter module power rails are powered
and stable. The adapter module holds this
line asserted while the device is in
operation.

S147 TB_Present_n From adapter
module

The adapter module pulls this signal low at
all times to indicate to the FlexRIO FPGA
module that the adapter module is present.
Connect this line to GND.

S148 SCL To adapter
module

I2C bus clock from the FlexRIO FPGA
module bus master to the adapter module.
This signal is powered by Veeprom.

S74 SDA Bidirectional I2C serial data line. This signal is powered
by Veeprom.

S146 VccoA To adapter
module

Selectable voltage rail for powering the
interface circuitry between the adapter
module and the FlexRIO FPGA module.
Refer to the Electrical Design
Considerations section for more
information about I/O bank voltages.

S72 VccoB To adapter
module

Selectable voltage rail for powering the
interface circuitry between the adapter
module and the FlexRIO FPGA module.
Refer to the Electrical Design
Considerations section for more
information about I/O bank voltages.

© National Instruments Corporation | 3-7

FlexRIO Adapter Module Development Kit

S114 GND Ground For correct operation, the adapter module
design should connect all GND signals
directly to a ground plane on the adapter
module PCB.

S69 RSVD_A1 — Reserved for future use. Do not connect.

S70 RSVD_A2 — Reserved for future use. Do not connect.

S143 (NI 795xR)
RSVD_B1

— Reserved for future use. Do not connect.

(NI 796xR)
IoModSyncClk

— Positive terminal for differential clock to
the adapter module from either
PXIe_DStarA or PXI_Clk10. For more
information about clocking, refer to the
IoModSyncClk (NI 796xR Only) section.

S144 (NI 795xR)
RSVD_B1

— Reserved for future use. Do not connect.

(NI 796xR)
IoModSyncClk_n

— Negative terminal for differential clock to
the adapter module from either
PXIe_DStarA or PXI_Clk10. For more
information about clocking, refer to the
IoModSyncClk (NI 796xR Only) section.

S145 RSVD_CNTL — Reserved for future use. Do not connect.

Table 3-2. Control Pin Assignments and Signal Descriptions (Continued)

Pin Signal Direction Description

3-8 | ni.com

Chapter 3 Interfacing Adapter Modules with NI 795xR and NI 796xR Modules

General-Purpose Input/Output (GPIO)
Refer to Knowledge Base article 6NND5NOA for a list of the general-purpose I/O (GPIO)
signals available from the NI 795xR/NI 796xR FlexRIO FPGA modules.

The NI 795xR and NI 796xR FPGA modules contain 66 GPIO differential pairs, which can be
configured as 132 single-ended signals or a combination of each. You can use these signals to
digitally interface between the FlexRIO FPGA module and the adapter module.

Each GPIO line is individually ground referenced when used as a single-ended (SE) signal. For
instance, in single-ended mode, GPIO_0 and GPIO_0_n are independent signals and can be
thought of as GPIO_x and GPIO_y, respectively.

Table 3-3. Global Clock Input Connections and Pin Assignments

Pin Signal Direction Description

S39 GClk_LVDS From
adapter
module

Connected directly to LVDS FPGA global clock
pins (2.5 V).

Note: LVDS requires 100 Ω parallel termination
at the connection destination. Enable
GClk_LVDS/GClk_LVDS_n termination in the
.ucf constraints. For more information about
constraints in the.ucf file, refer to the
ExampleIOModuleCLIPV5.ucf section of
Chapter 11, Creating Socketed Component-Level
IP for Your Adapter Module and
NI 795xR/796xR Modules.

S40 GClk_LVDS_n From
adapter
module

S113 GClk_SE From
adapter
module

Connected directly to +3.3V LVTTL FPGA
global clock pin.

Table 3-4. Power Connections Pin Assignments

Pin Signal Direction Description

P1 +3.3V To adapter
module

General-purpose power rail.

P2 +12V To adapter
module

General-purpose power rail.

G<1..37> GND Ground For correct operation, the adapter module design
should connect all GND signals directly to a
ground plane on the adapter module PCB.

http://digital.ni.com/public.nsf/allkb/990E5083582E937786257D1F00683B86

© National Instruments Corporation | 3-9

FlexRIO Adapter Module Development Kit

When configured as a differential signal, two lines make a differential pair that comprises one
signal. The pair consists of a positive side and a negative side. The negative side is designated
with the _n. For example, GPIO_0 is the positive half of the differential signal and GPIO_0_n
is the negative half.

In addition to providing digital interfacing capabilities, signal lines designated with _CC are
clock capable, meaning that they have access to regional clock resources within that bank. For
more information about clock-capable signals, refer to the Clocks and Timing section.

GPIO Bank Details (NI 795xR and NI 796xR)
Four FPGA banks of GPIO lines are available at the adapter module card edge connector. These
four banks correspond to four physical I/O banks on the FPGA. FPGA I/O is divided into banks
to allow for greater flexibility in their configuration. The four FPGA I/O banks on the FlexRIO
FPGA module are connected to two separate Vcco supplies, which can be independently
configured and can determine the compatible I/O standards available. You can also share
regional clocking resources across an I/O bank. For more information about I/O banking and
design implications, refer to the Electrical Design Considerations section.

The following table lists the association between the I/O banks of the FlexRIO FPGA module
and the Xilinx FPGA banks from which they are derived. Each bank has an I/O reference
voltage. There are two independent I/O voltage rails—VccoA and VccoB.

The adapter module schematic also has physical references on the connector to denote bank
references. For more information about signals and their banks, refer to the Signal Descriptions
section.

Table 3-5. Bank Reference (NI 795xR and NI 796xR)

Adapter Module Bank Vcco Rail Reference
Xilinx FPGA Bank
(For Reference)

0 VccoA 17

1 VccoA 13

2 VccoB 11

3 VccoB 15

Note: If you are using LabVIEW FPGA 2012 or older, VccoA/VccoB values are set in the .tbc file. If you
are using LabVIEW FPGA 2013 or later, VccoA/VccoB values are set in the .fam file. For more
information about configuring your .tbc or .fam file, refer to Chapter 9, Configuring Your Adapter
Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA.

3-10 | ni.com

Chapter 3 Interfacing Adapter Modules with NI 795xR and NI 796xR Modules

Adapter Module Interface Protocol
FlexRIO FPGA modules interface to a wide variety of adapter modules. These modules may
have different Vcco or VccoA/VccoB power requirements, as well as a variety of GPIO I/O
standards and signal directions. FlexRIO devices also allow users to change I/O characteristics
with each different adapter module. NI recommends that each adapter module design contain an
EEPROM for identification and protection.

The identification EEPROM is connected to dedicated pins and designated at a specific I2C
address, and allows the FlexRIO driver to identify an inserted adapter module. Including an
EEPROM in your design allows for improved electrical protection for the adapter module and
the FlexRIO FPGA module. Using an identification EEPROM prevents the use of incompatible
adapter module settings such as incorrect power rails and double-driving of digital interface
pins. Refer to the EEPROM Overview section for additional information about adding an
ID EEPROM to your adapter module design.

The FlexRIO device employs the following adapter module identification, power up, and
removal processes to prevent applying improper voltages or double-driving signals.

© National Instruments Corporation | 3-11

FlexRIO Adapter Module Development Kit

Adapter Module Insertion Protocol
Figure 3-3 depicts the process that the FlexRIO system performs when you insert a new adapter
module into the FlexRIO FPGA module.

Note The system also performs the following steps when you download a new
LabVIEW FPGA bitstream to the FlexRIO device or when you assert a Reset
command.

Figure 3-3. Adapter Module Insertion Protocol

Note The steps for detecting an adapter module are performed during device
configuration. For more information about adapter module configuration, refer to
Chapter 9, Configuring Your Adapter Module for Use with NI 795xR/796xR Modules
and LabVIEW FPGA.

Note You can confirm proper adapter module connection or adapter module
mismatch in the IO Module Properties Status dialog in LabVIEW. In your
LabVIEW Project Explorer window, right-click the IO Module item under the
FPGA Target and select Properties to display the IO Module Properties dialog box.
Click the Status category to view the adapter module Status dialog.

Not Compatible
with Bitstream

Firmware Enables Adapter Module
Power Rails, Waits for TB_Power_Good,

RioModGpioEn Indicates That
User Can Enable FlexRIO I/O

Firmware Sets Adapter Module
Mismatch Bit, Disables All Rails

Firmware Checks if
Bitstream Expected IO Module ID

Matches Inserted Adapter
Module IO Module ID

Compatible
with Bitstream

Firmware Detects Adapter Module, Enables Veeprom Rail,
and Reads Adapter Module EEPROM

User Inserts Adapter Module, Pulls TB_Present_n Low

3-12 | ni.com

Chapter 3 Interfacing Adapter Modules with NI 795xR and NI 796xR Modules

Adapter Module Removal Protocol
To properly remove an adapter module from the FlexRIO FPGA module, you must disable the
adapter module within the LabVIEW FPGA user interface. To disable the adapter module within
LabVIEW, complete the following steps:
1. In your LabVIEW Project Explorer window, right-click the IO Module item under the

FPGA Target and select Properties to display the IO Module Properties dialog box.
2. Click the Status category to view the adapter module Status dialog.
3. Deselect the checkbox for Enable IO Module Power. When this option is deselected,

firmware tristates the FlexRIO I/O and disables all adapter module power rails.
4. Click OK.

FlexRIO driver software allows you to enable and disable adapter modules, as well as control
EEPROM access, within the LabVIEW interface. Refer to Chapter 9, Configuring Your Adapter
Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA, for information about
programming your adapter module EEPROM.

EEPROM Overview
NI strongly recommends adding an EEPROM to your adapter module for identification
purposes. Adding EEPROM provides better electrical protection for both the adapter module
and the FlexRIO FPGA module. It also improves the software configuration experience within
LabVIEW FPGA.

The adapter module identification EEPROM included in your design must be an I2C-capable
2 Kbit device (256 × 8). These parts are widely available from electronics manufacturers and are
often identified as 24C02. Manufacturers typically place a prefix to identify their version, for
example, ST Microelectronics EEPROM part number is M24C02.

Figure 3-4 depicts a complete FlexRIO EEPROM connection circuit. This circuit shows the
connections to the EEPROM (U1) and two additional connections required for proper adapter
module configuration. The supporting parts required for the EEPROM are a bypass capacitor
(C1) on the line from Veeprom, a pull-up resistor (R1) on address line A1 to Veeprom, and a
pull-down resistor (R2) on the WP line. C1 is a 0.1 μF ceramic capacitor with a voltage rating of
6.3 V or higher. For best performance, use a capacitor with an X7R dielectric. Use 4.7 kΩ
resistors, which can be any resistor type rated for at least 25 V and 10% tolerance or better. Other
details regarding this interface can be found in the EEPROM datasheet. For more information
about EEPROM use and programming in your application, refer to Chapter 9, Configuring Your
Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA.

© National Instruments Corporation | 3-13

FlexRIO Adapter Module Development Kit

Note The I2C address for the EEPROM is 0x52. Use 0xA4 for write operations and
0xA5 for read operations. Use the following bit fields to ensure the correct I2C address.

EEPROM Recommendations
Use an ST Microelectronics serial I2C bus EEPROM (part number M24C02-WMN) or
equivalent for the FlexRIO adapter module. Refer to www.st.com for datasheets and additional
information.

EEPROM Schematic and Wiring
Figure 3-4. EEPROM Wiring

Note Multiple components on the adapter module can share the I2C bus.
Depending on the adapter module design, some of these components that share the
I2C bus with the EEPROM may not power on when the initial adapter module
insertion protocol executes. If you use components that pull down the I2C lines to a
low level when powered off, NI recommends using a switch that separates the I2C
bus from the EEPROM I2C lines.

1 0 1 0 0 1 0 R/W

EEPROM Device Type Identifier Chip Enable Operation

A2 A1 A0 1 = R
0 = W

S71
S73

S147

S148
S74

Veeprom
TB_Power_Good
TB_Present_n

SCL
SDA

1
2
3
4

A0
A1
A2
GND

VCC
WP

SCL
SDA

8
7
6
5

1

2

21

+3.3 V TTL Power Good

U1

Veeprom

R1 = 4.7 kΩ

C1 = 0.1 μF

R2 = 4.7 kΩ

NI FlexRIO FPGA Module
Front Connector

3-14 | ni.com

Chapter 3 Interfacing Adapter Modules with NI 795xR and NI 796xR Modules

Electrical Design Considerations
This section provides electrical considerations, clocking and timing information, and additional
information about the design of your adapter module.

Power up and Sequencing with External Hardware
When your FlexRIO device is connected to external equipment, you should consider the
powering sequence of the system. When you insert a new adapter module, download a new
bitstream to the LabVIEW FPGA target, or assert the Reset command, the adapter module power
is disabled until the FPGA verifies device compatibility. Refer to the Adapter Module Insertion
Protocol section for more information about adapter module insertion protocol.

If your external circuitry drives signals into the FlexRIO device, NI recommends disabling this
circuitry when the adapter module is not powered. You can monitor adapter module power status
in the LabVIEW FPGA VI and on the host VI.

FPGA I/O and Protection
Use caution when connecting adapter module circuitry to the FPGA. Refer to Xilinx
documentation, available at www.xilinx.com, for specific FPGA I/O voltage limits. To avoid
adapter module circuit damage, tristate all FPGA outputs using the adapter module socketed
CLIP until the adapter module power is enabled. Refer to Chapter 11, Creating Socketed
Component-Level IP for Your Adapter Module and NI 795xR/796xR Modules, for more
information about adapter module socketed CLIP. Refer to Appendix C, Xilinx Documentation
References, for links to applicable Xilinx documentation about your FPGA.

NI recommends that you never directly expose signals from the front panel connector of the
FlexRIO FPGA module to the external connectivity of the adapter module. Some form of
buffering is required when routing signals from the FlexRIO FPGA module to the circuits
external to the adapter module. Most of these parts are high speed and offer electrostatic
discharge (ESD) protection as well as voltage tolerance protection. It is not necessary to consider
this buffer requirement when using the FlexRIO FPGA module in applications such as
interfacing to an ADC, as the digital signals are not directly exposed.

Grounding
FlexRIO adapter module designs may include several ground planes. The interface to the
FlexRIO FPGA module provides the following two ground connections:
• FlexRIO digital ground—The FlexRIO FPGA module front connector includes several pins

routed to a ground plane (GND), as shown in the Signal Descriptions section. All FlexRIO
GPIO, control, and power pins are referenced to this ground plane. To maintain proper trace
impedance, reference all FlexRIO signals to this ground plane on the adapter module.

• PXI/PXI Express chassis ground—The required FlexRIO adapter module enclosure
connects to the FlexRIO FPGA module front panel, and thereby to PXI/PXI Express
chassis ground by way of the guide pins and mounting screws. This chassis ground is

© National Instruments Corporation | 3-15

FlexRIO Adapter Module Development Kit

available on the adapter module PCB by way of the four enclosure mounting screws.
NI recommends including adapter module designs with provisions for a strong connection
between any cable or connector shields and this chassis ground. You can make this
connection through the adapter module PCB and/or the adapter module front panel. This
continuous shield connection is especially important for adapter modules that must pass
emissions testing.

NI 795xR/796xR FPGA I/O Bank Voltages
The FlexRIO FPGA I/O are divided into four I/O banks. Each bank is powered by one of
two Vcco power supply rails, either VccoA or VccoB. When determining how to divide your I/O
among these banks, you must consider the Vcco voltage and I/O standard requirements of your
application. The VccoA/VccoB setting determines which I/O standards are available in the
I/O bank.

For example, if VccoA is set to 3.3 V, then you may configure the GPIO in banks <0..1> to use
the LVTTL, LVCMOS33, or LVDCI33 I/O standards. If VccoB is set to 2.5 V, then you may
configure the GPIO in banks <2..3> to use the LVCMOS25, LVDCI25, or LVDS_25 I/O
standards. You may choose different I/O standards within a single I/O bank if all I/O standards
are compatible with the selected VccoA/VccoB voltage setting.

FlexRIO VccoA/VccoB voltage settings and GPIO standards are set in the adapter module
configuration (.tbc or .fam) file during device configuration. The section FlexRIO Supported
Xilinx I/O Standards in Chapter 9,Configuring Your Adapter Module for Use with
NI 795xR/796xR Modules and LabVIEW FPGA, contains a list of the most common I/O
standards and their required Vcco voltages. For more information about setting I/O standards for
your FlexRIO device, refer to Chapter 9, Configuring Your Adapter Module for Use with
NI 795xR/796xR Modules and LabVIEW FPGA. For I/O standard specifications, refer to Xilinx
documentation, available at www.xilinx.com. Refer to Appendix C, Xilinx Documentation
References, for a list of Xilinx documents applicable to FlexRIO applications.

Simultaneous Switching Output (SSO) Noise
When multiple FPGA output drivers change state at the same time, the changing current causes
a power supply disturbance. These disturbances can cause undesired behavior in output drivers,
input receivers, or in internal logic, which is referred to as simultaneous switching output (SSO)
noise. Published SSO limits determine the number and type of I/O output drivers that can change
state simultaneously without introducing excessive levels of SSO noise to your application.

You should consider SSO limitations when using many GPIO as outputs. NI recommends
spreading outputs across all of the GPIO banks to reduce the quantity of SSO in each FPGA
bank. FlexRIO FPGA modules meet the nominal PCB requirements documented for the Xilinx
SSO limits. To estimate the effect of SSO noise in your application, Xilinx provides the Virtex-5
FPGA SSO Calculator, which contains all SSO limit data for all I/O standards. Refer to Xilinx
documentation, available at www.xilinx.com, for additional information about SSO noise
and to access the Virtex-5 FPGA SSO Calculator. Refer to Appendix C, Xilinx Documentation
References, for links to applicable Xilinx documentation.

3-16 | ni.com

Chapter 3 Interfacing Adapter Modules with NI 795xR and NI 796xR Modules

Clocks and Timing
The NI 795xR and NI 796xR module front panel connectors expose two FPGA global clock
inputs, as well as 16 pairs of clock-capable I/O lines. These inputs provide an external clock to
the FlexRIO FPGA for use in synchronous interfaces.

It is important to consider timing requirements for any synchronous interface to the FlexRIO
FPGA. I/O timing is defined using the socketed CLIP VHDL and user Xilinx User Constraint
File (UCF), which are two elements that comprise the socketed CLIP interface.

Note Refer to the ExampleIOModuleCLIPV5.ucf section of Chapter 11, Creating
Socketed Component-Level IP for Your Adapter Module and NI 795xR/796xR
Modules, for more information about using the .ucf file.

Use the adapter module CLIP .ucf file to provide necessary period and offset constraints, or
to provide setup/hold requirements to the Xilinx compiler. You can also add digital clock
managers (DCMs) or phase-locked loops (PLLs) in your CLIP for phase shifting or frequency
multiplication. For example, an adapter module could include an ADC which drives 16-bit
samples along with a synchronous clock to the FPGA. The ADC datasheet specifies the
relationship between the clock and data output of the part. In this case, the CLIP UCF should
contain a period constraint for the external clock, as well as an offset constraint for the incoming
data relative to the external clock.

For information about adding timing constraints to your CLIP, refer to the
ExampleIOModuleCLIPV5.ucf section of Chapter 11 10, Creating Socketed Component-Level
IP for Your Adapter Module and NI 795xR/796xR Modules. For more information about timing
constraints, FPGA clock input frequency limitations, and DCM/PLL details, refer to Xilinx
documentation, available at www.xilinx.com. Refer to the Xilinx Documentation References
for a list of Xilinx documents applicable to FlexRIO applications.

Clock-Capable I/O Signals
NI recommends using the two FPGA global clock inputs whenever possible, as these clocks
have the fewest restrictions. If your application requires additional clocking signals, each
NI 795xR/796xR FPGA I/O target exposes four pairs of regional clock-capable (_CC) lines.
You can configure these clock-capable lines as differential pairs or as single-ended lines. If you
configure the lines as single-ended lines, you must route the clocking signal to the positive side.
The negative side can be used as a GPIO line.

Refer to Appendix A, Signal Suggestions, for your device’s pinout chart.

As GPIO signals, these lines can be either inputs or outputs. You can also use these signals to
pass a clock into the FPGA. These clock-capable signals have access to regional clocking
resources in the FPGA and may be useful for high-speed synchronous interfaces where the I/O
is contained in a single clock region. Refer to Xilinx documentation, available at
www.xilinx.com, for more information about clock-capable signals and regional clocking.

© National Instruments Corporation | 3-17

FlexRIO Adapter Module Development Kit

Refer to the Xilinx Documentation References for a list of Xilinx documents applicable to
FlexRIO applications.

IoModSyncClk (NI 796xR Only)
The FlexRIO PXI Express FPGA module provides the IoModSyncClk signal for
synchronization between adapter modules. IoModSyncClk is a low-voltage,
positive-emitter-coupled logic (LVPECL) clock that can either be sourced by PXI_CLK10 or by
PXIe_DStarA, as shown in Figure 3-5 3-5.

Figure 3-5. IoModSyncClk Source Block Diagram

For more information about the IoModSyncClk and using it in your adapter module design, refer
to the IoModSyncClk.fam Values (NI 796xR Only) section of Chapter 9, Configuring Your
Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA. Refer to the
FlexRIO FPGA Module Base Clock Properties topic in the FlexRIO Help for more information
about clock resources.

Termination
If an adapter module uses IoModSyncClk, terminate both lines with a 50 Ω load to 1.3 V (or
Thevenin equivalent) as close to the receiver as possible. Figure 3-6 shows the recommended
termination for IoModSyncClk.

Figure 3-6. IoModSyncClk Termination

FPGA

1:
2

B
uf

fe
r

1:
2

B
uf

fe
r

PXI_CLK10

PXIe_DStarA
2:

1
M

ux
S

el
ec

t

E
na

bl
e

Differential
IoModSyncClk
(to adapter module)P

X
I E

xp
re

ss
 B

ac
kp

la
ne

IoModSyncClk Receiver+

IoModSyncClk_n Receiver–

50 Ω

50 Ω

50 Ω

≥100 pF GND

3-18 | ni.com

Chapter 3 Interfacing Adapter Modules with NI 795xR and NI 796xR Modules

GPIO Termination and Impedance
All GPIO traces from the FlexRIO FPGA to the front panel connector are routed as 100 Ω
differential/50 Ω single-ended traces. As listed in the previous section, you can configure
FPGA I/O to use Xilinx digitally controlled impedance (DCI) technology. DCI technology
allows the driver output impedance to match the trace impedance. For best performance,
NI recommends designing the trace impedance in the adapter module PCB to match the driver
output impedances.

Note DCI technology is available on the NI 795xR and NI 796xR devices only.

For example, if your adapter module uses GPIO as single-ended outputs to IC inputs, route these
signals as 50 Ω single-ended traces. If your adapter module drives an LVDS signal into the
FlexRIO FPGA, route this signal as a 100 Ω differential signal. In the case of FPGA LVDS
inputs, 100 Ω parallel termination at the receiver may be enabled using the socketed CLIP UCF
file. For more information, refer to the ExampleIOModuleCLIPV5.ucf section of Chapter 11,
Creating Socketed Component-Level IP for Your Adapter Module and NI 795xR/796xR
Modules.

Minimizing Crosstalk
All FlexRIO GPIO signals are routed to maximize flexibility, allowing them to be used as
132 single-ended signals or 66 differential pairs. GPIOx and GPIOx_n are differentially coupled,
and can induce crosstalk on each other when used as independent, single-ended signals.

For maximum performance in these single-ended applications, NI recommends using only
one side of a differential pair and connecting the opposite side of the pair to ground. Use this
method only for the highest performance applications as doing so reduces the number of
available GPIO signals.

Sharing the I2C Bus
The FlexRIO FPGA module front panel connector includes a dedicated 3.3V I2C bus for the ID
EEPROM. This bus is powered from the Veeprom rail and accessible by way of the FlexRIO driver
and the adapter module socketed CLIP. You can attach other I2C devices to this bus only if the
I2C bus address is unique.

Note The power on protocol for the FlexRIO FPGA module uses the I2C bus in a
manner that may affect your application. Specifically, during adapter module
identification, only the Veeprom rail is powered, which means any user circuitry is
unpowered. The I2C bus interface signals (SCL and SDA), however, are toggling. If
another I2C device not powered from Veeprom shares the I2C bus to the ID EEPROM,
the SCL and SDA signals may be pulled down on the unpowered device, which
prevents the identification and powering of your FlexRIO FPGA module. Consult
your I2C datasheet to determine if additional circuitry is necessary to ensure proper
adapter module identification while sharing the I2C bus among multiple devices.

© National Instruments Corporation | 3-19

FlexRIO Adapter Module Development Kit

Choosing Circuitry Components
When designing the interface circuity between the adapter module and the FlexRIO FPGA
module, NI recommends choosing 2.5V or lower components whenever possible. As FPGA
process geometrics decrease, the supported interface levels also decrease. Using 2.5V or lower
components makes present adapter module designs more likely to remain compatible with future
FPGA families.

Unused Pin Recommendations
The following table lists the NI recommendations for the unassigned/unused pins on the
FlexRIO FPGA module.

Table 3-6. Unassigned Pin Recommendations

Pin Recommended Use

GPIO Leave unconnected or tie to ground using a 1 kΩ or greater
pull-down resistor to minimize single-ended I/O crosstalk.

GClk Inputs Leave unconnected.

VccoA/VccoB Leave unconnected.

+12V, +3.3V Leave unconnected.

IoModSyncClk If an adapter module does not use IoModSyncClk, leave the lines
unconnected and unterminated.

© National Instruments Corporation | 4-1

4
Interfacing Adapter Modules
with NI-793xR and NI 797xR
Devices

This chapter explains how to interface adapter modules with NI-793xR and NI 797xR modules,
including electrical design considerations. For information about interfacing adapter modules
with NI 795xR and NI 796xR modules, refer to Chapter 3, Interfacing Adapter Modules with
NI 795xR and NI 796xR Modules. For additional specifications information, refer to the
specifications document for your NI-793xR or NI 797xR, available from the Start menu and at
ni.com/manuals.

Caution To ensure proper and reliable operation of the adapter module, do not
exceed the specifications in this chapter.

Adapter Module Electrical Interface
The NI-793xR and NI 797xR module front panel connectors provide power, clocking, and I/O
connections between the NI-793xR/NI 797xR and the adapter module. This interface also
includes dedicated pins for adapter module detection, identification, and power status. The
proceeding sections describe front panel details and pin locations.

Power Guidelines
Four DC power rails are available for the adapter module connector. Table 4-1 lists these rails,
their purpose, and the power available to each rail at the adapter module connector. You can
adjust the sequence in which the rails come online and the delay between each rail from 0 ms to
500 ms. NI recommends that the maximum power dissipated in the adapter module does not
exceed 6 W total for all components included in your design. If you provide external power for
adapter module operation, due to cooling requirements, the total dissipation within the adapter
module should still remain below 6 W. Power dissipated outside of the adapter module—for
example, power in external terminations—can be excluded from the 6 W maximum power
number.

www.ni.com/manuals

4-2 | ni.com

Chapter 4 Interfacing Adapter Modules with NI-793xR and NI 797xR Devices

Caution NI recommends powering the adapter module from the power rails
provided from the NI-793xR/NI 797xR. If you use external power rails instead or in
addition to the provided rails, the adapter module must not drive the GPIO lines at a
voltage different than Vcco. The adapter module should never power any pin on the
NI-793xR/NI 797xR module connector if the NI-793xR/NI 797xR is powered off.

The NI-793xR and NI 797xR power rails are significantly different than the NI 795xR and
NI 796xR power rails. The NI-793xR and NI 797xR modules feature hot swap controllers on all
rails. These hot swap controllers actively control power-on inrush currents and provide hard
over-current shutdown points (trip points). These controllers remove the need to design soft start
circuits on the adapter module, as this function is now built into the NI-793xR and NI 797xR.

Note Soft start circuits are still required on the adapter module for backwards
compatibility with the NI 795xR and NI 796xR devices.

Table 4-1. DC Power Rails

Power
Rail

Name
DC Value

(Volts)

Maximum
Current
(Amps)

Trip Current
(Amps)

Control
Time

(msec) Description

+3.3V 3.3
+5%/-5%

2 2.25-0/+10% 13.5 ± 30% General-purpose
power rails.

+12V 12
+5%/-5.6%

0.5 0.56-0/+10% 6.3 ± 20%

Vcco Selectable
(1.2, 1.5,
1.8, 2.5, and
3.3)*†

1 2.25-0/+10% 13.5 ± 30% I/O rail that is
shared with the
FPGA for digital
interface
circuitry.

Veeprom +3.3 .05 0.15 ±35% 12.5 ± 60% Powers the I2C
EEPROM on the
adapter module
that stores
adapter module
configuration
information.

* Although Vcco supports 3.3V, NI does not recommend using that voltage level for Vcco.
Future FPGA generations may not support 3.3V power rails.
† To keep the power rails backwards compatible with the NI 795xR and NI 796xR modules,
you must keep the previous VccoA and VccoB pins separate (not wired to the same net) and
configure a maximum of 0.5 A of pull on each of those pins.

© National Instruments Corporation | 4-3

FlexRIO Adapter Module Development Kit

The Veeprom rail uses the TPS22945 controller. The other rails use the TPS24700 controller.
These controllers actively limit the inrush current for the control time shown in Table 4-1. The
current during the inrush period is about 10% higher than the trip current limit. If the inrush
condition continues for longer than the control time, the controller disconnects the rail and the
FPGA module turns off all the adapter module power rails. To reset the inrush condition, either
remove and re-insert the adapter module or cycle Control IO Module Power from FALSE to
TRUE. During development testing, NI recommends measuring the inrush time and ensuring
that the design is below the minimum time listed in Table 4-1. Generally, these inrush conditions
are not a problem, since even loads of 200 μF meet these conditions.

After the inrush period is over, each controller monitors its current and disconnects if the current
exceeds the trip current for the control time. If any rail disconnects, the FPGA module turns off
all the adapter module power rails. If the adapter power rails turn off, either remove and re-insert
the adapter module or cycle Control IO Module Power from FALSE to TRUE. NI recommends
testing the adapter modules for steady state and transient loads to be at or below the values listed
in the Maximum Current (Amps) column of Table 4-1 to prevent unwanted shutdowns due to
excessive current draw.

NI recommends that you set the Vcco current to 1 A maximum since this rail is also connected to
the FPGA and is not intended for large transient currents. The Vcco voltage is designed to be
within a few mV of the target voltage at 25 °C for a 1 A load.

While the total power of the adapter module is still limited to 6 W, this power may be pulled from
any combination of rails without any other conditions. The total power being used by the adapter
module is monitored by the FPGA module.

Adapter Module Connector Signals
The adapter module PCB outline includes a card edge connector. This card edge connector
inserts into the front panel connectors of the NI-793xR/NI 797xR modules and provides access
to the available signals.

4-4 | ni.com

Chapter 4 Interfacing Adapter Modules with NI-793xR and NI 797xR Devices

NI-793xR and NI 797xR Signal Descriptions
The following figure shows the available signals on the NI-793xR and NI 797xR modules.
Figure 4-1. NI-793xR and NI 797xR Front Panel Connector Pin Assignments and Locations

Caution Connections that exceed any of the maximum ratings of input or output
signals on the FlexRIO device can damage the NI-793xR/NI 797xR, the adapter
module, and the computer or chassis. NI is not liable for any damage resulting from
such signal connections. For the maximum input and output ratings for each signal,

B
an

k
1

PCB
Primary Side
+3.3V
SCL
TB_Present_n
+12V
Vcco
RSVD
GND
IOModSyncClk_n
IOModSyncClk
GND
GPIO_0_n
GPIO_0
GND
GPIO_1_n
GPIO_1
GND
GPIO_CC_2_n
GPIO_CC_2
GND
GPIO_3_n
GPIO_3
GND
GPIO_4_n
GPIO_4
GND
GPIO_5_n
GPIO_5
GND
GPIO_6_n
GPIO_6
GND
GPIO_7_n
GPIO_7
GND
GPIO_8_n
GPIO_8
GND
GPIO_9_n
GPIO_9
GND
GPIO_10_n
GPIO_10
GND
GPIO_11_n
GPIO_11
GND
GPIO_12_n
GPIO_12
GND

GND

GPIO_13_n
GPIO_13

P2

P1
S148
S147

S146
S145

S144
S143
G36
S142
S141
G35
S140
S139
G34
S138
S137
G33
S136
S135
G32
S134
S133
G31
S132
S131
G30
S130
S129
G29
S128
S127
G28
S126
S125
G27
S124
S123
G26
S122
S121
G25
S120
S119
G24
S118
S117
G23
S116
S115
G22

G37

P2

P1
S74
S73

S72
S71

S70
S69
G36
S68
S67
G35
S66
S65
G34
S64
S63
G33
S62
S61
G32
S60
S59
G31
S58
S57
G30
S56
S55
G29
S54
S53
G28
S52
S51
G27
S50
S49
G26
S48
S47
G25
S46
S45
G24
S44
S43
G23
S42
S41
G22

G37

+12V

+3.3V
SDA
TB_Power_Good

Vcco
Veeprom

TDC_Assert_CLK_n

TDC_Assert_CLK

GND
GPIO_24_n
GPIO_24
GND
GPIO_25_n
GPIO_25
GND
GPIO_CC_26_n
GPIO_CC_26
GND
GPIO_27_n
GPIO_27
GND
GPIO_28_n
GPIO_28
GND
GPIO_29_n
GPIO_29
GND
GPIO_30_n
GPIO_30
GND
GPIO_31_n
GPIO_31
GND
GPIO_32_n
GPIO_32
GND
GPIO_33_n
GPIO_33
GND
GPIO_34_n
GPIO_34
GND
GPIO_35_n
GPIO_35
GND
GPIO_36_n
GPIO_36
GND
GPIO_37_n
GPIO_37
GND

GND

PCB
Secondary Side

B
an

k
0

PCB
Primary Side
GND
GPIO_CC_14_n
GPIO_CC_14
GND
GPIO_15_n
GPIO_15
GND
GPIO_16_n
GPIO_16
GND
GPIO_17_n

GPIO_17
GND
GPIO_18_n
GPIO_18
GND
GPIO_19_n
GPIO_19
GND
GPIO_20_n
GPIO_20
GND
GPIO_21_n
GPIO_21
GND
GPIO_22_n
GPIO_22
GND
GPIO_23_n
GPIO_23
GND
GPIO_58_n
GPIO_58
GND
GPIO_59_n
GPIO_59
GND
GPIO_CC_60_n
GPIO_CC_60
GND
GPIO_61_n
GPIO_61
GND
GPIO_62_n
GPIO_62
GND
GPIO_63_n
GPIO_63
GND

GND

GPIO_64_n
GPIO_64

GPIO_65_n
GPIO_65
GND
GPIO_66_n

GPIO_67_n

GPIO_66
GND

GND
GPIO_67

G20

G21
S114
S113

S112
S111

S110
S109
G18
S108
S107
G17
S106
S105
G16
S104
S103
G15
S102
S101
G14
S100
S99
G13
S98
S97
G12
S96
S95
G11
S94
S93
G10
S92
S91
G9
S90
S89
G8
S88
S87
G7
S86
S85
G6
S84
S83
G5
S82
S81
G4

G19

S80
S79
G3
S78
S77
G2
S76
S75
G1

G20

G21
S40
S39

S38
S37

S36
S35
G18
S34
S33
G17
S32
S31
G16
S30
S29
G15
S28
S27
G14
S26
S25
G13
S24
S23
G12
S22
S21
G11
S20
S19
G10
S18
S17
G9
S16
S15
G8
S14
S13
G7
S12
S11
G6
S10
S9
G5
S8
S7
G4

G19

S6
S5
G3
S4
S3
G2
S2
S1
G1

GND

GND
GPIO_CC_38_n
GPIO_CC_38

GPIO_39_n
GPIO_39

GPIO_40_n
GPIO_40
GND
GPIO_41_n
GPIO_41
GND
GPIO_42_n
GPIO_42
GND
GPIO_43_n
GPIO_43
GND
GPIO_44_n
GPIO_44
GND
GPIO_45_n
GPIO_45
GND
GPIO_46_n
GPIO_46
GND
GPIO_47_n
GPIO_47
GND
GPIO_48_n
GPIO_48
GND
GPIO_49_n
GPIO_49
GND
GPIO_CC_50_n
GPIO_CC_50
GND
GPIO_51_n
GPIO_51
GND
GPIO_52_n
GPIO_52
GND
GPIO_53_n
GPIO_53
GND
GPIO_54_n
GPIO_54
GND
GPIO_55_n
GPIO_55
GND
GPIO_56_n
GPIO_56
GND
GPIO_57_n
GPIO_57
GND

GND

PCB
Secondary Side

B
a
n

k
2

B
an

k
1

B
an

k
2

B
an

k
0

© National Instruments Corporation | 4-5

FlexRIO Adapter Module Development Kit

refer to the specifications document for your device, available from the Start menu
and at ni.com/manuals.

Tables 4-2 and 4-3 describe the control signals and other signals available from the NI-793xR
and NI 797xR modules. These signals include the adapter module control signals and power
rails. These areas, along with suggested circuits and component selection, are covered in the
proceeding chapters.

Note To enable an adapter module connector on NI-793xR and NI 797xR devices
to be compatible with NI 795xR and NI 796xR devices, several general-purpose I/O
lines with multi-region clock capabilities on NI-793xR and NI 797xR devices are
provided at locations that match the fixed global clock input signals on NI 795xR and
NI 796xR devices. The dedicated global clock signals on NI 795xR and NI 796xR
devices are provided at a fixed voltage level; the multi-region clock capable lines on
the NI-793xR and NI 797xR devices must use a logic level that matches the
remaining general-purpose I/O lines.

Table 4-2. Control Pin Assignments and Signal Descriptions

Pin Signal Direction Description

S71 Veeprom To adapter
module

Use this 3.3V power supply only to power
the adapter module identification
EEPROM.

S73 TB_Power_Good From adapter
module

3.3V TTL input to the FPGA. The timeout
for this signal is 815 ms. The adapter
module asserts this signal to the
NI-793xR/NI 797xR at startup to indicate
that the adapter module power rails are
powered and stable. The adapter module
holds this line asserted while the device is
in operation.

S147 TB_Present_n From adapter
module

The adapter module pulls this signal low at
all times to indicate to the
NI-793xR/NI 797xR that the adapter
module is present. Connect this line
to GND.

S148 SCL To adapter
module

I2C bus clock from the NI-793xR/NI 797xR
module bus master to the adapter module.
This signal is powered by Veeprom.

S74 SDA Bidirectional I2C serial data line. This signal is powered
by Veeprom.

4-6 | ni.com

Chapter 4 Interfacing Adapter Modules with NI-793xR and NI 797xR Devices

S146
and
S72

Vcco To adapter
module

Selectable voltage rail for powering the
interface circuitry between the adapter
module and the NI-793xR/NI 797xR. Refer
to the NI-793xR and NI 797xR FPGA I/O
Bank Voltages section for more information
about I/O bank voltages.

To make this signal backwards compatible
with the NI 795xR and NI 796xR modules,
you must not connect pins S146 and S72
together. Treat these pins like separate
VccoA and VccoB rails operating at the same
Vcco voltage.

S69 TDC_Assert_CLK — Reserved for future use. Do not connect.

S70 TDC_Assert_
CLK_n

— Reserved for future use. Do not connect.

S143 IoModSyncClk* — Positive terminal for differential clock to
the adapter module from either
PXIe_DStarA or PXI_Clk10. For more
information about clocking, refer to the
IoModSyncClk section.

S144 IoModSyncClk_n† — Negative terminal for differential clock to
the adapter module from either
PXIe_DStarA or PXI_Clk10. For more
information about clocking, refer to the
IoModSyncClk section.

S145 RSVD_CNTL — Reserved for future use. Do not connect.

* Leave IoModSyncClk unconnected on NI-793xR modules.
† Leave IoModSyncClk_n unconnected on NI-793xR modules.

