

Calibration Procedure

TS-15110

October 2022

378822A-01

ni.com

TS-15110 Calibration Procedure

This document contains the verification and adjustment procedures for the TS-15110. Use the procedures in this document to automate calibration or to conduct manual calibration. Review and become familiar with the entire procedure before beginning the calibration process.

Contents

Terms and Definitions	2
Calibration Overview	3
Calibration Condition Guidelines	5
Calibration Resources	5
Required Software	5
Recommended Documentation	6
Test Equipment	6
Warm Up the DUT	7
Perform Verification	8
AO Voltage Verification	8
Perform Adjustment	13
AO Voltage Adjustment	13
Perform Reverification	14
Update the Onboard Calibration Information	14
Accuracy Under Calibration Conditions	15
Revision History	16
NI Services	16

Terms and Definitions

DUT	DUT is an acronym for Device Under Test and refers to the NI product being calibrated. For this procedure, DUT refers to the TS-15110.
As-Found Limits	These limits are derived from the published specifications for the DUT. NI uses these limits to determine if the DUT is performing within the

recommended calibration interval specifications at the time of calibration and before any adjustment is performed.

- As-Left Limits These limits are derived from the published specifications for the DUT minus guardband to ensure a high probability that the DUT will meet its specifications over the next recommended calibration interval.
- Functional TestFunctional Tests determine whether the DUT is operating correctly.Functional tests are not directly related to performance specifications.
- VerificationVerification evaluates the measured calibration results against the defined
As-Found Limits. The result of the evaluation is expressed as a Pass/Fail
condition in the calibration certificate using an established evaluation
formula.
- Adjustment Adjustment performs a set of operations on the DUT to optimize the measurement performance and conform it to the assigned calibrated values.
- ReverificationReverification evaluates the measured calibration results against the As-
Left limits after adjustment. The As-Left limits may be tighter than the As-
Found limits.
- **Recommended Calibration Interval** This interval indicates the recommended period between each round of verification and adjustment of the DUT. There is a high probability that, within this interval, the DUT will remain within the published warranted performance specifications. Some measurement DUTs have warranted specifications for different calibration intervals, for example: 24 hours, 90 days, 1 year, and 2 years. In this case, the specification depends on the calibration cycle chosen by the user.

Calibration Overview

Recommended Calibration Interval

2 years

Password

NI

Note

This is the default password for all password-protected operations. This password is site-specific.

Task	Estimated Test Time	Operator Connections	Test Points
Setup	15 minutes		_
Warm Up	10 minutes	_	—
Verify, Adjust, and Reverify	24 minutes	8	216
Verify Only	4 minutes	8	12
Adjust Only	20 minutes	8	204

Note

Estimated test times assume the user is conducting a manual calibration. For most procedures, automating the calibration significantly reduces test times.

Environmental Conditions	Verification	Adjustment
Ambient temperature	23°C ± 5 °C	23 °C ± 1 °C
Relative humidity	Below 80%, noncondensing	

Calibration Condition Guidelines

- Keep cabling as short as possible. Long cables act as antennas, picking up extra noise that can affect measurements.
- Ensure that all connections to the DUT are secure.
- Allow adequate warm up time for all components of the calibration system.
- Make all connections as shown in diagrams.
- Use shielded copper wire for all cable connections to the DUT.
- Use twisted-pair wires to eliminate noise and thermal offsets.
- If a DUT fails reverification after adjustment, ensure that the Test Conditions have been met before returning the DUT to NI.

Calibration Resources

Required Software

Note

Ensure that the most recent version of the required driver software is installed before conducting the calibration.

Install the following software on the calibration system:

- NI-DAQmx
- Supported application development environment (ADE) LabVIEW or LabWindows™/CVI™
- Supported operating system Windows

Recommended Documentation

Go to <u>ni.com/docs</u> to locate the following documentation for more information when performing this calibration:

- TS-15110 Feature Guide
- NI-DAQmx Readme
- NI-DAQmx Help
- LabVIEW Help
- NI-DAQmx C Reference Help
- NI-DAQmx .NET Help Support for Visual Studio

Test Equipment

This section details the equipment NI recommends for each test performed as part of this calibration procedure.

