NI 449x Specifications | Français | Deutsch | 日本語 | 한국어 | 简体中文 | |----------|---------|----------|------|----------| | | ni | .com/man | uals | <u>.</u> | This document lists specifications for the NI 4492, NI 4495, NI 4496, NI 4497, NI 4498, and NI 4499 Dynamic Signal Acquisition (DSA) analog input devices. These specifications are typical at 25 °C unless otherwise stated. The operating temperature range for the NI 449x is 0 °C to 55 °C. All specifications are subject to change without notice. Visit ni.com/manuals for the most current specifications and product documentation. **Caution** Refer to the *Read Me First: Safety and Electromagnetic Compatibility* document for important safety and electromagnetic compatibility information. To obtain a copy of this document online, visit ni.com/manuals, and search for the document title. **Caution** To ensure the specified EMC performance, operate this product only with shielded cables and accessories. ## Input Characteristics | Number of simultaneously sampled input cha | nnels | |--|--| | NI 4492 | 8 | | NI 4495/4496/4497/4498/4499 | 16 | | Input configuration | Pseudodifferential (50 Ω between negative input and chassis ground) | | Input coupling | | | NI 4495 | DC only | | NI 4496/4498 | AC only | | NI 4492/4497/4499 | AC/DC, selectable per channel | | A/D converter (ADC) resolution | 24 bits | | ADC type | Delta-sigma | | Sample rates (f_s) | | | Range | 100 S/s to 204.8 kS/s | | Resolution ¹ | ≤181.9 μS/s | | FIFO buffer size | 4,095 samples | | Data transfers | Direct memory access (DMA) | Depends on the sample rate. Refer to the Sample Rate and Update Rate, Accuracy and Coercion section of the NI Dynamic Signal Acquisition User Manual for more information. #### Maximum Working Voltage | Input | Voltage (V _{pk})* | |--|-----------------------------| | Positive terminal (+) | ±10 | | Negative terminal (–) | ±1 | | * Voltages with respect to chassis ground. | | #### Overvoltage Protection | Input | Voltage (V _{pk})* | |--|-----------------------------| | Positive terminal (+) | ±30 | | Negative terminal (–) | ±5 | | * Voltages with respect to chassis ground. | | #### Signal Range | Gain (dB) | Full-Scale Range (V _{pk}) ^{†,‡} | |-----------|--| | 30* | ±0.316 | | 20 | ±1.00 | | 10* | ±3.16 | | 0 | ±10.0 | ^{*} NI 4498/4499 only. # AC Coupled Measurement Accuracy (NI 4492/4497/4499) Gain amplitude accuracy ($f_{in} = 1 \text{ kHz}$) Operating temperature within 5 $^{\circ}\text{C}$ of last self-calibration temperature 0.05 dB max Over full operating temperature range......0.1 dB max Offset (residual DC)1 25 °C±10 mV max 55 °C±50 mV max [†] Each input channel gain is independently software selectable. [‡] Voltages on the positive terminal with respect to the negative terminal. ¹ Applied DC bias ≤15 V. ## AC Coupled Measurement Accuracy (NI 4496/4498) Gain amplitude accuracy ($f_{in} = 1 \text{ kHz}$) Operating temperature within 5 °C of last self-calibration temperature 0.1 dB max Over full operating temperature range..... 0.15 dB max Offset (residual DC) Operating temperature within 5 °C of last self-calibration temperature ±2 mV max #### **Flatness** | Frequency Band | $f_{\rm s} \ge 51.2 \text{ kS/s}$
20 Hz $\le f_{\rm in} \le 20 \text{ kHz}$ | $f_{\rm s} \ge$ 102.4 kS/s
20 kHz < $f_{\rm in} \le$ 45 kHz | $f_{\rm s}$ = 204.8 kS/s