Table 4-2. Control Pin Assignments and Signal Descriptions (Continued)

Pin Signal Direction Description

© National Instruments Corporation | 4-7

FlexRIO Adapter Module Development Kit

General-Purpose Input/Output (GPIO)
Refer to Knowledge Base article 6NND5NOA for a list of general-purpose I/O (GPIO) signals
available from the NI-793xR and NI 797xR modules.

The NI-793xR and NI 797xR modules contain 68 GPIO differential pairs, which can be
configured as 136 single-ended signals or a combination of each. You can use these signals to
digitally interface between the adapter module and the NI-793xR/NI 797xR.

Each GPIO line is individually ground referenced when used as a single-ended (SE) signal. For
instance, in single-ended mode, GPIO_0 and GPIO_n_0 are independent signals and can be
thought of as GPIO_x and GPIO_y, respectively.

When configured as a differential signal, two lines make a differential pair that comprises one
signal. The pair consists of a positive side and a negative side. The negative side is designated
with the _n. For example, GPIO_0 is the positive half of the differential signal and GPIO_n_0
is the negative half.

In addition to providing digital interfacing capabilities, signal lines designated with _CC are
clock-capable, meaning that they have access to clock resources. For more information about
clock-capable signals, refer to the Clocks and Timing section.

GPIO Bank x Details
Three FPGA banks of GPIO lines are available at the adapter module card edge connector. These
three banks correspond to three physical I/O banks on the FPGA. The three FPGA I/O banks on
the NI-793xR/NI 797xR are connected to the Vcco supply for the desired I/O standard. You can
also share regional clocking resources across an I/O bank. For more information about I/O
banking and design implications, refer to the Electrical Design Considerations section.

Table 4-3. Power Connections Pin Assignments

Pin Signal Direction Description

P1 +3.3V To adapter module General-purpose power rail.

P2 +12V To adapter module General-purpose power rail.

G<1..37> GND Ground For correct operation, the adapter module
design should connect all GND signals
directly to a ground plane on the adapter
module PCB.

http://digital.ni.com/public.nsf/allkb/990E5083582E937786257D1F00683B86

4-8 | ni.com

Chapter 4 Interfacing Adapter Modules with NI-793xR and NI 797xR Devices

The following table lists the association between the I/O banks of the NI-793xR/NI 797xR and
the Xilinx FPGA banks from which they are derived.

The adapter module schematic also has physical references on the connector to denote bank
references. For more information about signals and their banks, refer to Appendix A, Signal
Suggestions.

Adapter Module Interface Protocol
NI-793xR/NI 797xR modules interface to a wide variety of adapter modules. These modules
may have different Vcco power requirements, as well as a variety of GPIO I/O standards and
signal directions. FlexRIO devices also allow users to change I/O characteristics with each
different adapter module. NI recommends that each adapter module design contain an EEPROM
for identification and protection.

The identification EEPROM is connected to dedicated pins and designated at a specific I2C
address, and allows the FlexRIO driver to identify an inserted adapter module. Including an
EEPROM in your design allows for improved electrical protection for the adapter module and
the NI-793xR/NI 797xR. Using an identification EEPROM prevents the use of incompatible
adapter module settings such as incorrect power rails and double-driving of digital interface
pins. Refer to the EEPROM Overview section for additional information about adding an ID
EEPROM to your adapter module design.

The FlexRIO device employs the following adapter module identification, power up, and
removal processes to prevent applying improper voltages or double-driving signals.

Table 4-4. Bank Reference

Adapter Module Bank Vcco Rail Reference
Xilinx FPGA Bank
(For Reference)

0 Vcco 16

1 Vcco 17

2 Vcco 18

Note: The Vcco value is set in the adapter module configuration file (.fam) file during device
configuration. For more information about configuring your .fam file, refer to Chapter 10, Configuring
Your Adapter Module for Use with NI-793xR/797xR Modules and LabVIEW FPGA.

© National Instruments Corporation | 4-9

FlexRIO Adapter Module Development Kit

Adapter Module Insertion Protocol
The following figure that depicts the process that the FlexRIO system performs when you insert
a new adapter module into the NI-793xR/NI 797xR.

Note The system also performs the following steps when you download a new
LabVIEW FPGA bitstream to the FlexRIO device or when you assert a Reset
command.

Figure 4-2. Adapter Module Insertion Protocol

Note The steps for detecting an adapter module are performed during device
configuration. For more information about adapter module configuration, refer to
Chapter 10, Configuring Your Adapter Module for Use with NI-793xR/797xR
Modules and LabVIEW FPGA.

Note You can confirm proper adapter module connection or adapter module
mismatch in the IO Module Properties Status dialog in LabVIEW. In your
LabVIEW Project Explorer window, right-click the IO Module item under the
FPGA Target and select Properties to display the IO Module Properties dialog box.
Click the Status category to view the adapter module Status dialog.

Not Compatible
with Bitstream

Firmware Enables Adapter Module
Power Rails, Waits for TB_Power_Good,

RioModGpioEn Indicates That
User Can Enable FlexRIO I/O

Firmware Sets Adapter Module
Mismatch Bit, Disables All Rails

Firmware Checks if
Bitstream Expected IO Module ID

Matches Inserted Adapter
Module IO Module ID

Compatible
with Bitstream

Firmware Detects Adapter Module, Enables Veeprom Rail,
and Reads Adapter Module EEPROM

User Inserts Adapter Module, Pulls TB_Present_n Low

4-10 | ni.com

Chapter 4 Interfacing Adapter Modules with NI-793xR and NI 797xR Devices

Adapter Module Removal Protocol
To properly remove an adapter module from the NI-793xR/NI 797xR, you must disable the
adapter module within the LabVIEW FPGA user interface. To disable the adapter module within
LabVIEW, complete the following steps:
1. In your LabVIEW Project Explorer window, right-click the IO Module item under the

FPGA Target and select Properties to display the IO Module Properties dialog box.
2. Click the Status category to view the adapter module Status dialog.
3. Deselect the checkbox for Enable IO Module Power. When this option is deselected,

firmware tristates the FlexRIO I/O and disables all adapter module power rails.
4. Click OK.

FlexRIO driver software allows you to enable and disable adapter modules, as well as control
EEPROM access, within the LabVIEW interface. Refer to Chapter 10, Configuring Your
Adapter Module for Use with NI-793xR/797xR Modules and LabVIEW FPGA, for information
about programming your adapter module EEPROM.

EEPROM Overview
NI strongly recommends adding an EEPROM to your adapter module for identification
purposes. Adding EEPROM provides better electrical protection for both the adapter module
and the NI-793xR/NI 797xR. It also improves the software configuration experience within
LabVIEW FPGA.

The adapter module identification EEPROM included in your design must be an I2C-capable
2 Kbit device (256 × 8). These parts are widely available from electronics manufacturers and are
often identified as 24C02. Manufacturers typically place a prefix to identify their version, for
example, ST Microelectronics’ EEPROM part number is M24C02.

Figure 4-3 shows a complete FlexRIO EEPROM connection circuit. This circuit shows the
connections to the EEPROM (U1) and two additional connections required for proper adapter
module configuration. The supporting parts required for the EEPROM are a bypass capacitor
(C1) on the line from Veeprom, a pull-up resistor (R1) on address line A1 to Veeprom, and a
pull-down resistor (R2) on the WP line. C1 is a 0.1 μF ceramic capacitor with a voltage rating of
6.3 V or higher. For best performance, use a capacitor with an X7R dielectric. Use 4.7 kΩ
resistors, which can be any resistor type rated for at least 25 V and 10% tolerance or better. Other
details regarding this interface can be found in the EEPROM datasheet. For more information
about EEPROM use and programming in your application, refer to Chapter 10, Configuring
Your Adapter Module for Use with NI-793xR/797xR Modules and LabVIEW FPGA.

© National Instruments Corporation | 4-11

FlexRIO Adapter Module Development Kit

Note The I2C address for the EEPROM is 0x52. Use 0xA4 for write operations and
0xA5 for read operations. Use the following bit fields to ensure the correct I2C address.

EEPROM Recommendations
Use an ST Microelectronics serial I2C bus EEPROM (part number M24C02-WMN) or
equivalent for the FlexRIO adapter module. Refer to www.st.com for datasheets and additional
information.

EEPROM Schematic and Wiring
Figure 4-3. EEPROM Wiring

Note Multiple components on the adapter module can share the I2C bus.
Depending on the adapter module design, some of these components that share the
I2C bus with the EEPROM may not power on when the initial adapter module
insertion protocol executes. If you use components that pull down the I2C lines to a
low level when powered off, NI recommends using a switch that separates the I2C
bus from the EEPROM I2C lines.

1 0 1 0 0 1 0 R/W

EEPROM Device Type Identifier Chip Enable Operation

A2 A1 A0 1 = R
0 = W

S71
S73

S147

S148
S74

Veeprom
TB_Power_Good
TB_Present_n

SCL
SDA

1
2
3
4

A0
A1
A2
GND

VCC
WP

SCL
SDA

8
7
6
5

1

2

21

+3.3 V TTL Power Good

U1

Veeprom

R1 = 4.7 kΩ

C1 = 0.1 μF

R2 = 4.7 kΩ

NI FlexRIO FPGA Module
Front Connector

4-12 | ni.com

Chapter 4 Interfacing Adapter Modules with NI-793xR and NI 797xR Devices

Electrical Design Considerations
This section provides electrical considerations, clock and timing information, and additional
information about the design of your adapter module.

Power up and Sequencing with External Hardware
When your FlexRIO device is connected to external equipment, you should consider the
powering sequence of the system. When you insert a new adapter module, download a new
bitstream to the LabVIEW FPGA target, or assert the Reset command, the adapter module power
is disabled until the FPGA verifies device compatibility. Refer to the Adapter Module Insertion
Protocol section for more information about adapter module insertion protocol.

If your external circuitry drives signals into the FlexRIO device, NI recommends disabling this
circuitry when the adapter module is not powered. You can monitor adapter module power status
in the LabVIEW FPGA VI and on the host VI.

FPGA I/O and Protection
Use caution when connecting adapter module circuitry to the FPGA. Refer to Xilinx
documentation, available at www.xilinx.com, for specific FPGA I/O voltage limits. To avoid
adapter module circuit damage, tristate all FPGA outputs using the adapter module socketed
CLIP until the adapter module power is enabled. Refer to Chapter 12, Creating Socketed
Component-Level IP for Your Adapter Module and NI-793xR/NI 797xR Modules, for more
information about adapter module socketed CLIP. Refer to Appendix C, Xilinx Documentation
References, for links to applicable Xilinx documentation about your FPGA.

NI recommends that you never directly expose signals from the front panel connector of the
NI-793xR/NI 797xR to the external connectivity of the adapter module. Some form of buffering
is required when routing signals from the NI-793xR/NI 797xR to the circuits external to the
adapter module. Most of these parts are high speed and offer electrostatic discharge (ESD)
protection as well as voltage tolerance protection. It is not necessary to consider this buffer
requirement when using the NI-793xR/NI 797xR in applications such as interfacing to an ADC,
as the digital signals are not directly exposed.

Grounding
FlexRIO adapter module designs may include several ground planes. The interface to the
NI-793xR/NI 797xR provides the following two ground connections:
• FlexRIO digital ground—The NI-793xR/NI 797xR adapter module connector includes

several pins routed to a ground plane (GND), as shown in the NI-793xR and NI 797xR
Signal Descriptions section. All FlexRIO GPIO, control, and power pins are referenced to
this ground plane. To maintain proper trace impedance, reference all FlexRIO signals to this
ground plane on the adapter module.

• PXI/PXI Express chassis ground—The required FlexRIO adapter module enclosure
connects to the NI-793xR or NI 797xR module front panel, and thereby to PXI/PXI Express

© National Instruments Corporation | 4-13

FlexRIO Adapter Module Development Kit

chassis ground by way of the guide pins and mounting screws. This chassis ground is
available on the adapter module PCB by way of the four enclosure mounting screws.
NI recommends including adapter module designs with provisions for a strong connection
between any cable or connector shields and this chassis ground. You can make this
connection through the adapter module PCB and/or the adapter module front panel. This
continuous shield connection is especially important for adapter modules that must pass
emissions testing.

NI-793xR and NI 797xR FPGA I/O Bank Voltages
The FlexRIO FPGA I/O are divided into three I/O banks. Each bank is powered by the same Vcco
power supply rail. The Vcco setting determines which I/O standards are available in the I/O bank.
You can set the Vcco to any of the following voltages: 3.3 V, 2.5 V, 1.8 V, 1.5 V, or 1.2 V.

FlexRIO Vcco voltage settings and GPIO standards are set in the adapter module configuration
(.fam) file during device configuration.Refer to the FlexRIO Supported Xilinx I/O Standards
section in Chapter 9, Configuring Your Adapter Module for Use with NI 795xR/796xR Modules
and LabVIEW FPGA, which contains a list of the most common I/O standards and their required
Vcco voltages. For more information about setting I/O standards for your FlexRIO device, refer
to Chapter 9, Configuring Your Adapter Module for Use with NI-793xR/797xR Modules and
LabVIEW FPGA. For I/O standard specifications, refer to Xilinx documentation, available at
www.xilinx.com. Refer to Appendix C, Xilinx Documentation References for a list of Xilinx
documents applicable to FlexRIO applications.

Note The FPGA I/O used on Virtex-5 and Kintex-7 FPGA modules support the
same range of Vcco levels; however, the devices have different drive strength currents
and slew rates. When designing a module that is compatible with both
NI 795xR/796xR and NI-793xR/NI 797xR modules, consult Xilinx documentation to
evaluate these I/O differences.

Simultaneous Switching Output (SSO) Noise
When multiple FPGA output drivers change state at the same time, the changing current causes
a power supply disturbance. These disturbances can cause undesired behavior in output drivers,
input receivers, or in internal logic, which is referred to as simultaneous switching output (SSO)
noise. Published SSO limits determine the number and type of I/O output drivers that can change
state simultaneously without introducing excessive levels of SSO noise to your application.

You should consider SSO limitations when using many GPIO as outputs. NI recommends
spreading outputs across all of the GPIO banks to reduce the quantity of SSO in each FPGA
bank. NI-793xR and NI 797xR modules meet the nominal PCB requirements documented for the
Xilinx SSO limits. To estimate the effect of SSO noise in your application, Xilinx provides the
Virtex-5 FPGA SSO Calculator, which contains all SSO limit data for all I/O standards. Refer to
Xilinx documentation, available at www.xilinx.com, for additional information about SSO
noise and to access the Virtex-5 FPGA SSO Calculator. Refer to Appendix C, Xilinx
Documentation References for links to applicable Xilinx documentation.

4-14 | ni.com

Chapter 4 Interfacing Adapter Modules with NI-793xR and NI 797xR Devices

Clocks and Timing
The NI-793xR and NI 797xR module front panel connectors expose six multi-region
clock-capable I/O lines, as well as five pairs of single-region clock-capable I/O lines. These
inputs provide an external clock to the FlexRIO FPGA for use in synchronous interfaces.

It is important to consider timing requirements for any synchronous interface to the FlexRIO
FPGA. I/O timing is defined using the socketed CLIP VHDL and the constraints file, which are
two elements that comprise the socketed CLIP interface.

Note If you are using LabVIEW 2013 or earlier, define your constraints in the
.ucf file. Refer to the ExampleIOModuleCLIPK7.ucf section of Chapter 12,
Creating Socketed Component-Level IP for Your Adapter Module and
NI-793xR/NI 797xR Modules, for more information about using the .ucf file. If you
are using LabVIEW 2014 or later, define your constraints in the .xdc file. Refer to
the ExampleIOModuleCLIPK7.xdc section of Chapter 12, Creating Socketed
Component-Level IP for Your Adapter Module and NI-793xR/NI 797xR Modules, for
more information about using the .xdc file.

Use the adapter module CLIP constraints file to provide necessary period and offset constraints,
or to provide setup/hold requirements to the Xilinx compiler. You can also add digital clock
managers (DCMs) or phase-locked loops (PLLs) in your CLIP for phase shifting or frequency
multiplication. For example, an adapter module could include an ADC which drives 16-bit
samples along with a synchronous clock to the FPGA. The ADC datasheet specifies the
relationship between the clock and data output of the part. In this case, the CLIP constraints
should contain a period constraint for the external clock, as well as an offset constraint for the
incoming data relative to the external clock.

For information about adding timing constraints to your CLIP, refer to Chapter 12, Creating
Socketed Component-Level IP for Your Adapter Module and NI-793xR/NI 797xR Modules. For
more information about timing constraints, FPGA clock input frequency limitations, and
DCM/PLL details, refer to Xilinx documentation, available at www.xilinx.com. Refer to
Appendix C, Xilinx Documentation References, for a list of Xilinx documents applicable to
FlexRIO applications.

Clock-Capable I/O Signals
Each NI-793xR and NI 797xR FPGA I/O target exposes six multi-region clock-capable (_CC)
pairs as well as five single-region clock-capable pairs. NI recommends using multi-region
clock-capable pairs in your applications when possible. You can configure the clock-capable
signals as differential pairs, a single-ended positive pin signal, or as a generic GPIO line. If you
configure the lines as single-ended lines, you must route the clocking signal to the positive side.
The negative side can be used as a GPIO line.

Refer to the NI-793xR and NI 797xR Signal Descriptions section for your device’s pinout chart.

As GPIO signals, these signals can be either inputs or outputs. You can also use these signals to
pass a clock into the FPGA. These clock-capable signals have access to clocking resources in

© National Instruments Corporation | 4-15

FlexRIO Adapter Module Development Kit

the FPGA that correspond to multi-region clock capable (MRCC) inputs in the FPGA. Refer to
Xilinx documentation, available at www.xilinx.com, for more information about
clock-capable signals and clocking. Refer to Appendix C, Xilinx Documentation References, for
a list of Xilinx documents applicable to FlexRIO applications.

IoModSyncClk

Note NI-793xR modules do not use the IoModSyncClk line. Leave IoModSyncClk
unconnected for NI-793xR devices.

The NI 797xR provides the IoModSyncClk signal for synchronization between adapter modules.
IoModSyncClk is a low-voltage, positive-emitter-coupled logic (LVPECL) clock that can either
be sourced by PXI_CLK10 or by PXIe_DStarA, as shown in the following figure.

Figure 4-4. IoModSyncClk Source Block Diagram

For more information about the IoModSyncClk and using it in your adapter module design, refer
to the IoModSyncClk.fam Values section of Chapter 10, Configuring Your Adapter Module for
Use with NI-793xR/797xR Modules and LabVIEW FPGA. Refer to the FlexRIO FPGA Module
Base Clock Properties topic in the FlexRIO Help.

Termination
If an adapter module uses IoModSyncClk, terminate both lines with a 50 Ω load to 1.3V (or
Thevenin equivalent) as close to the receiver as possible. The following figure shows the
recommended termination for IoModSyncClk.

Figure 4-5. IoModSyncClk Termination

FPGA

1:
2

B
uf

fe
r

1:
2

B
uf

fe
r

PXI_CLK10

PXIe_DStarA

2:
1

M
ux

S
el

ec
t

E
na

bl
e

Differential
IoModSyncClk
(to adapter module)P

X
I E

xp
re

ss
 B

ac
kp

la
ne

IoModSyncClk Receiver+

IoModSyncClk_n Receiver–

50 Ω

50 Ω

50 Ω

≥100 pF GND

4-16 | ni.com

Chapter 4 Interfacing Adapter Modules with NI-793xR and NI 797xR Devices

GPIO Termination and Impedance
All GPIO traces from the FPGA to the front panel connector are routed as 100 Ω differential/
50 Ω single-ended traces. For best performance, NI recommends designing the trace impedance
in the adapter module PCB to match the driver output impedances.

For example, if your adapter module uses GPIO as single-ended outputs to IC inputs, route these
signals as 50 Ω single-ended traces. If your adapter module drives an LVDS signal into the
FlexRIO FPGA, route this signal as a 100 Ω differential signal. In the case of FPGA LVDS
inputs, 100 Ω parallel termination at the receiver may be enabled using the socketed CLIP
constraints file. For more information, refer to Chapter 12, Creating Socketed Component-Level
IP for Your Adapter Module and NI-793xR/NI 797xR Modules.

Minimizing Crosstalk
All FlexRIO GPIO signals are routed to maximize flexibility, allowing them to be used as
132 single-ended signals or 66 differential pairs (NI 795xR and NI 796xR), and
136 single-ended signals or 68 differential pairs (NI-793xR and NI 797xR). GPIOx and
GPIOx_n are differentially coupled, and can induce crosstalk on each other when used as
independent, single-ended signals.

For maximum performance in these single-ended applications, NI recommends using only
one side of a differential pair and connecting the opposite side of the pair to ground. Use this
method only for the highest performance applications as doing so reduces the number of
available GPIO signals.

Sharing the I2C Bus
The NI-793xR and NI 797xR module front panel connectors include a dedicated 3.3V I2C bus
for the ID EEPROM. This bus is powered from the Veeprom rail and accessible by way of the
FlexRIO driver and the adapter module socketed CLIP. You can attach other I2C devices to this
bus only if the I2C bus address is unique.

Note The power on protocol for the NI-793xR and NI 797xR modules uses the I2C
bus in a manner that may affect your application. Specifically, during adapter module
identification, only the Veeprom rail is powered, which means any user circuitry is
unpowered. The I2C bus interface signals (SCL and SDA), however, are toggling. If
another I2C device not powered from Veeprom shares the I2C bus to the ID EEPROM,
the SCL and SDA signals may be pulled down on the unpowered device, which
prevents the identification and powering of your NI-793xR or NI 797xR module.
Consult your I2C datasheet to determine if additional circuitry is necessary to ensure
proper adapter module identification while sharing the I2C bus among multiple
devices.

© National Instruments Corporation | 4-17

FlexRIO Adapter Module Development Kit

Choosing Circuitry Components
When designing the interface circuity between the adapter module and the NI-793xR or
NI 797xR module, NI recommends choosing 2.5V or lower components whenever possible. As
FPGA process geometrics decrease, the supported interface levels also decrease. Using 2.5V or
lower components makes present adapter module designs more likely to remain compatible with
future FPGA families.

Unused Pin Recommendations
The following table lists the NI recommendations for the unassigned/unused pins on the
NI-793xR and NI 797xR modules.

Table 4-5. NI-793xR/NI 797xR Unassigned Pin Recommendations

Pin Recommended Use

GPIO Leave unconnected.

Vcco Leave unconnected.

+12V, +3.3V Leave unconnected.

IoModSyncClk If an adapter module does not use IoModSyncClk, leave the lines
unconnected and unterminated.

© National Instruments Corporation | 5-1

5
Printed Circuit Board (PCB)
Design Considerations

This chapter provides mechanical and physical information about designing your custom printed
circuit board (PCB). This information includes information about the board outline, placement
keepout areas, height restrictions, and the card edge connector.

PCB Orientation
Figure 5-1 shows the orientation of the adapter module PCB in reference to the FlexRIO FPGA
module.
Figure 5-1. FlexRIO FPGA Device Assembled Front Panel and Example Adapter Module

PCB Design Concepts
When you create an adapter module, you must use computer aided drafting (CAD) tools to create
the PCB design. To begin your PCB design, you must first create a schematic that contains all
symbolic electrical connections between parts and connectors. Next, perform a layout using the
schematic to physically connect electrical components using copper traces on the PCB.

The schematic tool uses symbols to represent each component being used. You can create
custom symbols to facilitate the development of your schematic diagram. The method for
creating these custom symbols varies depending on the tool being used. Although custom
symbols are useful in some instances, NI recommends using the pin names and numbers

1 Bottom Adapter Module Edge
2 Example Adapter Module

3 Top Adapter Module Edge
4 FlexRIO FPGA Module

PCB
Primary

Side
2

1

4

3

5-2 | ni.com

Chapter 5 Printed Circuit Board (PCB) Design Considerations

provided in this document in order to maintain consistency with the documentation and to assist
in communication with National Instruments if you require support. When creating a custom
symbol for the adapter module card edge connector, refer to Appendix A, Signal Suggestions,
for graphical representations of some suggested adapter module symbol signal assignments.

To ensure a correct design, PCB design tools require a different set of inputs. Mechanical
parameters such as board outline, hole and part locations, and board thickness, must be
accurately described to ensure a successful board fabrication. To assist in designing the adapter
module PCB, the FlexRIO Adapter Module Development Kit ships with media that contains
Standard for the Exchange of Product model data (STEP), Initial Graphics Exchange
Specification (IGES), Pro/ENGINEER, PDF, and AutoCAD® DXF files that call out the precise
dimensions used to create a PCB.

Note NI strongly recommends using the electronic design files when designing the
PCB. NI also recommends using metric measurements whenever possible; English
measurements may suffer from round-off error. The dimensional diagrams in this
manual and in the PDF files are provided for reference. NI does not recommend using
the manual reference diagrams or the PDF files as the primary resource when
designing the PCB.

Note NI develops its electronic design files with the latest version of DXF
software. Ensure that all of your design software is compatible with this software
version. If you have trouble viewing the electronic design files, contact ni.com/
support.

Table 5-1 lists the design files and the elements they contain.

Table 5-1. FlexRIO Custom Adapter Module Design Files

File Name* Description

assembly.xxx Complete adapter module enclosure with PCB.

bottom-housing.xxx Bottom half of enclosure.

gold-fingers.xxx Gold finger shapes and outlines.

panel-front-dim.xxx Dimensioned front panel.

panel-front-outline.xxx Front panel shape and outline.

pcb-dim.xxx Dimensioned PCB drawing.

pcb-dim_1.dxf Page one of the dimensioned PCB drawings in the
.dxf format.

pcb-dim_2.dxf Page two of the dimensioned PCB drawings in the
.dxf format

© National Instruments Corporation | 5-3

FlexRIO Adapter Module Development Kit

The design files install in the following location:
• Windows XP

C:\Documents and Settings\All Users\Shared Documents\National
Instruments\FlexRIO\Module Development Kit\Design Files

• Windows 7/Vista

C:\Users\Public\Documents\National Instruments\FlexRIO\Module
Development Kit\Design Files

• Windows 8

C:\Users\Public\Documents\National Instruments\FlexRIO\Module
Development Kit\Design Files

The FlexRIO adapter module provides approximately 355.6 sq. mm (14 sq. in.) of usable space
for circuitry on the PCB primary side. The multiple keepout areas must be observed to prevent
part damage and mechanical interference with the enclosure. Keepout areas are located along the
periphery of the PCB and around each of the four mounting holes. There is also a large keepout
area near the card edge connector where the two halves of the enclosure fit together. Refer to
Figures 5-6 and 5-7 for exact locations and dimensions of the PCB keepout areas.

Note The electronic design files provided by NI denote all keepout areas.
NI strongly recommends using these design files when designing the PCB.

The PCB primary side allows for a component height of 13.97 mm (0.55 in.) to prevent contact
of the electrical components with the top of the enclosure. The PCB secondary side is also
available for component placement, however, the clearance between the back of the PCB
secondary side and the surface of the enclosure is 1.19 mm (0.047 in.). A small step in the metal
housing near the I/O connector window and the card edge connection provide wide areas
19.43 mm (0.765 in.) and 21.49 mm (0.846 in.) where the component clearance is 1.40 mm
(0.055 in.) on the secondary side. Therefore, place only very low-profile components such as
small passives on the PCB secondary side to avoid mechanical interference.

pcb-dim_3.dxf Page three of the dimensioned PCB drawings in the
.dxf format

pcb-outline.xxx PCB outline and shape

top-housing.xxx Top half of enclosure
* .xxx represents the file type. Available file types are .dxf, .igs, .stp, .pdf, and the
Pro/ENGINEER file types, .prt.x and .asm.

Table 5-1. FlexRIO Custom Adapter Module Design Files (Continued)

File Name* Description

5-4 | ni.com

Chapter 5 Printed Circuit Board (PCB) Design Considerations

Caution Adapter module designs that include vias or traces in the card edge
connector area on either side of the PCB make contact with bottom of the card edge
connector EMI gaskets on the adapter module enclosure. To prevent electrical shorts
or damage to the these traces, you must use the insulators shipped with your adapter
module enclosure to protect the vias/traces from contact with these EMI gaskets.

The finished PCB thickness should be 1.70 mm (0.067 in.) ± 0.127 mm (0.005 in.) as measured
metal-to-metal over the gold card edge contact area, excluding the solder mask and silkscreen.

Note The specified PCB thickness tolerance is expressed as an absolute number,
± 0.127 mm (0.005 in.), not as a percentage.

Figure 5-2 shows the recommended component clearance dimensions.
Figure 5-2. Adapter Module Cross Section Showing Component Clearance Dimensions

The input/output window at the front of the housing provides an opening that is 98.79 mm
(3.85 in.) by 13.97 mm (0.55 in.), where you can include connectors to signals external to the
adapter module. This I/O connector window accommodates most signal connectors, such as
SMA and BNC. When designing with through-hole parts, you must maintain the secondary side
component clearance. Many connectors that are traditionally a through-hole design are now
offered in surface mount packages. To keep your PCB design within the clearance parameters,
NI recommends using surface mount or limited protrusion through-hole parts whenever
possible. Figure 5-3 shows the I/O connector window in relation to the enclosure front panel and
the PCB. For more information about module enclosure front panel dimensions, refer to
Chapter 7, Module Enclosure.

19.43 mm (0.765 in.)
I/O Window Depth

for 0.055 Component
Height on PCB

Secondary Side

PCB Thickness
1.7 mm (0.067 in.)

Component Height
for PCB Primary Side
13.97 mm (0.550 in.)

PCB
Secondary Side

PCB
Primary Side

21.49 mm (0.846 in.)
Depth for 0.055 Component
Height on PCB
Secondary Side

13.06 mm (0.514 in.)
Zero Height Area

13.06 mm (0.514 in.)
Zero Height Area

Component
Height for PCB
Secondary Side

1.19 mm (0.047 in.)

© National Instruments Corporation | 5-5

FlexRIO Adapter Module Development Kit

Figure 5-3. I/O Connector Area Clearance Dimensions

Note The enclosure has a backside insulator to help prevent shorting secondary
side components. Ensure that your PCB design does not allow any secondary side
surface mount or through-hole part leads to make contact with this insulator.

Figure 5-4 shows possible locations on the PCB for the design elements of your adapter module.
Figure 5-4. Example Adapter Module PCB and Design Element Locations

1 PCB 2 Front Panel 3 I/O Connector Area

1 User-Defined Connectors
2 Custom Measurement Circuitry

3 Mylar Insulators (Both Sides)

0.00 mm (0.000 in.) 2.11 mm (0.083 in.)

16.08 mm (0.633 in.)18.19 mm (0.716 in.)

11
2.

29
 m

m
 (

4.
42

1
in

.)

0.
00

 m
m

 (
0.

00
0

in
.)

14
.5

 m
m

 (
0.

57
1

in
.)

1

3 2

12
6.

80
 m

m
 (

4.
99

2
in

.)

1

2

3

5-6 | ni.com

Chapter 5 Printed Circuit Board (PCB) Design Considerations

PCB Dimensions
The following figures show the dimensional requirements of the PCB. When creating the PCB
in a CAD tool, place the origin of the design in the lower-left mounting hole. This placement
facilitates recommended placement of components, as no other coordinate translation is
required.

Side Notches
The FlexRIO adapter module 2.0 enclosures do not require the notches at the midpoints along
the top and bottom edges of the PCB because the four corner screws fasten the entire enclosure
together. If you want to ensure backwards compatibility with the original 1.0 adapter module
enclosures, you must include the notches on the PCB. The top enclosure housing has a threaded
hardware mounting boss in this area, 5.588 mm (0.220 in.) above the top side of the PCB. If you
use this boss, the retained side notches provide access to the screw heads when the PCB is
installed in the enclosure. Figure 5-5 shows the dimensions of the PCB notches used with the
FlexRIO adapter module 1.0 enclosures.

Figure 5-5. PCB Notches Required for 1.0 Enclosures

0.00 mm (0.000 in.)

0.
00

 m
m

 (
0.

00
0

in
.)

2X Ø 9.14 mm (0.360 in.)

3.05 mm (0.120 in.)

100.58 mm (3.960 in.)

2X
 4

7.
75

 m
m

 (
1.

88
0

in
.)

2X
 3

8.
61

 m
m

 (
1.

52
0

in
.)

© National Instruments Corporation | 5-7

FlexRIO Adapter Module Development Kit

Note Use Figure 5-6 for quick reference only. For detailed information on PCB
dimensions, refer to the electronic design files provided by NI.

Figure 5-6. Adapter Module PCB Primary Side Dimensions

Note Use Figure 5-7 for quick reference only. For detailed information on PCB
dimensions, refer to the electronic design files provided by NI.

For more detailed card edge connector dimensions, refer to Chapter 6, Card Edge Connector.

1 Exposed Ground Around Mounting Hole—4X  5.08 mm (0.200 in.)
2 Card Edge Connector
3 Component Keepout Area and location of Mylar Insulator
4 5.59 mm (0.220 in.) Height Keepout Area
5 13.97 mm (0.550 in.) Height Keepout Area

–3.30 mm (–0.130 in.)

3.31 mm (0.131 in.)
2X 0.00 mm (0.000 in.)

2X 103.63 mm. (4.080 in.)
100.32 mm (3.950 in.)

106.93 mm (4.210 in.)

4X Ø 3.18 mm (0.125 in.)

Exposed Ground
4X R 2.54 mm (0.100 in.)

91
.7

2
m

m
 (3

.6
11

 in
.)

8.14 mm (0.321 in.)
3.20 mm (0.126 in.)

54.60 mm (2.150 in.)
55.78 mm (2.196 in.)

2X R. 1.19 mm (0.047 in.)

2X R. 1.19 mm (0.047 in.)

2X R. 1.02 mm (0.040 in.)

2X R. 3.05 mm (0.120 in.)

95.49 mm (3.759 in.)
100.43 mm (3.954 in.)

1

2

–
4.

57
 m

m
 (

–
0.

18
0

in
.)

2X
 –

3.
30

 m
m

 (
–

0.
13

0
in

.)
2X

 0
.0

0
m

m
 (

 0
.0

00
 in

.)

2X
 8

6.
74

 m
m

 (
3.

41
5

in
.)

2X
 9

0.
04

 m
m

 (
3.

54
5

in
.)

98
.4

8
m

m
 (

3.
87

7
in

.)
10

4.
78

 m
m

 (
4.

12
5

in
.)

2X
 4

6.
23

 m
m

 (
1.

82
0

in
.)

2X
 4

0.
13

 m
m

 (
1.

58
0

in
.)

3

Enclosure back wall begins
at 92.329 mm (3.635 in.)

4

4

5

5-8 | ni.com

Chapter 5 Printed Circuit Board (PCB) Design Considerations

Figure 5-7. Adapter Module PCB Secondary Side Dimensions

1 Component/Via and Non-Ground Outer Route Keepout Area
2 Component Keepout Area and Location of Mylar Insulator
3 1.40 mm (0.055 in.) Height Keepout Area
4 1.19 mm (0.047 in.) Height Keepout Area

1

104.39 mm (4.110 in.)

–0.76 mm (–0.030 in.)

10
4.

78
 m

m
 (4

.1
25

 in
.)

91
.7

2
m

m
 (3

.6
11

 in
.)

2X
 8

2.
67

 m
m

 (3
.2

55
 in

.)

2X
 4

.0
6

m
m

 (0
.1

60
 in

.)
0.

00
 m

m
 (0

.0
00

 in
.)

0.00 mm (0.000 in.)

3

70
.2

3
m

m
 (2

.7
65

 in
.)

16
.1

3
m

m
 (0

.6
35

 in
.)

2X 4.06 mm (0.160 in.)

2X 99.57 mm (3.920 in.)

2

4X R 4.06 mm (0.160 in.)

3

1

1

4

© National Instruments Corporation | 5-9

FlexRIO Adapter Module Development Kit

GPIO Trace Routing
The GPIO traces between the FPGA and the adapter module connector on the FlexRIO FPGA
module/Controller for FlexRIO have controlled electrical properties. All traces are
length-matched to within 2.54 mm (100 mils), and pairs are matched to 0.25 mm (10 mils).
Also, the PCB stack-up and trace widths are configured such that GPIO pair differential
impedance is 100 Ω, and GPIO single-ended impedance is 50 Ω.

Similar care should be taken for high-speed trace routing on the adapter module. To do so,
configure the PCB stack-up and trace widths to maintain the desired impedance, as well as
matching trace lengths to reduce GPIO skew. Many PCB board houses have tools or utilities that
recommend a particular stack-up based on the layer count and trace width used on a given PCB.
You can relax these requirements for low-edge rate signals or static control lines.

Grounding Considerations
For EMC-compliant adapter modules, NI recommends incorporating the following grounding
considerations into your design.

The required FlexRIO adapter module enclosure provides access to PXI/PXI Express chassis
ground by way of the alignment pins and mounting screws. You can connect adapter module
circuitry to this chassis ground by way of the four adapter module PCB mounting holes, as
shown in Figure 5-8. You can also use this connection to connect any front panel connector
shield to chassis/enclosure ground.

5-10 | ni.com

Chapter 5 Printed Circuit Board (PCB) Design Considerations

Figure 5-8. Adapter Module Enclosure with Mounted PCB

Note To reduce possible noise emissions between chassis GND and digital GND,
NI recommends adding provisions in your design for populating capacitors between
chassis GND and digital GND connections on your circuitry design.

1 Exposed Ground Around Mounting Holes
2 Adapter Module Enclosure (Bottom)
3 Adapter Module Enclosure (Top)

4 Alignment Pins
5 PCB Mounting Screws
6 Mylar Insulators

5

4

6

3

2

1

XXXX Adapter M
odule for NI FlexRIO

Brief Adapter M
odule Description

© National Instruments Corporation | 5-11

FlexRIO Adapter Module Development Kit

Mylar Insulators
Your FlexRIO Module Development Kit ships with three clear protective Mylar insulators
(NI part number 195549A-01) sized to fit your PCB, 0.051 × 5.08 × 86.36 mm (0.002 × 0.2 ×
3.4 in.). You must install two insulators as shown in Figures 5-8 and 5-9 on the PCB of each
adapter module. Without these insulators, the copper EMI gaskets that seal the enclosure rub
directly on the surface of the PCB during assembly, which may cause electrical shorts.

Figure 5-9. Mylar Insulator

1 Mylar Insulator

92
.0

8
m

m
 (

3.
62

5
in

.)
97

.1
6

m
m

 (
3.

82
5

in
.)

1

0.
00

 m
m

 (
0.

00
0

in
.)

5-12 | ni.com

Chapter 5 Printed Circuit Board (PCB) Design Considerations

Pin Locations
Figure 5-10 illustrates the card edge connector and its associated pin assignments. Use
Figure 5-10 for quick reference only. For detailed information about this connector and how to
create it, refer to Chapter 6, Card Edge Connector.

Figure 5-10. Physical Pin Locations

TOP TOP

BOTTOMBOTTOM

PCB
SECONDARY

SIDE

PCB
PRIMARY

SIDE

G22G22
G21 G21

S108 S33
S32

S76

S77
S78

G2

S75
G1

S2

S3
S4

G2

S1
G1

P2

S148
P1

S147

S146
S145
G37

P2

S74
P1

S73

S72
S71
G37

S109

© National Instruments Corporation | 5-13

FlexRIO Adapter Module Development Kit

PCB Finishing
The final process performed during PCB manufacturing is surface finish. The surface finish
provides a solderable surface for components, to prevent oxidation (tarnish), and to provide any
mechanical structure to features that may need it. The fabrication house that you choose to
manufacture your PCB may have different finishes available for selection.

PCB finish options are trending toward RoHS compliance. This standard means that the finishes
conform to the reduction of hazardous materials requirements, usually by using silver and gold
as the primary PCB finishes. Immersion silver is the most common finish for most of a PCB
surface area. Immersion silver offers good shelf life, low tarnishing, good wetting for
manufacturability, and fewer defects.

The adapter module card edge connector also has specific finishing requirements. For more
information about these requirements, refer to the Card Edge Connector Finishing section of
Chapter 6, Card Edge Connector.