NI Calibration Executive Users

Refer to the Calibration Executive Help to find an updated list of test equipment for this calibration procedure.

Standard	Recommended Model	Where Used	Functional Requirement(s)
DMM	PXIe-4081	All Tests	DC Voltage Input Voltage Range: up to 10 V
TestScale Backplane and Core Module Calibration Kit	NI 788650-02	All Tests	
37-Pin DSUB Terminal Block	NI-9923	All Tests	
37-Pin DSUB to 37-Pin DSUB cable	778621-01	All Tests	
Banana Plugs (x2)	Multicomp Pro PE000038 (Red) Multicomp Pro PE000037 (Black)	All Tests	
Twisted-pair wire			

Warm Up the DUT

Warm up time starts after the installed DUT is powered on in the chassis. Warm up time resets after the DUT is removed from the chassis. This DUT requires 10 minutes to warm up prior to conducting any tests.

Note

Observe adequate warm up time for all components of the calibration system.

Initial Setup

Note

The core module (TS-15050) will be installed in slot labeled "C". Ensure that the DUT is installed in slot 3 of the TS-15000/15010.

Figure 1. Initial Setup

1. TS-15050 (Core Module)

3. DUT

2. TS-15000/15010 Backplane

Perform Verification

AO Voltage Verification

Test Limits

Note

The limits in **Table 1** are derived using the values in **Table 7** and **Table 8** using the following equation:

Accuracy = Gain Error * Reading + Offset Error + INL

		As-Found Test Limit		As-Left Test Limit	
Range	Test Point (V)	Lower Limit (V)	Upper Limit (V)	Lower Limit (V)	Upper Limit (V)
±10	9.500000	9.485440	9.514560	9.487720	9.512280
±10	0.000000	-0.007150	0.007150	-0.007149	0.007149
±10	-9.500000	-9.514560	-9.485440	-9.512280	-9.487720

Table 1: AO Voltage Verification Limits

Initial Test Connection

Note

Connect the positive input to the DMM to AO 0 (pin 1) and the negative input to COM (pin 20). For this connection, solder each end of the twisted-pair wires to their respective banana plugs; and on the other end, insert each wire from the twisted-pair to the screw terminal on the NI-9923.

1. DMM

4. TS-15110

2. NI-9923

- 5. Twisted-Pair Wire
- 3. 37-Pin DSUB to 37-Pin DSUB Cable

DUT Channel	TB-9923 Positive Pin (to INPUT HI)	TB-9923 Negative Pin (to INPUT LO)
AO 0	1	20
AO 1	5	23
AO 2	14	32
AO 3	18	36

Table 2. Channel Configurations

Verification Procedure

Complete the following procedure to verify the AO accuracy.

Repeat 4 times, once for each channel.

1. Connect the AO channel under test to the DMM as shown in **Figure 2**.

Repeat 3 times, once for each test point.

2. Configure the DMM to read DC voltage as shown in **Table 3**.

Table 3: DMM Configuration

Configuration	Value
Function	DC Volts
Range	Fixed: 10 V for ±9.5 V test points Fixed: 100 mV for 0 V test point
Auto Zero	Enabled
ADC Calibration	Enabled
Offset Nulling	Enabled

3. Create and configure an AO voltage task as shown in **Table 4**.

Table 4: AO Voltage Channel Configuration

Parameter	Value
Physical channels	TSxMod3/aox
Terminal Configuration	Single Ended
Scaled Units	Volts
Input Range	±10 V

- 4. Start the task.
- 5. Configure the timing properties for the voltage output as shown in **Table 5**.