45 kHz < $f_{\rm in}$ \le 92.2 kHz | |----------------------|--|--|--| | Flatness* (dB) | ±0.003 | ±0.01 | ±0.05 | | * Relative to 1 kHz. | | | | ## DC Coupled Measurement Accuracy (NI 4492/4495/4497/4499) #### Gain amplitude accuracy Operating temperature within 5 °C of last self-calibration temperature 0.5% max Over full operating temperature range..... 1% max #### Offset1 Operating temperature within 5 °C of last self-calibration temperature $\pm 500 \,\mu V$ max Over full operating temperature range..... ±1 mV max ¹ V_{cm} = 0. Nonzero values create additional offset error according to the CMRR specification. ## Amplifier Characteristics #### Input Impedance | Terminal | Input Impedance | |---|-----------------| | Between positive input and negative input | 10 MΩ 35 pF | | Between negative input and chassis ground | 50 Ω | #### Common-Mode Rejection Ratio (CMRR) Input frequency <20 kHz¹.....40 dB ## **Dynamic Characteristics** #### Bandwidth and Alias Rejection | Specification | Low-Frequency Alias
Rejection Enabled | Low-Frequency Alias Rejection
Disabled (Default) | |--------------------------------------|--|---| | Alias-free bandwidth (BW) (passband) | DC to $0.4 \cdot f_{\rm s}$ | DC to $0.4535 \cdot f_s$ | | Alias rejection, minimum | 104 dBc | 120 dBc | | −3 dB BW | $0.484 \cdot f_{s}$ | $0.491 \cdot f_{\mathrm{s}}$ | #### AC Coupling² $-3~\mathrm{dB}$ cutoff frequency0.5 Hz -0.1 dB cutoff frequency 3.2 Hz $^{^{1}\,}$ Using the InfiniBand 4x to 8 BNC cable assembly. Does not include effects of additional cabling. ² NI 4495 is DC coupled. ^{4 |} ni.com | NI 449x Specifications Figure 1. Magnitude Response of AC Coupling Circuit Figure 2. Phase Response of AC Coupling Circuit #### Idle Channel Noise (NI 4492/4495/4496/4497) | | Idle Channel Noise* | | | | | | |-----------|----------------------|---------------|-----------------------------|---------------|-----------------------------------|---------------| | | f _s = 51. | 2 kS/s | f _s = 102.4 kS/s | | $f_{\rm s} = 204.8 \; {\rm kS/s}$ | | | Gain (dB) | dBV _{rms} † | μV_{rms} | dBV _{rms} † | μV_{rms} | dBV _{rms} † | μV_{rms} | | 20 | -113 | 2.2 | -110 | 3.2 | -106 | 5.0 | | 0 | -97 | 14 | -94 | 20 | -89 | 35 | ^{*} Source impedance ≤50 Ω [†] $dBV_{rms} = dB$ reference 1 V_{rms} . #### Idle Channel Noise (NI 4498/4499) | Idle Channel Noise* | | | | | | | |---------------------|----------------------|---------------|----------------------|---------------|-----------------------------|---------------| | | f _s = 51. | 2 kS/s | f _s = 102 | .4 kS/s | <i>f</i> _s = 204 | .8 kS/s | | Gain (dB) | dBV _{rms} † | μV_{rms} | dBV _{rms} † | μV_{rms} | dBV _{rms} † | μV_{rms} | | 30 | -119 | 1.1 | -116 | 1.6 | -113 | 2.2 | | 20 | -115 | 1.8 | -112 | 2.5 | -108 | 4.0 | | 10 | -107 | 4.5 | -104 | 6.3 | -99 | 11 | | 0 | - 97 | 14 | -94 | 20 | -89 | 35 | ^{*} Source impedance ≤50 Ω. #### Spectral Noise Density NI 4492/4495/4496/4497 input voltage NI 4498/4499 input voltage noise density 7 nV/ $\sqrt{\text{Hz}}$ at 30 dB gain, 1 kHz Figure 3. 30 dB Gain Spectral Noise Density of the NI 4498/4499 with 50 Ω at Input $^{^{\}dagger}$ dBV_{rms} = dB reference 1 V_{rms}. #### Representative Measurement FFTs Test conditions for all FFTs: 10 RMS averages of 65,536 samples using a 7-term Blackman-Harris window. Device: NI 4498/4499 at 0 dB gain. Source: Krohn-Hite Model 4402B. Figure 4. FFT of -1 dBFS, 1 kHz Tone Acquired at 51.2 kS/s Figure 5. FFT of -1 dBFS, 1 kHz Tone Acquired at 102.4 kS/s Frequency (Hz) #### Dynamic Range (NI 4492/4495/4496/4497) | Gain (dB) | Dynamic Range (dBFS)*, Min (Typical) | | | | |-----------|--------------------------------------|--------------------------|-----------------------------|--| | | f _s = 51.2 kS/s | $f_{\rm s}$ = 102.4 kS/s | f _s = 204.8 kS/s | | | 20 | 106 (110) | 103 (107) | 99 (103) | | | 0 | 110 (114) | 107 (111) | 101 (106) | | #### Dynamic