© National Instruments Corporation | 6-1

6
Card Edge Connector

This chapter covers the mechanical aspects of the card edge connector construction and
dimension details.

Connector Description
The FlexRIO FPGA module and Controller for FlexRIO use a high-density, high-performance
card edge connector. The connector has a key mechanism slightly off-center to ensure correct
orientation when mating with the adapter module.

Figure 5-1, FlexRIO FPGA Device Assembled Front Panel and Example Adapter Module,
shows a detailed view of the assembled FlexRIO FPGA module front panel. The adapter module
PCB design must fit into the assembled front panel slot in order to make contact with the FPGA
module front connector. Any PCB designed to mate with the FPGA module front connector must
exactly match the following card edge connector description to assure proper and reliable
connectivity between the FlexRIO FPGA module and any custom adapter module.

The card edge connector that plugs into the FlexRIO FPGA module front connector is created
as part of the PCB. The actual physical representation of the card edge connector is called the
cell. The design files (pro/e, STEP, IGES, DXF, and PDF) shipped with your FlexRIO Adapter
Module Development Kit provide a fully dimensioned drawing that you can use to create an
accurate cell.

Note NI strongly recommends using the electronic design files when designing the
PCB. NI also recommends using metric measurements whenever possible; English
measurements may suffer from rounding errors. This manual provides dimensional
diagrams for reference only. NI does not recommend using the manual reference
diagrams as the primary resource when designing the PCB.

Note NI develops its electronic design files with the latest version of DXF
software. Ensure that all of your design software is compatible with this software
version. If you have trouble viewing the electronic design files, contact ni.com/
support.

For more information about these design files, refer to the following chapters:
• NI 795xR/796xR: Chapter 3, Interfacing Adapter Modules with NI 795xR and NI 796xR

Modules
• NI 797xR/793xR: Chapter 4, Interfacing Adapter Modules with NI-793xR and NI 797xR

Devices

6-2 | ni.com

Chapter 6 Card Edge Connector

The design files install in the following location:
• Windows XP

C:\Documents and Settings\All Users\Shared Documents\National
Instruments\FlexRIO\Module Development Kit\Design Files

• Windows 8/7/Vista

C:\Users\Public\Documents\National Instruments\FlexRIO\
Module Development Kit\Design Files

The card edge connector finger arrangement meets two design requirements. First, the adapter
module has some protection from hot-swapping, in that the ground points should be the first to
make contact during an insertion operation and the last to break contact during a removal. This
contact design uses shorter, recessed signal and power contacts, which allows for longer ground
contacts. The second requirement is that the density and fine-pitch nature of the connector
encourages metal-to-metal contact at all times. If the PCB design allows the spring contact in the
FlexRIO FPGA module to drag across bare PCB material, the FPGA module spring contact may
scratch the PCB material and generate debris that could interfere with the electrical connection
between the spring and the pad.

The gold fingers and the card edge connector should conform to the following physical design
guidelines:
• Figure 6-1 shows the mechanical dimension of the portion that is inserted into the front of

the FlexRIO FPGA module.
Figure 6-1. Card Edge Connector Keying Dimensions

Note The connector key position must be in the correct location in order to align
with the FlexRIO FPGA module front panel.

Note Card edge connector dimensions are defined in millimeters. Converting your
measurement to inches may cause rounding errors.

Module Card Insertion Direction

87.35 mm ± 0.13 mm

40.30 mm ± 0.08 mm

P1

S148 S147

P2 G2

S76 S75

G1

© National Instruments Corporation | 6-3

FlexRIO Adapter Module Development Kit

• Figure 6-2 shows the PCB connector edge.
Figure 6-2. Adapter Module PCB Chamfer at Gold Finger Edge

• Figure 6-3 shows the two different styles of finger design. The longer monolithic finger is
used for the ground connections, and the split finger is used for signaling and power. These
two designs are used together to insure that ground connections are the first to make contact
when inserting the adapter module and are the last to break contact when removing the
adapter module.

Figure 6-3. Gold Finger Electrical Connections

Card Edge Connector Finishing
The adapter module PCB card edge connector plugs into the connector located on the FlexRIO
FPGA module. The spring contacts of this connector are gold plated. Therefore, for optimum
performance, NI recommends using gold plating for the card edge connector fingers.
Gold-on-gold connections provide the most reliable physical and electrical connection. Hard
gold plating is the recommended finish for these fingers, hence the term gold fingers.

1 Split-Finger Pad—Connected to Signal/Power
2 Monolithic Finger Design for Ground Connections
3 Split-Finger Pad—Unconnected to Increase Life of Signal/Power Connector Pads

45.0°

0.51 mm
(0.020 in.)

1

2

3

6-4 | ni.com

Chapter 6 Card Edge Connector

A proper gold plating process requires an electrical connection on the plated surface. Isolated
gold fingers, though, do not have an electrical connection. To use the standard plating bar
process instead of the selective gold plating process, NI recommends creating a 0.003 in.
wide X-trace connection between gold finger pairs. Refer to Figure 6-4 for information about
how to design the X-trace. After plating, you can remove these X-traces by drilling a 0.017 in.
(+0.002/-0.001 in.) non-plated round hole using a square end mill-style drill bit to minimize
copper burrs. You should drill 38 X-trace holes total.

Figure 6-4. X-trace Between Isolated Gold Finger Pairs

ENIG is a lower-cost gold solution which uses immersion gold an all surfaces of the PCB. This
process deposits a very thin layer of gold on the fingers. This method does not ensure long
connector life for repeated insertions. For applications where you expect frequent adapter
module insertion and removal, NI does not recommend the ENIG process.

Note NI does not recommend Hot Air Solder Leveling (HASL) finishing, as it is
minimally controlled and the co-planarity of the finish can cause binding in the
connector.

1 Isolated gold fingers 2 X-traces

1

1

2

2

© National Instruments Corporation | 7-1

7
Module Enclosure

You must use the enclosure provided in the FlexRIO adapter module development kit to house
the adapter module PCB. You can purchase additional enclosures from NI.

Note NI requires that the enclosure be included in the complete adapter module
design to ensure proper connectivity and electrical protection.

Figure 7-1 shows the adapter module enclosure designed by NI. This enclosure is a metal
housing for the adapter module that provides easy interfacing to the PXI/PXI Express system.
The enclosure also provides electrical shielding, mechanical mounting of a custom PCB, and
support for a custom front panel for mounting custom connectivity.

Figure 7-1. Adapter Module Enclosure

XXXX Adapter M
odule for NI FlexRIO

Brief Adapter M
odule Description

7-2 | ni.com

Chapter 7 Module Enclosure

EMI Gaskets
NI redesigned the adapter module enclosure (version 2.0) for the FlexRIO Adapter Module
Development Kit 2.0 release. This new enclosure includes installed EMI gaskets, as shown in
Figures 7-2 and 7-3, on each side of the enclosure for improved grounding, shielding, and EMI
performance.

Figure 7-2. EMI Gasket Locations on Module Primary Side

Figure 7-3. EMI Gasket Locations on Module Secondary Side

1 EMI gaskets

1 EMI gaskets

1

1

1

© National Instruments Corporation | 7-3

FlexRIO Adapter Module Development Kit

By better sealing the connection between the FlexRIO FPGA module/Controller for FlexRIO
and the adapter module, these EMI gaskets also improve the EMI performance across the gap
between the two devices, as shown in Figure 7-4.

Figure 7-4. Improved Module Connections

7-4 | ni.com

Chapter 7 Module Enclosure

Enclosure Dimensions
Figure 7-5 shows a dimensioned drawing of the enclosure.

Figure 7-5. FlexRIO Adapter Module Enclosure Dimensions

Note Use Figure 7-5 for reference only. For detailed information about adapter
module enclosure dimensions, refer to the electronic design files provided by NI.

117.60 mm
(4.630 in.)

24.77 mm
(0.975 in.)

55.83 mm
(2.198 in.)

55.83 mm
(2.198 in.)

7.61 mm
(0.300 in.)

93.28 mm
(3.672 in.)

0.64 mm
(0.025 in.)

17.02 mm (0.670 in.)

51.56 mm
(2.030 in.)

128.68 mm
(5.066 in.)

75.69 mm
(2.980 in.)

4X R. 1.69 mm
(0.077 in.)

26.49 mm
(1.043 in.)

18.81 mm
(0.780 in.)

128.65 mm
(5.065 in.)

101.60 mm
(4.000 in.)

10.54 mm
(0.415 in.)

2X R. 2.79 mm
(0.110 in.)

© National Instruments Corporation | 7-5

FlexRIO Adapter Module Development Kit

Figures 7-6 and 7-7 show the module enclosure front panel dimensions in relation to the
PCB dimensions and placement.

Figure 7-6. Front Panel Dimensions and PCB Placement (Front View)

Note Use Figure 7-6 for reference only. For detailed information about adapter
module enclosure dimensions, refer to the electronic design files provided by NI.

3.25 mm
(0.128 in.)

8.28 mm
(0.326 in.)

118.52 mm
(4.666 in.)

126.80 mm
(4.992 in.)

Front Panel Length

18.19 mm
(0.716 in.)

Front Panel Width 4X R. 2.54 mm
(0.100 in.)

7-6 | ni.com

Chapter 7 Module Enclosure

Figure 7-7. Front Panel Dimensions and PCB Placement (Top View)

Note Use Figure 7-7 for reference only. For detailed information about adapter
module enclosure dimensions, refer to the electronic design files provided by NI.

You can completely customize the front panel of the adapter module enclosure. For initial
prototyping, the adapter module front panel is optional. For the final design, however,
NI recommends using the front panel to reduce electromagnetic emissions. For detailed
dimensions on the front panel, PCB placement, and the I/O connector window, refer to
Figure 5-3, I/O Connector Area Clearance Dimensions.

The front panel enclosure is also useful for labeling the connectors for their intended purpose.
Outside services are available to do custom machining. The generation of a simple piece of metal
such as the adapter module front panel is inexpensive, and there are several online services that
can perform this operation, such as www.emachineshop.com or www.bigbluesaw.com.

Suggested Labeling

Note If you want to design the adapter module to have the same aesthetic, color
scheme, and style as existing FlexRIO adapter modules, contact NI for supplier
information.

1.65 mm (0.065 in.)

0.94 mm (0.037 in.)

4.95 mm (0.195 in.)

PCB
Primary

Side

© National Instruments Corporation | 7-7

FlexRIO Adapter Module Development Kit

Figure 7-8. Front Panel Dimensions and Labeling

Figure 7-9. Primary Side Suggested Labeling and Dimensions

Product Name

3 Line
Product

Description

4X R. 2.54 mm (0.100 in.)

18
.1

9
m

m
 (0

.7
16

 in
.)

0.
00

 m
m

 (
0.

00
0

in
.)

0.00 mm (0.000 in.)

7.63 mm (0.300 in.)

118.49 mm (4.665 in.)

126.80 mm (4.992 in.)
Company Logo

16.51 mm (0.650 in.)

92.76 mm (3.652 in.)

0.030 mm (0.012 in.)

XXXX Adapter Module for NI FlexRIO
Brief Adapter Module Description

2X R. 2.54 mm (0.100 in.)

© National Instruments Corporation | 8-1

8
Installing the Adapter Module

This chapter explains how to install your custom adapter module with your Controller for
FlexRIO or FlexRIO FPGA module.

Installing the Adapter Module with the FlexRIO
FPGA Module
The following section contains steps for installing the adapter module with the FlexRIO FPGA
module. For information about installing a Controller for FlexRIO and an adapter module, refer
to the Installing the Adapter Module with the Controller for FlexRIO section.

Note You must install the FlexRIO FPGA module in a chassis before installing the
adapter module. Refer to the getting started guide for your FlexRIO FPGA module
for instructions about how to install the FlexRIO FPGA module.

Complete the following steps to connect the custom adapter module to the FlexRIO FPGA
module.
1. Gently insert the guide pins and the high-density card edge of your adapter module into the

corresponding connectors of the FlexRIO FPGA module, as shown in the following figure.
The connection may be tight, but do not force the adapter module into place.

8-2 | ni.com

Chapter 8 Installing the Adapter Module

Figure 8-1. Installing the Adapter Module

2. Tighten the captive screws on the custom adapter module to secure it to the FlexRIO FPGA
module. Torque the screws to 4.9 inch pounds using the #1 Phillips screwdriver included
with the FPGA module shipping kit or another high quality screwdriver.

3. Launch LabVIEW to begin configuring your FlexRIO system.

Note MAX only recognizes FlexRIO FPGA modules in the chassis. Your adapter
module does not appear in MAX.

Removing the Custom Adapter Module
To remove a custom adapter module from the FlexRIO FPGA device, you must disable power
to the adapter module in LabVIEW FPGA. Refer to the Adapter Module Removal Protocol
section for information about how to properly remove the adapter module.

Connectivity Options
Cabling options for your device are dependent on the connectors used in the adapter module
design. Refer to ni.com/products to find cabling options appropriate for your application.

For detailed information about connecting I/O signals, refer to Chapter 3, Interfacing Adapter
Modules with NI 795xR and NI 796xR Modules (NI 795xR/796xR), or Chapter 4, Interfacing
Adapter Modules with NI-793xR and NI 797xR Devices (NI 797xR).

1 Custom Adapter Module
2 Captive Screws
3 Guide Pins

4 PXI/PXI Express Chassis
5 FlexRIO FPGA Module

PXI-1000B

1

4

3

2

5

© National Instruments Corporation | 8-3

FlexRIO Adapter Module Development Kit

Installing the Adapter Module with the Controller
for FlexRIO
The following section contains steps for installing the Controller for FlexRIO and an adapter
module. For information about installing a FlexRIO FGPA module and an adapter module, refer
to the Installing the Adapter Module with the FlexRIO FPGA Module section.

Note You must install the Controller for FlexRIO before installing the adapter
module. Refer to the getting started guide for your Controller for FlexRIO for
instructions about how to install the Controller for FlexRIO.

Complete the following steps to connect the custom adapter module to the Controller for
FlexRIO.
1. Gently inser the guide pins and the high-density card edge of the FlexRIO adapter module

into the corresponding connectors of the Controller for FlexRIO. The connection may be
tight, but do not force the adapter module into place.

2. Tighten the captive screws on the FlexRIO adapter module to secure it to the Controller for
FlexRIO.

The following figure shows the Controller for FlexRIO with the FlexRIO adapter module
connected.

Figure 8-2. Controller for FlexRIO with FlexRIO Adapter Module

8-4 | ni.com

Chapter 8 Installing the Adapter Module

Removing the Custom Adapter Module
To remove a custom adapter module from the FlexRIO FPGA device, you must disable power
to the adapter module in LabVIEW FPGA. Refer to the Adapter Module Removal Protocol
section for information about how to properly remove the adapter module.

Connectivity Options
Cabling options for your device are dependent on the connectors used in the adapter module
design. Refer to ni.com/products to find cabling options appropriate for your application.

For detailed information about connecting I/O signals, refer to Chapter 4, Interfacing Adapter
Modules with NI-793xR and NI 797xR Devices.

© National Instruments Corporation | 9-1

9
Configuring Your Adapter
Module for Use with
NI 795xR/796xR Modules
and LabVIEW FPGA

This chapter explain how to prepare your custom adapter module for use with NI 795xR/
NI 796xR devices and LabVIEW FPGA.

Refer to the following table for information about which compilers, constraints, and
configuration files to use to develop your adapter module depending on the version of LabVIEW
you are using.

Note In software, FlexRIO adapter modules are referred to as IO modules.

Table 9-1. Recommended Files for Developing Adapter Modules

LabVIEW
Version

Target/
Compiler

Logic Constraints
Configuration

File
LabVIEW/IP

Interface

.vhd .ucf .xdc .tbc .fam .xml

2012 and
earlier

Virtex-5
with ISE

X X X X

2013 Virtex-5
with ISE

X X o O X

2014 and
later

Virtex-5
with ISE

X X o O X

X = exclusive option

O = either option (preferred)

o = either option

9-2 | ni.com

Chapter 9 Configuring Your Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA

To configure the adapter module for use with LabVIEW FPGA, complete the following steps:
1. Program the IO Module ID into the EEPROM.
2. Create the adapter module configuration file.

a. If you are using FlexRIO Support 2012 SP1 or earlier, follow the instructions in the
Creating the Adapter Module Configuration (.tbc) File section to create a .tbc file.

b. If you are using FlexRIO Support 13.0 or later, follow the instructions in the Creating
the Adapter Module Configuration (.fam) File section to create a .fam file.

3. Create or acquire the socketed component-level IP (CLIP) to create the interface between
adapter module and the FPGA.

4. Configure the adapter module in a LabVIEW project.

This chapter describes steps 1 and 2 in greater detail. The proceeding sections explain how to
define the module characteristics and establish the adapter module identification so that
LabVIEW FPGA recognizes the adapter module. Chapter 11, Creating Socketed
Component-Level IP for Your Adapter Module and NI 795xR/796xR Modules, describes steps 3
and 4 in more detail.

Programming the EEPROM
The FlexRIO device uses the IO Module ID to uniquely identify an adapter module that is
physically connected to the FlexRIO FPGA module. The IO Module ID is a 32-bit number
stored in the adapter module EEPROM that uniquely identifies a particular model of adapter
module. All adapter modules of the same model must use the same IO Module ID, and different
models of adapter modules cannot use the same IO Module ID.

Storing an IO Module ID on your adapter module EEPROM provides better electrical protection
for both the adapter module and the FlexRIO FPGA module. For instance, the VccoA/VccoB levels
must be configured properly to match the electrical requirements of each individual adapter
module. Each FPGAVI is built for a specific adapter module, and therefore the FPGAVI has a
concept of an expected adapter module that should use a particular configuration for VccoA/VccoB.
When you insert an adapter module into a FlexRIO FPGA module, the FPGA module
automatically attempts to detect which adapter module is connected. Use an IO Module ID to
allow the FPGA module to detect whether the inserted adapter module matches the adapter
module expected by LabVIEW FPGA. Adapter module power—including VccoA/VccoB—is
enabled only if there is a match.

Note NI strongly recommends adding an EEPROM to your adapter module for
identification purposes. This provides better electrical protection for both the adapter
module and the FlexRIO FPGA module. It also improves the software configuration
experience within LabVIEW FPGA. For more information about including an
EEPROM in your adapter module design for identification purposes, refer to
Chapter 3, Interfacing Adapter Modules with NI 795xR and NI 796xR Modules.

© National Instruments Corporation | 9-3

FlexRIO Adapter Module Development Kit

Note The FPGA parses all .tbc and .fam files. If the FPGA encounters an
IO Module ID in a previously parsed .tbc or .fam file, the IO Module does not
show up in the list.

The format of the 32-bit IO Module ID is as follows:
Bits<31..16>: Vendor ID
Bits<15..0>: Product ID

The Vendor ID is a 16-bit number which is unique for each adapter module manufacturer.
Vendor IDs are assigned to individual manufacturers by NI. Each adapter module manufacturer
should use their allotted Vendor ID for all adapter modules that they produce.

To obtain your adapter module Vendor ID, visit ni.com/ask, and create a new technical
support request. For more information about obtaining your adapter module Vendor ID, refer to
the Registration section of Chapter 1, Before You Begin.

The Product ID is a value that is chosen by the adapter module manufacturer. Each adapter
module manufacturer should ensure that a unique Product ID is chosen for each type of adapter
module.

The Vendor ID and Product ID combine to form the unique IO Module ID for each individual
adapter module created by a manufacturer.

The following is an example IO Module ID:
IO Module ID: 0xFFFF0001
Vendor ID: 0xFFFF
Product ID: 0x0001

Programming the EEPROM in LabVIEW
NI provides a LabVIEW host VI which you can use to program the IO Module ID into the
adapter module. The VI library containing this VI is installed in the following location:

<LabVIEW>\vi.lib\FlexRIO\FlexRIO_HostInterface.llb
Complete the following steps to program the IO Module ID into your adapter module:
1. Launch LabVIEW and open the FlexRIO_Host_ProgramIOModID.vi.
2. On the front panel of the FlexRIO_Host_ProgramIOModID.vi, configure the

RIO Device control to match the RIO device name of the FlexRIO FPGA module
connected to your adapter module.
Determine which RIO device name corresponds to your FlexRIO FPGA module by
launching Measurement & Automation Explorer (MAX) and browsing to Devices and
Interfaces. If you have only one RIO device in your system, the name for your device is
typically RIO0.

9-4 | ni.com

Chapter 9 Configuring Your Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA

3. On the front panel of FlexRIO_Host_ProgramIOModID.vi, configure the
IO Module ID control to the correct 32-bit IO Module ID for your adapter module.

Figure 9-1. FlexRIO_Host_ProgramIOModID.vi Front Panel

4. Run the VI. If the VI runs successfully without error, then your IO Module ID is
programmed properly.

Complete the following steps to read the IO Module ID from the EEPROM of an attached
adapter module:
1. Launch LabVIEW and open the FlexRIO_Host_QueryIOModID.vi.
2. On the front panel of the FlexRIO_Host_QueryIOModID.vi, configure the

RIO Device control to match the RIO device name of the FlexRIO FPGA module
connected to your adapter module. Determine which RIO device name corresponds to your
FlexRIO FPGA module by launching MAX and browsing to Devices and Interfaces. If
you have only one RIO device in your system, the name for your device is typically RIO0.

3. Run the VI. If the VI runs successfully without error, the IO Module ID indicator on the VI
front panel returns the IO Module ID of the attached adapter module.

© National Instruments Corporation | 9-5

FlexRIO Adapter Module Development Kit

Figure 9-2. FlexRIO_Host_QueryIOMod.vi Front Panel

FlexRIO_HostInterface.llb contains additional VIs that you can use for reading and
writing to and from arbitrary EEPROM locations. You can also use these VIs to issue raw
I2C bus cycles. For more information about these VIs, refer to the FlexRIO Help.

EEPROM Map
Table 9-2 describes the adapter module EEPROM map.

Table 9-2. EEPROM Map

Byte Address Size (Bytes) Field Name Required?

0x0 2 Vendor ID Yes

0x2 2 Product ID Yes

0x4 4 Serial Number No

0x8 24 Reserved No

0x20 224 User Space No

9-6 | ni.com

Chapter 9 Configuring Your Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA

Adapter module manufacturers may optionally store a 32-bit serial number in the Serial Number
EEPROM field.

The User Space occupies the remainder of the EEPROM. The adapter module manufacturer
determines the layout and usage of this portion of the EEPROM. For example, the User Space
can be used to store ADC calibration constants.

Access to the I2C signals is shared with the adapter module socketed CLIP. This provides direct
access to the EEPROM from the FPGA. For more information the EEPROM, refer to the
EEPROM Overview section of Chapter 3, Interfacing Adapter Modules with NI 795xR and
NI 796xR Modules. For additional information about I2C signals, refer to Table 11-3, I2C Core
Interface Signals*.

Creating the Adapter Module Configuration (.tbc)
File

Note This section is intended for users who are using FlexRIO Support 2012 SP1
or earlier. If you are using FlexRIO Support 13.0 or later, refer to the Creating the
Adapter Module Configuration (.fam) File section to learn how to create a .fam
adapter module configuration file.

To define certain electrical characteristics of the adapter module for LabVIEW, you need to
create an adapter module configuration (.tbc) file. LabVIEW FPGA uses this information
during the compilation process to properly configure the VccoA/VccoB voltage levels, to
determine which IO Module ID to expect during the adapter module discovery sequence, and to
properly configure the FPGA I/O standards for the GPIO signals on the adapter module
connector interface.

The presence of an adapter module configuration file also allows your adapter module to be
selectable in the adapter module configuration user interface within the LabVIEW project.
All adapter module configuration files are automatically enumerated from the IO Modules
directory on disk. The IO Modules directory is stored in the following location:
• Windows XP

C:\Documents and Settings\All Users\Shared Documents\National
Instruments\FlexRIO\IO Modules

• Windows 8/7/Vista

C:\Users\Public\Documents\National Instruments\FlexRIO\
IO Modules

© National Instruments Corporation | 9-7

FlexRIO Adapter Module Development Kit

NI recommends that you create a manufacturer-specific subfolder within the IO Modules
directory and place your adapter module configuration files within this subfolder. Creating a
manufacturer-specific folder for your .tbc files helps facilitate better organization of adapter
module support files when you install adapter modules from multiple manufacturers on the same
system. During device configuration and at VI build, the FlexRIO FPGA device support
software automatically enumerates all files within the IO Modules directory inside subfolders
of the directory.

Complete the following steps to create a .tbc file that defines your adapter module
characteristics within LabVIEW.
1. Go to the FlexRIO IO Modules directory and create a manufacturer-specific folder that

contains the .tbc file for the new adapter module.
2. Create your .tbc file.

An example .tbc file is provided in the following location:
• Windows XP

C:\Documents and Settings\All Users\Shared Documents\
National Instruments\FlexRIO\Module Development Kit\
Examples\IO Module\ExampleIOModule.tbc

• Windows 8/7/Vista

C:\Users\Public\Documents\National Instruments\FlexRIO\
Module Development Kit\Examples\IO Module\
ExampleIOModule.tbc

You can use this file as a template for your adapter module configuration file. If you use
the NI example .tbc file, modify the required values described in the Adapter Module
Configuration (.tbc) Values section and rename the file for your adapter module.

3. Save the .tbc file to the location you created in step 1.

Adapter Module Configuration (.tbc) Values
The .tbc file uses a standard INI-file syntax. The following sections contain detailed
descriptions of each of the supported configuration values contained within the file. An
example .tbc file is also provided.

General .tbc Values

Note The General section is required in your .tbc file.

9-8 | ni.com

Chapter 9 Configuring Your Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA

The General section describes basic information about the adapter module. Table 9-3 lists the
supported General configuration values.

Table 9-3. Supported General Configuration Values

Key Name
Data
Type Description

FormatVersion Float Specifies which version of the adapter module
configuration file annotations are used to create the
adapter module configuration file. Set this value
to 1.0.

Note: If the .tbc contains the IoModSyncClock or
IoModSyncClockSource keys, set this value to 1.1.

Manufacturer String Specifies the name of the manufacturer that created
the adapter module. This name displays in the
IO Module Properties dialog box in the LabVIEW
project with the adapter module.

Note: The Manufacturer.tbc value cannot
include the following characters: , ; :
All .tbc files are enumerated in the IO Module
Properties page. If the combination of the
manufacturer and model name (for example,
National Instruments NI 5761) is found in a
previously parsed .tbc file, the Details window
displays an error when you click the duplicate
IO Module.

Model String Specifies the model name of the adapter module.
This name displays in the LabVIEW project with the
adapter module.

Note: The Model.tbc value cannot include the
following characters: , ; :

Description String Provides a general description of the capabilities and
function of the adapter module. This information
displays in the IO Module Properties dialog box in
the LabVIEW project. You may use \n to format the
string with end-of-line characters.

© National Instruments Corporation | 9-9

FlexRIO Adapter Module Development Kit

VccoALevel Float Specifies the voltage level (in volts) for the VccoA
bank. The valid values are 1.2, 1.5, 1.8, 2.5, and 3.3.

Values that include decimals must use the . character
and not the , character. For example, 1.2V is valid,
but 1,2V is not.

VccoBLevel Float Specifies the voltage level (in volts) for the VccoB
bank. The valid values are 1.2, 1.5, 1.8, 2.5, and 3.3.

Values that include decimals must use the . character
and not the , character. For example, 1.2V is valid,
but 1,2V is not.

IOModuleID U32 Specifies the unique IO Module ID value that is
stored in the identification EEPROM. Set this key to
the value of the IO Module ID that you created in the
Programming the EEPROM section. If your adapter
module does not contain an EEPROM for
identification purposes, remove this key from the
adapter module configuration file.

DefaultCLIP String Specifies the name of the default CLIP
implementation for the adapter module. This name is
specified within the <CLIPDeclaration> tag in
the CLIP XML file. When creating a new LabVIEW
project, the FPGA device is auto-discovered with an
adapter module inserted, and this CLIP is
automatically selected for use with the adapter
module. Refer to Chapter 11, Creating Socketed
Component-Level IP for Your Adapter Module and
NI 795xR/796xR Modules, for more information
about CLIP.

(Optional)
IoModSyncClock

String Specifies how to support the clock for NI 796xR
devices. If this key name is not present, the adapter
module clock is not supported.

(Optional)
IoModSyncClockSource

String Specifies the default IoModSyncClock source for
NI 796xR devices. Use this tag only when the
IoModSyncClock is set to SUPPORTED or
REQUIRED. If this key name is not present,
PXI_CLK10 is selected by default.

Table 9-3. Supported General Configuration Values (Continued)

Key Name
Data
Type Description

9-10 | ni.com

Chapter 9 Configuring Your Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA

Adapter Module IOModuleID
The adapter module IOModuleID key determines the IO Module ID for your adapter module.
The IOModuleID value in the adapter module configuration file should be in hexadecimal
format, prefixed with 0x.

This example demonstrates how to specify the IOModuleID value in the adapter module
configuration file:

IOModuleID=0xFFFF0001

In this example, 0xFFFF is the Vendor ID, and 0x0001 is the Product ID.

Note If the adapter module you are configuring does not contain an EEPROM, you
must remove the IOModuleID value from the .tbc file.

Vcco Levels
The adapter module configuration file specifies the VccoA/VccoB bank values. These values
are fixed by the adapter module designer and cannot be changed at run-time within
LabVIEW FPGA. The available voltage options for each Vcco bank are 1.2 V, 1.5 V, 1.8 V,
2.5 V, and 3.3 V.

Note Values that include decimals must use the . character and not the , character.
For example, 1.2V is valid, but 1,2V is not.

Caution The selected VccoA/VccoB value must match the electrical design of the
corresponding adapter module. Failure to do so risks damaging the adapter module
or the FlexRIO FPGA module. NI is not liable for any damage resulting from such
misuse.

© National Instruments Corporation | 9-11

FlexRIO Adapter Module Development Kit

IoModSyncClk.tbc Values (NI 796xR Only)
The lexRIO PXI Express FPGA module provides the IoModSyncClk signal for synchronization
between adapter modules. IoModSyncClk is a LVPECL clock that can be sourced either by
PXI_CLK10 or by PXIe_DStarA, as shown in the following figure.

Figure 9-3. IoModSyncClk Source Block Diagram

For more information about the IoModSyncClk and how to use it in your adapter module design,
refer to the IoModSyncClk (NI 796xR Only) section of Chapter 3, Configuring Your Adapter
Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA. Refer to the
NI PXI-795xR Base Clocks topic or the NI PXIe-796xR Base Clocks topic in the FlexRIO Help
book in the LabVIEW Help for more information about clock resources.

FPGA
1:

2
B

uf
fe

r
1:

2
B

uf
fe

r
PXI_CLK10

PXIe_DStarA

2:
1

M
ux

S
el

ec
t

E
na

bl
e

Differential
IoModSyncClk
(to adapter module)P

X
I E

xp
re

ss
 B

ac
kp

la
ne

9-12 | ni.com

Chapter 9 Configuring Your Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA

Enabling IoModSyncClk
You can enable IoModSyncClk by including optional keys within the General section of
the .tbc file of the corresponding adapter module. The two optional keys are as follows:

When the IoModSyncClock key is set to SUPPORTED or REQUIRED, you can also select
settings for the IoModSyncClk in the LabVIEW Project. To access this menu, right-click the
IO Module item under the FPGA Target in the Project Explorer window and select Properties
to display the IO Module Properties dialog box. The Sync Clock section in the Details category
controls the IoModSyncClk settings.

When the IoModSyncClockSource key is set to SUPPORTED or REQUIRED in the .tbc file,
the default IoModSyncClk source is selected. The value selected under the Details category in

Table 9-4. Optional Keys for Enabling IoModSyncClock

Key Name Defined Values Description

1. (Optional)
IoModSyncClock— Specifies
how to support the clock. If this
key name is not present, then
the adapter module clock is not
supported.

UNSUPPORTED IoModSyncClk is tristated.

SUPPORTED IoModSyncClk can be
enabled or tristated from the
Sync Clock section of the
IO Module Properties
menu. The default is
enabled.

REQUIRED IoModSyncClock is always
enabled.

PXICLK10REQUIRED IoModSyncClk is always
enabled and is sourced by
PXI_CLK10.

DSTARAREQUIRED IoModSyncClock is always
enabled and is sourced by
PXIe_DStarA.

2. (Optional)
IoModSyncClockSource—
Specifies the default clock
source.
IoModSyncClockSource is
only used when
IoModSyncClock is set to
SUPPORTED or REQUIRED.
If IoModSyncClockSource is
not present, the default clock
source is PXI_CLK10.

CLK10 IoModSyncClk is sourced
by PXI_CLK10.

DSTARA IoModSyncClk is sourced
by PXIe_DStarA.

© National Instruments Corporation | 9-13

FlexRIO Adapter Module Development Kit

the IO Module Properties dialog box overrides the default IoModSyncClockSource .tbc file
key value.

Figure 9-4. IO Module Properties Sync Clock Enabled

At compile time, the FPGA selects the source for the IoModSyncClk, as well as the enabled or
disabled state. To change these settings, you must recompile the FPGAVI.

Compatibility with the NI 795xR
An adapter module is compatible with an NI 795xR FPGA module if the corresponding .tbc
file does not contain the IoModSyncClock key or if the IoModSyncClock key value is present
and set to UNSUPPORTED or SUPPORTED. All other values result in an error that states that
the adapter module is not supported.

Constraints .tbc Values
The Constraints section is required. The Constraints section specifies FPGA compilation
constraints information for the FPGA pins dedicated to the adapter module interface. The syntax
of data in this section is identical to the syntax of raw UCF data used by the Xilinx ISE tool. The
constraints data is concatenated to the .ucf file that is used in the FPGA compilation.

Use the Constraints section to properly constrain the electrical I/O standard that is used for each
adapter module general-purpose I/O (GPIO) pin. These constraints depend on the VccoA/VccoB
settings, which are also specified in the .tbc file. Like the VccoA/VccoB levels, the Constraints

9-14 | ni.com

Chapter 9 Configuring Your Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA

values should be fixed by the adapter module designer and cannot be changed at run-time from
within LabVIEW FPGA. Include all physical-interface related constraints—such as I/O
standard, drive strength, and termination—in the Constraints section.

Caution You must set the I/O standard constraint for the UserGPIO pins. If you do
not constrain these FPGA I/O pins, the compiler assigns a default I/O standard, which
could prevent proper I/O function and possibly damage the FlexRIO FPGA module
or adapter module.

FlexRIO UserGpio pins may be set to any Xilinx I/O standard with the following conditions:
• The VccoA/VccoB rail is set to the required Vcco value for this I/O standard.
• The I/O standard does not require a reference voltage (Vref).
• If DCI is enabled, the I/O standard must allow a 50 Ω resistor connected to VRN/VRP.

Table 9-5 lists the Xilinx I/O standards supported by the FlexRIO GPIO and VccoA/VccoB power
rails.

Note The I/O standards listed in Table 9-5 are determined by Xilinx specifications
and are subject to change. To determine the most current I/O standard constraints for
your FlexRIO device, refer to the Xilinx documentation, available at
www.xilinx.com. For a list of Xilinx documents applicable to FlexRIO
applications, refer to Appendix C, Xilinx Documentation References.

Refer to the NI 795xR/796xR FPGA I/O Bank Voltages section of Chapter 3, Configuring Your
Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA, for more
information about FPGA I/O bank voltages.

Table 9-5. FlexRIO Supported Xilinx I/O Standards

I/O Standard Vcco

LVTTL 3.3 V

LVCMOSxx* 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V

LVDCIxx (DCI R = 50 Ω)* 1.5 V, 1.8 V, 2.5 V, and 3.3 V

LVDS_25 (inputs use internal 100 Ω
differential parallel termination)

2.5 V

* Where xx is determined by the selected voltage.

© National Instruments Corporation | 9-15

FlexRIO Adapter Module Development Kit

For example, the following Constraints section constrains GPIO pair 20 to use the LVTTL I/O
standard:

[Constraints]
NET "aUserGpio(20)" IOSTANDARD = LVTTL;
NET "aUserGpio_n(20)" IOSTANDARD = LVTTL;

The next example Constraints section constrains GPIO pair 20 to the LVDCI_33 I/O standard,
the LVTTL GClk Input to LVTTL, and the LVDS GClk input to LVDS_25. This example also
enables the 100 Ω differential termination on the LVDSGClk input.

[Constraints]
NET "aUserGpio(20)" IOSTANDARD = LVDCI_33;
NET "aUserGpio_n(20)" IOSTANDARD = LVDCI_33;
NET "UserGClkLvttl" IOSTANDARD = LVTTL;
NET "UserGClkLvds" IOSTANDARD = LVDS_25;
NET "UserGClkLvds_n" IOSTANDARD = LVDS_25;
INST "*IBUFGDSx*" DIFF_TERM = TRUE;

Note 100 Ω differential termination is placed on the LVDSGClk global clock buffer.

NI recommends that you constrain all GPIO lines even if they are not used. The following
snippet demonstrates what the unused constraint portion of your Constraints section may look
like. For example, if GPIO lines 40 to 60 are unused, explicitly assign them all to LVCMOSxx,
where xx is determined by the selected voltage for that bank.

Unused GPIO pins
NET "aUserGpio(40)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(40)" IOSTANDARD = LVCMOS25;
...
NET "aUserGpio(60)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(60)" IOSTANDARD = LVCMOS25;

NI recommends that you assign GPIO lines one at a time. Although wildcards are allowed in the
Xilinx constraint syntax, best performance comes from individual line assignment.

Note To ensure the correct compilation of your adapter module constraints
information, NI recommends using () as the bus delimiters in both the .ucf and the
.tbc files, instead of using <>. For example: aUserGpio(*).

9-16 | ni.com

Chapter 9 Configuring Your Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA

Example
The following is an example of a properly constructed .tbc file. Refer to the Creating or
Acquiring the IP for the FlexRIO Adapter Module section of Chapter 11, Creating Socketed
Component-Level IP for Your Adapter Module and NI 795xR/796xR Modules, for information
about complete example files that ship with the FlexRIO Adapter Module Development Kit.
[General]
FormatVersion=1.1
Manufacturer=Example Manufacturer
Model=Example Model
Description=This is an example adapter module configuration file.
VccoALevel=3.3
VccoBLevel=3.3
IOModuleID=0xFFFF0001
DefaultCLIP=ExampleIOModuleCLIP
IoModSyncClock=SUPPORTED
IoModSyncClockSource=CLK10

[Constraints]
NET "aUserGpio(1)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(1)" IOSTANDARD = LVCMOS25;
NET "aUserGpio(2)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(2)" IOSTANDARD = LVCMOS25;
...
NET "aUserGpio(20)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(20)" IOSTANDARD = LVCMOS25;

Note IoModSyncClock and IoModSyncClockSource .tbc file keys are supported
by the NI 796xR only.

Creating the Adapter Module Configuration
(.fam) File

Note This section is intended for users who are using FlexRIO Support 13.0 or
later. If you are using FlexRIO Support 2012 or earlier, refer to the Creating the
Adapter Module Configuration (.tbc) File section to learn how to create a .tbc
adapter module configuration file.

© National Instruments Corporation | 9-17

FlexRIO Adapter Module Development Kit

To define certain electrical characteristics of the adapter module for LabVIEW, you need to create
an adapter module configuration (.fam) file. LabVIEW FPGA uses this information during the
compilation process to properly configure the VccoA/VccoB voltage levels to determine which
IO Module ID to expect during the adapter module discovery sequence, and to properly configure
the FPGA I/O standards for the GPIO signals on the adapter module connector interface.

The presence of an adapter module configuration file also allows your adapter module to be
selectable in the adapter module configuration user interface within the LabVIEW project.
All adapter module configuration files are automatically enumerated from the IO Modules
directory on disk. The IO Modules directory is stored in the following location:
• Windows XP

C:\Documents and Settings\All Users\Shared Documents\National
Instruments\FlexRIO\IO Modules

• Windows 8/7/Vista

C:\Users\Public\Documents\National Instruments\FlexRIO\
IO Modules

NI recommends that you create a manufacturer-specific subfolder within the IO Modules
directory and place your adapter module configuration files within this subfolder. Creating a
manufacturer-specific folder for your .fam files helps facilitate better organization of adapter
module support files when you install adapter modules from multiple manufacturers on the same
system. During device configuration and at VI build, the FlexRIO FPGA device support
software automatically enumerates all files within the IO Modules directory inside subfolders
of the directory.