Table 5: AO Voltage Channel Timing Configuration

Parameter	Value
Timeout	10.0
Samples per Channel	1
Data	Test point from Table 1

- 6. Wait for the reading to settle, then record the value from the DMM.
- 7. Stop and clear the task.
- 8. Compare the value to the limits in **Table 1**.
- 9. Set the DMM to Standby mode (STBY) before moving to the next channel.

Perform Adjustment

AO Voltage Adjustment

Perform an adjustment at least once within the calibration interval. Adjustment automatically updates the calibration constants, the date, and the temperature in the DUT EEPROM. If the DUT passes the verification procedures within the As-Left test limits, an adjustment is not required. Proceed to the *Update the Onboard Calibration Information* section.

Note

Initial test connection is the same as AO Voltage Verification, as shown in **Figure 2**.

Adjustment Procedure

Repeat 4 times, once for each channel.

- 1. Open a calibration session.
 - Call DAQmxInitExtCal to initialize the adjustment.
- 2. Call DAQmxTSSeriesSetTemp and set the external temperature in degrees Celsius.
- 3. Call the TS-15110 get TestScale adjustment points function to obtain an array of recommended calibration voltages.
- 4. Configure the DMM to read the voltage from Step 3.
- 5. Call and configure the TS-15110 setup calibration function to output voltage points from Step 3. Select the AO*x* channel.
- 6. Perform an external adjustment using DAQmxTSSeriesCalAdjust, as shown in **Table 6**.

Table 6: Adjustment Configuration

Parameter	Value
Physical Channel	TSMod3/aox
Reference Value	Voltage from Step 3

- 7. Save the adjustment to the EEPROM using DAQmxCloseExtCal by choosing the "commit" action. This function also saves the date, time, and temperature of the adjustment to the onboard memory.
- 8. Set the DMM to Standby (STBY) and disconnect the DUT.

Perform Reverification

Perform all tests in the Verification section after completing Adjustment. This verification compares the As-Left limits with measurement data collected after the DUT adjustment. The As-Left limits are tighter than the As-Found limits.

Update the Onboard Calibration Information

When the adjustment procedure is completed, the DUT internal calibration memory (EEPROM) is immediately updated.

If an adjustment is not needed, update the calibration date and onboard calibration temperature without making any adjustments by initializing an external calibration session, setting the calibration temperature, and closing the external calibration session.

Accuracy Under Calibration Conditions

The following accuracy tables are valid for calibration under the following conditions:

- Ambient temperature 23°C ± 5 °C
- DUT installed in slot 3 of the TS-15000/15010 backplane
- Slots 1, 2, 4, and 5 are empty

Note

The test limits in **Table 1** are derived using the values in **Table 7** and **Table 8** using the following equation:

Accuracy = Gain Error * Reading + Offset Error + INL

Table 7: TS-15110 Accuracy Under Calibration Conditions

As-Found		As-Left		
Range	Gain Error (%)	Offset Error (mV)	Gain Error (%)	Offset Error (mV)
±10	0.078	3.23	0.054	3.23

Table 8: Additional Accuracy Information

Range	INL ¹
10 V	12 LSB

¹Scaling Coefficient: 326.7 μV/LSB

Revision History

Revision	Section	Changes
378822A-01 October 2022	_	This is the initial release version of the TS-15110 Calibration Procedure.

NI Services

Visit ni.com/support to find support resources including documentation, downloads, and troubleshooting and application development self-help such as tutorials and examples.

Visit ni.com/services to learn about NI service offerings such as calibration options, repair, and replacement.

Visit ni.com/register to register your NI product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

NI corporate headquarters is located at 11500 N Mopac Expwy, Austin, TX 78759-3504, USA.

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for more information on National Instruments trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: **Help*Patents** in your software, the patents.txt file on your media, or the *National Instruments Patents Notice* at ni.com/patents.You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the National Instruments global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14s, DFAR 252.227-7014, and DFAR 252.227-7015.

© 2022 National Instruments Corporation. All rights reserved.