Range (NI 4498/4499) | | Dynamic Range (dBFS)*, Min (Typical) | | | | |-----------|--------------------------------------|--------------------------|-----------------------------|--| | Gain (dB) | f _s = 51.2 kS/s | $f_{\rm s}$ = 102.4 kS/s | f _s = 204.8 kS/s | | | 30 | 102 (106) | 99 (103) | 95 (100) | | | 20 | 108 (112) | 105 (109) | 101 (105) | | | 10 | 110 (114) | 106 (111) | 101 (106) | | | 0 | 110 (114) | 107 (111) | 101 (106) | | ¹ kHz input tone, unweighted. Input amplitude is -60 dBFS. #### Spurious Free Dynamic Range (SFDR) (NI 4492/4495/4496/4497) | Gain (dB) | SFDR (dBc)*, †, ‡ | |-----------|-------------------| | 20 | 103 | | 0 | 106 | $f_s = 204.8 \text{ kS/s}.$ #### Spurious Free Dynamic Range (SFDR) (NI 4498/4499) | Gain (dB) | SFDR (dBc)*, †, ‡ | |-----------|-------------------| | 30 | 102 | | 20 | 103 | | 10 | 106 | | 0 | 108 | $f_s = 204.8 \text{ kS/s}.$ #### Total Harmonic Distortion Plus Noise (THD+N) (NI 4492/4495/4496/4497) | | THD+N (dBc)* | | | |-----------|---|-----|--| | Gain (dB) | $f_{\rm s} = 51.2 \text{ kS/s}$ $f_{\rm s} = 204.8 \text{ kS/s}$ $f_{\rm in} = 20 \text{ Hz to } 20 \text{ kHz}^{\dagger}$ $f_{\rm in} = 20 \text{ Hz to } 92.2 \text{ kHz}^{\ddagger}$ | | | | 20 | -94 | -78 | | | 0 | -98 | -83 | | ^{*} Input amplitude is -1 dBFS. ^{† 1} kHz input tone, input amplitude is -1 dBFS. [‡] Measurement includes all harmonics. ^{† 1} kHz input tone, input amplitude is -1 dBFS. [‡] Measurement includes all harmonics. ^{† 23.2} kHz measurement bandwidth. ^{‡ 92.8} kHz measurement bandwidth. #### Total Harmonic Distortion Plus Noise (THD+N) (NI 4498/4499) | | THD+N (dBc)* | | | |-----------|---|----------------|--| | Gain (dB) | $f_{\rm s} = 51.2 \; {\rm kS/s}$ $f_{\rm s} = 204.8 \; {\rm kS/s}$ $f_{\rm in} = 20 \; {\rm Hz} \; {\rm to} \; 20 \; {\rm kHz^{\dagger}}$ $f_{\rm in} = 20 \; {\rm Hz} \; {\rm to} \; 92.2 \; {\rm kHz^{\ddagger}}$ | | | | 30 | -94 | -79 | | | 0, 10, 20 | -98 | -86 | | ^{*} Input amplitude is -1 dBFS. #### Intermodulation Distortion (IMD) | Gain (dB)* | IMD (dBc)† | |------------|------------| | 30 | -98 | | 0, 10, 20 | -104 | ^{* 30} dB and 10 dB gain only apply to NI 4498/4499. #### Crosstalk | | Crosstalk for Adjacent (Nonadjacent) Channels (dBc) ^{†, ‡, **} | | | |------------------------|---|------------|--| | Gain (dB) [*] | $f_{\rm in}$ = 1 kHz $f_{\rm in}$ = 92.2 kHz | | | | 30 | -110 (-110) | -92 (-96) | | | 0, 10, 20 | -120 (-120) | -92 (-110) | | ^{* 30} dB and 10 dB gain only apply to NI 4498/4499. ^{† 23.2} kHz measurement bandwidth. [‡] 92.8 kHz measurement bandwidth. [†] CCIF 14 kHz + 15 kHz, each tone amplitude is -6 dBFS. [†] Source impedance ≤1 kΩ. [‡] Input amplitude is −1 dBFS. ^{**} Using the InfiniBand 4x to 8 BNC cable assembly. #### **ADC Filter Delay** | | Filter Delay | Filter Delay (Samples) | | | |---|--|--|--|--| | Sample Rate | Low-Frequency Alias
Rejection Enabled | Low-Frequency Alias
Rejection Disabled
(Default) | | | | $100 \text{ S/s} \le f_{\text{s}} \le 200 \text{ S/s}$ | 33.12 | | | | | 200 S/s $< f_s \le 400$ S/s | 33.24 | N/A* | | | | $400 \text{ S/s} < f_{\text{s}} \le 800 \text{ S/s}$ | 33.48 | | | | | $800 \text{ S/s} < f_{\text{s}} < 1.0 \text{ kS/s}$ | 33.97 | | | | | $1.0 \text{ kS/s} \le f_{\text{s}} \le 1.6 \text{ kS/s}$ | 33.97 | | | | | $1.6 \text{ kS/s} < f_{\text{s}} \le 3.2 \text{ kS/s}$ | 34.94 | | | | | $3.2 \text{ kS/s} < f_s \le 6.4 \text{ kS/s}$ | 36.88 | 64 | | | | $6.4 \text{ kS/s} < f_{\text{s}} \le 12.8 \text{ kS/s}$ | 40.75 | | | | | $12.8 \text{ kS/s} < f_{\text{s}} \le 25.6 \text{ kS/s}$ | 48.5 | | | | | $25.6 \text{ kS/s} < f_{\text{s}} \le 