Complete the following steps to create a .fam file that defines your adapter module
characteristics within LabVIEW.
1. Go to the FlexRIO IO Modules directory and create a manufacturer-specific folder that

contains the .fam file for the new adapter module.
2. Create your .fam file.

An example .fam file is provided in the following location:
• Windows XP

C:\Documents and Settings\All Users\Shared Documents\
National Instruments\FlexRIO\Module Development Kit\
Examples\IO Module\ExampleIOModule.fam

• Windows 8/7/Vista

C:\Users\Public\Documents\National Instruments\FlexRIO\
Module Development Kit\Examples\IO Module\
ExampleIOModule.fam

You can use this file as a template for your adapter module configuration file. If you use
the NI example .fam file, make sure to modify the required values described in the Adapter
Module Configuration (.fam) Values section and rename the file for your adapter module.

3. Save the .fam file to the location you created in step 1.

9-18 | ni.com

Chapter 9 Configuring Your Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA

Adapter Module Configuration (.fam) Values
The adapter module configuration (.fam) file uses a standard INI-file syntax. The following
sections contain detailed descriptions of each of the supported configuration values contained
within the file. An example .fam file is also provided. A .fam file consists of a Common
section and a Socket-specific section.

Common .fam Values

Note The Common section is required in your .fam file.

The Common section describes basic information about the adapter module. Table 9-6 lists the
supported Common configuration values.

Table 9-6. Supported Common Configuration Values

Key Name
Data
Type Description

FormatVersion Integer Specifies which version of the adapter module
configuration file annotations are used to create the
adapter module configuration (.fam) file. Set this
value to 1.

OldestCompatibleFormat
Version

Integer Specifies which version of the adapter module
configuration file annotations that the adapter
module configuration (.fam) file is compatible
with. Set this value to 1.

Manufacturer String Specifies the name of the manufacturer that created
the adapter module. This name displays in the IO
Module Properties dialog box in the LabVIEW
project with the adapter module.

Note: The Manufacturer .fam value cannot
include the following characters: , ; :

© National Instruments Corporation | 9-19

FlexRIO Adapter Module Development Kit

Model String Specifies the model name of the adapter module.
This name displays in the IO Modules Properties
dialog box in the LabVIEW project when the
adapter module is configured.

Note: The Model .fam value cannot include the
following characters: , ; :
All .fam files are enumerated in the IO Module
Properties page. If the combination of the
manufacturer and model name (for example,
National Instruments NI 5761) is found in a
previously parsed .fam file, the Details window
displays an error when you click the duplicate IO
Module.

Description String Provides a general description of the capabilities
and function of the adapter module. This
information displays in the IO Module Properties
dialog box in the LabVIEW project. You may use
\n to format the string with end-of-line characters.

IOModuleID U32 Specifies the unique IO Module ID value that is
stored in the identification EEPROM. Set this key
to the value of the IO Module ID that you created in
the Programming the EEPROM section. If your
adapter module does not contain an EEPROM for
identification purposes, remove this key from the
adapter module configuration file.

CompatibleCLIPSockets String Specifies which FPGA families are supported.
If you are using the NI 795xR or the NI 796xR,
enter FlexRIO-IOModule for this value.

If you are using the NI 797xR, enter
FlexRIO-K7IOModule for this value.

Table 9-6. Supported Common Configuration Values (Continued)

Key Name
Data
Type Description

9-20 | ni.com

Chapter 9 Configuring Your Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA

Socket-specific .fam Values
The socket-specific section of the .fam file describes information that is specific to your
device’s CLIP socket. Table 9-7 lists the supported configuration values for the NI 795xR and
NI 796xR device sockets.

Note Name the socket-specific section FlexRIO-IOModule. Socket-specific
sections are required for each socket family listed in the CompatibleCLIPSockets tag.

Table 9-7. Supported Socket-specific Configuration Values

Key Name Data Type Description

Default CLIP String Specifies the name of the default CLIP
implementation for the adapter module. This
name is specified within the
<CLIPDeclaration> tag in the CLIP XML
file. When you create a new LabVIEW project,
the FPGA device is auto-discovered with an
adapter module inserted, and this CLIP is
automatically selected for use with the adapter
module. Refer to Chapter 11, Creating Socketed
Component-Level IP for Your Adapter Module
and NI 795xR/796xR Modules, for more
information about CLIP.

VccoALevel Float Specifies the voltage level (in volts) to configure
the VccoA bank for. The default value is 2.5. Valid
values are: 1.2, 1.5, 1.8, 2.5, and 3.3.

Values that include decimals must use the .
character and not the , character. For example,
1.2V is valid, but 1,2V is not.

VccoBLevel Float Specifies the voltage level (in volts) to configure
the VccoB bank for. The default value is 2.5. Valid
values are: 1.2, 1.5, 1.8, 2.5, and 3.3.

Values that include decimals must use the .
character and not the , character. For example,
1.2V is valid, but 1,2V is not.

© National Instruments Corporation | 9-21

FlexRIO Adapter Module Development Kit

VccoA/VccoB Levels
The adapter module configuration file specifies the VccoA/VccoB bank values. These values
are fixed by the adapter module designer and cannot be changed at run-time within
LabVIEW FPGA. The available voltage options for each Vcco bank are 1.2 V, 1.5 V, 1.8 V,
2.5 V, and 3.3 V.

Note Values that include decimals must use the . character and not the , character.
For example, 1.2V is valid, but 1,2V is not.

Caution The selected VccoA/VccoB value must match the electrical design of the
corresponding adapter module. Failure to do so risks damaging the adapter module
or the FlexRIO FPGA module. NI is not liable for any damage resulting from such
misuse.

Adapter Module IOModuleID
The adapter module IOModuleID key determines the IO Module ID for your adapter module.
The IOModuleID value in the adapter module configuration file must be in hexadecimal
format, prefixed with 0x.

This example demonstrates how to specify the IOModuleID value in the adapter module
configuration file:

IOModuleID=0xFFFF0001

In this example, 0xFFFF is the Vendor ID, and 0x0001 is the Product ID.

(Optional)
IoModSyncClock

Refer to Table 9-8 for
IoModSyncClock
defined values and
descriptions.

String Specifies how to support the clock for NI 795xR
and NI 796xR devices. If this key name is not
present, the adapter module clock is not
supported.

(Optional)
IoModSyncClockSource

Refer to Table 9-8 for
IoModSyncClockSource
defined values and
descriptions.

String Specifies the default IoModSyncClock source
for NI 795xR and NI 796xR devices. Use this
tag only when the IoModSyncClock is set to
SUPPORTED or REQUIRED. If this key name
is not present, PXI_CLK10 is selected by
default.

Table 9-7. Supported Socket-specific Configuration Values (Continued)

Key Name Data Type Description

9-22 | ni.com

Chapter 9 Configuring Your Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA

Note If the adapter module you are configuring does not contain an EEPROM, you
must remove the IOModuleID value from the .fam file.

IoModSyncClk.fam Values (NI 796xR Only)
The FlexRIO PXI Express FPGA module provides the IoModSyncClk signal for
synchronization between adapter modules. IoModSyncClk is a LVPECL clock that can be
sourced either by PXI_CLK10 or by PXIe_DStarA, as shown in Figure 9-5.

Figure 9-5. IoModSyncClk Source Block Diagram

For more information about the IoModSyncClk and how to use it in your adapter module design,
refer to the IoModSyncClk (NI 796xR Only) section of Chapter 3, Interfacing Adapter Modules
with NI 795xR and NI 796xR Modules. Refer to the NI PXIe-796xR Base Clocks topic in the
FlexRIO Help book in the LabVIEW Help for more information about clock resources.

FPGA

1:
2

B
uf

fe
r

1:
2

B
uf

fe
r

PXI_CLK10

PXIe_DStarA
2:

1
M

ux
S

el
ec

t

E
na

bl
e

Differential
IoModSyncClk
(to adapter module)P

X
I E

xp
re

ss
 B

ac
kp

la
ne

© National Instruments Corporation | 9-23

FlexRIO Adapter Module Development Kit

Enabling IoModSyncClk
You can enable IoModSyncClk by including optional keys within the Socket-Specific section
of the .fam file of the corresponding adapter module. The two optional keys are as follows:

When the IoModSyncClock key is set to SUPPORTED or REQUIRED, you can also select
settings for the IoModSyncClk in the LabVIEW Project. To access this menu, right-click the
IO Module item under the FPGA Target in the Project Explorer window and select Properties
to display the IO Module Properties dialog box. The Sync Clock section in the Details category
controls the IoModSyncClk settings.

When the IoModSyncClockSource key is set to SUPPORTED or REQUIRED in the .fam file,
the default IoModSyncClk source is selected. The value selected under the Details category in

Table 9-8. Optional Keys for Enabling IoModSyncClock

Key Name Defined Values Description

1. IoModSyncClock
(Optional)—Specifies how
to support the clock. If this
key name is not present, then
the adapter module clock is
not supported.

UNSUPPORTED IoModSyncClk is tristated.

SUPPORTED IoModSyncClk can be
enabled or tristated from the
Sync Clock section of the
IO Module Properties
menu. The default selection
is enabled.

REQUIRED IoModSyncClock is always
enabled.

PXICLK10REQUIRED IoModSyncClk is always
enabled and is sourced by
PXI_CLK10.

DSTARAREQUIRED IoModSyncClock is always
enabled and is sourced by
PXIe_DStarA.

2. IoModSyncClockSource
(Optional)—Specifies the
default clock source.
IoModSyncClockSource is
only used when
IoModSyncClock is set to
SUPPORTED or
REQUIRED. If
IoModSyncClockSource is
not present, the default clock
source is PXI_CLK10.

CLK10 IoModSyncClk is sourced
by PXI_CLK10.

DSTARA IoModSyncClk is sourced
by PXIe_DStarA.

9-24 | ni.com

Chapter 9 Configuring Your Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA

the IO Module Properties dialog box overrides the default IoModSyncClockSource .fam file
key value.

Figure 9-6. IO Module Properties Sync Clock Enabled

At compile time, the FPGA selects the source for the IoModSyncClk, as well as the enabled or
disabled state. To change these settings, you must recompile the FPGAVI.

FlexRIO-IOModule Constraints .fam Values

Note The FlexRIO-IOModule Constraints section is required in your .fam file.

The FlexRIO-IOModule Constraints section specifies FPGA compilation constraints
information for the FPGA pins dedicated to the adapter module interface. The syntax of data in
this section is identical to the syntax of raw .ucf data used by the Xilinx ISE tool. The
constraints data is concatenated to the .ucf file that is used in the FPGA compilation.

Use the FlexRIO-IOModule Constraints section to properly constrain the electrical I/O standard
that is used for each adapter module general-purpose I/O (GPIO) pin. These constraints depend
on the VccoA/VccoBsettings, which are also specified in the .fam file. Like the VccoA/VccoB levels,
the FlexRIO-IOModule values should be fixed by the adapter module designer and cannot
be changed at run-time from within LabVIEW FPGA. Include all physical-interface
related constraints—such as I/O standard, drive strength, and termination—in the
FlexRIO-IOModule Constraints section.

© National Instruments Corporation | 9-25

FlexRIO Adapter Module Development Kit

Caution You must set the I/O standard constraint for the UserGPIO pins. If you do
not constrain these FPGA I/O pins, the compiler assigns a default I/O standard, which
could prevent proper I/O function and possibly damage the FlexRIO FPGA module
or adapter module.

FlexRIO UserGpio pins may be set to any Xilinx I/O standard with the following conditions:
• The VccoA/VccoB rail is set to the required Vcco value for this I/O standard.
• The I/O standard does not require a reference voltage (Vref).
• If DCI is enabled, the I/O standard must allow a 50 Ω resistor connected to VRN/VRP.

Table 9-9 lists the Xilinx I/O standards supported by the FlexRIO GPIO and VccoA/VccoB power
rails.

Note The I/O standards listed in Table 9-10 are determined by Xilinx specifications
and are subject to change. To determine the most current I/O standard constraints for
your FlexRIO device, refer to the Xilinx documentation, available at
www.xilinx.com. For a list of Xilinx documents applicable to FlexRIO
applications, refer to Appendix C, Xilinx Documentation References.

Refer to the NI 795xR/796xR FPGA I/O Bank Voltages section of Chapter 3, Interfacing Adapter
Modules with NI 795xR and NI 796xR Modules, for more information about FPGA I/O bank
voltages.

For example, the following Constraints section constrains adapter module GPIO pair 20 to use
the LVTTL I/O standard:

[FlexRIO-IOModule Constraints]
NET "aUserGpio(20)"IOSTANDARD = LVTTL;
NET "aUserGpio_n(20)"IOSTANDARD = LVTTL;

Table 9-9. FlexRIO Supported Xilinx I/O Standards

I/O Standard Vcco

LVTTL 3.3 V

LVCMOSxx* 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V

LVDCIxx (DCI R = 50 Ω)* 1.5 V, 1.8 V, 2.5 V, and 3.3 V

LVDS_25 (inputs use internal 100 Ω
differential parallel termination)

2.5 V

* Where xx is determined by the selected voltage.

The next example Constraints section constrains GPIO pair 20 to the LVDCI_33 I/O standard,
the LVTTL GClk Input to LVTTL, and the LVDS GClk input to LVDS_25. This example also
enables the 100 Ω differential termination on the LVDSGClk input.

[FlexRIO-IOModule Constraints]
NET "aUserGpio(20)" IOSTANDARD = LVDCI_33;
NET "aUserGpio_n(20)" IOSTANDARD = LVDCI_33;
NET "UserGClkLvttl" IOSTANDARD = LVTTL;
NET "UserGClkLvds" IOSTANDARD = LVDS_25;
NET "UserGClkLvds_n" IOSTANDARD = LVDS_25;
INST "*IBUFGDSx*" DIFF_TERM = TRUE;

Note 100 Ω differential termination is placed on the LVDSGClk global clock
buffer.

NI recommends that you constrain all GPIO lines even if they are not used. The following
snippet demonstrates what the unused constraint portion of your FlexRIO-IOModule
Constraints section may look like. For example, if GPIO lines 40 to 60 are unused, explicitly
assign them all to LVCMOS25.

Unused GPIO pins
NET "aUserGpio(40)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(40)" IOSTANDARD = LVCMOS25;
...
NET "aUserGpio(60)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(60)" IOSTANDARD = LVCMOS25;

Note To ensure the correct compilation of your adapter module constraints
information, NI recommends using () as the bus delimiters in both the .ucf and the
.fam files, instead of using <>. For example: aUserGpio(20).

© National Instruments Corporation | 9-27

FlexRIO Adapter Module Development Kit

Example .fam File
The following is an example of a properly constructed.fam file for the NI 795xR and NI 796xR
devices. Refer to the Creating or Acquiring the IP for the FlexRIO Adapter Module section of
Chapter 11, Creating Socketed Component-Level IP for Your Adapter Module and
NI 795xR/796xR Modules, for information about complete example files that ship with the
FlexRIO Adapter Module Development Kit.
[Common]
FormatVersion=1
OldestCompatibleVersion=1
Manufacturer=Example Manufacturer
Model=Example Model
Description=This is an example adapter module configuration file.
IOModuleID=0xFFFF0001
CompatibleCLIPSockets=FlexRIO-IOModule

[FlexRIO-IOModule]
DefaultCLIP=ExampleIOModuleCLIP
IoModSyncClock=SUPPORTED
IoModSyncClockSource=CLK10
VccoALevel=2.5
VccoBLevel=2.5

[FlexRIO-IOModule Constraints]
NET "aUserGpio(1)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(1)" IOSTANDARD = LVCMOS25;
NET "aUserGpio(2)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(2)" IOSTANDARD = LVCMOS25;
...
NET "aUserGpio(20)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(20)" IOSTANDARD = LVCMOS25;

Note IoModSyncClock and IoModSyncClockSource .fam file keys are supported
by the NI 796xR only.

© National Instruments Corporation | 10-1

10
Configuring Your Adapter
Module for Use with
NI-793xR/797xR Modules
and LabVIEW FPGA

This chapter explain how to prepare your custom adapter module for use with NI-793xR/
NI 797xR devices and LabVIEW FPGA.

Refer to the following table for information about which compilers, constraints, and
configuration files to use to develop your adapter module depending on the version of LabVIEW
you are using.

Note In software, FlexRIO adapter modules are referred to as IO modules.

To configure the adapter module for use with LabVIEW FPGA, complete the following steps:
1. Program the IO Module ID into the EEPROM.
2. Create the adapter module configuration file.
3. Create or acquire the socketed component-level IP (CLIP) to create the interface between

adapter module and the FPGA.
4. Configure the adapter module in a LabVIEW project.

This chapter describes steps 1 and 2 in greater detail. The proceeding sections explain how to
define the module characteristics and establish the adapter module identification so that

Table 10-1. Recommended Files for Developing Adapter Modules

LabVIEW
Version

Target/
Compiler

Logic Constraints
Configuration

File
LabVIEW
Interface

.vhd .ucf .xdc .tbc .fam .xml

2013 K7 with ISE* X X X X

2014 and
later

K7 with
Vivado

X X X X

* You can target only the NI 7975R in ISE in LabVIEW 2013. All other NI-793xR and NI 797xR targets
require the filesystem associated with LabVIEW 2014 or later.

10-2 | ni.com

Chapter 10 Configuring Your Adapter Module for Use with NI-793xR/797xR Modules and LabVIEW FPGA

LabVIEW FPGA recognizes the adapter module. Chapter 12, Creating Socketed
Component-Level IP for Your Adapter Module and NI-793xR/NI 797xR Modules, describes
steps 3 and 4 in more detail.

Programming the EEPROM
The FlexRIO device uses the IO Module ID to uniquely identify an adapter module that is
physically connected to the FlexRIO FPGA module. The IO Module ID is a 32-bit number
stored in the adapter module EEPROM that uniquely identifies a particular model of adapter
module. All adapter modules of the same model must use the same IO Module ID, and different
models of adapter modules cannot use the same IO Module ID.

Storing an IO Module ID on your adapter module EEPROM provides better electrical protection
for both the adapter module and the NI-793xR/NI 797xR module. For instance, the Vcco levels
must be configured properly to match the electrical requirements of each individual adapter
module. Each FPGAVI is built for a specific adapter module, and therefore the FPGAVI has a
concept of an expected adapter module that should use a particular configuration for VccoA.
When you insert an adapter module into an NI-793xR/NI 797xR, the NI-793xR/NI 797xR
automatically attempts to detect which adapter module is connected. Use an IO Module ID to
allow the NI-793xR/NI 797xR to detect whether the inserted adapter module matches the adapter
module expected by LabVIEW FPGA. Adapter module power—including Vcco—is enabled
only if there is a match.

Note NI strongly recommends adding an EEPROM to your adapter module for
identification purposes. This provides better electrical protection for both the adapter
module and the NI-793xR/NI 797xR. It also improves the software configuration
experience within LabVIEW FPGA. For more information about including an
EEPROM in your adapter module design for identification purposes, refer to
Chapter 4, Interfacing Adapter Modules with NI-793xR and NI 797xR Devices.

Note The FPGA parses all .fam files. If the FPGA encounters an IO Module ID in
a previously parsed .fam file, the IO Module does not show up in the list.

The format of the 32-bit IO Module ID is as follows:
Bits<31..16>: Vendor ID
Bits<15..0>: Product ID

The Vendor ID is a 16-bit number which is unique for each adapter module manufacturer.
Vendor IDs are assigned to individual manufacturers by NI. Each adapter module manufacturer
should use their allotted Vendor ID for all adapter modules that they produce.

To obtain your adapter module Vendor ID, visit ni.com/ask, and create a new tecnical support
request. For more information about obtaining your adapter module Vendor ID, refer to the
Registration section of Chapter 1, Before You Begin.

© National Instruments Corporation | 10-3

FlexRIO Adapter Module Development Kit

The Product ID is a value that is chosen by the adapter module manufacturer. Each adapter
module manufacturer should ensure that a unique Product ID is chosen for each type of adapter
module.

The Vendor ID and Product ID combine to form the unique IO Module ID for each individual
adapter module created by a manufacturer.

The following is an example IO Module ID:
IO Module ID: 0xFFFF0001
Vendor ID: 0xFFFF
Product ID: 0x0001

Programming the EEPROM in LabVIEW
NI provides a LabVIEW host VI which you can use to program the IO Module ID into the
adapter module. The VI library containing this VI is installed in the following location:

<LabVIEW>\vi.lib\FlexRIO\FlexRIO_HostInterface.llb
Complete the following steps to program the IO Module ID into your adapter module:
1. Launch LabVIEW and open the FlexRIO_Host_ProgramIOModID.vi.
2. On the front panel of the FlexRIO_Host_ProgramIOModID.vi, configure the

RIO Device control to match the RIO device name of the NI-793xR/NI 797xR connected
to your adapter module.
Determine which RIO device name corresponds to your NI-793xR/NI 797xR by launching
Measurement & Automation Explorer (MAX) and browsing to Devices and Interfaces. If
you have only one RIO device in your system, the name for your device is typically RIO0.

3. On the front panel of FlexRIO_Host_ProgramIOModID.vi, configure the
IO Module ID control to the correct 32-bit IO Module ID for your adapter module.

10-4 | ni.com

Chapter 10 Configuring Your Adapter Module for Use with NI-793xR/797xR Modules and LabVIEW FPGA

Figure 10-1. FlexRIO_Host_ProgramIOModID.vi Front Panel

4. Run the VI. If the VI runs successfully without error, then your IO Module ID is
programmed properly.

Complete the following steps to read the IO Module ID from the EEPROM of an attached
adapter module:
1. Launch LabVIEW and open the FlexRIO_Host_QueryIOModID.vi.
2. On the front panel of the FlexRIO_Host_QueryIOModID.vi, configure the

RIO Device control to match the RIO device name of the NI-793xR/NI 797xR connected
to your adapter module. Determine which RIO device name corresponds to your
NI-793xR/NI 797xR by launching MAX and browsing to Devices and Interfaces. If you
have only one RIO device in your system, the name for your device is typically RIO0.

3. Run the VI. If the VI runs successfully without error, the IO Module ID indicator on the VI
front panel returns the IO Module ID of the attached adapter module.

© National Instruments Corporation | 10-5

FlexRIO Adapter Module Development Kit

Figure 10-2. FlexRIO_Host_QueryIOMod.vi Front Panel

FlexRIO_HostInterface.llb contains additional VIs that you can use for reading and
writing to and from arbitrary EEPROM locations. You can also use these VIs to issue raw
I2C bus cycles. For more information about these VIs, refer to the FlexRIO Help.

EEPROM Map
Table 10-2 describes the adapter module EEPROM map.

Table 10-2. EEPROM Map

Byte Address Size (Bytes) Field Name Required?

0x0 2 Vendor ID Yes

0x2 2 Product ID Yes

0x4 4 Serial Number No

0x8 24 Reserved No

0x20 224 User Space No

10-6 | ni.com

Chapter 10 Configuring Your Adapter Module for Use with NI-793xR/797xR Modules and LabVIEW FPGA

Adapter module manufacturers may optionally store a 32-bit serial number in the Serial Number
EEPROM field.

The User Space occupies the remainder of the EEPROM. The adapter module manufacturer
determines the layout and usage of this portion of the EEPROM. For example, the User Space
can be used to store ADC calibration constants.

Access to the I2C signals is shared with the adapter module socketed CLIP. This provides direct
access to the EEPROM from the FPGA. For more information the EEPROM, refer to the
EEPROM Overview section of Chapter 4, Interfacing Adapter Modules with NI-793xR and
NI 797xR Devices. For additional information about I2C signals, refer to Table 12-2, I2C Core
Interface Signals*.

Creating the Adapter Module Configuration
(.fam) File

Note This section is intended for users who are using FlexRIO Support 13.0 or
later. If you are using FlexRIO Support 2012 or earlier, refer to the Creating the
Adapter Module Configuration (.fam) File section to learn how to create a .tbc
adapter module configuration file.

To define certain electrical characteristics of the adapter module for LabVIEW, you need to
create an adapter module configuration (.fam) file. LabVIEW FPGA uses this information
during the compilation process to properly configure the Vcco voltage levels to determine which
IO Module ID to expect during the adapter module discovery sequence, and to properly
configure the FPGA I/O standards for the GPIO signals on the adapter module connector
interface.

The presence of an adapter module configuration file also allows your adapter module to be
selectable in the adapter module configuration user interface within the LabVIEW project.
All adapter module configuration files are automatically enumerated from the IO Modules
directory on disk. The IO Modules directory is stored in the following location:
• Windows XP

C:\Documents and Settings\All Users\Shared Documents\National
Instruments\FlexRIO\IO Modules

• Windows 8/7/Vista

C:\Users\Public\Documents\National Instruments\FlexRIO\
IO Modules

NI recommends that you create a manufacturer-specific subfolder within the IO Modules
directory and place your adapter module configuration files within this subfolder. Creating a
manufacturer-specific folder for your .fam files helps facilitate better organization of adapter
module support files when you install adapter modules from multiple manufacturers on the same

© National Instruments Corporation | 10-7

FlexRIO Adapter Module Development Kit

system. During device configuration and at VI build, the FlexRIO support software
automatically enumerates all files within the IO Modules directory inside subfolders of the
directory.

Complete the following steps to create a .fam file that defines your adapter module
characteristics within LabVIEW.
1. Go to the FlexRIO IO Modules directory and create a manufacturer-specific folder that

contains the .fam file for the new adapter module.
2. Create your .fam file.

An example .fam file is provided in the following location:
• Windows XP

C:\Documents and Settings\All Users\Shared Documents\
National Instruments\FlexRIO\Module Development Kit\
Examples\IO Module\ExampleIOModule.fam

• Windows 8/7/Vista

C:\Users\Public\Documents\National Instruments\FlexRIO\
Module Development Kit\Examples\IO Module\
ExampleIOModule.fam

You can use this file as a template for your adapter module configuration file. If you use
the NI example .fam file, make sure to modify the required values described in the Adapter
Module Configuration (.fam) Values section and rename the file for your adapter module.

3. Save the .fam file to the location you created in step 1.

Adapter Module Configuration (.fam) Values
The adapter module configuration (.fam) file uses a standard INI-file syntax. The following
sections contain detailed descriptions of each of the supported configuration values contained
within the file. An example .fam file is also provided. A .fam file consists of a Common
section and a Socket-specific section.

10-8 | ni.com

Chapter 10 Configuring Your Adapter Module for Use with NI-793xR/797xR Modules and LabVIEW FPGA

Common .fam Values

Note The Common section is required in your .fam file.

The Common section describes basic information about the adapter module. Table 10-3 lists the
supported Common configuration values.

Table 10-3. Supported Common Configuration Values

Key Name
Data
Type Description

FormatVersion Integer Specifies which version of the adapter module
configuration file annotations are used to create the
adapter module configuration (.fam) file. Set this
value to 1.

OldestCompatibleFormat
Version

Integer Specifies which version of the adapter module
configuration file annotations that the adapter
module configuration (.fam) file is compatible
with. Set this value to 1.

Manufacturer String Specifies the name of the manufacturer that created
the adapter module. This name displays in the IO
Module Properties dialog box in the LabVIEW
project with the adapter module.

Note: The Manufacturer .fam value cannot
include the following characters: , ; :

Model String Specifies the model name of the adapter module.
This name displays in the IO Modules Properties
dialog box in the LabVIEW project when the
adapter module is configured.

Note: The Model .fam value cannot include the
following characters: , ; :
All .fam files are enumerated in the IO Module
Properties page. If the combination of the
manufacturer and model name (for example,
National Instruments NI 5761) is found in a
previously parsed .fam file, the Details window
displays an error when you click the duplicate
IO Module.

© National Instruments Corporation | 10-9

FlexRIO Adapter Module Development Kit

Socket-specific .fam Values
The socket-specific section of the .fam file describes information that is specific to your
device’s CLIP socket. Table 10-4 lists the supported configuration values for the
NI-793xR/NI 797xR device sockets.

Note Name the socket-specific section FlexRIO-K7IOModule. Socket-specific
sections are required for each socket family listed in the CompatibleCLIPSockets tag.

Description String Provides a general description of the capabilities
and function of the adapter module. This
information displays in the IO Module Properties
dialog box in the LabVIEW project. You may use
\n to format the string with end-of-line characters.

IOModuleID U32 Specifies the unique IO Module ID value that is
stored in the identification EEPROM. Set this key
to the value of the IO Module ID that you created in
the Programming the EEPROM section. If your
adapter module does not contain an EEPROM for
identification purposes, remove this key from the
adapter module configuration file.

CompatibleCLIPSockets String Specifies which FPGA families are supported.
Enter FlexRIO-K7IOModule for this value.

Table 10-3. Supported Common Configuration Values (Continued)

Key Name
Data
Type Description

10-10 | ni.com

Chapter 10 Configuring Your Adapter Module for Use with NI-793xR/797xR Modules and LabVIEW FPGA

Table 10-4. Supported Socket-specific Configuration Values

Key Name
Data
Type Description

Default CLIP String Specifies the name of the default CLIP
implementation for the adapter module. This name
is specified within the <CLIPDeclaration> tag
in the CLIP XML file. When you create a new
LabVIEW project, the FPGA device is
auto-discovered with an adapter module inserted,
and this CLIP is automatically selected for use
with the adapter module. Refer to Chapter 12,
Configuring Your Adapter Module for Use with
NI-793xR/797xR Modules and LabVIEW FPGA,
for more information about CLIP.

VccoLevel Float Specifies the voltage level (in volts) to configure
the Vcco bank for. The default value is 2.5. Valid
values are: 1.2, 1.5, 1.8, 2.5, and 3.3.

Values that include decimals must use the .
character and not the , character. For example,
1.2V is valid, but 1,2V is not.

(Optional)
IoModSyncClock

Refer to Table 10-7 for
IoModSyncClock
defined values and
descriptions.

String Specifies how to support the clock for NI 797xR
devices. If this key name is not present, the adapter
module clock is not supported.

This key is ignored on NI-793xR devices.

(Optional)
IoModSyncClockSource

Refer to Table 10-7 for
IoModSyncClockSource
defined values and
descriptions.

String Specifies the default IoModSyncClock source for
NI 797xR devices. Use this tag only when the
IoModSyncClock is set to SUPPORTED or
REQUIRED. If this key name is not present,
PXI_CLK10 is selected by default.

This key is ignored on NI-793xR devices.

(Optional)
Fam3v3Stage*

Float Specifies the stage in which the 3.3 V power rail is
turned on. Valid values are 0, 1, and 2.

(Optional)
Fam12vStage*

Float Specifies the stage in which the 12 V power rail is
turned on. Valid values are 0, 1, and 2.

(Optional)
FamVccoStage*

Float Specifies the stage in which the Vcco power rail is
turned on. Valid values are 0, 1, and 2.

© National Instruments Corporation | 10-11

FlexRIO Adapter Module Development Kit

Caution To avoid timeouts, the total sequence delay (Stage0Delay +
Stage1Delay + Stage2Delay) cannot exceed 500 ms.

Note If you do not want to use default values, you must specify a value for every
key. If you do not specify a value for every key, the .fam file specifies default values
for every key.

The default value for power rail sequence values does not match the typical behavior of the
NI 795xR and NI 796xR devices. If you are using an NI-793xR or NI 797xR device, but want to
use similar power supply sequencing to the NI 795xR and NI 796xR devices, refer to the
following table for values that represent typical behavior of the NI 795xR and NI 796xR devices.

(Optional)
Stage0Delay*

Float Describes the length of the delay after Stage 0
completes. Valid values are 0 ms to 500 ms.

(Optional)
Stage1Delay*

Float Describes the length of the delay after Stage 1
completes. Valid values are 0 ms to 500 ms.

(Optional)
Stage2Delay*

Float Describes the length of the delay after Stage 2
completes. Valid values are 0 ms to 500 ms.

* The .fam file uses default values if you do not specify all of these values. Refer to Table 9-8
for default values for the power rail sequence.

Table 10-5. Power Rail Sequence Default Values

Key Name Default Values

Fam3v3Stage 1

Fam12vStage 0

FamVccoStage 0

Stage0Delay 10 ms

Stage1Delay 0 ms

Stage2Delay 0 ms

Table 10-4. Supported Socket-specific Configuration Values (Continued)

Key Name
Data
Type Description

10-12 | ni.com

Chapter 10 Configuring Your Adapter Module for Use with NI-793xR/797xR Modules and LabVIEW FPGA

Vcco Level
The adapter module configuration file specifies the Vcco bank values. These values are fixed by
the adapter module designer and cannot be changed at run-time within LabVIEW FPGA. The
available voltage options for the Vcco bank are 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.

Note Values that include decimals must use the . character and not the , character.
For example, 1.2V is valid, but 1,2V is not.

Caution The selected Vcco value must match the electrical design of the
corresponding adapter module. Failure to do so risks damaging the adapter module
or the NI-793xR/NI 797xR. NI is not liable for any damage resulting from such
misuse.

Adapter Module IOModuleID
The adapter module IOModuleID key determines the IO Module ID for your adapter module.
The IOModuleID value in the adapter module configuration file must be in hexadecimal
format, prefixed with 0x.

This example demonstrates how to specify the IOModuleID value in the adapter module
configuration file:

IOModuleID=0xFFFF0001

In this example, 0xFFFF is the Vendor ID, and 0x0001 is the Product ID.

Note If the adapter module you are configuring does not contain an EEPROM, you
must remove the IOModuleID value from the .fam file.

Table 10-6. NI 795xR and NI 796xR Representative Power Rail Sequence Values

Key Name Representative NI 795xR/796xR Value

Fam3v3Stage 2

Fam12vStage 0

FamVccoStage 1

Stage0Delay 25 ms

Stage1Delay 15 ms

Stage2Delay 0 ms

© National Instruments Corporation | 10-13

FlexRIO Adapter Module Development Kit

IoModSyncClk.fam Values

Note The NI-793xR does not have access to the IoModSyncClk line. The following
information applies to NI 797xR devices only. All IoModSyncClk keys in the .fam
file are ignored on NI-793xR modules.

The NI 797xR provides the IoModSyncClk signal for synchronization between adapter modules.
IoModSyncClk is a LVPECL clock that can be sourced either by PXI_CLK10 or by
PXIe_DStarA, as shown in the following figure.

Figure 10-3. IoModSyncClk Source Block Diagram

For more information about the IoModSyncClk and how to use it in your adapter module design,
refer to the IoModSyncClk section of Chapter 4, Interfacing Adapter Modules with NI-793xR
and NI 797xR Devices. Refer to the NI PXIe-797xR Base Clocks topic in the FlexRIO Help for
more information about clock resources.

FPGA

1:
2

B
uf

fe
r

1:
2

B
uf

fe
r

PXI_CLK10

PXIe_DStarA

2:
1

M
ux

S
el

ec
t

E
na

bl
e

Differential
IoModSyncClk
(to adapter module)P

X
I E

xp
re

ss
 B

ac
kp

la
ne

10-14 | ni.com

Chapter 10 Configuring Your Adapter Module for Use with NI-793xR/797xR Modules and LabVIEW FPGA

Enabling IoModSyncClk
You can enable IoModSyncClk by including optional keys within the Socket-Specific section
of the .fam file of the corresponding adapter module. The two optional keys are as follows:

When the IoModSyncClock key is set to SUPPORTED or REQUIRED, you can also select
settings for the IoModSyncClk in the LabVIEW Project. To access this menu, right-click the
IO Module item under the FPGA Target in the Project Explorer window and select Properties
to display the IO Module Properties dialog box. The Sync Clock section in the Details category
controls the IoModSyncClk settings.

When the IoModSyncClockSource key is set to SUPPORTED or REQUIRED in the .fam file,
the default IoModSyncClk source is selected. The value selected under the Details category in

Table 10-7. Optional Keys for Enabling IoModSyncClock

Key Name Defined Values Description

1. IoModSyncClock
(Optional)—Specifies how
to support the clock. If this
key name is not present, then
the adapter module clock is
not supported.

UNSUPPORTED IoModSyncClk is tristated.

SUPPORTED IoModSyncClk can be
enabled or tristated from the
Sync Clock section of the
IO Module Properties
menu. The default selection
is enabled.

REQUIRED IoModSyncClock is always
enabled.

PXICLK10REQUIRED IoModSyncClk is always
enabled and is sourced by
PXI_CLK10.

DSTARAREQUIRED IoModSyncClock is always
enabled and is sourced by
PXIe_DStarA.

2. IoModSyncClockSource
(Optional)—Specifies the
default clock source.
IoModSyncClockSource is
only used when
IoModSyncClock is set to
SUPPORTED or
REQUIRED. If
IoModSyncClockSource is
not present, the default clock
source is PXI_CLK10.

CLK10 IoModSyncClk is sourced
by PXI_CLK10.

DSTARA IoModSyncClk is sourced
by PXIe_DStarA.

© National Instruments Corporation | 10-15

FlexRIO Adapter Module Development Kit

the IO Module Properties dialog box overrides the default IoModSyncClockSource .fam file
key value.

Figure 10-4. IO Module Properties Sync Clock Enabled

At compile time, the FPGA selects the source for the IoModSyncClk, as well as the enabled or
disabled state. To change these settings, you must recompile the FPGAVI.

FlexRIO-K7IOModule Constraints .fam Values

Note The FlexRIO-K7IOModule Constraints section is required in your .fam file
in LabVIEW 2013. This constraints section is ignored in LabVIEW 2014 and later if
you include it in the .fam file.

The FlexRIO-K7IOModule Constraints section specifies FPGA compilation constraints
information for the FPGA pins dedicated to the adapter module interface. The syntax of data in
this section is identical to the syntax of raw UCF data used by the Xilinx ISE tool. The
constraints data is concatenated to the UCF file that is used in the FPGA compilation.

Use the FlexRIO-K7IOModule Constraints section to properly constrain the electrical I/O
standard that is used for each adapter module general-purpose I/O (GPIO) pin. These constraints
depend on the Vcco settings, which are also specified in the .fam file. Like the Vcco levels, the
FlexRIO-K7IOModule Constraints values should be fixed by the adapter module designer and
cannot be changed at run-time from within LabVIEW FPGA. Include all physical-interface

10-16 | ni.com

Chapter 10 Configuring Your Adapter Module for Use with NI-793xR/797xR Modules and LabVIEW FPGA

related constraints—such as I/O standard, drive strength, and termination—in the
FlexRIO-K7IOModule Constraints section.

Caution You must set the I/O standard constraint for the UserGPIO pins. If you do
not constrain these FPGA I/O pins, the compiler assigns a default I/O standard, which
could prevent proper I/O function and possibly damage the NI-793xR/NI 797xR or
adapter module.

You can set FlexRIO UserGpio pins to any Xilinx I/O standard with the following conditions:
• The Vcco rail is set to the required Vcco value for this I/O standard.
• The I/O standard does not require a reference voltage (Vref).

Table 10-8 lists the Xilinx I/O standards supported by the FlexRIO GPIO and Vcco power rails
on NI-793xR and NI 797xR devices.

Note The I/O standards listed in the above table are determined by Xilinx
specifications and are subject to change. To determine the most current I/O standard
constraints for your FlexRIO device, refer to the Xilinx documentation, available at
www.xilinx.com. For a list of Xilinx documents applicable to FlexRIO
applications, refer to Appendix C, Xilinx Documentation References.

Refer to the NI-793xR and NI 797xR FPGA I/O Bank Voltages section of Chapter 4, Interfacing
Adapter Modules with NI-793xR and NI 797xR Devices, for more information about FPGA I/O
bank voltages.