204.8 \text{ kS/s}$ | N/A [†] | | | | ^{*} Low-Frequency Alias Rejection is always enabled for f_s <1 kS/s. #### Interchannel Gain Mismatch (NI 4492/4495/4496/4497) | | AC/DC Coupled Mismatch (dB)*,† | | AC Coupled N | Mismatch (dB)*,† | |-----------|--------------------------------|----------------------------|------------------------|-------------------------| | Gain (dB) | f _{in} = 20 kHz | f _{in} = 92.2 kHz | f _{in} = 2 Hz | f _{in} = 20 Hz | | 20 | < 0.011 | < 0.03 | < 0.04 | < 0.011 | | 0 | < 0.011 | < 0.02 | 10.01 | 30.011 | ^{*} Identical channel configurations. [†] Low-Frequency Alias Rejection is always disabled for f_s >25.6 kS/s. [†] Operating temperature within 5 °C of last self-calibration temperature. #### Interchannel Phase Mismatch (NI 4492/4495/4496/4497) | | AC/DC Coupled Mismatch*,† | | AC Coupled | d Mismatch ^{*,†} | |-----------|---------------------------|----------------------------|------------------------|---------------------------| | Gain (dB) | f _{in} = 20 kHz | f _{in} = 92.2 kHz | f _{in} = 2 Hz | f _{in} = 20 Hz | | 20 | <0.20° | <0.90° | <0.8° | <0.08° | | 0 | <0.02° | <0.09° | 10.0 | 10.00 | ^{*} Identical channel configurations. #### Interchannel Gain Mismatch (NI 4498/4499) | | AC/DC Coupled Mismatch (dB)*,† | | AC Coupled M | lismatch (dB) ^{*,†} | |-----------|--------------------------------|----------------------------|------------------------|------------------------------| | Gain (dB) | f _{in} = 20 kHz | f _{in} = 92.2 kHz | f _{in} = 2 Hz | f _{in} = 20 Hz | | 30 | < 0.013 | < 0.05 | | | | 20 | < 0.011 | < 0.024 | < 0.04 | < 0.011 | | 10 | < 0.011 | < 0.02 | | | | 0 | < 0.011 | < 0.02 | | | ^{*} Identical channel configurations. #### Interchannel Phase Mismatch (NI 4498/4499) | | AC/DC Coupled Mismatch*,† | | AC Coupled | l Mismatch*,† | |-----------|---------------------------|----------------------------|------------------------|-------------------------| | Gain (dB) | f _{in} = 20 kHz | f _{in} = 92.2 kHz | f _{in} = 2 Hz | f _{in} = 20 Hz | | 30 | <0.30° | <1.35° | | | | 20 | <0.12° | <0.54° | <0.8° | <0.08° | | 10 | <0.06° | <0.28° | | | | 0 | <0.02° | <0.09° | | | ^{*} Identical channel configurations. [†] Operating temperature within 5 °C of last self-calibration temperature. **Note** All gain and phase mismatch specifications are for the same device and are not applicable between different NI 449x devices. [†] Operating temperature within 5 °C of last self-calibration temperature. [†] Operating temperature within 5 °C of last self-calibration temperature. #### Phase Linearity | $f_{\rm in} = 20 \text{ Hz to } 20 \text{ kHz} \dots$ | ± 0.01 | |---|------------| | $f_{\rm in} = 20 \text{ Hz to } 92.2 \text{ kHz}$ | ±0.3° | #### Onboard Calibration Reference | DC level | 5.000 V ±2.5 mV | |-----------------------|-----------------------------------| | Temperature stability | 5 ppm/°C max | | Long-term stability | 15 ppm/ $\sqrt{1,000 \text{ hr}}$ | ## Transducer Electronic Data Sheet (TEDS) Support Supports Transducer Electronic Data Sheet (TEDS) according to the **Note** For more information about TEDS, go to ni.com/info and enter the Info Code rdteds #### IFPF Excitation¹ (software selectable, per channel) Compliance 24 V **Note** Use the following equation to make sure that your configuration meets the IEPE compliance voltage range. $V_{common-mode} + V_{bias} \pm V_{full-scale}$ must be 1 V to 24 V, where $V_{common-mode}$ is the common-mode voltage seen by the input channel, V_{bias} is the DC bias voltage of the sensor, and $V_{full-scale}$ is the AC full-scale voltage of the sensor. IEPE open Software readable² ¹ NI 4495 does not support IEPE Excitation. ² NI-DAQmx 8.6 or later. | Channel input impedance | | |-------------------------|------------------| | with IEPE enabled | >250 kΩ at 1 kHz | | Current noise | 20 pA/√Hz | # Frequency Timebase Characteristics | Using external timebase Accuracy | Equal to accuracy of external timebase | |----------------------------------|--| | Using internal timebase | | | Accuracy | ±60 ppm, over operating temperature range, in first year | | Aging | 5 ppm, each additional year | # **Triggers** | A1 | | |---------------------|--| | Analog trigger | | | Type | Start or reference trigger | | Source | Any AI | | Level | Full scale, programmable | | Slope | Positive (rising) or negative (falling), software selectable | | Resolution | 24 bits | | Hysteresis | Programmable | | Digital trigger | | | Type | Start or reference trigger | | Source | PFI0, PXI_Trig<06> | | Compatibility | Transistor-transistor logic (5 V TTL) | | Polarity | Rising or falling edge | | Minimum pulse width | 100 ns | # **General Specifications** #### **Bus Interface** | PXI | 3.3 V or 5 V signal environment | |--------------|---------------------------------| | PXI Express | 3.3 V diff signal environment | | DMA channels | 1 | #### Synchronization | PXI | CLK_ | _10 | |-------------|------|-----| | PXI Express | CLK | 10 | #### **Power Requirements** | Voltage | NI PXIe-4492 | NI PXIe-4496 | |---------|--------------|--------------| | +3.3 V | 2000 mA | 2000 mA | | +12 V | 400 mA | 810 mA | | Voltage | NI PXIe-4497 | NI PXIe-4498 | NI PXIe-4499 | |---------|--------------|--------------|--------------| | +3.3 V | 2100 mA | 2000 mA | 2100 mA | | +12 V | 810 mA | 930 mA | 930 mA | | Voltage | NI PXI-4495 | NI PXI-4496 | NI PXI-4498 | |---------|-------------|-------------|-------------| | +5 V | 800 mA | 1400 mA | 1700 mA | | +3.3 V | 1700 mA | 1700 mA | 1700 mA | | +12 V | 400 mA | 400 mA | 400 mA | | -12 V | 100 mA | 100 mA | 100 mA | #### **Physical** | Difficulting confectors) | | |--------------------------|--| | PXI PXI Express | | 3U CompactPCI slot Analog I/O connectors......InfiniBand 4x Weight All except NI 4492 326 g (11.5 oz) Measurement Category¹ I **Caution** Do *not* use the NI 449x for connections to signals or for measurements within Categories II, III, or IV. **Caution** The protection provided by the 449x can be impaired if it is used in a manner not described in this document. Measurement Category is also referred to as Installation Category. # **Environmental Specifications** | <u> </u> | | |-------------------------------|---| | Maximum altitude | 2,000 m (800 mbar) | | Pollution Degree | 2 | | Indoor use only | | | Operating Environment | | | Ambient temperature range | 0 °C to 55 °C
(Tested in accordance with IEC-60068-2-1 and
IEC-60068-2-2.) 0 °C to 45 °C when installed in
an NI PXI-1000B DC chassis. | | Relative humidity range | 10% to 90%, noncondensing (Tested in accordance with IEC-60068-2-56.) | | Storage Environment | | | Ambient temperature range | 20 °C to 70 °C
(Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2.) | | Relative humidity range | 5% to 95%, noncondensing (Tested in accordance with IEC-60068-2-56.) | | Shock and Vibration | | | Operational shock | 30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC-60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.) | | Random vibration | | | Operating | | | Nonoperating | (Tested in accordance with IEC-60068-2-64. Nonoperating test profile exceeds the requirements of MIL-PRF-28800F, Class 3.) | | Calibration | | | Self-calibration | On software