For example, the following FlexRIO-K7IOModule Constraints section constrains GPIO pair 20
to use the LVTTL I/O standard:

[FlexRIO-K7IOModule Constraints]
NET "aUserGpio(20)" IOSTANDARD = LVTTL;
NET "aUserGpio_n(20)" IOSTANDARD = LVTTL;

Table 10-8. FlexRIO Supported Xilinx I/O Standards

I/O Standard Vcco

LVTTL 3.3V

LVCMOSxx* 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V

LVDS_25 (inputs use internal 100 Ω
differential parallel termination)

2.5V

* Where xx is determined by the selected voltage.

© National Instruments Corporation | 10-17

FlexRIO Adapter Module Development Kit

The next example Constraints section constrains GPIO pair 20 to the LVCMOS25 I/O standard,
and Gpio38 (a MRCC line) to the LVDS_25 I/O standard.

[FlexRIO-K7IOModule Constraints]
NET "aUserGpio(20)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(20)" IOSTANDARD = LVCMOS25;
NET "aUserGpio(38)" IOSTANDARD = LVDS_25;
NET "aUserGpio_n(38)" IOSTANDARD = LVDS_25;

NI recommends that you constrain all GPIO lines even if they are not used. The following
snippet demonstrates what the unused constraint portion of your FlexRIO-K7IOModule
Constraints section may look like. For example, if GPIO lines 40 to 60 are unused, explicitly
assign them all to LVCMOS25.

Unused GPIO pins
NET "aUserGpio(40)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(40)" IOSTANDARD = LVCMOS25;
...
NET "aUserGpio(60)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(60)" IOSTANDARD = LVCMOS25;

Note To ensure the correct compilation of your adapter module constraints
information, NI recommends using () as the bus delimiters in both the .ucf and the
.fam files, instead of using <>. For example: aUserGpio(20).

FlexRIO-K7IOModule Vivado Constraints .fam Values

Note The FlexRIO-K7IOModule Vivado Constraints section is required in your
.fam file for LabVIEW FPGA 2014 and later. This constraints section is ignored in
LabVIEW 2013 if you include it in the .fam file.

Note Use the FlexRIO-K7IOModule Constraints section for NI 797xR devices in
LabVIEW 2013.

You cannot directly specify constraints for Vivado in .fam files. To specify constraints for your
project, configure the .fam file to point to the .xdc file that specifies the constraints for your
project. The following code shows an example of how to point to the NI 5782 .xdc file from
the .fam file:
[FlexRIO-K7IOModule Vivado Constraints]
File=NI5782IOModuleK7.xdc

The .xdc constraints file that you point to specifies FPGA compilation constraints information
for the FPGA pins dedicated to the adapter module interface.

10-18 | ni.com

Chapter 10 Configuring Your Adapter Module for Use with NI-793xR/797xR Modules and LabVIEW FPGA

Note The .xdc file must be located in the same directory as the .fam file.

The syntax of data in this section is identical to the syntax of raw XDC data used by the Xilinx
Vivado tool. The constraints data is concatenated to the XDC file that is used in the FPGA
compilation.

Use the .xdc constraints file to properly constrain the electrical I/O standard that is used for
each adapter module general-purpose I/O (GPIO) pin. These constraints depend on the Vcco
settings, which are also specified in the .fam file. Like the Vcco levels, the FlexRIO-IOModule
values should be fixed by the adapter module designer and cannot be changed at run-time from
within LabVIEW FPGA. Include all physical-interface related constraints—such as I/O
standard, drive strength, and termination—in the FlexRIO-IOModule Constraints section.

Caution You must set the I/O standard constraint for the UserGPIO pins. If you do
not constrain these FPGA I/O pins, the compiler assigns a default I/O standard, which
could prevent proper I/O function and possibly damage the NI-793xR/NI 797xR or
adapter module.

FlexRIO UserGpio pins may be set to any Xilinx I/O standard with the following conditions:
• The Vcco rail is set to the required Vcco value for this I/O standard.
• The I/O standard does not require a reference voltage (Vref).

Table 10-9 lists the Xilinx I/O standards supported by the FlexRIO GPIO and Vcco power rails
on NI 797xR devices.

Note The I/O standards listed in Table 10-9 are determined by Xilinx specifications
and are subject to change. To determine the most current I/O standard constraints for
your FlexRIO device, refer to the Xilinx documentation, available at
www.xilinx.com. For a list of Xilinx documents applicable to FlexRIO
applications, refer to Appendix C, Xilinx Documentation References.

Table 10-9. FlexRIO Supported Xilinx I/O Standards

I/O Standard Vcco

LVTTL 3.3V

LVCMOSxx* 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V

LVDS_25 (inputs use internal 100 Ω
differential parallel termination)

2.5V

* Where xx is determined by the selected voltage.

© National Instruments Corporation | 10-19

FlexRIO Adapter Module Development Kit

Refer to the NI-793xR and NI 797xR FPGA I/O Bank Voltages section of Chapter 4, Interfacing
Adapter Modules with NI-793xR and NI 797xR Devices, for more information about FPGA I/O
bank voltages.

For example, the following FlexRIO-K7IOModule Vivado Constraints is located in the.xdc file
that accompanies the .fam file. The following snippet demonstrates what the beginning of the
clocking section of the .xdc may look like. It sets up the GPIO lines to use the LVDS_25 IO
standard and enable the 100 Ω differential termination.

Clock signals.
set_property IOSTANDARD LVDS_25 [get_ports {aUserGpio[38]}]
set_property DIFF_TERM TRUE [get_ports {aUserGpio[38]}]
set_property IOSTANDARD LVDS_25 [get_ports {aUserGpio_n[38]}]
set_property DIFF_TERM TRUE [get_ports {aUserGpio_n[38]}]

NI recommends that you constrain all GPIO lines even if they are not used. The following
example Constraints section demonstrates what the unused constraint section of your .xdc file
may look like. For example, if GPIO lines 40 to 60 are unused, explicitly assign them all to
LVCMOS25.

Unused GPIO pins
set_property IOSTANDARD LVCMOS25 [get_ports {aUserGpio[40]}]
set_property IOSTANDARD LVCMOS25 [get_ports {aUserGpio_n[40]}]
...
set_property IOSTANDARD LVCMOS25 [get_ports {aUserGpio[60]}]
set_property IOSTANDARD LVCMOS25 [get_ports {aUserGpio_n[60]}]

Note The preceding code examples are snippets of the example design files located
at the Start menu. Refer to the Creating the Adapter Module Configuration
(.fam) File section for information about the location of these design files.

Note Refer to the Vivado documentation for information about .xdc syntax.

Example .fam File for LabVIEW 2013
The following is an example of an abridged .fam file for use with NI 797xR devices and
LabVIEW 2013. Refer to the Creating or Acquiring the IP for the FlexRIO Adapter Module
section of Chapter 12, Creating Socketed Component-Level IP for Your Adapter Module and
NI-793xR/NI 797xR Modules, for information about complete example files that ship with the
FlexRIO Adapter Module Development Kit.
[Common]
FormatVersion=1
OldestCompatibleFormatVersion=1
Manufacturer=Example Manufacturer
Model=Example Model
Description=This is an example adapter module configuration file.
IOModuleID=0xFFFF0001

10-20 | ni.com

Chapter 10 Configuring Your Adapter Module for Use with NI-793xR/797xR Modules and LabVIEW FPGA

CompatibleCLIPSockets=FlexRIO-K7IOModule

[FlexRIO-K7IOModule]
DefaultCLIP=ExampleIOModuleCLIP
IoModSyncClock=SUPPORTED
IoModSyncClockSource=CLK10
VccoLevel=2.5
Fam3v3Stage=1
Fam12vStage=0
FamVccoStage=0
Stage0Delay=10
Stage1Delay=0
Stage2Delay=0

[FlexRIO-K7IOModule Constraints]
NET "aUserGpio(1)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(1)" IOSTANDARD = LVCMOS25;
NET "aUserGpio(2)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(2)" IOSTANDARD = LVCMOS25;
...
NET "aUserGpio(20)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(20)" IOSTANDARD = LVCMOS25;

Example .fam (NI-793xR/NI 797xR) for LabVIEW 2014
and later
The following is an example of an abridged .fam file for use with NI-793xR/NI 797xR devices
and LabVIEW 2014 or later. Note that the constraints for this file are specified in the .xdc file.
Refer to the Creating or Acquiring the IP for the FlexRIO Adapter Module section of
Chapter 12, Creating Socketed Component-Level IP for Your Adapter Module and
NI-793xR/NI 797xR Modules, for information about complete example files that ship with the
FlexRIO Adapter Module Development Kit.
[Common]
FormatVersion=1
OldestCompatibleFormatVersion=1
Manufacturer=Example Manufacturer
Model=Example Model
Description=This is an example adapter module configuration file.
IOModuleID=0xFFFF0001

© National Instruments Corporation | 10-21

FlexRIO Adapter Module Development Kit

CompatibleCLIPSockets=FlexRIO-K7IOModule

[FlexRIO-K7IOModule]
DefaultCLIP=ExampleIOModuleCLIP
IoModSyncClock=SUPPORTED
IoModSyncClockSource=CLK10
VccoLevel=2.5
Fam3v3Stage=1
Fam12vStage=0
FamVccoStage=0
Stage0Delay=10
Stage1Delay=0
Stage2Delay=0

[FlexRIO-K7IOModule Vivado Constraints]
File=ExampleIOModuleCLIPsK7.xdc

Configuring .fam files for Compatibility with both
LabVIEW 2013 and LabVIEW 2014
If you configure an adapter module for compatibility with both LabVIEW 2013 and
LabVIEW 2014, refer to the following example .fam file:
[Common]
FormatVersion=1
OldestCompatibleFormatVersion=1
Manufacturer=Example Manufacturer
Model=Example Model
Description=This is an example adapter module configuration file.
IOModuleID=0xFFFF0001
CompatibleCLIPSockets=FlexRIO-K7IOModule

[FlexRIO-K7IOModule]
DefaultCLIP=ExampleIOModuleCLIP
IoModSyncClock=SUPPORTED
IoModSyncClockSource=CLK10
VccoLevel=2.5
Fam3v3Stage=1
Fam12vStage=0
FamVccoStage=0

10-22 | ni.com

Chapter 10 Configuring Your Adapter Module for Use with NI-793xR/797xR Modules and LabVIEW FPGA

Stage0Delay=10
Stage1Delay=0
Stage2Delay=0
[FlexRIO-K7IOModule Constraints]
NET "aUserGpio(1)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(1)" IOSTANDARD = LVCMOS25;
NET "aUserGpio(2)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(2)" IOSTANDARD = LVCMOS25;
...
NET "aUserGpio(20)" IOSTANDARD = LVCMOS25;
NET "aUserGpio_n(20)" IOSTANDARD = LVCMOS25;
[FlexRIO-K7IOModule Vivado Constraints]
File=ExampleIOModuleCLIPsK7.xdc

© National Instruments Corporation | 11-1

11
Creating Socketed
Component-Level IP for
Your Adapter Module and
NI 795xR/796xR Modules

To connect external signals from your adapter module to your LabVIEW VI, you need to add
your own custom HDL code to the LabVIEW FPGA project. Creating custom socketed
component-level IP (CLIP) allows you to program the FPGA to interface with the adapter
module circuitry.

FlexRIO devices support two types of CLIP: user-defined and socketed. User-defined CLIP
allows you to insert HDL IP into a LabVIEW target, enabling VHDL code to communicate
directly with an FPGA VI. Socketed CLIP provides the same IP integration functionality of the
user-defined CLIP, while also providing direct communication between the adapter module
connector interface and the FPGA VI. For a graphical overview of CLIP and its relationship with
FlexRIO hardware, refer to Figure 2-4, LabVIEW FPGA, CLIP, and Hardware Integration
Diagram (Virtex-5).

To add CLIP to a LabVIEW project, the LabVIEW FPGA Module must support the IP that you
use as CLIP. The CLIP must also have an accompanying XML declaration file. The XML
declaration file describes the elements of the IP, which the LabVIEW FPGA Module uses to add
the IP to the LabVIEW project. To use CLIP with your adapter module, complete the following
steps:
1. Create or acquire the IP, and, if needed, create optional adapter module IP constraints by

setting them in the .ucf file.
2. Create a CLIP declaration XML file to define the adapter module I/O for LabVIEW FPGA.
3. Configure your adapter module to use CLIP in the LabVIEW project.

These steps are described in greater detail below.

Using the CLIP Wizard
You can also use the CLIP Wizard to help create your custom CLIP or to edit existing CLIP.
Complete the following steps to access the CLIP Wizard:
1. Right-click the desired target in the Project Explorer window and select Properties.

11-2 | ni.com

Chapter 11 Creating Socketed Component-Level IP for Your Adapter Module and NI 795xR/796xR Modules

2. In the Category section of the FPGA Target Properties dialog box, select
Component-Level IP.

3. On the right side of the FPGA Target Properties dialog box, click the Create File icon to
create new CLIP or, to edit existing CLIP, select the desired CLIP from the list and click
the Modify File icon.

Note If your .fam or .tbc file is in the location listed in Chapter 9, Creating
Socketed Component-Level IP for Your Adapter Module and NI 795xR/796xR
Modules, you can select the configuration values for your adapter module in the CLIP
Wizard, which auto-populates your XML declaration file. If you do not use the CLIP
Wizard, follow the instructions in the ExampleIOModuleCLIPV5.xml section or the
Configuring the FlexRIO Adapter Module in LabVIEW section of this chapter to
create your XML declaration file.

Creating or Acquiring the IP for the FlexRIO
Adapter Module
To use socketed CLIP with your FPGA adapter module, you must first create or acquire IP, in
the form of VHDL code or other HDL code wrapped in VHDL code, to compile into the FPGA
target. This IP performs the following tasks:
• Directly controls the FPGA pins on the adapter module connector interface.
• Provides a signal interface to LabVIEW FPGA, which allows LabVIEW to interact with

the adapter module. The author of the adapter module CLIP can customize the interface
exposed to LabVIEW FPGA.

• Implements any additional adapter module-specific functionality.

To help with adapter module component-level IP development, National Instruments provides
example adapter module socketed CLIP files.

The example CLIP for NI 795xR and NI 796xR devices is composed of the following files:
• ExampleIOModuleCLIPV5.vhd
• ExampleIOModuleCLIPV5.ucf
• ExampleIOModuleCLIPV5.xml

The example socketed CLIP files are installed in the following location:
• Windows XP

C:\Documents and Settings\All Users\Shared Documents\National
Instruments\FlexRIO\Module Development Kit\Examples\IO Module

• Windows 8/7/Vista

C:\Users\Public\Documents\National Instruments\FlexRIO\Module
Development Kit\Examples\IO Module

© National Instruments Corporation | 11-3

FlexRIO Adapter Module Development Kit

The following sections describe the process of creating a new adapter module socketed CLIP
using the example adapter module CLIP. For additional information about creating CLIP, refer
to the Integrating Third-Party IP (FPGA Module) and the NI FlexRIO Help books of the FPGA
Module in the LabVIEW Help.

Tip When developing new socketed CLIP from the provided example files, first
copy the example adapter module CLIP files to another location on your disk drive
so that you can safely modify them.

ExampleIOModuleCLIPV5.vhd

Note The ExampleIOModuleCLIPV5.vhd section contains steps to create CLIP for
Virtex-5 devices.

ExampleIOModuleCLIPV5.vhd is the top-level VHDL file of the socketed CLIP and defines
the top-level port interface to the CLIP. LabVIEW FPGA uses this interface when compiling the
CLIP into LabVIEW FPGA. This section explains the changes you must make to the example
file in order to adapt this CLIP to your adapter module.
1. Incorporate your IP into this VHDL file, writing new VHDL code or instantiating

existing IP as necessary. The adapter module connector I/O signals are listed in the
ExampleIOModuleCLIP port interface. These signals are the fixed interface to the adapter
module and are therefore required in the port interface for your adapter module CLIP.
Tables 11-1, 11-2, and 11-3 list the additional signals available for use in your CLIP
interface.

Table 11-1. GPIO and CLK Signals from Adapter Module

Signal Name Direction Data Type Description

aUserGpio Bidirectional std_logic_
vector
(65 downto 0)

66 GPIO FPGA pins
(non-inverted).

aUserGpio_n Bidirectional std_logic_
vector
(65 downto 0)

66 GPIO FPGA pins (inverted).

rIoModGpioEn To CLIP std_logic Adapter module GPIO buffer
enable signal. When this signal is
logic high, it is safe to enable the
buffers for the GPIO signals. When
this signal is logic low, the I/O
buffers for the GPIO signals must
be tristated.

11-4 | ni.com

Chapter 11 Creating Socketed Component-Level IP for Your Adapter Module and NI 795xR/796xR Modules

UserGClkLvds To CLIP std_logic Differential external clock input
(non-inverted). This signal is routed
via a global clock pin of the FPGA.

UserGClkLvds_n To CLIP std_logic Differential external clock input
(inverted). This signal is routed via
a global clock pin of the FPGA.

UserGClkLvttl To CLIP std_logic Single-ended external clock input.
This signal is routed via a global
clock pin of the FPGA.

Table 11-2. CLK Signals to LabVIEW FPGA

Signal Name Direction Data Type Description

IoModClipClock0 From CLIP std_logic External clock signal routed to
LabVIEW FPGA. This signal is
exposed as an external clock resource
in LabVIEW FPGA named
IO Module Clock 0.

IoModClipClock1 From CLIP std_logic External clock signal routed to
LabVIEW FPGA. This signal is
exposed as an external clock resource
in LabVIEW FPGA named
IO Module Clock 1.

Table 11-1. GPIO and CLK Signals from Adapter Module (Continued)

Signal Name Direction Data Type Description

© National Instruments Corporation | 11-5

FlexRIO Adapter Module Development Kit

Table 11-3. I2C Core Interface Signals*

Signal Name Direction Data Type Description

rLvFpgaReqI2cBus From
CLIP

std_logic Drive a 1 to this port to request
control of the shared I2C bus. Only
request the I2C bus if the adapter
module is properly identified and
powered. When you finish accessing
the I2C bus, you must always release
access to the I2C bus.

rLvFpgaAckI2cBus To CLIP std_logic This signal indicates a 1 when I2C
bus access is granted after you assert
rLvFpgaReqI2cBus. Commands
sent to the I2C controller are ignored
if this signal indicates a 0.

rLvFpgaI2cGo From
CLIP

std_logic Drive a 1 to this signal to send a
command to the I2C controller. You
must configure all I2C controller
inputs before driving this signal
high. The I2C controller latches the
command input when it detects a
rising edge on this signal and begins
the I2C transaction. Do not reassert
this signal until LvFPGAI2CDone
indicates a 1.

rLvFpgaI2cStart From
CLIP

std_logic Drive a 1 to this signal to send an I2C
start pattern at the beginning of your
I2C transaction.

rLvFpgaI2cStop From
CLIP

std_logic Drive a 1 to this signal to send an I2C
stop pattern at the end of your I2C
transaction.

rLvFpgaI2cRd From
CLIP

std_logic Drive a 1 to this signal to indicate a
read transaction, meaning the I2C
controller returns RdData from the
bus. Drive a 0 to this signal to
indicate a write transaction, meaning
the I2C controller drives the WtData
value to the bus.

rLvFpgaI2cWtData From
CLIP

std_logic_
vector
(7 downto 0)

This is the 8-bit data value written to
the bus by the I2C controller during a
Write transaction.

11-6 | ni.com

Chapter 11 Creating Socketed Component-Level IP for Your Adapter Module and NI 795xR/796xR Modules

2. Expose an interface to LabVIEW FPGA so that your adapter module is accessible from the
LabVIEW VI. The collection of signals for this interface is customizable and therefore may
be tuned to the particular application domain in which you intend to use your adapter
module. Each of these signals must also be added to the port map of the top-level VHDL
file for your CLIP. These signals have the following requirements:
• Signal direction may be only To CLIP or From CLIP. The Bidirectional signal

direction is not supported.
• The signal data type must be one of the following:

– std_logic
– std_logic_vector (7 downto 0)
– std_logic_vector (15 downto 0)
– std_logic_vector (31 downto 0)
– std_logic_vector (63 downto 0)

• If you developed your CLIP using the provided example CLIP, you should rename the
top-level entity name and VHDL file name to something appropriate for your adapter
module.

rLvFpgaI2cAck To CLIP std_logic Valid after an I2C transaction. A 1
indicates that the I2C controller read
an Ack from the bus.

rClktoSocket To CLIP std_logic This is a copy of the 40MHz RioClk
used by default in LV FPGA
diagrams. All I2C signals—denoted
by the r prefix—are synchronous to
this clock.

rLvFpgaI2cDone To CLIP std_logic A 1 indicates that the I2C controller
is done. Wait for 1 before reading the
outputs.

rLvFpgaI2cRdData To CLIP std_logic_
vector
(7 downto 0)

This is the 8-bit data value read from
the I2C bus during a Read
transaction. Read this value after the
completion of a read transaction. A0
indicates that the bus is busy.

* All I2C core interface signals are synchronized to the rClkToSocket signal.

Table 11-3. I2C Core Interface Signals* (Continued)

Signal Name Direction Data Type Description

© National Instruments Corporation | 11-7

FlexRIO Adapter Module Development Kit

Using External Clocks
When importing an external clock for use in your adapter module CLIP and/or in your
LabVIEW FPGA VI, you must consider several factors. These considerations apply to CLIP
logic and UCF constraints covering these incoming clock signals. Refer to the Signal
Descriptions section of Chapter 3, Interfacing Adapter Modules with NI 795xR and NI 796xR
Modules, for a list of the clock-capable adapter module GPIO interface pins.

NI requires that you include the following logic considerations within any CLIP clocking
interface:
• Any clock shared with the LV FPGA VI that uses IoModCLIPClock<0..1> or is exported

from the socketed CLIP must be stable and free running at all times. If these clocks are
unstable, such as during a power-up or reset, you must not drive them to LabVIEW FPGA
generated logic. Use a clock buffer with an “enable” control to gate an unstable clock, such
as a BUFGCE.

• All LV FPGA clocks are stable and free running unless you assert a Reset. After you assert
a Reset, assert any DCM/PLL logic using these clocks. Do not drive unstable clocks to
LabVIEW FPGA logic or any other logic.

Note NI does not recommend using the IoModClipClock for any new designs.
Instead of using IoModClipClock, NI recommends exporting the clock from the
socketed CLIP.

Note A Reset may be held for as little as one clock cycle. If your logic requires a
longer hold during Reset, you should implement application appropriate logic, such
as a shift register, to define the necessary hold time.

NI recommends also incorporating the following considerations into your CLIP clocking
interface.
• Use a global clock buffer (BUFG) or regional clock buffer (BUFR) to drive an incoming

clock onto the FPGA clock network. For more information about the differences between
clock buffer options and the limitations of each, refer to Xilinx documentation, available at
www.xilinx.com. For a list of Xilinx documents applicable to FlexRIO applications,
refer to Appendix C, Xilinx Documentation References.

• Add OFFSET timing constraints for all adapter module signals captured or driven with the
external clock.

• Any LabVIEW FPGA controls and indicators placed in external clock domains could result
in warnings if you access them while the external clock is disabled. If you require controls
or indicators in external clock domains, structure host code to access these controls or
indicators only when the external clock is running.

11-8 | ni.com

Chapter 11 Creating Socketed Component-Level IP for Your Adapter Module and NI 795xR/796xR Modules

ExampleIOModuleCLIPV5.ucf

Note The ExampleIOModuleCLIPV5.ucf file provides constraints for the
NI 795xR and NI 796xR devices.

Each IP implementation may require custom constraints settings. Each adapter module CLIP
implementation may optionally be packaged with a constraints file which is used during the
compilation process. This constraints file should generally provide timing-related constraints
only. Do not include constraints for the FPGA I/O pin signal standards in the adapter module
CLIP constraints file.

The FPGA I/O pin signal standards are constrained in the adapter module configuration
file (.fam). Refer to Chapter 9, Configuring Your Adapter Module for Use with
NI 795xR/796xR Modules and LabVIEW FPGA, for information about the pin signal constraints.

Note To ensure correct compilation of your adapter module constraints
information, NI recommends using () as the bus delimiters in both the .ucf and the
.fam files, instead of using <>. For example: aUserGpio(*).

Note FlexRIO CLIPs are not instantiated as part of the top-level design. NI
recommends using %CLIPInstancePath% in your constraints information to
ensure that the Xilinx compiler can locate the signal name. If you do not direct the
compiler to the signal using %CLIPInstancePath%, the compiler may return an
error.

If you developed your CLIP using the provided example CLIP, modify the example adapter
module constraints file to properly constrain your IP and rename the file to something more
appropriate for your adapter module. For more information about timing constraints, refer to
Xilinx documentation, available at www.xilinx.com. For a list of Xilinx documents
applicable to FlexRIO applications, refer to Appendix C, Xilinx Documentation References.

ExampleIOModuleCLIPV5.xml

Note You only need to complete the steps in this section if you did not use the CLIP
Wizard to create your CLIP. The CLIP Wizard auto-populates this XML declaration
file based on the information that you select in the CLIP Wizard.

Note The ExampleIOModuleCLIPV5.xml file provides an example of a CLIP
declaration file for the NI 795xR and NI 796xR devices.

The final step of creating a new adapter module socketed CLIP is to create a CLIP declaration
file. The CLIP declaration file performs the following tasks:
• Identifies paths to each of the source files that provide the implementation for your CLIP.
• Defines the top-level entity name for your CLIP.

© National Instruments Corporation | 11-9

FlexRIO Adapter Module Development Kit

• Defines the collection of signals that are exposed both to the LabVIEW FPGA side of the
CLIP interface and to the hardware socketed side of the CLIP interface.

• Defines the name of the CLIP socket(s) compatible with this CLIP.
• Defines the collection of adapter modules compatible with this CLIP.
• Describes and defines how your VHDL ports appear in the LabVIEW FPGA project.

Complete the following steps to adapt the example adapter module socketed CLIP XML file to
your new adapter module CLIP.
1. Add the LabVIEW FPGA port interface signals to the list of interface signals in your XML

file. All CLIP declaration XML files contain an <InterfaceList> section which defines
three different types of interfaces: Fabric, LabVIEW, and Socket. Each of these
interface types is denoted by specifying the appropriate value for <InterfaceType>
within a named <Interface> section.
For example, the ExampleIOModuleCLIPV5.xml file defines three types of interfaces.
One of the interfaces in your CLIP XML file must define each signal in the top-level port
interface for your socketed CLIP. The Fabric and Socket interfaces, however, are fixed
for all adapter module CLIP items and cannot be changed. You can customize the
LabVIEW FPGA interface. The interface must account for all LabVIEW FPGA CLIP
signals that you define in the top-level port interface for your CLIP. In this example, the
LabVIEW FPGA interface has three signals: Clock In, Data In, and Data Out. As you adapt
this CLIP XML file to your adapter module, you must remove these signals and add the
signals defined in your port map. For more information about <Signal> tag syntax, refer
to the Integrating Third-Party IP (FPGA Module) topic in the FPGA Module book of the
LabVIEW Help.

2. Update the value of the <HDLName> tag to match the top-level entity name of your CLIP.
3. Define the paths to each of the source files that provides the implementation for your CLIP.

Update the <ImplementationList> tag to define these paths. Each of the <Path> tags
defines a path to a source file, relative to the location of the XML file. Each of the files
defined in the <ImplementationList> is included in the compilation.

4. Define this socketed CLIP as compatible with your physical adapter module. This
information is specified in the <CompatibleIOModuleList> tag. This list may have
one or more <IOModule> tags, each of which identifies a particular adapter module that
is compatible with this CLIP. If your adapter module has an adapter module IO Module ID,
defined in the .fam file and programmed into the EEPROM, you must uniquely identify
your adapter module using this value. If your adapter module does not have an
IO Module ID, you can still identify it by name. The syntax of the <IOModule> value is
as follows:
To identify an adapter module by IO Module ID:
IOModuleID:<IO Module ID (in hexadecimal)>
For example: IOModuleID:0xFFFF0001
To identify an adapter module by name:
Name:<Manufacturer Name>::<Model Name>
For example: Name:Example Manufacturer::Example Module

11-10 | ni.com

Chapter 11 Creating Socketed Component-Level IP for Your Adapter Module and NI 795xR/796xR Modules

5. Rename the <CLIPDeclaration> tag name to an appropriate user-visible name for your
socketed CLIP. This name is displayed in the LabVIEW FPGA configuration user interface.
Add an appropriate description of the CLIP to the <Description> tag. Rename the
CLIP XML file to something appropriate to your CLIP.

For more information about adding a CLIP declaration file to a LabVIEW FPGA project, refer
to the Integrating Third-Party IP (FPGA Module) topic in the FPGA Module book of the
LabVIEW Help. This topic in the LabVIEW Help contains the list of tags that you can use in the
declaration file. In addition to these XML tags, FlexRIO adapter module declaration files for
socketed CLIP require tags that define the interface between the FPGA and the adapter module
circuitry. The following table lists the XML tags used in the socketed CLIP declaration file. The
following socketed CLIP XML tags are required in your declaration file.

Table 11-4. Socketed CLIP XML Tags

Tag Parent Tag Description

CLIPVersion CLIPDeclaration Specifies the version of this CLIP
implementation. Use this tag to specify the
version of the CLIP as a whole. To specify
the CLIPVersion, use the following format:

<major>.<minor>.<revision>

Example: 1.0.0

Description CLIPDeclaration Provides a description of the CLIP visible in
the user interface. You may use \n to format
the string with end-of-line characters.

CompatibleIO
ModuleList

CLIPDeclaration Identifies the collection of adapter modules
compatible with this CLIP. This tag contains
one or more IOModule tags.

© National Instruments Corporation | 11-11

FlexRIO Adapter Module Development Kit

Note To assist with creating FlexRIO adapter module CLIP XML files,
National Instruments provides an XML schema file. This file is named
AdapterModuleCLIPDeclaration.xsd and is installed in the following
location:
• Windows XP

C:\Documents and Settings\All Users\Shared Documents\
National Instruments\FlexRIO\Module Development Kit\
Design Files

• Windows 8/7/Vista
C:\Users\Public\Documents\National Instruments\FlexRIO\
Module Development Kit\Design Files

IOModule CompatibleIO
ModuleList

Identifies an individual adapter module that
this CLIP is compatible with. You can identify
the adapter module either by IO Module ID or
by Name. If your adapter module has an
IO Module ID, always use the IO Module ID
for identification, rather than the name.
• To identify by IO Module ID, use the

following syntax:
IOModuleID:<IO Module ID>
Example: IOModuleID:0xFFFF0001

• To identify by name, use the following
syntax:
Name:<Manufacturer>::<Model>
Example: Name:Example
Manufacturer::Example Module

CompatibleCLIP
SocketList

CLIPDeclaration Identifies the collection of CLIP sockets
compatible with this CLIP.

Socket CompatibleCLIP
SocketList

Identifies an individual CLIP socket
compatible with this CLIP. For adapter
module socketed CLIP, define this tag as
follows: FlexRIO-IOModule

SupportedDevice
Families

CLIPDeclaration Identifies which devices families are
supported. Valid values are Virtex-5. You
can also specify Unlimited to support all
families.

Table 11-4. Socketed CLIP XML Tags (Continued)

Tag Parent Tag Description

11-12 | ni.com

Chapter 11 Creating Socketed Component-Level IP for Your Adapter Module and NI 795xR/796xR Modules

Configuring the FlexRIO Adapter Module in
LabVIEW
Before creating a new LabVIEW project that uses your CLIP, first ensure that your CLIP is
stored within the IO Modules directory on disk, inside of your manufacturer-specific subfolder
that you created earlier. NI recommends that you store your socketed CLIP alongside your
adapter module .fam or .tbc file.

Storing your CLIP within the IO Modules directory on disk assists in integrating your adapter
module support files within the LabVIEW development environment. LabVIEW automatically
discovers any CLIP items stored within the IO Modules directory and makes them selectable
within your project. Using the IO Modules directory also allows you to develop a custom
adapter module installer package that automatically installs support for your adapter module.

Note The FlexRIO software refers to adapter modules as IO modules.

Adding Your Adapter Module and Module I/O in
LabVIEW
To use your adapter module with LabVIEW, complete the following steps:
1. Create a new LabVIEW project.
2. Add your FPGA target to the project. The FlexRIO FPGA module appears in the

LabVIEW Project Explorer window with an unconfigured adapter module.
Figure 11-1. FPGA Target

3. To configure your adapter module, right-click the IO Module item under the FPGA Target
and select Properties to display the IO Module Properties dialog box.

© National Instruments Corporation | 11-13

FlexRIO Adapter Module Development Kit

4. Check the box for Enable IO Module to enable the adapter module, and select your adapter
module from the IO Modules list.

5. The adapter module socketed CLIP you created appears in the Component Level IP list.
Select your adapter module CLIP from the Component Level IP list. The adapter module
and CLIP descriptions display in the Details box. If there were errors with your .fam file
or the CLIP XML file, syntax errors are displayed. You must correct these errors in order
for the items to appear correctly.

6. In the Clock Selections category, configure any necessary CLIP clock signals.

11-14 | ni.com

Chapter 11 Creating Socketed Component-Level IP for Your Adapter Module and NI 795xR/796xR Modules

7. Click OK. Your LabVIEW FPGA I/O displays underneath the IO Module in the project,
and your adapter module is now ready for use.

If you were unable to select your adapter module or your CLIP, refer to Appendix B,
Troubleshooting, for possible solutions.

Manually Adding CLIP to Your LabVIEW Project
For convenience, LabVIEW also supports storing your adapter module socketed CLIP in a
location external to the IO Modules directory. For example, you may wish to store your
adapter module CLIP in the same location as your LabVIEW FPGA project files. In this
situation, LabVIEW does not automatically discover your adapter module CLIP and you must
manually add your adapter module CLIP to your LabVIEW project. To manually add your
adapter module CLIP to the LabVIEW project, complete the following steps:
1. Create a new LabVIEW project.
2. Add your FPGA target to the project. The FlexRIO FPGA module appears in the

LabVIEW Project Explorer window with an unconfigured adapter module.

© National Instruments Corporation | 11-15

FlexRIO Adapter Module Development Kit

3. Right-click the FPGA target and select Properties from the shortcut menu to display the
FPGA Target Properties dialog box.

4. Select Component Level IP from the Category list to display the Component Level IP
FPGA Target Properties page.

5. Click the Add button. A file browser window launches, prompting you for the location of
your CLIP XML file. Browse to the XML file location, select it, and click OK.

11-16 | ni.com

Chapter 11 Creating Socketed Component-Level IP for Your Adapter Module and NI 795xR/796xR Modules

6. Click OK on the FPGA Target Properties dialog. Your adapter module CLIP has now
been added to your FPGA target and is available for selection from within the IO Module
Properties dialog box.

Refer to the Adding Your Adapter Module and Module I/O in LabVIEW section to configure your
adapter module with the CLIP you added to your LabVIEW project.

© National Instruments Corporation | 12-1

12
Creating Socketed
Component-Level IP for
Your Adapter Module and
NI-793xR/NI 797xR Modules

To connect external signals from your adapter module to your LabVIEW VI, you need to add
your own custom HDL code to the LabVIEW FPGA project. Creating custom socketed
component-level IP (CLIP) allows you to program the FPGA to interface with the adapter
module circuitry.

FlexRIO devices support two types of CLIP: user-defined and socketed. User-defined CLIP
allows you to insert HDL IP into a LabVIEW target, enabling VHDL code to communicate
directly with an FPGA VI. Socketed CLIP provides the same IP integration functionality of the
user-defined CLIP, while also providing direct communication between the adapter module
connector interface and the FPGA VI. For a graphical overview of CLIP and its relationship with
FlexRIO hardware, refer to Chapter 2, FlexRIO Solution Architecture Overview.

To add CLIP to a LabVIEW project, LabVIEW FPGA Module must support the IP that you use
as CLIP. The CLIP must also have an accompanying XML declaration file. The XML
declaration file describes the elements of the IP, which LabVIEW FPGA Module uses to add the
IP to the LabVIEW project. To use CLIP with your adapter module, complete the following
steps:
1. Create or acquire the IP, and, if needed, create optional adapter module IP constraints by

setting them in the .ucf/.xdc file.
2. Create a CLIP declaration XML file to define the adapter module I/O for LabVIEW FPGA.
3. Configure your adapter module to use CLIP in the LabVIEW project.

These steps are described in greater detail below.

Using the CLIP Wizard
You can also use the CLIP Wizard to help create your custom CLIP or to edit existing CLIP.
Complete the following steps to access the CLIP Wizard:
1. Right-click the desired target in the Project Explorer window and select Properties.
2. In the Category section of the FPGA Target Properties dialog box, select

Component-Level IP.

12-2 | ni.com

Chapter 12 Creating Socketed Component-Level IP for Adapter and NI-793xR/NI 797xR Modules

3. On the right side of the FPGA Target Properties dialog box, click the Create File icon to
create new CLIP or, to edit existing CLIP, select the desired CLIP from the list and click
the Modify File icon.

Note If your .fam or .tbc file is in the location listed in the Creating the Adapter
Module Configuration (.fam) File or Creating the Adapter Module Configuration
(.fam) File section of Chapter 10, Configuring Your Adapter Module for Use with
NI-793xR/797xR Modules and LabVIEW FPGA, you can select the configuration
values for your adapter module in the CLIP Wizard, which auto-populates your XML
declaration file. If you do not use the CLIP Wizard, follow the instructions in the
ExampleIOModuleCLIPK7.xml section of this chapter to create your XML declaration file.

Creating or Acquiring the IP for the FlexRIO
Adapter Module
To use socketed CLIP with your adapter module, you must first create or acquire IP, in the form
of VHDL code or other HDL code wrapped in VHDL code, to compile into the FPGA target.
This IP performs the following tasks:
• Directly controls the FPGA pins on the adapter module connector interface.
• Provides a signal interface to LabVIEW FPGA, which allows LabVIEW to interact with

the adapter module. The author of the adapter module CLIP can customize the interface
exposed to LabVIEW FPGA.

• Implements any additional adapter module-specific functionality.

To help with adapter module component-level IP development, National Instruments provides
example adapter module socketed CLIP files.

The example CLIP for NI 797xR devices running on LabVIEW 2013 is composed of the
following files:
• ExampleIOModuleCLIPK7.vhd
• ExampleIOModuleCLIPK7.ucf
• ExampleIOModuleCLIPK7.xml

The example CLIP for NI-793xR/NI 797xR devices running on LabVIEW 2014 and later is
composed of the following files:

Note FlexRIO Support 15.1 is the earliest version of FlexRIO Support that supports
the NI-793xR devices.

• ExampleIOModuleCLIPK7.vhd
• ExampleIOModuleCLIPK7.xdc
• ExampleIOModuleCLIPK7.xml

© National Instruments Corporation | 12-3

FlexRIO Adapter Module Development Kit

The example socketed CLIP files are installed in the following location:
• Windows XP

C:\Documents and Settings\All Users\Shared Documents\National
Instruments\FlexRIO\Module Development Kit\Examples\IO Module

• Windows 8/7/Vista

C:\Users\Public\Documents\National Instruments\FlexRIO\Module
Development Kit\Examples\IO Module

The following sections describe the process of creating a new adapter module socketed CLIP
using the example adapter module CLIP. For additional information about creating CLIP, refer
to the Integrating Third-Party IP (FPGA Module) and the FlexRIO Help books of the
FPGA Module in the LabVIEW Help.

Tip When developing new socketed CLIP from the provided example files, first
copy the example adapter module CLIP files to another location on your disk drive
so that you can safely modify them.

ExampleIOModuleCLIPK7.vhd
ExampleIOModuleCLIPK7.vhd is the top-level VHDL file of the socketed CLIP and defines
the top-level port interface to the CLIP. LabVIEW FPGA uses this interface when compiling the
CLIP into LabVIEW FPGA. This section explains the changes you must make to the example
file in order to adapt this CLIP to your adapter module.

Incorporate your IP into this VHDL file, writing new VHDL code or instantiating existing IP as
necessary. The adapter module connector I/O signals are listed in the ExampleIOModuleCLIP
port interface. These signals are the fixed interface to the adapter module and are therefore
required in the port interface for your adapter module CLIP. Tables 12-1, 12-2, and 12-3 list the
additional signals available for use in your CLIP interface.

12-4 | ni.com

Chapter 12 Creating Socketed Component-Level IP for Adapter and NI-793xR/NI 797xR Modules

Table 12-1. GPIO and CLK Signals from Adapter Module

Signal Name Direction Data Type Description

aUserGpio Bidirectional std_logic_
vector
(67 downto 0)

68 GPIO FPGA pins (non-inverted).

aUserGpio_n Bidirectional std_logic_
vector
(67 downto 0)

68 GPIO FPGA pins (inverted).

rIoModGpioEn To CLIP std_logic Adapter module GPIO buffer enable
signal. When this signal is logic high,
it is safe to enable the buffers for the
GPIO signals. When this signal is
logic low, the I/O buffers for the
GPIO signals must be tristated.

Table 12-2. I2C Core Interface Signals*

Signal Name Direction Data Type Description

rLvFpgaReqI2cBus From
CLIP

std_logic Drive a 1 to this port to request
control of the shared I2C bus. Only
request the I2C bus if the adapter
module is properly identified and
powered. When you finish accessing
the I2C bus, you must always release
access to the I2C bus.

rLvFpgaAckI2cBus To CLIP std_logic This signal indicates a 1 when I2C
bus access is granted after you assert
rLvFpgaReqI2cBus. Commands
sent to the I2C controller are ignored
if this signal indicates a 0.

© National Instruments Corporation | 12-5

FlexRIO Adapter Module Development Kit

rLvFpgaI2cGo From
CLIP

std_logic Drive a 1 to this signal to send a
command to the I2C controller. You
must configure all I2C controller
inputs before driving this signal
high. The I2C controller latches the
command input when it detects a
rising edge on this signal and begins
the I2C transaction. Do not reassert
this signal until LvFPGAI2CDone
indicates a 1.

rLvFpgaI2cStart From
CLIP

std_logic Drive a 1 to this signal to send an I2C
start pattern at the beginning of your
I2C transaction.

rLvFpgaI2cStop From
CLIP

std_logic Drive a 1 to this signal to send an I2C
stop pattern at the end of your I2C
transaction.

rLvFpgaI2cRd From
CLIP

std_logic Drive a 1 to this signal to indicate a
read transaction, meaning the I2C
controller returns RdData from the
bus. Drive a 0 to this signal to
indicate a write transaction, meaning
the I2C controller drives the WtData
value to the bus.

rLvFpgaI2cWtData From
CLIP

std_logic_
vector
(7 downto 0)

This is the 8-bit data value written to
the bus by the I2C controller during a
Write transaction.

rLvFpgaI2cAck To CLIP std_logic Valid after an I2C transaction. A 1
indicates that the I2C controller read
an Ack from the bus.

rClktoSocket To CLIP std_logic This is a copy of the 40MHz RioClk
used by default in LV FPGA
diagrams. All I2C signals—denoted
by the r prefix—are synchronous to
this clock.

Table 12-2. I2C Core Interface Signals* (Continued)

Signal Name Direction Data Type Description

12-6 | ni.com

Chapter 12 Creating Socketed Component-Level IP for Adapter and NI-793xR/NI 797xR Modules

The signals in the following table interact with the Time to Digital Converter (TDC) on the
NI-793xR/NI 797xR modules. They are reserved for future use.

Note Leave all inputs open or unconnected.

Note Drive all outputs with a 0.

Using External Clocks
When importing an external clock for use in your adapter module CLIP and/or in your
LabVIEW FPGA VI, you must consider several factors. These considerations apply to CLIP
logic and UCF constraints covering these incoming clock signals. Refer to the NI-793xR and
NI 797xR Signal Descriptions section of Chapter 4, Interfacing Adapter Modules with NI-793xR
and NI 797xR Devices, for a list of the clock-capable adapter module GPIO interface pins.

rLvFpgaI2cDone To CLIP std_logic A 1 indicates that the I2C controller
is done. Wait for 1 before reading the
outputs.

rLvFpgaI2cRdData To CLIP std_logic_
vector
(7 downto 0)

This is the 8-bit data value read from
the I2C bus during a Read
transaction. Read this value after the
completion of a read transaction. A0
indicates that the bus is busy.

* All I2C core interface signals are synchronized to the rClkToSocket signal.

Table 12-3. TDC Circuitry

Signal Name Direction Data Type Description

TdcAssertClk To CLIP std_logic Reserved for future use.

tTdcAssert From CLIP std_logic

Clk100 To CLIP std_logic

c100TdcDeassert From CLIP std_logic

rTdcPulseWidth To CLIP std_logic_vector
(15 downto 0)

rTdcPulseWidthValid To CLIP std_logic

Table 12-2. I2C Core Interface Signals* (Continued)

Signal Name Direction Data Type Description

© National Instruments Corporation | 12-7

FlexRIO Adapter Module Development Kit

NI requires that you include the following logic considerations within any CLIP clocking
interface:
• Any clock shared with the LV FPGA VI that is exported from the socketed CLIP must be

stable and free running at all times. If these clocks are unstable, such as during a power-up
or reset, you must not drive them to LabVIEW FPGA generated logic. Use a clock buffer
with an “enable” control to gate an unstable clock, such as a BUFGCE.

• All LV FPGA clocks are stable and free running unless you assert a Reset. After you assert
a Reset, assert any DCM/PLL logic using these clocks. Do not drive unstable clocks to
LabVIEW FPGA logic or any other logic.

Note A Reset may be held for as little as one clock cycle. If your logic requires a
longer hold during Reset, you should implement application appropriate logic, such
as a shift register, to define the necessary hold time.

NI recommends also incorporating the following considerations into your CLIP clocking
interface.
• Use a global clock buffer (BUFG) or regional clock buffer (BUFR) to drive an incoming

clock onto the FPGA clock network. For more information about the differences between
clock buffer options and the limitations of each, refer to Xilinx documentation, available at
www.xilinx.com. For a list of Xilinx documents applicable to FlexRIO applications, refer
to Appendix C, Xilinx Documentation References.

• Add OFFSET timing constraints for all adapter module signals captured or driven with the
external clock.

• Any LabVIEW FPGA controls and indicators placed in external clock domains could result
in warnings if you access them while the external clock is disabled. If you require controls
or indicators in external clock domains, structure host code to access these controls or
indicators only when the external clock is running.

ExampleIOModuleCLIPK7.ucf

Note The ExampleIOModuleCLIPK7.ucf file provides constraints for the
NI 797xR devices used with LabVIEW 2013.

Each IP implementation may require custom constraints settings. Each adapter module CLIP
implementation may optionally be packaged with a constraints file which is used during the
compilation process. This constraints file should generally provide timing-related constraints
only. Do not include constraints for the FPGA I/O pin signal standards in the adapter module
CLIP constraints file.

The FPGA I/O pin signal standards are constrained in the adapter module configuration file
(.fam). Refer to Chapter 10, Configuring Your Adapter Module for Use with NI-793xR/797xR
Modules and LabVIEW FPGA, for information about the pin signal constraints.

12-8 | ni.com

Chapter 12 Creating Socketed Component-Level IP for Adapter and NI-793xR/NI 797xR Modules

Note To ensure correct compilation of your adapter module constraints
information, NI recommends using () as the bus delimiters in both the .ucf and the
.fam files, instead of using <>. For example: aUserGpio(*).

Note FlexRIO CLIPs are not instantiated as part of the top-level design. NI
recommends using %CLIPInstancePath% in your constraints information to
ensure that the Xilinx compiler can locate the signal name. If you do not direct the
compiler to the signal using %CLIPInstancePath%, the compiler may return an
error.

If you developed your CLIP using the provided example CLIP, modify the example adapter
module constraints file to properly constrain your IP and rename the file to something more
appropriate for your adapter module. For more information about timing constraints, refer to
Xilinx documentation, available at www.xilinx.com. For a list of Xilinx documents
applicable to FlexRIO applications, refer to Appendix C, Xilinx Documentation References.

ExampleIOModuleCLIPK7.xdc

Note The ExampleIOModuleCLIPK7.xdc file provides constraints for the
NI-793xR/NI 797xR devices used with LabVIEW 2014 and later.

Note FlexRIO Support 15.1 is the earliest version of FlexRIO Support that supports
the NI-793xR devices.

Each IP implementation may require custom constraints settings. Each adapter module CLIP
implementation requires a .xdc file that accompanies a .fam file and an additional optional
.xdc file that may accompany the .vhd files. The .xdc file that accompanies the .fam file
should contain all of the FPGA I/O pin signal standards. The additional .xdc files generally
provide timing-related constraints only, and do not include constraints for the FPGA I/O pin
signal standards.

Refer to Chapter 10, Configuring Your Adapter Module for Use with NI-793xR/797xR Modules
and LabVIEW FPGA, for information about the pin signal constraints.

Note FlexRIO CLIPs are not instantiated as part of the top-level design. NI
recommends using %CLIPInstancePath% in your constraints information to ensure
that the Xilinx compiler can locate the signal name. If you do not direct the compiler to
the signal using %CLIPInstancePath%, the compiler may return an error.

If you developed your CLIP using the provided example CLIP, modify the example adapter
module constraints file to properly constrain your IP and rename the file to something more
appropriate for your adapter module. For more information about timing constraints, refer to
Xilinx documentation, available at www.xilinx.com. For a list of Xilinx documents
applicable to FlexRIO applications, refer to Appendix C, Xilinx Documentation References.

© National Instruments Corporation | 12-9

FlexRIO Adapter Module Development Kit

ExampleIOModuleCLIPK7.xml

Note You only need to complete the steps in this section if you did not use the CLIP
Wizard to create your CLIP. The CLIP Wizard auto-populates this XML declaration
file based on the information that you select in the CLIP Wizard.

Note The ExampleIOModuleCLIPK7.xml file provides an example of a CLIP
declaration file for the NI-793xR/NI 797xR devices.

The final step of creating a new adapter module socketed CLIP is to create a CLIP declaration
file. The CLIP declaration file performs the following tasks:
• Identifies paths to each of the source files that provide the implementation for your CLIP.
• Defines the top-level entity name for your CLIP.
• Defines the collection of signals that are exposed both to the LabVIEW FPGA side of the

CLIP interface and to the hardware socketed side of the CLIP interface.
• Defines the name of the CLIP socket(s) compatible with this CLIP.
• Defines the collection of adapter modules compatible with this CLIP.
• Describes and defines how your VHDL ports appear in the LabVIEW FPGA project.

Complete the following steps to adapt the example adapter module socketed CLIP XML file to
your new adapter module CLIP.
1. Add the LabVIEW FPGA port interface signals to the list of interface signals in your XML

file. All CLIP declaration XML files contain an <InterfaceList> section which defines
three different types of interfaces: Fabric, LabVIEW, and Socket. Each of these
interface types is denoted by specifying the appropriate value for <InterfaceType>
within a named <Interface> section.
For example, the ExampleIOModuleCLIPK7.xml file defines three types of interfaces.
One of the interfaces in your CLIP XML file must define each signal in the top-level port
interface for your socketed CLIP. The Fabric and Socket interfaces, however, are fixed
for all adapter module CLIP items and cannot be changed. You can customize the
LabVIEW FPGA interface. The interface must account for all LabVIEW FPGA CLIP
signals that you define in the top-level port interface for your CLIP. In this example, the
LabVIEW FPGA interface has three signals: Clock In, Data In, and Data Out. As you adapt
this CLIP XML file to your adapter module, you must remove these signals and add the
signals defined in your port map. For more information about <Signal> tag syntax, refer
to the Integrating Third-Party IP (FPGA Module) topic in the FPGA Module book of the
LabVIEW Help.

2. Update the value of the <HDLName> tag to match the top-level entity name of your CLIP.
3. Define the paths to each of the source files that provides the implementation for your CLIP.

Update the <ImplementationList> tag to define these paths. Each of the <Path> tags
defines a path to a source file, relative to the location of the XML file. Each of the files
defined in the <ImplementationList> is included in the compilation.

12-10 | ni.com

Chapter 12 Creating Socketed Component-Level IP for Adapter and NI-793xR/NI 797xR Modules

4. Define this socketed CLIP as compatible with your physical adapter module. This
information is specified in the <CompatibleIOModuleList> tag. This list may have
one or more <IOModule> tags, each of which identifies a particular adapter module that
is compatible with this CLIP. If your adapter module has an adapter module IO Module ID,
defined in the .fam file and programmed into the EEPROM, you must uniquely identify
your adapter module using this value. If your adapter module does not have an
IO Module ID, you can still identify it by name. The syntax of the <IOModule> value is
as follows:

To identify an adapter module by IO Module ID:
IOModuleID:<IO Module ID (in hexadecimal)>
For example: IOModuleID:0xFFFF0001

To identify an adapter module by name:
Name:<Manufacturer Name>::<Model Name>
For example: Name:Example Manufacturer::Example Module

5. Rename the <CLIPDeclaration> tag name to an appropriate user-visible name for your
socketed CLIP. This name is displayed in the LabVIEW FPGA configuration user interface.
Add an appropriate description of the CLIP to the <Description> tag. Rename the
CLIP XML file to something appropriate to your CLIP.

For more information about adding a CLIP declaration file to a LabVIEW FPGA project, refer
to the Integrating Third-Party IP (FPGA Module) topic in the FPGA Module book of the
LabVIEW Help. This topic in the LabVIEW Help contains the list of tags that you can use in the
declaration file. In addition to these XML tags, FlexRIO adapter module declaration files for
socketed CLIP require tags that define the interface between the FPGA and the adapter module
circuitry. The following table lists the XML tags used in the socketed CLIP declaration file. The
following socketed CLIP XML tags are required in your declaration file.

Table 12-4. Socketed CLIP XML Tags

Tag Parent Tag Description

CLIPVersion CLIPDeclaration Specifies the version of this CLIP
implementation. Use this tag to specify the
version of the CLIP as a whole. To specify
the CLIPVersion, use the following format:

<major>.<minor>.<revision>

Example: 1.0.0

Description CLIPDeclaration Provides a description of the CLIP visible in
the user interface. You may use \n to format
the string with end-of-line characters.

© National Instruments Corporation | 12-11

FlexRIO Adapter Module Development Kit

CompatibleIO
ModuleList

CLIPDeclaration Identifies the collection of adapter modules
compatible with this CLIP. This tag contains
one or more IOModule tags.

IOModule CompatibleIO
ModuleList

Identifies an individual adapter module that
this CLIP is compatible with. You can
identify the adapter module either by IO
Module ID or by Name. If your adapter
module has an IO Module ID, always use
the IO Module ID for identification, rather
than the name.
• To identify by IO Module ID, use the

following syntax:
IOModuleID:<IO Module ID>
Example: IOModuleID:0xFFFF0001

• To identify by name, use the following
syntax:
Name:<Manufacturer>::<Model>
Example: Name:Example
Manufacturer::Example Module

CompatibleCLIP
SocketList

CLIPDeclaration Identifies the collection of CLIP sockets
compatible with this CLIP.

Socket CompatibleCLIP
SocketList

Identifies an individual CLIP socket
compatible with this CLIP. For adapter
module socketed CLIP, define this tag as
follows: FlexRIO-K7IOModule

SupportedDevice
Families

CLIPDeclaration Identifies which devices families are
supported. Valid values are Kintex-7. You
can also specify Unlimited to support all
families.

Table 12-4. Socketed CLIP XML Tags (Continued)

Tag Parent Tag Description

12-12 | ni.com

Chapter 12 Creating Socketed Component-Level IP for Adapter and NI-793xR/NI 797xR Modules

Note To assist with creating FlexRIO adapter module CLIP XML files,
National Instruments provides an XML schema file. This file is named
AdapterModuleCLIPDeclaration.xsd and is installed in the following
location:
• Windows XP

C:\Documents and Settings\All Users\Shared Documents\
National Instruments\FlexRIO\Module Development Kit\
Design Files

• Windows 8/7/Vista
C:\Users\Public\Documents\National Instruments\FlexRIO\
Module Development Kit\Design Files

Configuring the FlexRIO Adapter Module in
LabVIEW
Before creating a new LabVIEW project that uses your CLIP, first ensure that your CLIP is
stored within the IO Modules directory on disk, inside of your manufacturer-specific subfolder
that you created earlier.

Storing your CLIP within the IO Modules directory on disk assists in integrating your adapter
module support files within the LabVIEW development environment. LabVIEW automatically
discovers any CLIP items stored within the IO Modules directory and makes them selectable
within your project. Using the IO Modules directory also allows you to develop a custom
adapter module installer package that automatically installs support for your adapter module.

Note The FlexRIO software refers to adapter modules as IO modules.

© National Instruments Corporation | 12-13

FlexRIO Adapter Module Development Kit

Adding Your Adapter Module and Module I/O in
LabVIEW
To use your adapter module with LabVIEW, complete the following steps:
1. Create a new LabVIEW project.
2. Add your FPGA target to the project. The FlexRIO FPGA module appears in the

LabVIEW Project Explorer window with an unconfigured adapter module.
Figure 12-1. FPGA Target

3. To configure your adapter module, right-click the IO Module item under the FPGA Target
and select Properties to display the IO Module Properties dialog box.

4. Check the box for Enable IO Module to enable the adapter module, and select your adapter
module from the IO Modules list.

5. The adapter module socketed CLIP you created appears in the Component Level IP list.
Select your adapter module CLIP from the Component Level IP list. The adapter module
and CLIP descriptions display in the Details box. If there were errors with your .fam file
or the CLIP XML file, syntax errors are displayed. You must correct these errors in order
for the items to appear correctly.

12-14 | ni.com

Chapter 12 Creating Socketed Component-Level IP for Adapter and NI-793xR/NI 797xR Modules

6. In the Clock Selections category, configure any necessary CLIP clock signals.

© National Instruments Corporation | 12-15

FlexRIO Adapter Module Development Kit

7. Click OK. Your LabVIEW FPGA I/O displays underneath the IO Module in the project,
and your adapter module is now ready for use.

If you were unable to select your adapter module or your CLIP, refer to Appendix B,
Troubleshooting, for possible solutions.

Manually Adding CLIP to Your LabVIEW Project
For convenience, LabVIEW also supports storing your adapter module socketed CLIP in a
location external to the IO Modules directory. For example, you may wish to store your
adapter module CLIP in the same location as your LabVIEW FPGA project files. In this
situation, LabVIEW does not automatically discover your adapter module CLIP and you must
manually add your adapter module CLIP to your LabVIEW project. To manually add your
adapter module CLIP to the LabVIEW project, complete the following steps:
1. Create a new LabVIEW project.
2. Add your FPGA target to the project. Your device appears in the LabVIEW Project

Explorer window with an unconfigured adapter module.

12-16 | ni.com

Chapter 12 Creating Socketed Component-Level IP for Adapter and NI-793xR/NI 797xR Modules

3. Right-click the FPGA target and select Properties from the shortcut menu to display the
FPGA Target Properties dialog box.

4. Select Component Level IP from the Category list to display the Component Level IP
FPGA Target Properties page.

5. Click the Add button. A file browser window launches, prompting you for the location of
your CLIP XML file. Browse to the XML file location, select it, and click OK.

© National Instruments Corporation | 12-17

FlexRIO Adapter Module Development Kit

6. Click OK on the FPGA Target Properties dialog. Your adapter module CLIP has now
been added to your FPGA target and is available for selection from within the IO Module
Properties dialog box.

Refer to the Adding Your Adapter Module and Module I/O in LabVIEW section to configure your
adapter module with the CLIP you added to your LabVIEW project.

© National Instruments Corporation | 13-1

13
Designing and Debugging
Component-Level IP

This chapter explores best practices for designing the CLIP and provides debugging tips for
issues that commonly occur during development. For more information about designing and
debugging CLIP, refer to Chapter 11, Creating Socketed Component-Level IP for Your Adapter
Module and NI 795xR/796xR Modules (NI 795xR and NI 796xR), and Chapter 12, Creating
Socketed Component-Level IP for Your Adapter Module and NI-793xR/NI 797xR Modules
(NI 797xR and NI-793xR), of this manual, as well as the Integrating Third-Party IP (FPGA
Module) book in the LabVIEW Help.

Synchronous vs Asynchronous Interfaces
Data can pass either synchronously or asynchronously across the boundary separating
LabVIEW FPGA from the CLIP.

Synchronous interfaces have the following characteristics.
• Data is sent and received using the same clock
• Data integrity is ensured

Asynchronous interfaces have the following characteristics.
• Data is sent and received using different clocks
• Data transferring from a high frequency clock domain to a low frequency clock

domain can be lost

Multi-bit interfaces should always be synchronous. Asynchronous multi-bit interfaces should be
used only under the following circumstances:

• The interface does not have specific arrival time requirements
• The interface data does not need to arrive deterministically
• The interface is used in multiple different clock domains

NI strongly recommends that your designs use only synchronous LabVIEW FPGA/CLIP
interfaces due to the difficulty analyzing and constraining asynchronous LabVIEW FPGA/CLIP
interfaces. Synchronous interfaces provide the following benefits.

• LabVIEW FPGA safely removes synchronization registers, which guard against
metastability. This reduces latency introduced by the synchronization registers. Refer
to the Passing Data Between Component-Level IP and VIs topic in the LabVIEW Help

• No additional constraints are required to successfully compile

13-2 | ni.com

Chapter 13 Designing and Debugging Component-Level IP

If an asynchronous interface for a signal, such as a trigger, is necessary, it should be used in
moderation. For more information about using asynchronous interfaces, refer to the
Considerations for Asynchronous Data Interfaces section.

Instead of relying on LabVIEW FPGA to synchronize the data as it crosses to or from the CLIP,
NI recommends including all clock domain crossings within the CLIP. This forces the
LabVIEW FPGA/CLIP interface to be synchronous, greatly reducing the design complexity.

Figure 13-1 illustrates two D-type flip-flops asynchronously sending a signal from the CLIP to
LabVIEW FPGA.

Figure 13-1. Asynchronous Interfaces Between LabVIEW FPGA and CLIP

Figure 13-2 illustrates two flip-flops sending data synchronously from the CLIP into
LabVIEW FPGA, while Figure 13-3 illustrates two flip-flops sending data synchronously from
LabVIEW FPGA to the CLIP. Note that the clock driving the logic on both sides of the path can
originate from either the CLIP or LabVIEW FPGA.

Figure 13-2. Interfaces Synchronous to CLIP Clock

Figure 13-3. Interfaces Synchronous to LabVIEW FPGA Clock

Data D Q

CLIP Clock

LabVIEW FPGACLIP

DataD Q

LabVIEW FPGA Clock

Data D Q

CLIP
Clock

LabVIEW FPGACLIP

DataD Q

Data D Q

LV Clock

CLIPLabVIEW FPGA

DataD Q

© National Instruments Corporation | 13-3

FlexRIO Adapter Module Development Kit

Defining Synchronous CLIP Interfaces
The following section explains how to implement a synchronous CLIP interface. For
information about adding data interfaces to the list of I/O that the CLIP exposes to LabVIEW,
refer to Chapter 11, Creating Socketed Component-Level IP for Your Adapter Module and
NI 795xR/796xR Modules, (NI 795xR and NI 796xR devices) or Chapter 12, Creating Socketed
Component-Level IP for Your Adapter Module and NI-793xR/NI 797xR Modules, (NI 797xR or
NI-793xR devices) of this manual, or to the CLIP Tutorial: Adding Component-Level IP to an
FPGA Project (FPGA Module) topic of the LabVIEW Help.

Implementing a synchronous interface to communicate between LabVIEW FPGA and the CLIP
requires properly creating the CLIP VHDL, CLIP XML, LabVIEW project, and the FPGA VI.

Configuring the Top-Level CLIP HDL File
The following HDL snippet demonstrates how to drive the synchronous interface using a
LabVIEW FPGA clock (LVClock). You must import the clock into the CLIP as part of the port
map. LVClock then latches the data from LabVIEW FPGA with sLVDataOut. The data
returning to LabVIEW FPGA (sLVDataIn) is the output of a flip-flop that is driven by LVClock.
SynchronousLabVIEWData: process (aResetSl, LVClock)
begin

if aResetSl = '1' then
sLVDataIn <= (others => '0');

elsif rising_edge(LVClock) then
sLVDataIn <= sLVDataOut;

end if;
end process;

The following HDL snippet demonstrates how to drive the synchronous interface using a clock
originating in the CLIP (ClipClock). You must export the ClipClock through the CLIP port map.
The data to and from LabVIEW FPGA, called sClipDataIn and sClipDataOut, respectively, are
latched using ClipClock.
SynchronousCLIPData: process (aResetSl, ClipClock)
begin

if aResetSl = '1' then
sClipDataIn <= (others => '0');

elsif rising_edge(ClipClock) then
sClipDataIn <= sClipDataOut;

end if;
end process;

Creating the CLIP XML
The top-level VHDL port map defines the inputs and outputs of the CLIP. The inputs and outputs
are further defined and constrained in the CLIP XML, which LabVIEW FPGA uses to

13-4 | ni.com

Chapter 13 Designing and Debugging Component-Level IP

implement the interface. NI recommends using the CLIP Wizard to generate the XML. For more
information about using the CLIP Wizard, refer to the Using the CLIP Wizard section of
Chapter 11, Creating Socketed Component-Level IP for Your Adapter Module and
NI 795xR/796xR Modules (NI 795xR and NI 796xR devices), or the Using the CLIP Wizard
section of Chapter 12, Creating Socketed Component-Level IP for Your Adapter Module and
NI-793xR/NI 797xR Modules (NI 797xR or NI-793xR devices), of this manual, or to the Using
the Configure Component-Level IP Wizard (FPGA Module) topic of the LabVIEW Help.

In the CLIP Wizard, the VHDL inputs and outputs can be defined as a reset, data, or clock.
• Reset signals are connected to LabVIEW’s global FPGA reset.
• Data signals are made into LabVIEW FPGA I/O Nodes.
• Clocks are connected to or made into LabVIEW FPGA clock resources in the

LabVIEW project.

The signals are configured on Page 4 of the CLIP Wizard, as shown in Figure 13-4.
Figure 13-4. Signal Definition in the XML Wizard

The clocks can be further constrained with specific frequency ranges, duty cycle, accuracy, and
jitter on Page 5 of the CLIP Wizard, as shown in Figure 13-5.

© National Instruments Corporation | 13-5

FlexRIO Adapter Module Development Kit

Figure 13-5. Clock Constraints in the XML Wizard

Finally, the data lines can be constrained on Page 7 of the CLIP Wizard to be placed inside
single-cycle timed loops (SCTL) driven by specific clocks. Figure 13-6 shows that the sLVData
and sClipData I/O Nodes must be placed in the sLVClock and sClipClock domains, respectively.
This matches the above VHDL implementation.

Note The aData signals are driven by sClipClock in the VHDL and sLVClock in
LabVIEW, making the interface asynchronous.

13-6 | ni.com

Chapter 13 Designing and Debugging Component-Level IP

Figure 13-6. Signal Clock Domain Constraints in the XML Wizard

Integrating the CLIP into LabVIEW
In the LabVIEW project, you must configure the adapter module to use your CLIP and route any
clocks from LabVIEW to the CLIP. For more information, refer to the Configuring the FlexRIO
Adapter Module in LabVIEW sections in Chapter 11, Creating Socketed Component-Level IP
for Your Adapter Module and NI 795xR/796xR Modules, (NI 795xR and NI 796xR devices) or
Chapter 12, Creating Socketed Component-Level IP for Your Adapter Module and
NI-793xR/NI 797xR Modules (NI 797xR or NI-793xR devices).

Note The Clock Selections IO Module Properties page populates with any clock
from LabVIEW to the CLIP, allowing you to route any derived FPGA clock to the
adapter module.

The FPGA VI can be populated with SCTLs and I/O nodes. The compiler forces you to follow
the constraints set in the XML file and the IO Module Properties page.

© National Instruments Corporation | 13-7

FlexRIO Adapter Module Development Kit

Figure 13-7. LabVIEW FPGA VI Implementing Synchronous and Asynchronous Interfaces

Refer to the Updating the LabVIEW Project to Reflect Changes in the CLIP XML section of this
chapter for more information.

Considerations for Asynchronous Data
Interfaces
This section provides helpful tips and requirements to consider when using asynchronous
interfaces in your application.

LabVIEW FPGA automatically inserts synchronization registers into the signal path of any
asynchronous CLIP I/O. The default number of synchronization registers inserted into the signal
path is one for signals going into the CLIP, and two for signals coming from the CLIP. If the
design can safely leave the synchronization registers out of the interface path, you can remove
them by completing the following steps.
1. In the LabVIEW project, expand the list of CLIP I/O.
2. Right click the I/O signal and select Properties.
3. In the Properties window, change the synchronization registers to a non-default value.

Refer to the Passing Data between Component-Level IP and VIs topic in the LabVIEW Help for
more information about synchronization registers.

13-8 | ni.com

Chapter 13 Designing and Debugging Component-Level IP

Asynchronous data interfaces require additional constraints to compile successfully. Often, you
must place a constraint on an interface that needs to perform a clock domain crossing, which
causes the compiler to ignore timing on the identified interface path. Refer to the How to
Constrain Timing Failures in ISE section or the How to Constrain Timing Failures in Vivado
section of this chapter for instructions about how to apply constraints to interfaces with a
destination or origin in LabVIEW FPGA.

Xilinx Integrated Synthesis Environment (ISE) and Xilinx Vivado Design Suite compilers may
analyze asynchronous interfaces differently. For example, a design that uses an unconstrained
asynchronous interface may compile without errors in ISE, but will fail timing in Vivado due to
the increased scrutiny that Vivado places on interfaces that cross clock domains. You must
account for cases like these when developing a CLIP intended for use on ISE and Vivado targets.
When developing a CLIP for both compilers, explicity define the signal’s intended behavior,
rather than allowing implicit assumptions to define the behavior.

Best Practices for Designing Constraints
The following best practices can ensure that the constraints are properly and efficiently designed
for your application. The recommendations in this section apply to CLIPs intended for use on
FPGA targets that use a Vivado compiler. For more information about designing constraints,
refer to the following Xilinx user guides.

• Vivado Design Suite User Guide: Using Constraints
• 7 Series FPGAs Clocking Resources: User Guide
• 7 Series FPGAs Select IO Resources: User Guide

Constraint File Organization
The organization of constraints within the .xdc file helps the compiler correctly analyze the
constraints in the design. The compiler interprets constraints in a sequential manner, from top to
bottom, until all constraints have been analyzed. NI recommends the following constraint
organization structure:
Timing Assertions Section

 # Primary clocks
 # Virtual clocks
 # Generated clocks
 # Clock Groups
 # Input and output delay constraints

Timing Exceptions Section
 # False Paths
 # Max Delay / Min Delay
 # Multicycle Paths
 # Case Analysis
 # Disable Timing

© National Instruments Corporation | 13-9

FlexRIO Adapter Module Development Kit

Keep physical constraints in a separate .xdc file, such as the .xdc file that defines the I/O
assignments of the GPIO lines.

Documenting Constraints
Include comments in your constraints file that clearly indicate the signal being acted upon, the
purpose of the constraint, and why the signal is being constrained. The following code provides
examples of comments.
##Primary Clocks
50 MHz DataClk - the DUT generates a free running and static 50MHz clock
to which the data is synchronous
create_clock -name DataClk -period 20 [get_ports aUserGpio[38]]

Clocks
Use create_clock to create all primary and virtual clocks in your CLIP design. For example,
you may have a device under test (DUT) that provides a data clock that is synchronous to a data
source. The constraint file defines that signal as a clock to the compiler. Failure to constrain
clocks in your design could lead to issues in which your compilation passes timing, but works
inconsistently during functional testing.

You do not need to create constraints for clocks generated in the LabVIEW FPGA design, such
as a base clock source from the LabVIEW FPGA project. These constraints are automatically
generated by your LabVIEW FPGA project.

Resets
Asynchronous resets that originate inside your CLIP should also be constrained to remove false
timing violations that may occur. Identify all reset signals in your CLIP design and be sure to
create constraints as required.

Note If you assign a top-level reset signal in LabVIEW FPGA’s CLIP Wizard, you
should not create a constraint for this signal in the .xdc file.

Max Delay and False Path
The .xdc file uses two important constraints called set_max_delay and set_false_path.
You must understand the implications and the correct application of set_max_delay and
set_false_path to successfully compile your design, and to analyze time-critical paths in
your design. If you do not include constraints for these paths, the compile tools incorrectly
analyze these paths’ timing. For more information, refer to the Vivado Design Suite User Guide:
Using Constraints.

NI recommends only using set_max_delay constraints rather than set_false_path
constraints. Both commands can be used to create a successfully constrained project, but
set_max_delay provides more timing control over path delay than set_false_path.

13-10 | ni.com

Chapter 13 Designing and Debugging Component-Level IP

For example, a path delay of 20 ns would not be reported to the designer if a set_false_path
command were used, yet the compiler could route your signal with any delay it needed based on
the constraint. However, using set_max_delay at 10 ns would safely constrain the maximum
path delay in the fabric to 10 ns. You can relax the maximum delay path value to find the optimal
value for your design.

Any time you use set_false_path, you must understand where the constraint begins and
ends. Using both -to and -from creates the most control over the path to be ignored. Be careful
when using just one constraint or the other, as timing critical paths other than the one you intend
to constrain in the design may be ignored.

Clock Groups
When setting two clock domains asynchronous of each other in your constraints file, you can use
the set_clock_groups Tcl command, which ignores any timing analysis between two clock
domains. Using this command is acceptable when you have a clock domain crossing between
two clocks that exist entirely within the CLIP, and are not related to one another.

LabVIEW FPGA base clocks should not be set asynchronous from CLIP clocks when CLIP
clocks are brought into LabVIEW FPGA and used on the block diagram. Doing so ignores
important timing relationships in LabVIEW FPGA. If you set a base clock asynchronous from
a CLIP clock, ensure that the CLIP clock is not used in LabVIEW FPGA.

The best practice for constraining a clock domain crossing is to mark any clock domain crossings
(CDCs) and their related D flop in the design, and use the set_max_delay or
set_false_path command for all registers or FIFOs crossing into a new clock domain. The
following example constraints demonstrate this function.
#all D inputs of cdc synchronization registers are ignored
set_false_path -to [get_pins -hier *aurora_64b66b_cdc_to*/D]
#all D inputs of cdc synchronization registers have maximum delay of 10 ns
set_max_delay 10 -to [get_pins -hier *aurora_64b66b_cdc_to*/D]

Creating .xdc Constraints
Several different methods are available to create the .xdc constraint path to pins or cells using
Vivado constraint syntax. Consider the following tips while building the path to your pin, port,
or cell in your design. For more information about creating .xdc constraints, refer to the Xilinx
Vivado Design Suite User Guide: Using Constraints (UG903).
• When you first begin creating your .xdc constraints, you can use the Tcl Console to

validate the syntax of the .xdc commands before saving them in the .xdc files. You can
do this by creating a project in Vivado and opening the elaborated or synthesized design,
which then allows you to copy and paste constraints in the Tcl Console. If you enter the
constraint and it does not return an error, then it is validated. Refer to the Xilinx Vivado
Design Suite User Guide: Using Constraints (UG903) for more information.

• NI recommends avoiding using -hierarchical in your constraints. Instead, explicitly
use the / character at all levels of hierarchy to avoid potential problems with finding the
path in memory. Vivado synthesis can sometimes flatten hierarchy levels, which removes

© National Instruments Corporation | 13-11

FlexRIO Adapter Module Development Kit

some of the hierarchy path from memory. Creating a constraint that uses the
-hierarchical option with partial paths, such as using wildcards across multiple levels
of hierarchy, may return a warning that the object was not found. The following example is
adapted from the Xilinx Vivado Design Suite User Guide: Using Constraints (UG903):
RTL Design Example: register in overall design

inst_A/inst_B/control_reg
If the hierarchy is flattened, the following constraints will be found in the resulting flattened
design. However, if the hierarchy is not flattened, they will not be found. Note that a
wildcard is used to traverse multiple levels in both instances. Because a wildcard is used to
represent multiple levels of hierarchy with the hierarchical command, Vivado cannot find
the path in the design.
% get_cells –hierarchical *inst_B/control_reg (path not
found/constraint not applied in design, missing inst_A level)
% get_cells inst_A*control_reg (path not found/constraint not applied
in design, missing inst_b level)
Explicitly writing all or some part of every level in the hierarchy ensures that constraints
are properly found in both flattened and unflattened hierarchies, leading up to the object
you wish to constrain. The following is a correction to the above constraints to be found in
any synthesis/implementation of control_reg. Wildcards are still used within a level of
hierarchy, but do not traverse any hierarchy level:
% get_cells inst_A/inst_B/*_reg (successfully finds all pins/cells
with *_reg at the control_reg level)
% get_cells inst_*/inst_B/control_reg (successfully finds all
pins/cells with inst_* at the top inst_A level)
Refer to the following Xilinx Answer Record for more information: AR# 62136 Vivado
Constraints - Understanding how hierarchy separator "/" works with wildcard * in XDC
and UCF.

• NI provides a %ClipInstancePath% token that appends the overall VHDL hierarchy
used by the LabVIEW FPGA compiler to your existing external top-level VHDL path. For
instance, if you have a constraint for your CLIP that works outside of LabVIEW FPGA,
when you bring that constraint into LabVIEW FPGA, you must append the token to the
beginning of the object path so that the compiler can still find it in memory, as shown in the
following example:
% get_cells inst_A/inst_B/control_reg(Vivado constraint)
% get_cells %ClipInstancePath%/inst_A/inst_B/control_reg(LV FPGA
constraint that adds additional hierarchy levels)

Design Analysis and Closure Techniques
Timing violations and design issues are common when working in Vivado. For more
information on using various Vivado tools for analysis and timing closure, refer to the Vivado
Design Suite User Guide: Design Analysis and Closure Techniques, available at xilinx.com.

http://www.xilinx.com/
http://www.xilinx.com/support/answers/62136.html

13-12 | ni.com

Chapter 13 Designing and Debugging Component-Level IP

Common Issues and Troubleshooting
When creating constraints, you may find that you have some issues migrating constraints from
the Vivado standalone environment into your LabVIEW FPGA project. Below are common
issues that arise when migrating a Vivado design to LabVIEW, and troubleshooting techniques
to correct them.

Port vs Pin
When generating constraints for your adapter module, you may migrate some existing .xdc
constraints from a sample project into your LabVIEW FPGA project. In the LabVIEW FPGA
project, your top-level VHDL file (the CLIP) is a few levels below the adapter module’s
top-level VHDL file within your LabVIEW FPGA project. It is common to see the following
path appended to your top-level VHDL file by using the %ClipInstancePath% token (where
XXXX is replaced by the model number of your adapter module):

DeviceWindow/theCLIPs/AdapterModuleCLIP

This scenario creates an issue when referring to a port vs a pin in your top-level VHDL file.
Since the port must be on the top level to be referenced, you will see warnings that the port does
not exist when you bring your design into the LabVIEW FPGA project. To correct this, you must
replace get_ports with get_pins in your .xdc constraints file, along with adding the
%ClipInstancePath% token to the path.

In the following example, the first constraint may work standalone in Vivado; the second
constraint is updated for migrating to the LabVIEW FPGA project.
• create_clock -name DataClk -period 6.400 [get_ports DataClk]
• create_clock -name DataClk -period 6.400 [get_pins

%ClipInstancePath%/AuroraBlock.DataClkIBuf/O]

Troubleshooting Xilinx Log Files
When troubleshooting Xilinx log files (lvXilinxLog.txt), the following tips can help you
efficiently resolve problems in your design compilation. The lvXilinxLog.txt log file is
located at C:\NIFPGA\compilation\CompilationProjectName. In addition to the
lvXilinxLog.txt is an output_files.zip file that contains useful compiler logs.
• Resolve critical warnings in your log file. Search for “critical warnings” to locate all

references inside the log file.
• Analyze user constraints after synthesis in the compilation flow. The Processing XDC

Constraints section of the lvXilinxlog.txt file identifies issues in the constraints. You
must resolve any warnings or critical warnings directly related to user-defined constraints.
– Ignore warnings referencing constraints that you did not directly create. The .xdc file

you created is appended to a larger .xdc file, which contains many automatically
generated constraints for LabVIEW FPGA. These constraints do not have a negative
impact on your design.