command, the device computes gain and offset corrections relative to high-precision internal reference. | | Self-calibration interval | Recommended whenever ambient temperature differs from T_{cal} by more than ± 5 °C. | | External calibration interval | 1 year | | Warm-up time | 15 minutes | #### Safety This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use: - IEC 61010-1. EN 61010-1 - UL 61010-1, CSA 61010-1 **Note** For UL and other safety certifications, refer to the product label or the *Online* Product Certification section. #### Electromagnetic Compatibility This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use: - EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity - EN 55011 (CISPR 11): Group 1, Class A emissions - AS/NZS CISPR 11: Group 1, Class A emissions - FCC 47 CFR Part 15B: Class A emissions - ICES-001: Class A emissions **Note** In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada. Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations. **Note** Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generates radio frequency energy for the treatment of material or inspection/analysis purposes. **Note** For EMC declarations and certifications, and additional information, refer to the Online Product Certification section. # CE Compliance () This product meets the essential requirements of applicable European Directives as follows: - 2006/95/EC: Low-Voltage Directive (safety) - 2004/108/EC; Electromagnetic Compatibility Directive (EMC) #### Online Product Certification Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/ certification, search by model number or product line, and click the appropriate link in the Certification column #### **Environmental Management** NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers. For additional environmental information, refer to the *NI and the Environment* Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document. #### Waste Electrical and Electronic Equipment (WEEE) **EU Customers** At the end of the product life cycle, all products *must* be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on Waste and Electronic Equipment, visit ni.com/environment/weee. #### 电子信息产品污染控制管理办法 (中国 RoHS) 中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs_china.) ## Where to Go for Support The National Instruments Web site is your complete resource for technical support. At ni.com/support you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers. National Instruments corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. National Instruments also has offices located around the world to help address your support needs. For telephone support in the United States, create your service request at ni.com/support and follow the calling instructions or dial 512 795 8248. For telephone support outside the United States, visit the Worldwide Offices section of ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information, support phone numbers, email addresses, and current events. LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of National Instruments Corporation. Refer to the *Trademark Information* at ni.com/trademarks for other National Instruments trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: *Help-Patents* in your software, the patents.txt file on your media, or the *National Instruments Patents* Notice at ni.com/patents. Refer to the *Export Compliance Information* at ni.com/legal-export-compliance for the National Instruments global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. © 2007-2012 National Instruments. All rights reserved. 372125F-01 May12