© National Instruments Corporation | 13-13

FlexRIO Adapter Module Development Kit

– If a user-defined constraint shows up as a warning or a critical warning, then the
constraint was not applied to the compiled bitstream. Any user-defined constraints not
indicated in this section of the log file were successfully applied.

• Most constraint warnings provide helpful information about the source of the issue. Read
this information for an explanation of why the warnings appeared.

• LabVIEW 2016 and later include an unapplied_constraints.xdc file in the
output_files.zip file. The output_files.zip file also contains a
PumaK7Top.twr that contains a timing report of the analyzed signals, which can be useful
when investigating a timing failure.

Syntax Issues
Mistakes in the naming of a path can generate the following warning:
“WARNING: [Vivado 12-584] No ports matched”
“WARNING: [Vivado 12-508] No pins matched”
“WARNING: [Vivado 12-180] No cells matched”
“WARNING: [Vivado 12-627] No clocks matched”

To avoid these warnings, ensure the path you are searching for exists in your design.

The following is a list of common syntax issues that you may encounter in your constraints
design:
• Missing brackets { } or []
• The port or line number in a constraint is incorrect
• Misspelled port or line names
• Missing underscores

Debugging With the Timing Violation Analysis Window
As you compile in LabVIEW FPGA, you may encounter timing violations in the Compilation
Status window. Refer to the Timing Violation Analysis Window topic of the LabVIEW FPGA
Help for more information about the features of the window.

In order to effectively debug these violations, it helps to understand the two main types of errors
and their common reasons for failure. The first failure is an unrealistic timing requirement in
your design, as shown in the example below.
Path 5: Requirement 0.01ns missed by 3.95ns

PXIe-7975R IO Socket v1
PXIe-7975R IO Socket v1

Such timing violations may occur when clock domain crossings are unconstrained. The phase
shift drift simulated by the compiler leads to the small interval required.

If the above error message appears in the Timing Violation Analysis window, you must resolve
any unrealistic timing requirements first in your design. Other timing violations may be

http://www.ni.com/manuals/

13-14 | ni.com

Chapter 13 Designing and Debugging Component-Level IP

occurring only because the compiler is trying to meet the unrealistic timing requirement. The
compiler prioritizes the tight paths over other important timing critical paths, and having these
requirements in your design may cause several paths to fail to meet timing simultaneously.

To resolve these tight timing violations, first ensure that the clock domain crossings are crossed
properly. Next, check for errors in the path. You can see the path by clicking on the items under
the violation in the Timing Violation Analysis window, as shown in Figure 13-8. The most
common way to correct these issues is to call a false path constraint so that the compiler no
longer analyzes timing for the given path. For more information about handling timing failures
by ignoring the path for analysis, refer to the How to Constrain Timing Failures in ISE section
or the How to Constrain Timing Failures in Vivado section of this chapter.

The following figure shows other common paths that may appear in the Timing Violation
Analysis window:

Figure 13-8. Timing Violation Analysis Window

Requirements that look like a period interval to a real clock in your design typically do not need
correction when a Non-diagram component is the only item in the path. This is usually remedied
once the unrealistic timing requirements are corrected. When there are paths in your
LabVIEW FPGA diagram or your CLIP, and the requirement is reasonable, you may have to use
pipelining to ensure your logic can be performed within one clock cycle of the main clock
driving the logic. For more information about pipelining, refer to the Optimizing FPGA VIs
Using Pipelining topic of the LabVIEW FPGA Module Help.

How to Constrain Timing Failures in ISE
In order for LabVIEW to resolve timing failures on a path between a CLIP and the
LabVIEW FPGA Module block diagram, you must specify a timing constraint for that path.
Refer to the following KnowledgeBase article for more information: How Do I Instruct
LabVIEW to Ignore Timing Failures between Component-Level IP (CLIP) and the
LabVIEW FPGA Module Block Diagram?

http://digital.ni.com/public.nsf/allkb/2734DB78AF0133C386257D32004E7CFD
http://digital.ni.com/public.nsf/allkb/2734DB78AF0133C386257D32004E7CFD
http://digital.ni.com/public.nsf/allkb/2734DB78AF0133C386257D32004E7CFD

© National Instruments Corporation | 13-15

FlexRIO Adapter Module Development Kit

How to Constrain Timing Failures in Vivado
In order for LabVIEW to ignore timing failures on a path between a CLIP and the
LabVIEW FPGA Module block diagram, you must specify a timing constraint for that path.

Complete the following steps to create and configure a constraints file.
1. If your CLIP component does not currently include an .xdc constraints file in the

LabVIEW project, create a blank text file with the .xdc extension.
2. Open the file for editing.
3. Locate the failing compilation in the Compilation Status window and click the

Investigate Timing Violation… button to see a description of the failing path.
4. Note the internal names of the source and destination registers, located at the bottom of the

Timing Violation Analysis window. You need one of these pieces of information in order
to write the constraint.

5. The constraint being created ignores timing on the failing path. The syntax may vary,
depending on the path’s direction.
• If the path is an input path from CLIP to the LabVIEW FPGA Module block diagram

refer to the Digital Input Case section.
• If the path is an output path from the LabVIEW FPGA Module block diagram to CLIP,

refer to the Digital Output Case section.
6. After editing the .xdc file, save it and close it.
7. Edit the CLIP declaration and add the .xdc file to it if you created the file specifically for

fixing these timing failures.
8. Rebuild your LabVIEW project. The timing failure on the path in this case should be

handled by the new constraint file.

Digital Input Case
In the Xilinx Vivado digital input case, the constraint ignores timing on all the failing paths that
have a certain destination, and is retrieved from the Timing Violation Analysis window. Refer
to the following example syntax:
set_false_path -to [get_cells *<internal name of the destination register
in the failing path>]

In the above constraint, <internal name of the destination register in the
failing path> refers to the internal name of the destination register. The internal name can
be found at the bottom of the Timing Violation Analysis window. For example, the internal
name may look like the following:
/Component_dash_Level_IP_GPIO_In_0_din/cFirstRegister_ms_reg[0]

Add the above constraint to your .xdc file and populate the necessary fields with relevant
information.

13-16 | ni.com

Chapter 13 Designing and Debugging Component-Level IP

The following code is an example of a complete constraint, based on the Timing Violation
Analysis window.
set_false_path -to [get_cells
%ClipInstancePath%cFirstRegister_ms_reg[0]]

Note FlexRIO CLIPs are not instantiated as part of the top-level design. NI
recommends using %ClipInstancePath% in your constraints information to
ensure that the Xilinx compiler can locate the signal name. If you do not direct the
compiler to the signal using %ClipInstancePath%, the compiler may return an
error.

Digital Output Case
In the Xilinx Vivado digital output case, the constraint ignores timing on all the failing paths that
have a certain source, and is retrieved from the Timing Violation Analysis window. Refer to
the following example syntax:
set_false_path -from [get_cells *<internal name of the source register
in the failing path>]

In the above constraint, <internal name of the source register in the
failingpath> refers to the internal name of the source register. The internal name can be
found at the bottom of the Timing Violation Analysis window. For example, the internal name
may look like the following:
/Component_dash_Level_IP_GPIO_Out_0_dout/DoRegister.
SyncRegisterVector[0].SyncRegisterRising.cSyncRegister

Add the above constraint to your .xdc file and populate the necessary fields with relevant
information.

Refer to the following example of a complete constraint, based on the Timing Violation
Analysis window shown in the figure above:
set_false_path -from [get_cells
%ClipInstancePath%DoRegister.SyncRegisterVector[0].
SyncRegisterRising.cSyncRegister]

Note FlexRIO CLIPs are not instantiated as part of the top-level design. NI
recommends using %ClipInstancePath% in your constraints information to
ensure that the Xilinx compiler can locate the signal name. If you do not direct the
compiler to the signal using %ClipInstancePath%, the compiler may return an
error.

© National Instruments Corporation | 13-17

FlexRIO Adapter Module Development Kit

Updating the LabVIEW Project to Reflect
Changes in the CLIP XML
The CLIP XML file defines the signals from the top-level design file that are imported into
LabVIEW FPGA.The following figure shows the CLIP I/O exposed by the
ExampleIOModuleCLIPK7.xml used by the MDK example CLIP for NI PXIe-797xR
targets.

Figure 13-9. Example CLIP I/O

When the XML file is first loaded into a project, a snapshot of the CLIP I/O is cached in the
.lvproj file. This provides certain performance advantages; however, it can lead to issues
during development if the XML file is frequently updated, since those updates on disk will not
be propagated to the LabVIEW project.

For example, the adapter module CLIP in Figure 13-9 contains CLIP input with an interface
name of Data In. If the interface name of that signal is updated to Data In U32 in the
ClipAdder.xml file, those changes are not automatically reflected in the LabVIEW project by
saving the XML file, nor by opening and closing the LabVIEW Project.

The safest way to propagate updated XML changes to the LabVIEW project is to unload the
CLIP from the project, save the project, then load the CLIP back into the project. Performing
these steps removes the cached I/O from the .lvproj file and guarantees that the LabVIEW
project reflects the most recent contents of the XML file. To unload a CLIP, open the IO Module
Properties dialog page and uncheck the Enable IO Module box, then click OK. You must
update the LabVIEW project for every target in the project that has a CLIP with an XML file
that has changed.

You do not need to unload and reload a CLIP when changing .vhd files or any other design files.
Only changes to the XML require this step.

© National Instruments Corporation | A-1

A
Signal Suggestions

NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout
Locations
Table A-1 describes the Xilinx FPGA pin location for each FPGA signal on the card edge
interface.

The tables listed in this chapter are also available as a searchable Excel document in Knowledge
Base article 6NND5NOA and on the FlexRIO Community page.

Table A-1. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Locations

Sxxx
795xR/

796xR Name
793x/797x

Name
795x

FPGA Pin
796x

FPGA Pin
797x/793x

Pin

S1 GPIO_48_n GPIO_57 F20 A33 J11

S2 GPIO_48 GPIO_57_n G20 B32 J12

S3 GPIO_47_n GPIO_56 E20 C33 K14

S4 GPIO_47 GPIO_56_n E21 B33 J14

S5 GPIO_46_n GPIO_55 E23 D32 L11

S6 GPIO_46 GPIO_55_n E22 C32 K11

S7 GPIO_45_n GPIO_54 F23 D34 K13

S8 GPIO_45 GPIO_54_n F22 C34 J13

S9 GPIO_44_n GPIO_53 G22 H32 C12

S10 GPIO_44 GPIO_53_n G21 G32 B12

S11 GPIO_43_n GPIO_52 H22 E34 A11

S12 GPIO_43 GPIO_52_n H21 F33 A12

S13 GPIO_42_n GPIO_51 H19 E33 J16

S14 GPIO_42 GPIO_51_n J19 E32 H16

S15 GPIO_41_n GPIO_50 J23 F34 G13

S16 GPIO_41 GPIO_50_n H23 G33 F13

http://digital.ni.com/public.nsf/allkb/990E5083582E937786257D1F00683B86

A-2 | ni.com

Appendix A Signal Suggestions

S17 GPIO_40_n GPIO_49 J20 H33 E14

S18 GPIO_40 GPIO_49_n J21 J32 E15

S19 GPIO_39_n GPIO_48 K20 J34 B13

S20 GPIO_39 GPIO_48_n K21 H34 A13

S21 GPIO_38_n GPIO_47 K22 K34 H21

S22 GPIO_38 GPIO_47_n K23 L34 H22

S23 GPIO_37_n GPIO_46 L19 K32 J17

S24 GPIO_37 GPIO_46_n L20 K33 H17

S25 GPIO_36_n GPIO_45 M21 M32 C17

S26 GPIO_36 GPIO_45_n M22 L33 B17

S27 GPIO_35_n GPIO_44 N19 N34 D16

S28 GPIO_35 GPIO_44_n P19 P34 C16

S29 GPIO_34_n GPIO_43 M19 N32 B18

S30 GPIO_34 GPIO_43_n M20 P32 A18

S31 GPIO_33_n GPIO_42 N23 R34 A16

S32 GPIO_33 GPIO_42_n P23 T33 A17

S33 GPIO_32_n GPIO_41 H26 AA33 C19

S34 GPIO_32 GPIO_41_n G26 Y33 B19

S35 GPIO_31_n GPIO_40 G25 Y34 G17

S36 GPIO_31 GPIO_40_n G24 AA34 F17

S37 GPIO_30_n GPIO_39 J26 W32 G18

S38 GPIO_30 GPIO_39_n J25 Y32 F18

S39 GCLK_LVDS GPIO_38 F14 H17 D17

S40 GCLK_LVDS_n GPIO_38_n E13 H18 D18

S41 GPIO_29_n GPIO_37 J24 AD34 D21

Table A-1. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Locations (Continued)

Sxxx
795xR/

796xR Name
793x/797x

Name
795x

FPGA Pin
796x

FPGA Pin
797x/793x

Pin

© National Instruments Corporation | A-3

FlexRIO Adapter Module Development Kit

S42 GPIO_29 GPIO_37_n H24 AC34 C21

S43 GPIO_28_n GPIO_36 L25 AB32 A20

S44 GPIO_28 GPIO_36_n L24 AC32 A21

S45 GPIO_27_n GPIO_35 K26 AB33 C20

S46 GPIO_27 GPIO_35_n K25 AC33 B20

S47 GPIO_26_n GPIO_34 M26 AE33 F21

S48 GPIO_26 GPIO_34_n M25 AF33 E21

S49 GPIO_25_n GPIO_33 N24 AE34 B22

S50 GPIO_25 GPIO_33_n M24 AF34 A22

S51 GPIO_24_n GPIO_32 N26 AJ34 D22

S52 GPIO_24 GPIO_32_n P26 AH34 C22

S53 GPIO_23_n GPIO_31 P24 AE32 E19

S54 GPIO_23 GPIO_31_n P25 AD32 D19

S55 GPIO_22_n GPIO_30 T25 AK33 H20

S56 GPIO_22 GPIO_30_n T24 AK34 G20

S57 GPIO_21_n GPIO_29 U26 AH32 J19

S58 GPIO_21 GPIO_29_n V26 AG32 H19

S59 GPIO_20_n GPIO_28 U25 AK32 K19

S60 GPIO_20 GPIO_28_n U24 AJ32 K20

S61 GPIO_19_n GPIO_27 W26 AL33 L17

S62 GPIO_19 GPIO_27_n W25 AL34 L18

S63 GPIO_18_n GPIO_26 Y26 AM32 F20

S64 GPIO_18 GPIO_26_n Y25 AM33 E20

S65 GPIO_17_n GPIO_25 AA25 AN33 G22

S66 GPIO_17 GPIO_25_n AB25 AN34 F22

Table A-1. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Locations (Continued)

Sxxx
795xR/

796xR Name
793x/797x

Name
795x

FPGA Pin
796x

FPGA Pin
797x/793x

Pin

A-4 | ni.com

Appendix A Signal Suggestions

S67 GPIO_16_n GPIO_24 AB26 AP32 K18

S68 GPIO_16 GPIO_24_n AC26 AN32 J18

S69 RSVD_A1 TDC_Assert_Clk N/A N/A N/A

S70 RSVD_A2 TDC_Assert_
Clk_n

N/A N/A N/A

S71 Veeprom Veeprom N/A N/A N/A

S72 VccoB Vcco N/A N/A N/A

S73 TB_Power_Good TB_Power_Good N/A N/A N/A

S74 SDA SDA N/A N/A N/A

S75 GPIO_65_n GPIO_67 B16 J29 H11

S76 GPIO_65 GPIO_67_n B15 H29 H12

S77 GPIO_64_n GPIO_66 C16 E31 H15

S78 GPIO_64 GPIO_66_n D16 F31 G15

S79 GPIO_63_n GPIO_65 C17 K29 D11

S80 GPIO_63 GPIO_65_n D18 L29 C11

S81 GPIO_62_n GPIO_64 A17 G31 B14

S82 GPIO_62 GPIO_64_n B17 H30 A15

S83 GPIO_61_n GPIO_63 A19 J31 F11

S84 GPIO_61 GPIO_63_n A18 J30 E11

S85 GPIO_60_n GPIO_62 C18 M30 C15

S86 GPIO_60 GPIO_62_n B19 L30 B15

S87 GPIO_59_n GPIO_61 B20 P29 D14

S88 GPIO_59 GPIO_61_n A20 N29 C14

S89 GPIO_58_n GPIO_60 D19 L31 D12

S90 GPIO_58 GPIO_60_n C19 K31 D13

Table A-1. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Locations (Continued)

Sxxx
795xR/

796xR Name
793x/797x

Name
795x

FPGA Pin
796x

FPGA Pin
797x/793x

Pin

© National Instruments Corporation | A-5

FlexRIO Adapter Module Development Kit

S91 GPIO_57_n GPIO_59 D20 P30 F15

S92 GPIO_57 GPIO_59_n D21 P31 E16

S93 GPIO_56_n GPIO_58 B21 N30 F12

S94 GPIO_56 GPIO_58_n C21 M31 E13

S95 GPIO_55_n GPIO_23 A22 R31 H24

S96 GPIO_55 GPIO_23_n B22 T31 H25

S97 GPIO_54_n GPIO_22 A24 T30 E23

S98 GPIO_54 GPIO_22_n A23 U30 D23

S99 GPIO_53_n GPIO_21 C23 T29 G23

S100 GPIO_53 GPIO_21_n B24 T28 G24

S101 GPIO_52_n GPIO_20 C24 U28 F25

S102 GPIO_52 GPIO_20_n D24 U27 E25

S103 GPIO_51_n GPIO_19 A25 R27 E24

S104 GPIO_51 GPIO_19_n B25 R26 D24

S105 GPIO_50_n GPIO_18 C26 T26 B23

S106 GPIO_50 GPIO_18_n B26 U26 A23

S107 GPIO_49_n GPIO_17 D25 T25 H26

S108 GPIO_49 GPIO_17_n D26 U25 H27

S109 GPIO_15_n GPIO_16 T22 V24 C24

S110 GPIO_15 GPIO_16_n T23 W24 B24

S111 GPIO_14_n GPIO_15 R20 W26 F26

S112 GPIO_14 GPIO_15_n R21 Y26 E26

S113 GCLK_SE GPIO_14 AD18 AG21 C25

S114 GND GPIO_14_n N/A N/A B25

S115 GPIO_13_n GPIO_13 T19 W25 B27

Table A-1. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Locations (Continued)

Sxxx
795xR/

796xR Name
793x/797x

Name
795x

FPGA Pin
796x

FPGA Pin
797x/793x

Pin

A-6 | ni.com

Appendix A Signal Suggestions

S116 GPIO_13 GPIO_13_n T20 V25 A27

S117 GPIO_12_n GPIO_12 U21 W27 A25

S118 GPIO_12 GPIO_12_n U22 Y27 A26

S119 GPIO_11_n GPIO_11 W23 W30 B28

S120 GPIO_11 GPIO_11_n W24 V30 A28

S121 GPIO_10_n GPIO_10 V23 V27 D26

S122 GPIO_10 GPIO_10_n V24 V28 C26

S123 GPIO_9_n GPIO_9 AA24 Y31 C29

S124 GPIO_9 GPIO_9_n AA23 W31 B29

S125 GPIO_8_n GPIO_8 Y22 V29 G27

S126 GPIO_8 GPIO_8_n Y23 W29 F27

S127 GPIO_7_n GPIO_7 AC22 Y29 D29

S128 GPIO_7 GPIO_7_n AC23 Y28 C30

S129 GPIO_6_n GPIO_6 AC24 AA31 E28

S130 GPIO_6 GPIO_6_n AB24 AB31 D28

S131 GPIO_5_n GPIO_5 AA22 AC30 B30

S132 GPIO_5 GPIO_5_n AB22 AB30 A30

S133 GPIO_4_n GPIO_4 AB21 AA30 E29

S134 GPIO_4 GPIO_4_n AC21 AA29 E30

S135 GPIO_3_n GPIO_3 W20 AC29 G28

S136 GPIO_3 GPIO_3_n W21 AD30 F28

S137 GPIO_2_n GPIO_2 W19 AD29 D27

S138 GPIO_2 GPIO_2_n V19 AE29 C27

S139 GPIO_1_n GPIO_1 Y20 AK31 G29

S140 GPIO_1 GPIO_1_n Y21 AJ31 F30

Table A-1. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Locations (Continued)

Sxxx
795xR/

796xR Name
793x/797x

Name
795x

FPGA Pin
796x

FPGA Pin
797x/793x

Pin

© National Instruments Corporation | A-7

FlexRIO Adapter Module Development Kit

NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout
Capabilities
Table A-2 describes the functionality of each pin to aid in the design of your adapter module gold
finger and schematic.

S141 GPIO_0_n GPIO_0 AC19 AF30 H30

S142 GPIO_0 GPIO_0_n AD19 AF29 G30

S143 IOModSyncClk* IOModSyncClk N/A N/A N/A

S144 IOModSyncClk_n† IOModSyncClk_n N/A N/A N/A

S145 RSVD RSVD N/A N/A N/A

S146 VccoA Vcco N/A N/A N/A

S147 TB_Present_n TB_Present_n N/A N/A N/A

S148 SCL SCL N/A N/A N/A
* RSVD_B1 on NI 795xR devices

† RSVD_B2 on NI 795xR devices

Table A-2. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Capabilities

Sxxx
V5 Clock
Capable?

K7 Clock
Capable?

V5
GPIO?

K7
GPIO? V5 Bank K7 Bank

S1 No No TRUE TRUE Bank 11 Bank 18

S2 No No TRUE TRUE Bank 11 Bank 18

S3 No No TRUE TRUE Bank 11 Bank 18

S4 No No TRUE TRUE Bank 11 Bank 18

S5 No No TRUE TRUE Bank 11 Bank 18

S6 No No TRUE TRUE Bank 11 Bank 18

S7 No No TRUE TRUE Bank 11 Bank 18

S8 No No TRUE TRUE Bank 11 Bank 18

S9 No No TRUE TRUE Bank 11 Bank 18

Table A-1. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Locations (Continued)

Sxxx
795xR/

796xR Name
793x/797x

Name
795x

FPGA Pin
796x

FPGA Pin
797x/793x

Pin

A-8 | ni.com

Appendix A Signal Suggestions

S10 No No TRUE TRUE Bank 11 Bank 18

S11 No No TRUE TRUE Bank 11 Bank 18

S12 No No TRUE TRUE Bank 11 Bank 18

S13 No No TRUE TRUE Bank 11 Bank 18

S14 No No TRUE TRUE Bank 11 Bank 18

S15 No MRCC TRUE TRUE Bank 11 Bank 18

S16 No MRCC TRUE TRUE Bank 11 Bank 18

S17 Regional No TRUE TRUE Bank 11 Bank 18

S18 Regional No TRUE TRUE Bank 11 Bank 18

S19 Regional No TRUE TRUE Bank 11 Bank 18

S20 Regional No TRUE TRUE Bank 11 Bank 18

S21 Regional No TRUE TRUE Bank 11 Bank 17

S22 Regional No TRUE TRUE Bank 11 Bank 17

S23 Regional No TRUE TRUE Bank 11 Bank 17

S24 Regional No TRUE TRUE Bank 11 Bank 17

S25 No No TRUE TRUE Bank 11 Bank 17

S26 No No TRUE TRUE Bank 11 Bank 17

S27 No No TRUE TRUE Bank 11 Bank 17

S28 No No TRUE TRUE Bank 11 Bank 17

S29 No No TRUE TRUE Bank 11 Bank 17

S30 No No TRUE TRUE Bank 11 Bank 17

S31 No No TRUE TRUE Bank 11 Bank 17

S32 No No TRUE TRUE Bank 11 Bank 17

S33 No No TRUE TRUE Bank 13 Bank 17

S34 No No TRUE TRUE Bank 13 Bank 17

Table A-2. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Capabilities (Continued)

Sxxx
V5 Clock
Capable?

K7 Clock
Capable?

V5
GPIO?

K7
GPIO? V5 Bank K7 Bank

© National Instruments Corporation | A-9

FlexRIO Adapter Module Development Kit

S35 No No TRUE TRUE Bank 13 Bank 17

S36 No No TRUE TRUE Bank 13 Bank 17

S37 No No TRUE TRUE Bank 13 Bank 17

S38 No No TRUE TRUE Bank 13 Bank 17

S39 Global MRCC FALSE TRUE Bank 3 Bank 17

S40 Global MRCC FALSE TRUE Bank 3 Bank 17

S41 No No TRUE TRUE Bank 13 Bank 17

S42 No No TRUE TRUE Bank 13 Bank 17

S43 No No TRUE TRUE Bank 13 Bank 17

S44 No No TRUE TRUE Bank 13 Bank 17

S45 No No TRUE TRUE Bank 13 Bank 17

S46 No No TRUE TRUE Bank 13 Bank 17

S47 Regional SRCC TRUE TRUE Bank 13 Bank 17

S48 Regional SRCC TRUE TRUE Bank 13 Bank 17

S49 Regional No TRUE TRUE Bank 13 Bank 17

S50 Regional No TRUE TRUE Bank 13 Bank 17

S51 Regional No TRUE TRUE Bank 13 Bank 17

S52 Regional No TRUE TRUE Bank 13 Bank 17

S53 Regional SRCC TRUE TRUE Bank 13 Bank 17

S54 Regional SRCC TRUE TRUE Bank 13 Bank 17

S55 No No TRUE TRUE Bank 13 Bank 17

S56 No No TRUE TRUE Bank 13 Bank 17

S57 No No TRUE TRUE Bank 13 Bank 17

S58 No No TRUE TRUE Bank 13 Bank 17

S59 No No TRUE TRUE Bank 13 Bank 17

Table A-2. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Capabilities (Continued)

Sxxx
V5 Clock
Capable?

K7 Clock
Capable?

V5
GPIO?

K7
GPIO? V5 Bank K7 Bank

A-10 | ni.com

Appendix A Signal Suggestions

S60 No No TRUE TRUE Bank 13 Bank 17

S61 No No TRUE TRUE Bank 13 Bank 17

S62 No No TRUE TRUE Bank 13 Bank 17

S63 No MRCC TRUE TRUE Bank 13 Bank 17

S64 No MRCC TRUE TRUE Bank 13 Bank 17

S65 No No TRUE TRUE Bank 13 Bank 17

S66 No No TRUE TRUE Bank 13 Bank 17

S67 No No TRUE TRUE Bank 13 Bank 17

S68 No No TRUE TRUE Bank 13 Bank 17

S69 No No FALSE FALSE N/A N/A

S70 No No FALSE FALSE N/A N/A

S71 No No FALSE FALSE N/A N/A

S72 No No FALSE FALSE N/A N/A

S73 No No FALSE FALSE N/A N/A

S74 No No FALSE FALSE N/A N/A

S75 No No TRUE TRUE Bank 15 Bank 18

S76 No No TRUE TRUE Bank 15 Bank 18

S77 No No TRUE TRUE Bank 15 Bank 18

S78 No No TRUE TRUE Bank 15 Bank 18

S79 No No TRUE TRUE Bank 15 Bank 18

S80 No No TRUE TRUE Bank 15 Bank 18

S81 No No TRUE TRUE Bank 15 Bank 18

S82 No No TRUE TRUE Bank 15 Bank 18

S83 No No TRUE TRUE Bank 15 Bank 18

S84 No No TRUE TRUE Bank 15 Bank 18

Table A-2. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Capabilities (Continued)

Sxxx
V5 Clock
Capable?

K7 Clock
Capable?

V5
GPIO?

K7
GPIO? V5 Bank K7 Bank

© National Instruments Corporation | A-11

FlexRIO Adapter Module Development Kit

S85 No No TRUE TRUE Bank 15 Bank 18

S86 No No TRUE TRUE Bank 15 Bank 18

S87 Regional No TRUE TRUE Bank 15 Bank 18

S88 Regional No TRUE TRUE Bank 15 Bank 18

S89 Regional MRCC TRUE TRUE Bank 15 Bank 18

S90 Regional MRCC TRUE TRUE Bank 15 Bank 18

S91 Regional No TRUE TRUE Bank 15 Bank 18

S92 Regional No TRUE TRUE Bank 15 Bank 18

S93 Regional SRCC TRUE TRUE Bank 15 Bank 18

S94 Regional SRCC TRUE TRUE Bank 15 Bank 18

S95 No No TRUE TRUE Bank 15 Bank 16

S96 No No TRUE TRUE Bank 15 Bank 16

S97 No No TRUE TRUE Bank 15 Bank 16

S98 No No TRUE TRUE Bank 15 Bank 16

S99 No No TRUE TRUE Bank 15 Bank 16

S100 No No TRUE TRUE Bank 15 Bank 16

S101 No No TRUE TRUE Bank 15 Bank 16

S102 No No TRUE TRUE Bank 15 Bank 16

S103 No No TRUE TRUE Bank 15 Bank 16

S104 No No TRUE TRUE Bank 15 Bank 16

S105 No No TRUE TRUE Bank 15 Bank 16

S106 No No TRUE TRUE Bank 15 Bank 16

S107 No No TRUE TRUE Bank 15 Bank 16

S108 No No TRUE TRUE Bank 15 Bank 16

S109 No No TRUE TRUE Bank 17 Bank 16

Table A-2. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Capabilities (Continued)

Sxxx
V5 Clock
Capable?

K7 Clock
Capable?

V5
GPIO?

K7
GPIO? V5 Bank K7 Bank

A-12 | ni.com

Appendix A Signal Suggestions

S110 No No TRUE TRUE Bank 17 Bank 16

S111 No No TRUE TRUE Bank 17 Bank 16

S112 No No TRUE TRUE Bank 17 Bank 16

S113 Global MRCC FALSE TRUE Bank 4 Bank 16

S114 No MRCC FALSE TRUE Bank 17 Bank 16

S115 No No TRUE TRUE Bank 17 Bank 16

S116 No No TRUE TRUE Bank 17 Bank 16

S117 No No TRUE TRUE Bank 17 Bank 16

S118 No No TRUE TRUE Bank 17 Bank 16

S119 No No TRUE TRUE Bank 17 Bank 16

S120 No No TRUE TRUE Bank 17 Bank 16

S121 No SRCC TRUE TRUE Bank 17 Bank 16

S122 No SRCC TRUE TRUE Bank 17 Bank 16

S123 No No TRUE TRUE Bank 17 Bank 16

S124 No No TRUE TRUE Bank 17 Bank 16

S125 No No TRUE TRUE Bank 17 Bank 16

S126 No No TRUE TRUE Bank 17 Bank 16

S127 Regional No TRUE TRUE Bank 17 Bank 16

S128 Regional No TRUE TRUE Bank 17 Bank 16

S129 Regional SRCC TRUE TRUE Bank 17 Bank 16

S130 Regional SRCC TRUE TRUE Bank 17 Bank 16

S131 Regional No TRUE TRUE Bank 17 Bank 16

S132 Regional No TRUE TRUE Bank 17 Bank 16

S133 Regional No TRUE TRUE Bank 17 Bank 16

S134 Regional No TRUE TRUE Bank 17 Bank 16

Table A-2. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Capabilities (Continued)

Sxxx
V5 Clock
Capable?

K7 Clock
Capable?

V5
GPIO?

K7
GPIO? V5 Bank K7 Bank

© National Instruments Corporation | A-13

FlexRIO Adapter Module Development Kit

S135 No No TRUE TRUE Bank 17 Bank 16

S136 No No TRUE TRUE Bank 17 Bank 16

S137 No MRCC TRUE TRUE Bank 17 Bank 16

S138 No MRCC TRUE TRUE Bank 17 Bank 16

S139 No No TRUE TRUE Bank 17 Bank 16

S140 No No TRUE TRUE Bank 17 Bank 16

S141 No No TRUE TRUE Bank 17 Bank 16

S142 No No TRUE TRUE Bank 17 Bank 16

S143 No No FALSE FALSE N/A N/A

S144 No No FALSE FALSE N/A N/A

S145 No No FALSE FALSE N/A N/A

S146 No No FALSE FALSE N/A N/A

S147 No No FALSE FALSE N/A N/A

S148 No No FALSE FALSE N/A N/A

Table A-2. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Capabilities (Continued)

Sxxx
V5 Clock
Capable?

K7 Clock
Capable?

V5
GPIO?

K7
GPIO? V5 Bank K7 Bank

© National Instruments Corporation | B-1

B
Troubleshooting

LabVIEW FPGA Project Troubleshooting

IO Modules»Properties»General Dialog Box
My adapter module is not displayed in the IO Modules list.

Possible solutions:
• Ensure that the user IO Modules directory on disk contains a valid adapter module

configuration file (.fam or .tbc) for your custom adapter module:
– The user IO Modules directory is in the following location:

• Windows XP

C:\Documents and Settings\All Users\Shared Documents\
National Instruments\FlexRIO\IO Modules

• Windows 7/Vista

C:\Users\Public\Documents\National Instruments\FlexRIO\
IO Modules

• Windows 8

C:\Users\Public\Documents\National Instruments\FlexRIO\
IO Modules

For more information about adapter module configuration file creation, refer to Chapter 9,
Configuring Your Adapter Module for Use with NI 795xR/796xR Modules and
LabVIEW FPGA or Chapter 10, Configuring Your Adapter Module for Use with
NI-793xR/797xR Modules and LabVIEW FPGA.

• Ensure that the manufacturer and model information in your .fam or .tbc file is correct.
The IO Modules list is automatically populated using these values from all discovered
.fam and .tbc files.

B-2 | ni.com

Appendix B Troubleshooting

My socketed component-level IP is not listed in the Component Level IP list box when I
select my adapter module.

Possible solutions:
• Ensure that your component-level IP is in one of the following two locations:

– The FPGA Target Properties Component Level IP dialog box. To view this dialog
box, right-click your FPGA target in the Project Explorer window and select
Properties from the shortcut menu. If your CLIP does not appear in the Component
Level IP window, click the Add button and navigate to your declaration file location
to manually add your CLIP to the project.

– The user IO Modules directory on disk, which is in the following location:
• Windows XP

C:\Documents and Settings\All Users\Shared Documents\
National Instruments\FlexRIO\IO Modules

• Windows 7/Vista

C:\Users\Public\Documents\National Instruments\FlexRIO\
IO Modules

• Windows 8

C:\Users\Public\Documents\National Instruments\FlexRIO\
IO Modules

• Ensure that your component-level IP XML file has a <CompatibleCLIPSocketList>
tag that lists FlexRIO-IOModule or FlexRIO-K7IOModule as a compatible socket.
Examples include the following tags:

<CompatibleCLIPSocketList>
<Socket>FlexRIO-IOModule</Socket>
</CompatibleCLIPSocketList>

• Ensure that your component-level IP XML file lists your adapter module in the
<CompatibleIOModuleList> tag. An adapter module is identified either by EEPROM
IO Module ID or by name.
Examples include the following tags:

<CompatibleIOModuleList>
<IOModule>IOModuleID:0xFFFF0001</IOModule>
<IOModule>Name:Example Manufacturer::Example Module
</IOModule>
</CompatibleIOModuleList>

© National Instruments Corporation | B-3

FlexRIO Adapter Module Development Kit

IO Modules»Properties»Status Dialog Box
The inserted adapter module name is not displayed correctly.

Possible solutions:
• Ensure that your adapter module has an EEPROM. An adapter module is only identifiable

if it contains an EEPROM.
• Ensure that you have a proper RIO resource name configured for your FlexRIO FPGA

module.
• Ensure that your adapter module is properly inserted into your FlexRIO FPGA module.
• Ensure that the EEPROM on your adapter module is configured to use the correct I2C

device address. Refer to Chapter 3, Interfacing Adapter Modules with NI 795xR and
NI 796xR Modules, or Chapter 4, Interfacing Adapter Modules with NI-793xR and
NI 797xR Devices, for more information about configuring the I2C device address of your
adapter module EEPROM.

• Ensure that the EEPROM on your adapter module is programmed with a proper IO Module
ID. Refer to Chapter 3, Interfacing Adapter Modules with NI 795xR and NI 796xR
Modules, or Chapter 4, Interfacing Adapter Modules with NI-793xR and NI 797xR Devices,
for more information about programming the IO Module ID on your adapter module.

• Ensure that you have a valid adapter module configuration (.fam or .tbc) file for your
adapter module. Refer to Chapter 9, Configuring Your Adapter Module for Use with
NI 795xR/796xR Modules and LabVIEW FPGA or Chapter 10, Configuring Your Adapter
Module for Use with NI-793xR/797xR Modules and LabVIEW FPGA, for more information
about creating adapter module configuration files.

The Expected IO Module does not match the Inserted IO Module.

Possible solutions:
• In the IO Module Properties»General category, select the adapter module that is currently

inserted. Recompile your application and download it to the FPGA. At this point, the
FlexRIO FPGA module should be updated to expect the correct adapter module.

• If the inserted adapter module contains an EEPROM, ensure that the IOModuleID
parameter in the adapter module configuration (.fam or .tbc) file for the inserted adapter
module is correct. This information is used at compilation time to determine which adapter
module the FPGA firmware discovers. Refer to Chapter 9, Configuring Your Adapter
Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA or Chapter 10,
Configuring Your Adapter Module for Use with NI-793xR/797xR Modules and
LabVIEW FPGA, for more information about creating adapter module configuration files.

• If the inserted adapter module does not contain an EEPROM, ensure that the adapter
module configuration (.fam or .tbc) file for the inserted adapter module does not contain
a IOModuleID parameter. The absence of this parameter is used at compilation time to tell
the FPGA firmware that it should expect to discover an adapter module with no EEPROM.
Refer to Chapter 9, Configuring Your Adapter Module for Use with NI 795xR/796xR
Modules and LabVIEW FPGA or Chapter 10, Configuring Your Adapter Module for Use

B-4 | ni.com

Appendix B Troubleshooting

with NI-793xR/797xR Modules and LabVIEW FPGA, for more information about creating
adapter module configuration files.

Device Does Not Appear in MAX
Follow the steps for verifying that the device appears in MAX in your device’s getting started
guide.
1. In the MAX Configuration pane, click Devices and Interfaces.
2. Expand the Chassis tree to see the list of installed devices, and press <F5> to refresh the

list.
3. If the module is still not listed, power off the system, ensure that all hardware is correctly

installed, and restart the system.
4. Navigate to the Device Manager.

5. If you are using a PXI controller, verify that a National Instruments entry appears in the
system device list.

6. Restart your computer.

If the device still fails to appear in MAX, contact NI technical support or visit ni.com/
support.

Frequently Asked Questions
Do I have to use an EEPROM on my adapter module?

NI strongly recommends adding an EEPROM to your adapter module for identification
purposes. Adding EEPROM provides better electrical protection for both the adapter module
and the Controller for FlexRIO/FlexRIO FPGA module. It also improves the software
configuration experience within LabVIEW FPGA. Refer to Chapter 3, Interfacing Adapter
Modules with NI 795xR and NI 796xR Modules, or Chapter 4, Interfacing Adapter Modules with
NI-793xR and NI 797xR Devices, for more information about adding EEPROM to your adapter
module.

Table B-1. Device Manager Options

Option Description

Windows 8 Right-click the Start screen, and select All apps»Control Panel»
Hardware and Sound»Device Manager.

Windows 7 Select Start»Control Panel»Device Manager.

Windows Vista Select Start»Control Panel»System and Maintenance»Device
Manager.

Windows XP Select Start»Control Panel»System»Hardware»Device Manager.

© National Instruments Corporation | B-5

FlexRIO Adapter Module Development Kit

However, you can power on an adapter module without an EEPROM and an IO Module ID.
Perform the following steps to set up the CLIP to ignore the IO Module ID on the EEPROM.
1. Delete the IOModuleID line from the .tbc or .fam file, depending on which device you

are using.
2. Set the IOModule tag to use the manufacturer name and model name. This links the adapter

module CLIP XML file to the .tbc or .fam file. Use the following syntax:
<CompatibleIOModuleList>
<IOModule>Name:Manufacturer Name::Model Name</IOModule>
</CompatibleIOModuleList>

3. Refresh the CLIP from the IO Module Properties window and compile your FPGA VI using
the new CLIP XML.

4. Remove the EEPROM.

Can I build a “passive” or “pass through” adapter module to interface to an external
hardware device?

NI recommends that you never directly expose signals from the front panel connector of the
Controller for FlexRIO or FlexRIO FPGA module to the external connectivity of the adapter
module. Some form of buffering is required when routing signals from the Controller for
FlexRIO or FlexRIO FPGA module to the circuits external to the adapter module. Most of these
parts are high speed and offer electrostatic discharge (ESD) protection as well as voltage
tolerance protection. It is not necessary to consider this buffer requirement when using the
Controller for FlexRIO or FlexRIO FPGA module in applications such as interfacing to an ADC,
as the digital signals are not directly exposed. Chapter 3, Interfacing Adapter Modules with
NI 795xR and NI 796xR Modules, or Chapter 4, Interfacing Adapter Modules with NI-793xR
and NI 797xR Devices, for more information about electrical considerations and other
information about designing your adapter module.

Adding these components to your design prevents damage to the FPGAs.

Caution Using adapter modules which are designed with FPGA pins directly
accessible to the front panel (pass through) voids the Controller for FlexRIO and
FlexRIO FPGA module warranty. NI is not liable for damage caused from this
misuse.

What design templates are available to aid in adapter module design?

Design files and an example IO CLIP are available at C:\Users\Public\Documents\
National Instruments\FlexRIO\Module Development Kit.

Install FlexRIO Adapter Module Support to view CLIPs as well as example projects containing
Host VIs and FPGA code for the adapter modules. You can find the example projects through
the NI Example Finder by selecting Help»Find Examples»Hardware Input and Output»
FlexRIO»IO Modules and selecting your adapter module.

To download FlexRIO Adapter Module Support, visit ni.com/downloads/drivers and
search for FlexRIO Adapter Module Support.

http://www.ni.com/downloads/drivers/

You can find the adapter module CLIPs in the following location:

C:\Program Files\National Instruments\Shared\FlexRIO\IO Modules

Can I design a custom module enclosure to provide additional space and/or power to the
module?

NI strongly recommends using the NI enclosure for proper heat dissipation, structural strength,
and EMI performance. If you design a custom enclosure, refer to the following cautions:

Caution Use a properly sealed interface between the adapter module and the
Controller for FlexRIO or FlexRIO FPGA module to achieve regulatory emission
compliance. NI’s adapter module enclosure is designed to work with the Controller
for FlexRIO and FlexRIO FPGA module front panel for a complete emissions
solution. This enclosure uses gaskets to form an electrical seal when the enclosure is
mated with a Controller for FlexRIO or FlexRIO FPGA module. Custom adapter
module enclosures should use a similar gasket solution. Test your custom adapter
module enclosure for emissions and immunity compliance prior to deployment.

Caution If the size of the enclosure increases, you must provide additional
mechanical support external to the FAM to ensure that the Controller for FlexRIO or
FlexRIO FPGA module and PXI/PXI Express chassis are not damaged.

Caution Do not exceed the maximum specified current limit on any power rail
provided by the Controller for FlexRIO or FlexRIO FPGA module. Exceeding any
of these limits disables the adapter module power. The adapter module must use less
than 6 W of power internally, and total power dissipation in the adapter module must
remain below 6 W due to the thermal capabilities of the enclosure. NI does not
recommend using external power supplies for the adapter module. The Controller for
FlexRIO and FlexRIO FPGA module warranties are voided when adapter modules
use external power. If you must use external power supplies, use circuitry to properly
sequence the external supply relative to other FlexRIO power supplies provided by
the Controller for FlexRIO or FlexRIO FPGA module. You should also use fuses and
reverse polarity protection inside the module.

Caution Drawing more than 6 W of power causes significant heat within the
adapter module enclosure. Your custom enclosure must be able to properly dissipate
the heat. If it is not able to dissipate the heat, you must monitor the operating
temperatures of the module and possible safety issues related to the enclosure.
If a large portion of the total power is on a few ICs, then adding a thermal slug with
thermal interface material to connect the component to the inside of the housing is
the most effective way reduce the internal temperate in the housing. If the power is
more distributed throughout the enclosure, then thermal slugs are not an effective
method for reducing internal temperature, and the product must be de-rated from the
normal 55 °C. In general, when cooling an adapter module at power levels above
6 W, adding holes without forcing air through the enclosure produces only a few

© National Instruments Corporation | B-7

FlexRIO Adapter Module Development Kit

degrees of cooling. Vent hole size for EMI considerations should be no larger than
1/20th of the wavelength that you intend to attenuate. For example, 1/20th of a
wavelength of 100 MHz is 15 cm. 1/20th of a wavelength of 5 GHz is 3 mm. Smaller
holes are generally better. Holes or slots should not exceed .125 in. Any adapter
module exceeding the 6 W limit without forced air cooling will exceed the touchable
surface temperature of 55 °C and must be de-rated to lower than the 55 °C operating
temperature.

© National Instruments Corporation | C-1

C
Xilinx Documentation
References

Xilinx FPGA documentation provides information required for the successful development of
your FlexRIO adapter module. The following table provides a list of specific Xilinx
documentation resources.

All Xilinx documentation can be found at www.xilinx.com.

Table C-1. Xilinx 7-Series FPGA Documentation

Document Location

Document
Part

Number Description

7 Series FGPAs
Overview

http://www.xilinx.com/
support/documentation/
data_sheets/ds180_
7Series_Overview.pdf

DS180 Outlines the features and
product selection of the
Xilinx 7 series FPGAs:
Artix-7, Kintex-7, and
Virtex-7 devices.

Kintex-7
FPGAs Data
Sheet: DC and
AC Switching
Characteristics

http://www.xilinx.com/
support/documentation/
data_sheets/ds182_
Kintex_7_Data_Sheet.pdf

DS182 Contains the DC and AC
switching characteristic
specifications for the
Kintex-7 FPGAs.

Virtex-5
User Guide

www.xilinx.com/support/
documentation/user_guides/
ug190.pdf

UG190 Includes information
about clocking resources,
clock management
technology, phase-locked
loops, block RAM,
Configurable Logic
Blocks (CLBs),
SelectIO™ resources, and
SelectIO logic resources.

http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds182_Kintex_7_Data_Sheet.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds182_Kintex_7_Data_Sheet.pdf

C-2 | ni.com

Appendix C Xilinx Documentation References

Virtex-5
Data Sheet

www.xilinx.com/support/
documentation/data_sheets/
ds202.pdf

DS202 Specifies the electrical
characteristics of the
Virtex®-5 Platforms,
including absolute
maximum ratings,
recommended operating
conditions, supply
requirements, and
switching characteristics.

Constraints
Guide (for
Xilinx 9.2.4)

http://toolbox.xilinx.com/
docsan/xilinx92/books/
docs/cgd/cgd.pdf

— Describes each Xilinx
constraint, including
supported architectures,
applicable elements,
propagation rules, and
syntax examples. This
manual also describes
constraint types and
constraint entry methods,
provides strategies for
using timing constraints,
and describes supported
third-party constraints.

Virtex-5 FPGA
SSO Calculator

https://secure.xilinx.com/
webreg/clickthrough.do?cid
=30154

— Functions as a
spreadsheet-based tool
that automates all the
Prolog Functional Data
Model (PFDM) and SSO
calculations for all I/O
standards.

Table C-1. Xilinx 7-Series FPGA Documentation (Continued)

Document Location

Document
Part

Number Description

© National Instruments Corporation | D-1

D
NI Services

NI provides global services and support as part of our commitment to your success. Take
advantage of product services in addition to training and certification programs that meet your
needs during each phase of the application life cycle; from planning and development through
deployment and ongoing maintenance.

To get started, register your product at ni.com/myproducts.

As a registered NI product user, you are entitled to the following benefits:
• Access to applicable product services.
• Easier product management with an online account.
• Receive critical part notifications, software updates, and service expirations.

Log in to your NI ni.com User Profile to get personalized access to your services.

Services and Resources

• Maintenance and Hardware Services—NI helps you identify your systems’ accuracy and
reliability requirements and provides warranty, sparing, and calibration services to help you
maintain accuracy and minimize downtime over the life of your system. Visit ni.com/
services for more information.
– Warranty and Repair—All NI hardware features a one-year standard warranty that

is extendable up to five years. NI offers repair services performed in a timely manner
by highly trained factory technicians using only original parts at a National
Instruments service center.

– Calibration—Through regular calibration, you can quantify and improve the
measurement performance of an instrument. NI provides state-of-the-art calibration
services. If your product supports calibration, you can obtain the calibration certificate
for your product at ni.com/calibration.

• System Integration—If you have time constraints, limited in-house technical resources, or
other project challenges, National Instruments Alliance Partner members can help. To learn
more, call your local NI office or visit ni.com/alliance.

http://www.ni.com/myproducts
http://www.ni.com
http://www.ni.com/services
http://www.ni.com/services
http://www.ni.com/calibration
http://www.ni.com/alliance

D-2 | ni.com

Appendix D NI Services

• Training and Certification—The NI training and certification program is the most
effective way to increase application development proficiency and productivity. Visit
ni.com/training for more information.
– The Skills Guide assists you in identifying the proficiency requirements of your

current application and gives you options for obtaining those skills consistent with
your time and budget constraints and personal learning preferences. Visit ni.com/
skills-guide to see these custom paths.

– NI offers courses in several languages and formats including instructor-led classes at
facilities worldwide, courses on-site at your facility, and online courses to serve your
individual needs.

• Technical Support—Support at ni.com/support includes the following resources:
– Self-Help Technical Resources—Visit ni.com/support for software drivers and

updates, a searchable KnowledgeBase, product manuals, step-by-step troubleshooting
wizards, thousands of example programs, tutorials, application notes, instrument
drivers, and so on. Registered users also receive access to the NI Discussion Forums
at ni.com/forums. NI Applications Engineers make sure every question submitted
online receives an answer.

– Software Support Service Membership—The Standard Service Program (SSP) is a
renewable one-year subscription included with almost every NI software product,
including NI Developer Suite. This program entitles members to direct access to
NI Applications Engineers through phone and email for one-to-one technical support,
as well as exclusive access to online training modules at ni.com/
self-paced-training. NI also offers flexible extended contract options that
guarantee your SSP benefits are available without interruption for as long as you need
them. Visit ni.com/ssp for more information.

• Declaration of Conformity (DoC)—A DoC is our claim of compliance with the Council
of the European Communities using the manufacturer’s declaration of conformity. This
system affords the user protection for electromagnetic compatibility (EMC) and product
safety. You can obtain the DoC for your product by visiting ni.com/certification.

For information about other technical support options in your area, visit ni.com/services,
or contact your local office at ni.com/contact.

You also can visit the Worldwide Offices section of ni.com/niglobal to access the branch
office websites, which provide up-to-date contact information, support phone numbers, email
addresses, and current events.

http://www.ni.com/training
http://www.ni.com/skills-guide
http://www.ni.com/skills-guide
http://www.ni.com/support
http://www.ni.com/support
http://www.ni.com/forums
http://www.ni.com/self-paced-training
http://www.ni.com/self-paced-training
http://www.ni.com/ssp
http://www.ni.com/certification
http://www.ni.com/services
http://www.ni.com/contact
http://www.ni.com/niglobal

© National Instruments Corporation | I-1

Index

A
adapter module

card edge connector, 6-1
finishing, 6-3

connector pin locations, 5-12
connector trace routing, 5-9
electrical interface, 3-1, 4-1
enclosure, 7-1
identification, 11-9, 12-10
interface protocol, 3-10

adapter module insertion
protocol, 3-11

adapter module removal
protocol, 3-12

signal suggestions, A-1
adapter module configuration (.tbc) file

creating, 9-7, 9-17, 10-7

C
cabling, 8-2, 8-4
card edge connector

dimensions, 6-2
finishing, 6-3
GPIO trace routing, 5-9
pin locations, 5-12

CLIP signals, I2C core interface signals, 11-5
component-level IP (CLIP), 2-4

adding to LabVIEW project, 12-15
example files, 11-2, 12-2
socketed CLIP/hardware relationship

(figure), 2-4
XML declaration file

socketed CLIP tags, 12-10
XML schema file, 11-11, 12-12

Configuring .fam files for Compatibility with
both LabVIEW 2013 and
LabVIEW 2014, 10-21

connectivity options, 8-2, 8-4
Constraints .tbc values, examples, 9-15, 9-25,

10-16, 10-19

D
design files

DXF, 5-3, 6-2
IGES, 5-3, 6-2
PDF, 5-3, 6-2
Pro/ENGINEER, 5-3, 6-2
STEP, 5-3, 6-2

documentation
related documentation, xviii
Xilinx documentation references, C-1

DXF files
card edge connector cell, 6-1
PCB dimensions, 5-2

E
EEPROM, 3-12

I2C address, 3-13, 4-11
map (table), 9-5
part recommendation, 3-13, 4-11
wiring diagram (figure), 3-13, 4-11

electronic design files. See design files
enclosure, 7-1

See also module enclosure
assembled view (figure), 7-1, 7-7

Example .fam (NI 797xR) for LabVIEW 2014
and later, 10-20

Example .fam File for LabVIEW 2013, 10-19
examples

CLIP files, 11-2, 12-2
.tbc Constraints, 9-15, 9-25, 10-16,

10-19
.tbc file, 9-7, 9-17, 10-7

F
finishing

card edge connector, 6-3
PCB, 5-13

Fixed Issues with the NI FlexRIO Adapter
Module Development Kit, Version 3.0, xxii

Index

I-2 | ni.com

G
GPIO

bank reference (table), 4-8
trace routing, 5-9

grounding
digital ground connection, 3-14
for EMC compliance, 5-9, 5-11
PXI/PXIe chassis ground

connection, 3-14, 4-12

I
I/O standards (table), 9-14
I2C

bus sharing, 4-16
core interface signals, 11-5
EEPROM address, 3-13, 4-11

IGES design files
card edge connector cell, 6-2
PCB dimensions, 5-3

interface protocol
adapter module insertion protocol, 3-11
adapter module removal protocol, 3-12

IO Module ID, 9-2, 10-2
format, 9-3, 10-2
troubleshooting, B-1

IO Modules directory, 9-6, 9-17, 10-6
IoModSyncClk.tbc Values (NI PXIe-796xR

Only), 9-11

L
LabVIEW

FPGA VI, 2-3, 2-8
host VI, 2-3, 2-8
troubleshooting, B-1

M
module enclosure

assembled view (figure), 7-1, 7-7
dimensions (figure), 7-4
front panel

dimensions/PCB orientation
front view (figure), 7-5
top view (figure), 7-6

machining services, 7-6

N
NI FlexRIO, 2-1

architecture, 2-1
NI FlexRIO FPGA module, 2-2

architecture, 2-3

P
PCB

design concepts, 5-1
design overview, 5-1
dimensions, 5-6
finishing, 5-13
overview, 2-3, 2-7
schematic, 5-1

PDF design files
card edge connector cell, 6-2
PBC dimensions, 5-3

printed circuit board (PCB). See PCB
Pro/ENGINEER design files

card edge connector cell, 6-2
PCB dimensions, 5-3

Product ID, 9-3, 10-3
EEPROM address, 9-5

R
registering your Adapter Module

Development Kit, 1-1
related documentation, xviii

Xilinx documentation, C-1

S
schema file, CLIP XML, 11-11, 12-12
simultaneous switching outputs (SSO)

noise limits, 3-15, 4-13
socketed CLIP

LabVIEW FPGA/hardware relation
(figure), 2-4

XML tags, 12-10
STEP design files

card edge connector cell, 6-2
PCB dimensions, 5-3

NI FlexRIO Adapter Module Development Kit User Manual

© National Instruments Corporation | I-3

T
trace impedance, 3-18, 4-16
troubleshooting, B-1

in LabVIEW FPGA, B-1

U
.ucf file. See user constraint file (.ucf)
user constraint file (.ucf)

parallel termination, 3-18, 4-16
timing constraints, 3-16, 4-14

V
VccoA/VccoB

bank reference, 4-8
voltage options, 9-10

Vendor ID, 9-3, 10-2
EEPROM address, 9-5
obtaining your Vendor ID, 9-3, 10-2

X
Xilinx

documentation resources, C-1
I/O standards (table), 9-14
user constraint file (.ucf) file, 3-16, 4-14

XML declaration file
socketed CLIP tags, 12-10
XML schema file, 11-11, 12-12

Figures
Figure 2-1. FlexRIO System Architecture Elements ... 2-1
Figure 2-2. FlexRIO FPGA Module Architecture ... 2-3
Figure 2-3. FlexRIO FPGA Module and Adapter Module 2-3
Figure 2-4. LabVIEW FPGA, CLIP, and Hardware Integration Diagram (Virtex-5)2-4
Figure 2-5. LabVIEW FPGA, CLIP, and Hardware Integration Diagram (Kintex-7)2-5
Figure 2-6. Controller for FlexRIO Architecture ... 2-6
Figure 2-7. Controller for FlexRIO and Adapter Module.. 2-7
Figure 2-8. LabVIEW FPGA, CLIP, and Hardware Integration Diagram (NI-7931R)2-8
Figure 2-9. LabVIEW FPGA, CLIP, and Hardware Integration Diagram (NI-7932R and

 NI-7935R) .. 2-9

Figure 3-1. Adapter Module Soft Start Circuits... 3-3
Figure 3-2. NI 795xR and NI 796xR Front Panel Connector Pin

Assignments and Locations... 3-5
Figure 3-3. Adapter Module Insertion Protocol ... 3-11
Figure 3-4. EEPROM Wiring .. 3-13
Figure 3-5. IoModSyncClk Source Block Diagram... 3-17
Figure 3-6. IoModSyncClk Termination.. 3-17

Figure 4-1. NI-793xR and NI 797xR Front Panel Connector Pin
Assignments and Locations... 4-4

Figure 4-2. Adapter Module Insertion Protocol ... 4-9
Figure 4-3. EEPROM Wiring .. 4-11
Figure 4-4. IoModSyncClk Source Block Diagram... 4-15
Figure 4-5. IoModSyncClk Termination.. 4-15

Figure 5-1. FlexRIO FPGA Device Assembled Front Panel and
Example Adapter Module ... 5-1

Figure 5-2. Adapter Module Cross Section Showing Component Clearance
Dimensions.. 5-4

Figure 5-3. I/O Connector Area Clearance Dimensions .. 5-5
Figure 5-4. Example Adapter Module PCB and Design Element Locations........... 5-5
Figure 5-5. PCB Notches Required for 1.0 Enclosures ... 5-6
Figure 5-6. Adapter Module PCB Primary Side Dimensions 5-7
Figure 5-7. Adapter Module PCB Secondary Side Dimensions 5-8
Figure 5-8. Adapter Module Enclosure with Mounted PCB.................................... 5-10
Figure 5-9. Mylar Insulator .. 5-11
Figure 5-10. Physical Pin Locations .. 5-12

Figure 6-1. Card Edge Connector Keying Dimensions ... 6-2
Figure 6-2. Adapter Module PCB Chamfer at Gold Finger Edge............................ 6-3
Figure 6-3. Gold Finger Electrical Connections .. 6-3
Figure 6-4. X-trace Between Isolated Gold Finger Pairs ... 6-4

Figure 7-1. Adapter Module Enclosure.. 7-1

Figure 7-2. EMI Gasket Locations on Module Primary Side...................................7-2
Figure 7-3. EMI Gasket Locations on Module Secondary Side...............................7-2
Figure 7-4. Improved Module Connections ...7-3
Figure 7-5. FlexRIO Adapter Module Enclosure Dimensions.................................7-4
Figure 7-6. Front Panel Dimensions and PCB Placement (Front View)..................7-5
Figure 7-7. Front Panel Dimensions and PCB Placement (Top View)....................7-6
Figure 7-8. Front Panel Dimensions and Labeling...7-7
Figure 7-9. Primary Side Suggested Labeling and Dimensions...............................7-7

Figure 8-1. Installing the Adapter Module ...8-2
Figure 8-2. Controller for FlexRIO with FlexRIO Adapter Module........................8-3

Figure 9-1. FlexRIO_Host_ProgramIOModID.vi Front Panel9-4
Figure 9-2. FlexRIO_Host_QueryIOMod.vi Front Panel ..9-5
Figure 9-3. IoModSyncClk Source Block Diagram...9-11
Figure 9-4. IO Module Properties Sync Clock Enabled...9-13
Figure 9-5. IoModSyncClk Source Block Diagram...9-22
Figure 9-6. IO Module Properties Sync Clock Enabled...9-24

Figure 10-1. FlexRIO_Host_ProgramIOModID.vi Front Panel10-4
Figure 10-2. FlexRIO_Host_QueryIOMod.vi Front Panel ..10-5
Figure 10-3. IoModSyncClk Source Block Diagram...10-13
Figure 10-4. IO Module Properties Sync Clock Enabled...10-15

Figure 11-1. FPGA Target..11-12

Figure 12-1. FPGA Target..12-13

Figure 13-1. Asynchronous Interfaces Between LabVIEW FPGA and CLIP13-2
Figure 13-2. Interfaces Synchronous to CLIP Clock ...13-2
Figure 13-3. Interfaces Synchronous to LabVIEW FPGA Clock13-2
Figure 13-4. Signal Definition in the XML Wizard ...13-4
Figure 13-5. Clock Constraints in the XML Wizard..13-5
Figure 13-6. Signal Clock Domain Constraints in the XML Wizard.........................13-6
Figure 13-7. LabVIEW FPGA VI Implementing Synchronous and

Asynchronous Interfaces ...13-7
Figure 13-8. Timing Violation Analysis Window..13-14
Figure 13-9. Example CLIP I/O ...13-17

Tables
Table 1. FlexRIO Documentation Locations and Descriptions........................... xviii
Table 2. Fixed Issues with the FlexRIO Adapter Module Development Kit,

Version 3.0 .. xxii
Table 3. Fixed Issues with the FlexRIO Adapter Module Development Kit,

Version 2.0 .. xxiii
Table 4. Fixed Issues with the FlexRIO Adapter Module Development Kit,

Version 1.2 .. xxiii
Table 5. Fixed Issues with the FlexRIO Adapter Module Development Kit,

Version 1.1 .. xxiv

Table 2-1. FPGA Features .. 2-2

Table 3-1. DC Power Rails ... 3-2
Table 3-2. Control Pin Assignments and Signal Descriptions................................ 3-6
Table 3-3. Global Clock Input Connections and Pin Assignments 3-8
Table 3-4. Power Connections Pin Assignments.. 3-8
Table 3-5. Bank Reference (NI 795xR and NI 796xR) .. 3-9
Table 3-6. Unassigned Pin Recommendations ... 3-19

Table 4-1. DC Power Rails ... 4-2
Table 4-2. Control Pin Assignments and Signal Descriptions................................ 4-5
Table 4-3. Power Connections Pin Assignments.. 4-7
Table 4-4. Bank Reference ... 4-8
Table 4-5. NI-793xR/NI 797xR Unassigned Pin Recommendations 4-17

Table 5-1. FlexRIO Custom Adapter Module Design Files 5-2

Table 9-1. Recommended Files for Developing Adapter Modules 9-1
Table 9-2. EEPROM Map ... 9-5
Table 9-3. Supported General Configuration Values ... 9-8
Table 9-4. Optional Keys for Enabling IoModSyncClock 9-12
Table 9-5. FlexRIO Supported Xilinx I/O Standards .. 9-14
Table 9-6. Supported Common Configuration Values ... 9-18
Table 9-7. Supported Socket-specific Configuration Values 9-20
Table 9-8. Optional Keys for Enabling IoModSyncClock 9-23
Table 9-9. FlexRIO Supported Xilinx I/O Standards ... 9-25

Table 10-1. Recommended Files for Developing Adapter Modules 10-1
Table 10-2. EEPROM Map .. 10-5
Table 10-3. Supported Common Configuration Values ... 10-8
Table 10-4. Supported Socket-specific Configuration Values 10-10
Table 10-5. Power Rail Sequence Default Values.. 10-11
Table 10-6. NI 795xR and NI 796xR Representative Power Rail

Sequence Values.. 10-12
Table 10-7. Optional Keys for Enabling IoModSyncClock 10-14

Table 10-8. FlexRIO Supported Xilinx I/O Standards ...10-16
Table 10-9. FlexRIO Supported Xilinx I/O Standards ...10-18

Table 11-1. GPIO and CLK Signals from Adapter Module11-3
Table 11-2. CLK Signals to LabVIEW FPGA ...11-4
Table 11-3. I2C Core Interface Signals* ..11-5
Table 11-4. Socketed CLIP XML Tags ..11-10

Table 12-1. GPIO and CLK Signals from Adapter Module12-4
Table 12-2. I2C Core Interface Signals*...12-4
Table 12-3. TDC Circuitry..12-6
Table 12-4. Socketed CLIP XML Tags ...12-10

Table A-1. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout LocationsA-1
Table A-2. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Capabilities ...A-7

Table B-1. Device Manager Options ...B-4

Table C-1. Xilinx 7-Series FPGA Documentation ..C-1

	FlexRIO Adapter Module Development Kit User Manual
	Legal Information
	Limited Warranty
	Copyright
	End-User License Agreements and Third-Party Legal Notices
	U.S. Government Restricted Rights
	Trademarks
	Patents
	Export Compliance Information
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Table 1. FlexRIO Documentation Locations and Descriptions
	Table 2. Fixed Issues with the FlexRIO Adapter Module Development Kit, Version 3.0
	Table 3. Fixed Issues with the FlexRIO Adapter Module Development Kit, Version 2.0
	Table 4. Fixed Issues with the FlexRIO Adapter Module Development Kit, Version 1.2
	Table 5. Fixed Issues with the FlexRIO Adapter Module Development Kit, Version 1.1

	Before You Begin
	Development Requirements
	Registration
	Adapter Module Review
	FlexRIO Module Development Kit Installed Files
	Design Files
	Documentation
	Example Files

	FlexRIO Solution Architecture Overview
	Figure 2-1. FlexRIO System Architecture Elements
	FlexRIO FPGA Module Device Overview
	Table 2-1. FPGA Features
	Figure 2-2. FlexRIO FPGA Module Architecture

	Adapter Module Printed Circuit Board (PCB)
	Figure 2-3. FlexRIO FPGA Module and Adapter Module

	LabVIEW Host VI and LabVIEW FPGA VI
	Adapter Module Component-Level IP (CLIP)
	Figure 2-4. LabVIEW FPGA, CLIP, and Hardware Integration Diagram (Virtex-5)
	Figure 2-5. LabVIEW FPGA, CLIP, and Hardware Integration Diagram (Kintex-7)

	Controller for FlexRIO Device Overview
	Figure 2-6. Controller for FlexRIO Architecture

	Adapter Module Printed Circuit Board (PCB)
	Figure 2-7. Controller for FlexRIO and Adapter Module

	LabVIEW Host VI and LabVIEW FPGA VI
	Figure 2-8. LabVIEW FPGA, CLIP, and Hardware Integration Diagram (NI-7931R)
	Figure 2-9. LabVIEW FPGA, CLIP, and Hardware Integration Diagram (NI-7932R and NI-7935R)

	Interfacing Adapter Modules with NI 795xR and NI 796xR Modules
	Adapter Module Electrical Interface
	Power Guidelines
	Table 3-1. DC Power Rails
	Figure 3-1. Adapter Module Soft Start Circuits

	Adapter Module Connector Signals
	Signal Descriptions
	Figure 3-2. NI 795xR and NI 796xR Front Panel Connector Pin Assignments and Locations
	Table 3-2. Control Pin Assignments and Signal Descriptions
	Table 3-3. Global Clock Input Connections and Pin Assignments
	Table 3-4. Power Connections Pin Assignments
	General-Purpose Input/Output (GPIO)
	GPIO Bank Details (NI 795xR and NI 796xR)
	Table 3-5. Bank Reference (NI 795xR and NI 796xR)

	Adapter Module Interface Protocol
	Adapter Module Insertion Protocol
	Figure 3-3. Adapter Module Insertion Protocol

	Adapter Module Removal Protocol

	EEPROM Overview
	EEPROM Recommendations
	EEPROM Schematic and Wiring
	Figure 3-4. EEPROM Wiring

	Electrical Design Considerations
	Power up and Sequencing with External Hardware
	FPGA I/O and Protection
	Grounding

	NI 795xR/796xR FPGA I/O Bank Voltages
	Simultaneous Switching Output (SSO) Noise
	Clocks and Timing
	Clock-Capable I/O Signals
	IoModSyncClk (NI 796x R Only)
	Figure 3-5. IoModSyncClk Source Block Diagram
	Figure 3-6. IoModSyncClk Termination

	GPIO Termination and Impedance
	Minimizing Crosstalk
	Sharing the I2C Bus
	Choosing Circuitry Components
	Unused Pin Recommendations
	Table 3-6. Unassigned Pin Recommendations

	Interfacing Adapter Modules with NI-793xR and NI 797xR Devices
	Adapter Module Electrical Interface
	Power Guidelines
	Table 4-1. DC Power Rails

	Adapter Module Connector Signals
	NI-793xR and NI 797xR Signal Descriptions
	Figure 4-1. NI-793xR and NI 797xR Front Panel Connector Pin Assignments and Locations
	Table 4-2. Control Pin Assignments and Signal Descriptions
	Table 4-3. Power Connections Pin Assignments
	General-Purpose Input/Output (GPIO)
	GPIO Bank x Details
	Table 4-4. Bank Reference

	Adapter Module Interface Protocol
	Adapter Module Insertion Protocol
	Figure 4-2. Adapter Module Insertion Protocol

	Adapter Module Removal Protocol

	EEPROM Overview
	EEPROM Recommendations
	EEPROM Schematic and Wiring
	Figure 4-3. EEPROM Wiring

	Electrical Design Considerations
	Power up and Sequencing with External Hardware
	FPGA I/O and Protection
	Grounding

	NI-793xR and NI 797xR FPGA I/O Bank Voltages
	Simultaneous Switching Output (SSO) Noise
	Clocks and Timing
	Clock-Capable I/O Signals
	IoModSyncClk
	Figure 4-4. IoModSyncClk Source Block Diagram
	Figure 4-5. IoModSyncClk Termination

	GPIO Termination and Impedance
	Minimizing Crosstalk
	Sharing the I2C Bus
	Choosing Circuitry Components
	Unused Pin Recommendations
	Table 4-5. NI-793xR/NI 797xR Unassigned Pin Recommendations

	Printed Circuit Board (PCB) Design Considerations
	PCB Orientation
	Figure 5-1. FlexRIO FPGA Device Assembled Front Panel and Example Adapter Module

	PCB Design Concepts
	Table 5-1. FlexRIO Custom Adapter Module Design Files
	Figure 5-2. Adapter Module Cross Section Showing Component Clearance Dimensions
	Figure 5-3. I/O Connector Area Clearance Dimensions
	Figure 5-4. Example Adapter Module PCB and Design Element Locations

	PCB Dimensions
	Side Notches
	Figure 5-5. PCB Notches Required for 1.0 Enclosures
	Figure 5-6. Adapter Module PCB Primary Side Dimensions
	Figure 5-7. Adapter Module PCB Secondary Side Dimensions

	GPIO Trace Routing
	Grounding Considerations
	Figure 5-8. Adapter Module Enclosure with Mounted PCB

	Mylar Insulators
	Figure 5-9. Mylar Insulator

	Pin Locations
	Figure 5-10. Physical Pin Locations

	PCB Finishing

	Card Edge Connector
	Connector Description
	Figure 6-1. Card Edge Connector Keying Dimensions
	Figure 6-2. Adapter Module PCB Chamfer at Gold Finger Edge
	Figure 6-3. Gold Finger Electrical Connections

	Card Edge Connector Finishing
	Figure 6-4. X-trace Between Isolated Gold Finger Pairs

	Module Enclosure
	Figure 7-1. Adapter Module Enclosure
	EMI Gaskets
	Figure 7-2. EMI Gasket Locations on Module Primary Side
	Figure 7-3. EMI Gasket Locations on Module Secondary Side
	Figure 7-4. Improved Module Connections

	Enclosure Dimensions
	Figure 7-5. FlexRIO Adapter Module Enclosure Dimensions
	Figure 7-6. Front Panel Dimensions and PCB Placement (Front View)
	Figure 7-7. Front Panel Dimensions and PCB Placement (Top View)

	Suggested Labeling
	Figure 7-8. Front Panel Dimensions and Labeling
	Figure 7-9. Primary Side Suggested Labeling and Dimensions

	Installing the Adapter Module
	Installing the Adapter Module with the FlexRIO FPGA Module
	Figure 8-1. Installing the Adapter Module
	Removing the Custom Adapter Module
	Connectivity Options

	Installing the Adapter Module with the Controller for FlexRIO
	Figure 8-2. Controller for FlexRIO with FlexRIO Adapter Module
	Removing the Custom Adapter Module
	Connectivity Options

	Configuring Your Adapter Module for Use with NI 795xR/796xR Modules and LabVIEW FPGA
	Table 9-1. Recommended Files for Developing Adapter Modules
	Programming the EEPROM
	Programming the EEPROM in LabVIEW
	Figure 9-1. FlexRIO_Host_ProgramIOModID.vi Front Panel
	Figure 9-2. FlexRIO_Host_QueryIOMod.vi Front Panel

	EEPROM Map
	Table 9-2. EEPROM Map

	Creating the Adapter Module Configuration (.tbc) File
	Adapter Module Configuration (.tbc) Values
	General .tbc Values
	Table 9-3. Supported General Configuration Values
	IoModSyncClk.tbc Values (NI 796x R Only)
	Figure 9-3. IoModSyncClk Source Block Diagram
	Table 9-4. Optional Keys for Enabling IoModSyncClock
	Figure 9-4. IO Module Properties Sync Clock Enabled
	Constraints .tbc Values
	Table 9-5. FlexRIO Supported Xilinx I/O Standards

	Example

	Creating the Adapter Module Configuration (.fam) File
	Adapter Module Configuration (.fam) Values
	Common .fam Values
	Table 9-6. Supported Common Configuration Values
	Socket-specific .fam Values
	Table 9-7. Supported Socket-specific Configuration Values
	Adapter Module IOModuleID
	IoModSyncClk.fam Values (NI 796x R Only)
	Figure 9-5. IoModSyncClk Source Block Diagram
	Table 9-8. Optional Keys for Enabling IoModSyncClock
	Figure 9-6. IO Module Properties Sync Clock Enabled
	FlexRIO-IOModule Constraints .fam Values
	Table 9-9. FlexRIO Supported Xilinx I/O Standards

	Example .fam File

	Configuring Your Adapter Module for Use with NI-793xR/797xR Modules and LabVIEW FPGA
	Table 10-1. Recommended Files for Developing Adapter Modules
	Programming the EEPROM
	Programming the EEPROM in LabVIEW
	Figure 10-1. FlexRIO_Host_ProgramIOModID.vi Front Panel
	Figure 10-2. FlexRIO_Host_QueryIOMod.vi Front Panel

	EEPROM Map
	Table 10-2. EEPROM Map

	Creating the Adapter Module Configuration (.fam) File
	Adapter Module Configuration (.fam) Values
	Common .fam Values
	Table 10-3. Supported Common Configuration Values
	Socket-specific .fam Values
	Table 10-4. Supported Socket-specific Configuration Values
	Table 10-5. Power Rail Sequence Default Values
	Table 10-6. NI 795xR and NI 796xR Representative Power Rail Sequence Values
	Adapter Module IOModuleID
	IoModSyncClk.fam Values
	Figure 10-3. IoModSyncClk Source Block Diagram
	Table 10-7. Optional Keys for Enabling IoModSyncClock
	Figure 10-4. IO Module Properties Sync Clock Enabled
	FlexRIO-K7IOModule Constraints .fam Values
	Table 10-8. FlexRIO Supported Xilinx I/O Standards
	Table 10-9. FlexRIO Supported Xilinx I/O Standards

	Example .fam File for LabVIEW 2013
	Example .fam (NI-793xR/NI 797xR) for LabVIEW 2014 and later
	Configuring .fam files for Compatibility with both LabVIEW 2013 and LabVIEW 2014

	Creating Socketed Component-Level IP for Your Adapter Module and NI 795xR/796xR Modules
	Using the CLIP Wizard
	Creating or Acquiring the IP for the FlexRIO Adapter Module
	ExampleIOModuleCLIPV5.vhd
	Table 11-1. GPIO and CLK Signals from Adapter Module
	Table 11-2. CLK Signals to LabVIEW FPGA
	Table 11-3. I2C Core Interface Signals*
	Using External Clocks

	ExampleIOModuleCLIPV5.ucf
	ExampleIOModuleCLIPV5.xml
	Table 11-4. Socketed CLIP XML Tags

	Configuring the FlexRIO Adapter Module in LabVIEW
	Adding Your Adapter Module and Module I/O in LabVIEW
	Figure 11-1. FPGA Target

	Manually Adding CLIP to Your LabVIEW Project

	Creating Socketed Component-Level IP for Your Adapter Module and NI-793xR/NI 797xR Modules
	Using the CLIP Wizard
	Creating or Acquiring the IP for the FlexRIO Adapter Module
	ExampleIOModuleCLIPK7.vhd
	Table 12-1. GPIO and CLK Signals from Adapter Module
	Table 12-2. I2C Core Interface Signals*
	Table 12-3. TDC Circuitry
	Using External Clocks

	ExampleIOModuleCLIPK7.xml
	Table 12-4. Socketed CLIP XML Tags

	Configuring the FlexRIO Adapter Module in LabVIEW
	Adding Your Adapter Module and Module I/O in LabVIEW
	Figure 12-1. FPGA Target

	Manually Adding CLIP to Your LabVIEW Project

	Designing and Debugging Component-Level IP
	Synchronous vs Asynchronous Interfaces
	Figure 13-1. Asynchronous Interfaces Between LabVIEW FPGA and CLIP
	Figure 13-2. Interfaces Synchronous to CLIP Clock
	Figure 13-3. Interfaces Synchronous to LabVIEW FPGA Clock

	Defining Synchronous CLIP Interfaces
	Configuring the Top-Level CLIP HDL File
	Creating the CLIP XML
	Figure 13-4. Signal Definition in the XML Wizard
	Figure 13-5. Clock Constraints in the XML Wizard
	Figure 13-6. Signal Clock Domain Constraints in the XML Wizard

	Integrating the CLIP into LabVIEW
	Figure 13-7. LabVIEW FPGA VI Implementing Synchronous and Asynchronous Interfaces

	Considerations for Asynchronous Data Interfaces
	Best Practices for Designing Constraints
	Constraint File Organization
	Documenting Constraints
	Clocks
	Resets
	Max Delay and False Path
	Clock Groups
	Creating .xdc Constraints
	Design Analysis and Closure Techniques

	Common Issues and Troubleshooting
	Port vs Pin
	Syntax Issues
	Figure 13-8. Timing Violation Analysis Window

	How to Constrain Timing Failures in ISE
	How to Constrain Timing Failures in Vivado
	Digital Input Case
	Digital Output Case

	Updating the LabVIEW Project to Reflect Changes in the CLIP XML
	Figure 13-9. Example CLIP I/O

	Signal Suggestions
	NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Locations
	Table A-1. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Locations

	NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Capabilities
	Table A-2. NI 795xR, NI 796xR, NI-793xR, and NI 797xR Pinout Capabilities

	Troubleshooting
	LabVIEW FPGA Project Troubleshooting
	IO Modules»Properties»General Dialog Box
	IO Modules»Properties»Status Dialog Box
	Device Does Not Appear in MAX
	Table B-1. Device Manager Options

	Frequently Asked Questions

	Xilinx Documentation References
	Table C-1. Xilinx 7-Series FPGA Documentation

	NI Services
	Index
	Figures
	Tables

